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ABSTRACT

Image-text pre-trained model, e.g., CLIP, has gained significant traction even in
the field of video-text learning. Recent approaches extended CLIP to video tasks,
and have achieved unprecedented performances in the foundational study of video
understanding: text-video retrieval. However, unlike conventional transfer learn-
ing within the same domain, transfer learning across different modalities from im-
ages to videos often requires fine-tuning the whole pre-trained weights rather than
keeping them frozen. This may result in overfitting and distorting the pre-trained
weights, leading to a degradation in performance. To address this challenge, we
introduce a learning strategy, termed Parameter-wise Adaptive Two-stage training
Harnessing Scene transition mask adapter (PATHS). Our two-stage learning pro-
cess alleviates the deviations of the pre-trained weights. A novel method of finding
the optimal weights is used in the first stage, which efficiently narrows down to
strong candidates by only monitoring the fluctuations of parameters. Once the
parameters are fixed to optimal values, the second stage is dedicated to acquir-
ing knowledge of scenes with an adapter module. PATHS can be applied to any
existing models in a plug-and-play manner, and always achieves performance im-
provements from the base models. We report state-of-the-art performances across
key text-video benchmark datasets, including MSRVTT and LSMDC. Our code is
available at https://anonymous.4open.science/r/PATHS_.

1 INTRODUCTION

Figure 1: The video and text data examples are
from the MSRVTT dataset. True pairs of video-
text are denoted with links. This example illus-
trates the potential confusion in the learning pro-
cess due to the gap between visual and textual rep-
resentation.

Figure 2: Recall at 1 is computed at every 50
steps in validation set from MSRVTT dataset. It
displays the results of evaluating existing mod-
els every 50 steps while training.

The pre-trained network trained on image-text pairs, known as CLIP (Radford et al., 2021), has
shown a significant impact on AI research. Through fine-tuning, CLIP has been extended from
image-text multimodal tasks to broader tasks such as video retrieval (Luo et al., 2022; Zhao et al.,
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2022; Gorti et al., 2022; Liu et al., 2022; Ma et al., 2022). When performing transfer learning
within the same domain, many methods try to preserve the performance of the pre-trained model
by performing linear probing. However, due to the difference between image and video, the pre-
trained model image domain cannot be directly adopted into tasks involving video. The predominant
method here is to take informative frames as images, and to relate them with a well-trained model:
CLIP. Each frame in a video is essentially an image without temporality, and thus multimodal models
for video understanding try to learn additional “temporal information” from the sequence of frames.
Due to the huge gap between video and image, it involves fine-tuning the entire pre-trained weights
by funneling temporal information to the existing model knowledge.

Many existing models in video understanding adopt this approach, adding each model’s methods to
capture temporal information. These models use a method of embedding information about each
modality in a joint latent space and aligning the two domains. However, due to the information
asymmetry among image, video, and text, fine-tuning can harm the well-trained weights from CLIP,
which causes performance degradation. For instance, the ambiguity raised from nonspecific or
generic text may cause confusion during learning. Looking at Figure 1, all the clips on the left
seem to be relevant to all of the text captions on the right. In fact, each clip on the left is only
matched to one of the text on the right, where the true pairs are connected with links. This becomes
problematic as the positive text and negative text are too similar, which causes the model to be
confused during training. Another observation on each true pair is that the corresponding text caption
only matches with a specific scene with small sub-frames. This also brings performance degradation
when irrelevant scenes are also unexpectedly aligned with the corresponding text under the matched
pair. Both phenomena, mainly from the nature of the video, negatively impact the text-video models.
This phenomena is also reflected in Figure 2, where existing models exhibit unstable performance
in validation set during training. At each end of epoch, the performance tend to be worse than other
steps within the same epoch, and optimal performance cannot be reached.

Several recent studies (Gorti et al., 2022; Jin et al., 2022; 2023b;a) have begun to use frequent
evaluations at every N step to improve generalization, different from the conventional neural training
method, which performs one evaluation at each epoch. While this approach can potentially improve
performance, it incurs extra computational overhead, indicating a need for a more efficient solution.

In light of the issues above, this study introduces the Parameter-wise Adaptive Two-stage train-
ing Harnessing Scene Transition with Masked Adapters (PATHS). Instead of directly fine-tuning
the model, which often distorts the pre-trained weights, our approach adopts a two-stage method
that incorporates the essence of transfer learning. The first stage of PATHS focuses on optimiz-
ing the pre-trained weight for the image-to-video modality. It identifies the points where the net-
work parameters fluctuate and evaluates those points, enhancing the model’s latent ability without
needing N -step evaluations. PATHS is designed to achieve optimal performance efficiently based
on the given metric by indirectly monitoring how the model performs based on parameter group
changes. This ensures that the pre-trained weights from the image-text modality are minimally
compromised when extended to the video-text modality. Subsequently, in the second stage, we in-
troduce an adapter module that enables the model to acquire knowledge about different scenes, a
pivotal aspect of video understanding. This module not only enhances the model’s ability to focus
on the relevant scene in a video but also fosters a deeper understanding of the scene transitions.
By adopting this two-stage approach, our model strives to learn a video from diverse perspectives,
maximizing its potential and offering a robust solution to the challenges identified in the existing
literature. Our contributions can be summarized in three ways:

• We propose a parameter-wise two-stage training strategy to efficiently mitigate the weight
corruption problem that arises from extending pre-trained weight of CLIP to tasks in the
video domain. The proposed training scheme is general and thus applicable to any existing
transfer learning models.

• An adapter module is additionally proposed and incorporated into our proposed scheme
to distinguish different scenes, which let the model focus on relevant scene not the whole
video frames during training.

