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ABSTRACT

Recently, there has been a growing interest in Long-term Time Series Forecasting
(LTSF), which involves predicting long-term future values by analyzing a large
amount of historical time-series data to identify patterns and trends. Significant
challenges exist in LTSF due to its complex temporal dependencies and high com-
putational demands. Although Transformer-based models offer high forecasting
accuracy, they are often too compute-intensive to be deployed on devices with
hardware constraints. In this paper, we propose MixLinear, which synergisti-
cally combines segment-based trend extraction in the time domain with adaptive
low-rank spectral filtering in the frequency domain. Our approach exploits the com-
plementary structural sparsity of time series: local temporal patterns are efficiently
captured through mathematically linear transformations that separate intra-segment
and inter-segment correlations, while global trends are compressed into an ultra-
low-dimensional frequency latent space through learnable rank-constrained filters.
By reducing the parameter scale of a downsampled n-length input/output one-
layer linear model from O(n2) to O(n), MixLinear achieves efficient computation
without sacrificing accuracy. Extensive evaluations show that MixLinear achieves
forecasting performance comparable to existing models with significantly fewer
parameters (0.1K), which makes it well-suited for deployment on devices with
limited computational capacity.

1 INTRODUCTION

Deep learning models have recently achieved state-of-the-art accuracy on time series forecasting
in various applications (Moon & Wettlaufer, 2017; Nunnari & Nunnari, 2017; Sezer et al., 2020;
Ma et al., 2025c). However, this success is marked by a trend of escalating computational cost
and parameter counts, mirroring the trajectory of models in NLP and vision (Brown et al., 2020;
Kaplan et al., 2020; Dosovitskiy et al., 2021; Radford et al., 2021). With leading models comprising
millions of parameters, their deployment on embedded devices, edge sensors, and other resource-
constrained systems is often infeasible. We argue this parameter explosion is not an inevitable price
for performance but a symptom of a structural inefficiency in how current models represent time
series patterns (Zhou et al., 2022b; Wu et al., 2021; 2023; Xu et al., 2024).

The core of this inefficiency lies in a monolithic representational strategy. Prevailing architectures
attempt to capture both high-frequency local variations and low-frequency global patterns using the
same set of mechanisms, despite their inherently different statistical properties. Local features (e.g.,
short-term fluctuations) are best characterized by their temporal locality, while global structures (e.g.,
long-term trends and seasonalities) are well-known to be sparse in the frequency domain (Zhou et al.,
2022b; Yi et al., 2023). Forcing a single, uniform architecture to model these disparate characteristics