• Our proposed scheme has been applied to strong baselines in a plug-and-play manner,
where we show constant performance improvements achieving state-of-the-art perfor-
mance in the text-to-video retrieval task with two popular datasets: LSMDC (Rohrbach
et al., 2015) and MSRVTT (Xu et al., 2016)
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2 RELATED WORKS

2.1 TEXT-TO-VIDEO RETRIEVAL

Text-to-video retrieval has emerged as a crucial avenue for exploring video-language comprehen-
sion. Researchers have presented an array of methods for probing the interconnection between
video and language. Early studies (Gabeur et al., 2020; Croitoru et al., 2021; Li et al., 2020; Sun
et al., 2019; Xu et al., 2021; Patrick et al., 2020) gravitated towards leveraging a combination of
pre-extracted features from specialized models (Xie et al., 2017; Feichtenhofer et al., 2019; Devlin
et al., 2018; Liu et al., 2019). This line of work has been followed by ClipBERT (Lei et al., 2021)
and Frozen (Bain et al., 2021), and the idea of uniform sampling of a clip from Frozen has been
widely adopted in many subsequent models. With the introduction of the large-scale image-text
pre-trained model CLIP (Radford et al., 2021), CLIP4Clip (Luo et al., 2022) introduced how CLIP
can be transferred to tasks for video, and has achieved unprecedented performances in tasks in video
representation learning. Many following studies (Zhao et al., 2022; Gorti et al., 2022; Bogolin et al.,
2022; Liu et al., 2022; Ma et al., 2022; Kang & Cho, 2023; Jin et al., 2023a;c;b; Wu et al., 2023)
have developed a range of techniques grounded in the framework of CLIP4Clip. In addition to the
method of transfer learning the pre-trained weight of CLIP, a foundation model for pre-training a
large amount of video is also actively being studied (Wang et al., 2023; Xue et al., 2022; Alayrac
et al., 2022; Yuan et al., 2021; Huang et al., 2023).

Previous research within the domain of video-language understanding has concentrated on applying
pre-trained weights of CLIP to video modality and investigating the learning for video temporality.
However, most existing studies suffer from the overfitting problem which is caused by the deforma-
tion of pre-trained weights of CLIP. This shortcoming can further compound the complexity of the
learning process, tailoring it excessively to the given data and potentially undermining the model’s
generalizability. Consequently, we may benefit from examining these challenges, fostering the de-
velopment methods and mechanisms that balance the intricate interplay between pre-trained model
utilization and specificity.

2.2 ADAPTER METHOD

Adapters are specialized components or modules integrated into neural networks, particularly in
transformer architectures, to facilitate task-specific adaptations without requiring extensive retrain-
ing. By introducing these specialized modules within transformer encoders, adapters enable fine-
tuning for particular tasks, aiding pre-trained models to adapt to downstream NLP tasks (Stickland
& Murray, 2019; Houlsby et al., 2019). They are also utilized as a cost-saving strategy in scenar-
ios where assembling large-scale datasets is challenging. In the field of computer vision, adapters
have been used for progressive learning (Rebuffi et al., 2017; Chen et al., 2022), and methods like
CLIP (Radford et al., 2021) have been employed to foster zero-shot transferable features across
diverse image categorization tasks. Notably, following the emergence of CLIP, a multitude of CLIP-
based adapters have been launched (Sung et al., 2022; Zhang et al., 2021; Li et al., 2021), enhancing
the practicality of pre-trained knowledge for few-shot downstream operations.

In the field of video retrieval, a plethora of recent studies have actively engaged in various adapter
research. Some investigations (Zhang et al., 2023a; Lu et al., 2023) conducting pre-training on video
text have achieved remarkable performance by incorporating adapter modules into text or video en-
coders without substantially increasing parameters or retraining. Similarly, several studies (Zhang
et al., 2023a;b; Cheng et al., 2023) transferring the pre-trained weights of CLIP have yielded fa-
vorable outcomes by adding adapter modules. However, most of the adapters proposed in previous
studies are model dependent, where as the adaptor we propose is model-agnostic.

3 PRELIMINARIES

Before explaining the proposed method, we briefly describe the backbone structure which extends
the pre-trained weight of CLIP to the video-text retrieval task. Generally, many of the existing
methods for text-to-video retrieval employing pre-trained weights of CLIP use CLIP4Clip as the
backbone model. We therefore briefly explain the method of CLIP4Clip:
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The video retrieval task involves embedding each modality into a joint latent space for video-text
alignment. Specifically, the similarity score between a given pair of video-text is used for the align-
ment. The model performs feature extraction from videos and texts using pre-trained weights of
CLIP. The methodology is configured as follows: Vision Transformers (Dosovitskiy et al., 2021)
(ViT) are utilized to extract visual features from frames and provide them as frames for the input
video. There are 12 layers, using pre-trained weights from CLIP. Text features are handled similarly
to CLIP, using a transformer consisting of 12 layers. Both transformer layer contains eight heads.

3.1 MODALITY ENCODERS

We use encoders from CLIP to extract features for each modality. The text encoder receives the
text representation T as input. Here T = {wcls;w1, w2, w3, ..., wL}, where wj is the j-th word
token, and L is the number of word tokens. Visual encoder is used for extracting each frame em-
bedding, where the video representation V is fed as input. The visual encoder takes the form of
vi = {pcls; p1i , p2i , p3i , ..., pPi } from ViT, where P is the number of patches and p is patches from
the ViT encoder, and vi is the patch level embedding of each video. Finally, we represent the input
video as V = {v1, v2, v3, ..., vm} with m being the maximum number of frames in a video.

3.2 TRAINING OBJECTIVE

Utilizing the pre-trained weights from CLIP, the model is optimized through fine-tuning these
weights. We perform optimization using the similarity score S(V, T ), where the given video-text
pair is compared with cosine similarity;

S(V, T ) =
V

||V ||

⊤ T

||T ||
. (1)

The optimization of this equation is performed by minimizing the symmetric cross-entropy loss
shown below:

LV = − 1

B

B∑
i=1

log
exp(S(Vi, Ti))∑B
j=1 exp(S(Vj , Ti))

; LT = − 1

B

B∑
i=1

log
exp(S(Vi, Ti))∑B
j=1 exp(S(Vi, Tj))

, (2)

where B is the batch size. The equation below is the final objective function.

L = LV + LT . (3)

4 METHODOLOGY

We present our two-stage training strategy specifically designed to extend text-image pre-trained
weights into the text-video modality. This approach is different from the conventional method with
direct fine-tuning which often causes overfitting or strong deviations from the pre-trained weights.
Our approach aims to achieve stable and effective knowledge transfer. We start with elaborating the
two-stage training scheme in Section 4.1. In Section 4.2, we introduce the Scene Transition Mask
Adapter (STMA) module which enables our model to learn different information from different
scenes to better align text to corresponding scenes.

4.1 PARAMETER-WISE TWO-STAGE TRAINING METHODS

Existing studies in text-video retrieval have tested the validation set at every end of the epoch and
compared their performances following the deep learning convention. Some recent models started
to evaluate models more frequently within an epoch, such as at every N -step, and achieved further
performance improvements. This remedy turns out to be effective (see top two rows in Table 4)
when performing transfer learning in multimodal data, e.g., text and video. However, while effec-
tive, performing evaluation at every N -step leads to computational overhead (see Appendix A.1).
Besides, N becomes a hyperparameter, which is not given beforehand. In studies with this remedy,
often the hyperparameter N is not reported, nor using this evaluation technique is not revealed in
the papers. Building on these observations and the need for a more efficient approach, we introduce
a novel Parameter-wise Two-stage Training Method to find an optimal initialization point for our
two-stage strategy. The proposed method applies to any existing models in the literature.
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Figure 3: In the second stage, we use the best
performing points in each epoch as pivots.

Method Text-to-Video Retrieval
R@1 R@5 R@10 MeanR
One-stage scheme

Baseline 47.2 73.5 82.5 13.8
+ STMA 47.4 73.2 82.7 13.2

Two-stage scheme
PATHS 48.4 73.7 82.7 13.2
w/o STMA 48.1 72.7 82.5 13.9
w/o Freeze 47.8 73.3 82.3 13.7
w/o Pivot 48.2 73.6 82.4 13.2

Table 1: Results on MSRVTT dataset with varying
the components in PATHS. We use X-CLIP as a base-
line.

Motivation. Our main idea is motivated by the results in Figure 2, where the performance at every
end of the epoch is often worse than most other steps within a given epoch. Here, the validation set
is evaluated at every 50 steps. The end of each epoch is denoted in dotted vertical lines. It can be
clearly seen that the performance of the validation set is noisy and the achieved performance at the
end of each epoch is far from optimal. As such, one obvious solution for improving the performance
than comparing the performance at every end of the epoch is to compare the performance at every
step. However, this requires exhaustive computations to compare validation performances at every
step even with minimum changes. One might perform a compromised evaluation at every N -step for
efficiency, which is an ad-hoc solution. While larger N brings computational efficiency, the optimal
parameters with the highest performance can be missed with higher chances. This dilemma has
stimulated investigations into alternative solutions. The solution we proposed is based on our key
observation. When the model converges, parameters in the neural network exhibit stable behavior.
Here, we focus on the other way, i.e., when the model diverges. When the model starts to diverge
after passing the optimum point, the model parameter values exhibit strong fluctuations. This often
involves rearranging parameters in terms of importance (or the value of parameters). We conversely
use this ranking dynamics to capture strong candidates which can bring best performance. Namely,
when there’s a strong change in the ranking of parameter groups at step n, we keep the parameter
set from step (n− 1) as a candidate. Thus, we can take top-K candidates at each epoch for further
comparison.

Main Idea. Throughout the study, we fix K = 5 for our parameter-wise method, where we keep
top-5 candidates which are associated with top-5 highest dynamics. These top-5 are compared in the
following steps. The red graph in Figure 3 compares the performance in R@1. In accordance with
Figure 2, we denote end of each epoch with dotted line. It is clearly visible that the parameter-wise
method we propose in this study can effectively capture strong candidates with higher performance
compared against at each end of epoch. This observation also confirms that the model achieves
better performance after the model parameters are stabilized. Among all the candidates, we find the
best performance (denoted as star in Figure 3), where the set of parameters are saved for later use in
the second stage.

Quantifying Dynamics The parameter-wise two-stage training method captures the moment
when the parameter is not stabilized, stores the parameters in memory, and evaluates them at the
end of each epoch. However, parameters behave unpredictably, making it challenging to compare
how parameters behave unstable. To address this, we group the parameters and evaluate the stabiliza-
tion level based on each parameter group’s ranking dynamic. For measuring the ranking dynamics,
we group the parameters according to their functionalities (e.g., visual, textual, temporal, and etc.),
and rank the parameters at each group with respect to their average fluctuations. Each ranking is
stored and compared with the ranking of the average change in the next step. By doing this, we can
monitor how the parameter groups have changed compared to the previous step. By continuously
monitoring the rank-based fluctuations in parameter changes and employing statistical metrics such
as moving averages and standard deviations, we are able to discern the underlying trends governing
parameter group behavior. Utilizing this analytical framework, we evaluate the stability of the cur-
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rent parameter configurations by contrasting the observed ranking shifts at the current iteration with
these foundational trends. In this study, we further investigated three of our approaches, which is
elaborated and compared in Section 5.4

Two-stage Process. In addition to finding the optimal step, we further apply the second process
to maximize the model performance. Thus, the final form of our proposed parameter-wise method
is developed upon the two-stage process, where the second stage involves our pivot method. The
green graph in Figure 3 shows the results of our second stage of training. At the end of first stage,
we initialize the model parameters with values obtained from the best performing step marked with
red stars, and freeze all the parameters for second stage. In the second stage, we add an adapter
(see Section 4.2) for further training. We keep the parameters at the point where the validation
performance is the highest. We then load these parameters back into the model at the end of each
epoch to perform the pivoting. This method prevents overfittings while maximizing the performance
of the model.

Readers may have some questions on this method. The first question may arise as to whether our
approach improves performance simply by adding parameters, not from the two-stage training pro-
cess. This concern seems logical, but it can be refuted through the empirical evidence in Table 1. Our
study found that without using our parameter-wise two-stage training method, but merely adding an
adapter module and trained end-to-end, the performance was worse than our model (PATHS). This
demonstrates that when trained from scratch with adding an adapter (STMA), our adapter module
may add complexity to the model, and lead the optimization to more challenging settings. The sec-
ond question could be whether the two-stage training process is simply a supplementary tool for
using the adapter. While it could be argued that the two-stage approach is simply for incorporat-
ing the adapter, the true effect of our two-stage approach is in the transfer learning associating two
different domains: image and video. In Table 1, we verify the effectiveness of two-stage approach
without STMA, which already achieves considerable improvement over the baseline model. When
comparing the results between ‘PATHS’ and ‘w/o STMA’ in two-stage method, STMA also brings
further improvement when applied in the two-stage scheme. Table 1 also illustrates the effectiveness
of freezing and pivoting, which works complementary and supportive through the two-stage process.

4.2 SCENE TRANSITION MASK ADAPTER

We introduce a generally applicable adapter called STMA. This adapter can be inserted as a module
into pre-trained weight of CLIP in video retrieval tasks as a transfer learning method, which can be
easily applied as a plug-and-play component. Figure 4 illustrates the overall structure of STMA,
and shows how the module is inserted into the network. As shown in the figure, STMA is a small
module inserted into the temporal encoder. The major functionality of STMA is to aid the model
in learning the concept of scenes in an input video. This approach is inspired by a tree-based video
segmentation algorithm proposed in (Kang et al., 2023), which compares the similarity between
frames for splitting scenes. In our proposed method, a mask that can divide scenes in the input video
is generated using the forward difference of similarity between each video’s first frame.

Applying the generated mask to the input video, we can split the input video to multiple scenes, and
these scenes subsequently pass through a co-attention layer. Different from the self-attention layer
in the transformer structure, the co-attention layer takes different queries, keys, and values to enable
the learning and updating of two pieces of information regarding each other. Through this process,
STMA leverages the co-attention layer to learn the correlation between the first and second scenes
divided within the video. In the following step, the learned first and second scenes are combined
with the output of the existing temporal encoder, namely, each block’s video representation. This
combination again passes through an attention layer to identify the most crucial part of the video
throughout the entire video and each scene. Convolution 1d, max pooling, and average pooling
reduce the increased dimensions via a pooling layer, which is followed by the Feed Forward Network
previously trained in the temporal encoder.

The extra learnable parameters in STMA are represented in red blocks in Figure 4, and in fact, our
adapter layer only requires approximately 3% more parameters from the existing model. Besides,
STMA is deactivated in the first stage model and is additionally trained after completely freezing
the existing model except STMA in the second stage. A detailed description of STMA can be found
in Appendix A.3.
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Figure 4: The overview of Scene-Transition Mask Adapter (STMA), a key adapter module within
the PATHS framework. STMA is a model-agnostic adapter which can be applied to any text-video
multimodal architecture through implemented in the temporal encoder. The gray blocks (both in and
out of the ‘Temporal Encoder’) are trained only in the first stage and freezed in the second stage.
During the second stage, our STMA, depicted in green blocks, is activated, and the parameters
of the red blocks are subsequently learned. The alignment attention utilizes the same encoder as
co-attention, trained for scene-specific knowledge (see Appendix A.3 for details).

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

We perform experimentation on widely used benchmark datasets for text–video retrieval, namely
LSMDC, MSRVTT, and MSVD. PATHS has been applied to existing strong baseline models such
as CLIP4Clip, TS2-Net, X-CLIP, EMCL and DiCoSA. We present the efficacy of PATHS by com-
paring the results of each model with PATH to the results of each original model. Throughout the
experiments, released codes from each baseline are used, where we implement PATHS directly on
the baseline codes.

We use two evaluation metrics to evaluate the performances: recall at rank K (R@K) and mean
rank (MnR). The R@K metric measures the fraction of query pairs that fall within the top K results
retrieved, where a higher value indicates better performance. MnR signifies the average of matched
pairs within the retrieval ranking order, and a lower score in this metric is considered more favorable.

Our model employed a text and video encoder using CLIP (ViT-B/32, ViT-B/16). We use four
Nvidia A100 80GB GPUs, starting with a learning rate of 1e-4. With a model batch size of 128 and
a validation batch size of 32, we evaluate five baseline models, contrasting their performance against
the results achieved with our approach1, which is provided in Section 5.3.

5.2 DATASETS

LSMDC dataset contains 118,081 clips extracted from 112 films, with durations between 2 and 30
seconds. Every video is coupled with one caption. We follow the official split: 101,079 for training,
7,408 for validation, and 1,000 for testing.

MSRVTT dataset contains 10,000 videos with durations ranging from 10 to 30 seconds. Each video
clip is associated with 20 sentences. We follow the same split from previous studies.

1All experiments with baselines were performed following the original setting and using the authors’ origi-
nal codes in our environment. Consequently, some results might differ from those in the original publications.
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MSVD dataset contains 1,970 videos with durations ranging from 1 to 62 seconds. On average,
each video clip is associated with 40 sentences. We follow the official split.

Methods LSMDC MSRVTT
R@1↑ R@5↑ R@10↑ MeanR↓ R@1↑ R@5↑ R@10↑ MeanR↓

ViT-B-32
CenterCLIP (Zhao et al., 2022)SIGIR’22 21.9 41.1 50.7 57.2 44.2 71.6 82.1 15.1
DRL (Wang et al., 2022)arXiv’22 24.9 45.7 55.3 - 47.4 74.6 83.8 12.8
QB-Norm (Bogolin et al., 2022)CVPR’22 17.8 37.7 47.6 - 47.2 73.0 83.0 -
*X-Pool (Gorti et al., 2022)CVPR’22 21.5 41.6 49.8 59.2 46.8 73.3 82.4 13.9
STAN (Liu et al., 2023)CVPR’23 23.7 42.7 51.8 - 46.9 72.8 82.8 -
HBI (Jin et al., 2023a)CVPR’23 - - - - 48.6 74.6 83.4 -
MEME (Kang & Cho, 2023)SIGIR’23 24.0 41.7 51.4 53.5 49.0 73.5 82.0 13.0
*CLIP4Clip (Luo et al., 2022)Neurocomputing’22 22.8 40.3 48.6 62.3 43.0 71.9 81.8 15.6
*CLIP4Clip (+PATHS) 23.7(+0.9) 41.8(+1.5) 49.9(+1.3) 56.8(-5.5) 44.5(+1.5) 72.2(+0.3) 82.6(+0.8) 14.6(-1.0)
*TS2-Net (Liu et al., 2022)ECCV’22 20.8 40.8 47.8 68.1 46.6 74.9 82.5 14.1
*TS2-Net (+PATHS) 22.3(+1.5) 39.7(-1.1) 49.2(+1.4) 66.0(-2.1) 47.8(+1.2) 74.1(-0.8) 82.6(+0.1) 13.5(-0.6)
*EMCL-Net (Jin et al., 2022)NeurIPS’22 22.1 43.4 52.6 57.0 46.8 74.2 82.4 13.2
*EMCL-Net (+PATHS) 24.2(+2.1) 43.9(+0.5) 52.7(+0.1) 57.0(±0.0) 48.3(+1.5) 74.2(±0.0) 82.5(+0.1) 13.0(-0.2)
*X-CLIP (Ma et al., 2022)ACMMM’22 23.3 42.4 50.9 55.6 47.2 73.5 82.5 13.8
*X-CLIP (+PATHS) 25.1(+1.8) 42.9(+0.5) 52.3(+1.4) 54.9(-0.7) 48.4(+1.2) 73.7(+0.2) 82.7(+0.2) 13.2(-0.6)
*DiCoSA (Jin et al., 2023b)IJCAI’23 22.5 43.6 52.6 55.6 47.6 74.4 83.4 13.2
*DiCoSA (+PATHS) 24.1(+1.6) 43.9(+0.3) 52.8(+0.2) 55.4(-0.2) 49.4(+1.8) 74.5(+0.1) 83.7(+0.3) 12.8(-0.4)

ViT-B-16
CenterCLIP (Zhao et al., 2022)SIGIR’22 24.2 46.2 55.9 47.3 48.4 73.8 82.10 13.8
DRL (Wang et al., 2022)arXiv’22 26.5 47.6 56.8 - 50.2 76.5 84.7 12.4
STAN (Liu et al., 2023)CVPR’23 27.1 49.3 58.7 - 50.0 75.2 84.1 -
*CLIP4Clip (Luo et al., 2022)Neurocomputing’22 25.6 45.6 55.3 53.7 46.5 73.9 82.3 15.3
*CLIP4Clip (+PATHS) 26.1(+0.5) 46.4(+0.8) 55.8(+0.5) 50.4(-3.3) 47.8(+1.3) 74.5(+0.7) 82.4(+0.1) 14.5(-0.8)
*TS2-Net (Liu et al., 2022)ECCV’22 20.9 42.6 51.4 63.7 48.5 75.6 84.6 13.5
*TS2-Net (+PATHS) 23.2(+2.3) 41.2(-1.4) 51.5(+0.1) 62.4(-1.3) 49.4(+0.9) 76.5(+0.9) 84.7(+0.1) 12.9(-0.6)
*EMCL-Net (Jin et al., 2022)NeurIPS’22 27.3 45.3 54.4 51.3 49.0 76.1 83.7 12.3
*EMCL-Net (+PATHS) 28.5(+1.2) 46.7(+1.4) 54.7(+1.6) 49.8(-1.5) 50.2(+1.2) 75.7(-0.4) 84.3(+0.6) 11.3(-1.0)
*X-CLIP (Ma et al., 2022)ACMMM’22 25.9 46.3 56.2 51.4 49.4 75.6 84.5 12.7
*X-CLIP (+PATHS) 27.7(+1.8) 47.1(+0.7) 56.7(+0.5) 49.0(-2.4) 50.6(+1.2) 76.2(+0.6) 84.2(-0.3) 12.4(-0.3)
*DiCoSA (Jin et al., 2023b)IJCAI’23 26.4 45.6 54.9 50.8 48.9 75.0 82.9 13.7
*DiCoSA (+PATHS) 27.3(+0.9) 46.4(+0.8) 55.0(+0.1) 49.2(-1.6) 50.5(+1.6) 76.2(+1.2) 84.2(+1.3) 12.8(-0.9)

Table 2: Results on LSMDC and MSRVTT, ∗ means results are reproduced using the released code.

Methods
MSVD

R@1↑ R@5↑ R@10↑ MeanR↓ R@1↑ R@5↑ R@10↑ MeanR↓
ViT-B-32 ViT-B-16

CenterCLIP 47.6 77.5 86.0 9.8 50.6 80.3 88.4 8.4
DRL 48.3 79.1 87.3 - 50.0 81.5 89.5 -
QB-Norm 47.6 77.6 86.1 - - - - -
STAN 47.5 77.6 86.5 - 51.5 80.4 88.5 -
MEME 46.6 76.5 85.0 10.2 - - - -
*CLIP4Clip 45.6 75.7 84.2 10.3 47.6 75.9 86.9 9.3
*CLIP4Clip (+PATHS) 46.7(+1.1) 76.5(+0.8) 84.9(+0.7) 9.9(-0.4) 48.4(+0.8) 78.9(+3.0) 87.2(+0.3) 8.9(-0.4)
*X-CLIP 46.2 76.1 84.8 9.9 48.2 79.1 87.1 8.9
*X-CLIP (+PATHS) 47.2(+1.0) 76.8(+0.7) 85.2(+0.4) 9.6(-0.3) 49.6(+1.4) 79.3(+0.2) 87.6(+0.5) 8.5(-0.4)

Table 3: Results on MSVD, ∗ means the results are reproduced using the publicly released code.

5.3 EXPERIMENTAL RESULTS

In this section, we compare the performance of the PATHS framework against strong baseline mod-
els across various datasets. PATHS, designed for harnessing the pre-trained weights of CLIP for
video tasks, is a plug-and-play scheme that can be applied to any existing models. Table 2 and Ta-
ble 3 show that PATHS always improves existing baselines by a significant margin. It consistently
improves performance across all baselines on every metric, notably in R@1 and MeanR. R@1 ex-
amines solely the top prediction, which is the in the rigorous setting among R@K. MeanR offers a
holistic evaluation by averaging the rankings of all valid annotations.

We achieve SOTA performances in LSMDC and MSRVTT. For LSMDC, the best performance with
ViT-B-32 is achieved when PATHS is applied to X-CLIP; the best performance with ViT-B-16 is
achieved when PATHS is applied to EMCL. For MSRVTT, the best performance with ViT-B-32 is
achieved when PATHS is applied to DiCoSa; the best performance with ViT-B-16 is achieved when
PATHS is applied to X-CLIP. Regarding the MSVD dataset2, applications to the CLIP4Clip and X-

2Ts2Net, EMCL, and DiCoSA are left out due to the absence of codes from the authors.
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CLIP showed a consistent performance surge of over 1%. These results underscore the significance
of proposed scheme which further improves all strong benchmark models across all datasets.

5.4 ABLATION STUDY

Strategy CLIP4Clip TS2Net X-CLIP DiCoSA EMCL-Net
R@1 R@5 MeanR R@1 R@5 MeanR R@1 R@5 MeanR R@1 R@5 MeanR R@1 R@5 MeanR

per Epoch 43.0 71.9 15.6 46.6 74.9 14.1 47.2 73.5 13.8 47.6 74.4 13.2 46.8 74.2 13.2
per 50 Step 43.9 71.3 15.8 46.9 73.2 13.8 47.9 73.6 14.7 47.9 74.8 13.6 47.2 74.3 13.2

First Stage
BP 43.7 71.6 15.7 46.8 73.3 14.7 47.8 73.5 13.6 47.6 74.4 13.2 46.8 74.0 13.3
SP 43.6 70.9 15.3 46.6 75.0 14.1 47.2 73.5 13.8 47.7 74.2 13.0 47.0 74.1 13.1
USP 43.6 71.9 15.0 46.7 74.6 14.0 47.9 74.0 14.0 48.1 74.0 13.4 46.9 74.4 13.1

Second Stage
BP 43.9 71.5 15.3 48.1 74.3 13.8 48.4 73.5 13.3 48.9 74.8 12.5 48.1 74.0 12.8
SP 45.0 72.0 14.7 48.2 74.5 13.4 48.4 73.2 13.3 49.0 74.9 12.4 48.1 74.0 13.0
USP 44.5 72.2 14.6 47.8 74.1 13.5 48.4 73.7 13.2 49.4 74.5 12.8 48.3 74.2 13.0

Table 4: Ablation study on measuring dynamics for PATHS. MSRVTT dataset has been used.

We conduct comprehensive ablation experiments to analyze how each component of our model con-
tributes to the performance. Additional ablation studies focusing on adapter configurations are de-
lineated in Appendix A.4 (see Tables 6,7). In Table 4, we first juxtapose the traditional epoch-based
evaluation paradigm with an alternative scheme that assesses model performance at fixed intervals
of N steps. Empirical results indicate that the model performance with evaluations at every 50-
step improves their epoch-based counterparts. However, frequent evaluations incur computational
overhead, which we further discuss in Appendix A.1.

We investigate variations of quantifying dynamics for PATHS. The first strategy denoted as BP in
Table 4 targets at finding the K most salient fluctuations in ranking of parameters within a group.
The second strategy denoted as SP monitors the parameters with the longest stability, and captures
the moment when the parameters become unstable. This is achieved by monitoring instances where
parameter ranking shifts remain below the standard deviation, thereby indicating model stability.
Our final strategy denoted as USP is the opposite of the second strategy. We monitor the parameters
which exhibit the longest unstableness, and capture the moment when the parameters become stable.
This approach identifies instances where parameter ranking fluctuations surpass the moving average
of previously observed rank changes. We found USP to be most effective in our experiments, and
all the reported results in Tables 2 and 3 are obtained with USP.

A preliminary examination of Table 4 reveals that, even at the first stage, the PATHS framework
is on par with the performance achieved by 50-step interval evaluations, while offering significant
computational efficiencies. Extending our methodology by incorporating a second-stage adapter
refinement, we demonstrate that PATHS consistently outperforms existing models evaluated at re-
curring 50-step intervals across various performance metrics.

6 CONCLUSION

In this paper, we discuss the limitation of current text-to-video retrieval models built upon CLIP,
where overfitting often occurs during fine-tuning over the training data. To tackle the problem,
we propose Parameter-wise Adaptive Two-stage training Harnessing Scene transition mask adapter
(PATHS). PATHS is a generic framework which is applicable to any framework built upon CLIP. Nu-
merical results from extensive experiments support the efficacy of PATHS. PATHS always achieves
significant improvements on strong baselines when applied in a plug-and-play manner. On LSMDC
and MSRVTT data, we achieve SOTA results in every aspect. The ablation study further illustrates
the effectiveness of each component of PATHS.
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A APPENDIX

Figure 5: The full training time in hours
are compared. For training, each evalua-
tion scheme has been adopted. Each bar is
an average time of all models used in the
experimentations.

Methods Accuracy↑
ClipBERT (Lei et al., 2021) 37.4
VGT (Xiao et al., 2022) 39.7
VQA-T (Yang et al., 2021) 41.5
SiaSamRea (Yu et al., 2021) 41.6
MERLOT (Zellers et al., 2021) 43.1
Co-Tok (Piergiovanni et al., 2022) 45.7
*EMCL (Jin et al., 2022) 45.2
*EMCL (+PATHS) 45.5(+0.3)

Table 5: Performance comparison of video question
answering on MSRVTT. PATHS can also be applied
to EMCL for the task, which achieves performance
improvement. We use original code of EMCL for the
experimental evaluation.

A.1 TIME EFFICIENCY

In Figure 5, we present a comparative analysis of time complexities across three evaluation
paradigms: traditional epoch-wise evaluation, N -step evaluation, and the PATHS evaluation method.
In text-to-video retrieval literature, all models are trained over 5 epochs, and we follow the protocol
reporting the time for training over 5 epochs. Figure 5 is the average total training time in hour of
the previous models reported in Table 2, and 3. The number of videos and, the number of frames
of each video have strong differences across three datasets, which is reflected in the bar graph in
Figure 5.

Notably, N -step evaluation requires significant increase in time for training each of the datasets.
This is mainly because of the frequent evaluations on validation set at every epoch, which causes
computational overhead. While many recent studies take the N -step approach, less attention has
been paid on the computational overhead problem. Our study addresses this problem proposing
a novel approach which doesn’t require frequent evaluations. For MSRVTT dataset, PATHS only
takes approximately the same amount of time for training as the conventional epoch-wise method.
For both LSMDC and MSVD datasets, PATH saves the training time compared to the 50-step ap-
proach. When number of video gets large, such as the LSMDC dataset, the improvement becomes
significant. It is also worth to note that PATHS performs as nearly as the N -step evaluation when
compared one-to-one (see per 50 step vs first stage in Table 4).

A.2 PATHS APPLIED TO VIDEO QUESTION ANSWERING TASK

We further investigate how PATHS can be applied to a task other than text-to-video retrieval. Several
works have been proposed in video question answering (VideoQA) task. VideoQA leverages visual
information from videos to predict corresponding answers of input questions. Utilizing the target
vocabulary designed for the MSRVTT-QA dataset (Xu et al., 2016), we trained a fully connected
layer atop the final linguistic features to categorize the answer.

In Table 5, EMCL (Jin et al., 2022) is the only model that leverages the pre-trained weights from
CLIP. We use EMCL as a baseline for the given task, and see how PATH can further improve EMCL
in VideoQA. From Table 5, we confirm that PATHS can also improves EMCL on VideoQA task,
which highlights its generalization to other tasks.

A.3 THE PROCESS OF THE STMA

This section elaborates the mechanics STMA, which is conceptualized in Figure 6. The STMA
begins by bisecting a video based on a scene transition algorithm, encapsulated within the green
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Figure 6: The figure presented serves as a schematic representation of our STMA. The segment
enclosed within the green box illustrates the algorithm’s mechanism for identifying scene transition
points. The blue box emphasizes the functional deployment of STMA within the temporal encoder.
The color presents the attention score: red signifies high attention scores, yellow indicates medium
levels, and blue represents low scores.

box in the figure. This algorithm initiates by assessing the similarity between the initial frame and
subsequent frames as detailed in Section 4.2. We then identify the scene transition point by the
similarity matrix. After that, we create a mask before and after the corresponding scene transition
point.

The blue box in the figure outlines the process of STMA. This module ingests two masks generated
from the scene transition algorithm, and processes three frame sequences within the model. The
first sequence is the original video post-attention layer, while the remaining sequences are mask-
modified frames subjected to co-attention mechanisms. The multiple processes allows the model to
capture the multiple aspects of scenes within a given video. Finally, we apply additional attention
layer and pooling layer for obtaining final output which reflects the importance among the three
processes.

Our model internalizes knowledge of scenes originating from a singular video source through the co-
attention module. We use a single encoder so that the alignment attention module and co-attention
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module share the same encoder. This approach can minimize the additional parameters, and also
turn out to be more effective in performance than having two separate encoder. In general, training
co-attention and multi-head attention simultaneously in the same encoder hinders effective optimiza-
tions. However, in this unique scenario, where each of the frames from a same video exhibit strong
correlations, the problem is mitigated. We can additionally mitigate the problem with our training
strategy. In the second stage of our training scheme, all irrelevant parameters are kept frozen, and
thus attention weights can be updated effectively.

A.4 ABLATION STUDY FOR STMA

Gate Text-to-Video Retrieval
R@1 R@5 R@10 MeanR

Baseline 47.2 73.5 82.5 13.8
w/o CoAttn 47.8 73.3 81.8 13.6
w/o A-Attn 47.8 73.4 82.2 13.7
Full STMA 48.4 73.7 82.7 13.2

Table 6: Ablation study of attention mecha-
nisms on STMA. Text-to-video retrieval results
on MSRVTT are compared. We use X-CLIP as
a baseline.

Gate Text-to-Video Retrieval
R@1 R@5 R@10 MeanR

Baseline 47.2 73.5 82.5 13.8
Avg 48.1 73.6 82.9 13.4
Max 48.1 73.4 82.9 13.2
Conv 48.4 73.7 82.7 13.2

Table 7: Ablation study of pooling strategies
on STMA. Text-to-video retrieval results on
MSRVTT are compared. We use X-CLIP as a
baseline.

To understand how the co-attention and alignment attention contribute to the STMA performance,
we perform ablative analysis, where the results are provided in Table 6. We confirm that each
component indeed contributes to the STMA performance. The full implementation of STMA brings
significant performance improvements. More importantly, in full implementation, each component
contributes complementarily to the final results.

Additionally, Table 7 illustrates the performance with different pooling techniques employed in the
STMA. We compare average pooling, max pooling, and convolution-1D pooling methods. Among
these, the convolution-1D approach demonstrated the best results.

A.5 VIDEO-TO-TEXT RETRIEVAL

Methods
MSRVTT

R@1↑ R@5↑ R@10↑ MeanR↓ R@1↑ R@5↑ R@10↑ MeanR↓
ViT-B-32 ViT-B-16

CenterCLIP (Zhao et al., 2022)SIGIR’22 45.1 72.4 83.1 10.0 47.7 75.0 83.3 10.2
DRL (Wang et al., 2022)arXiv’22 45.3 73.9 83.3 - 48.9 76.3 85.4 -
*X-Pool (Gorti et al., 2022)CVPR’22 44.4 73.3 84.0 9.0 - - - -
MEME (Kang & Cho, 2023)SIGIR’23 47.7 74.0 83.3 9.4 - - - -
*CLIP4Clip (Luo et al., 2022)Neurocomputing’22 43.2 70.5 80.2 11.8 45.7 72.4 83.2 10.8
*CLIP4Clip (+PATHS) 43.4(+0.2) 71.5(+1.0) 81.4(+1.2) 10.8(+1.0) 46.3(+0.6) 75.3(+2.9) 83.0(-0.2) 9.6(-1.2)
*TS2-Net (Liu et al., 2022)ECCV’22 46.1 73.8 83.5 9.4 46.8 76.7 84.8 8.6
*TS2-Net (+PATHS) 45.9(-0.2) 74.0(+0.2) 84.4(+0.9) 8.9(-0.5) 47.9(+1.1) 77.4(+0.7) 86.6(+1.8) 8.2(-0.4))
*EMCL-Net (Jin et al., 2022)NeurIPS’22 46.1 73.7 84.2 9.8 50.2 75.7 84.0 8.8
*EMCL-Net (+PATHS) 48.0(+1.9) 74.8(+1.1) 83.8(-0.4) 9.2(-0.6) 51.1(+0.9) 77.0(+1.3) 85.1(+1.1) 8.3(-0.5)
*X-CLIP (Ma et al., 2022)ACMMM’22 47.2 73.2 80.6 10.5 47.6 77.3 84.8 8.8
*X-CLIP (+PATHS) 47.7(+0.5) 73.6(+0.4) 82.3(+1.7) 9.5(-1.0) 48.8(+1.2) 75.9(-1.4) 84.9(+0.1) 8.6(-0.2)
*DiCoSA (Jin et al., 2023b)IJCAI’23 47.6 74.2 83.7 8.8 49.9 77.8 85.3 8.5
*DiCoSA (+PATHS) 47.2(-0.4) 74.9(+0.7) 83.9(+0.2) 8.7(-0.1) 50.2(+0.3) 77.1(-0.6) 86.7(+1.4) 7.9(-0.6)

Table 8: Video-to-text retrieval task results on MSRVTT, ∗ denotes that the results are reproduced
using the publicly released code.

Following previous studies in text-to-video retrieval, we perform video-to-text retrieval task. We
report the performance in Table 8, where we use MSRVTT dataset for the evaluation.The exper-
imental setup follows the setups from the existing backbone models. We confirm that PATHS is
always effective when applied to any strong baseline models for video-to-text retrieval tasks.

A.6 QUALITATIVE ANALYSIS

To gain insights into the attention weights assigned by STMA and to evaluate its efficacy in scene
recognition, we perform qualitative analysis. In the associated figures, attention weights are ex-
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Figure 7: Visualization of the attention score extracted at each part of SMTA.

pressed with colors; red signifies high attention, yellow indicates medium attention, and blue repre-
sents low attention. The images in Figure 7, 8, 9, and 10 depict actual experimental results. Distinct
from the visualizations generated by original temporal attention, the final output from STMA clearly
identifies a sequence of scenes around the transition point. This substantiates that our model is pro-
ficient in contextual scene learning.
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Figure 8: Visualization of the attention score extracted at each part of SMTA.
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Figure 9: Visualization of the attention score extracted at each part of SMTA.
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Figure 10: Visualization of the attention score extracted at each part of SMTA.
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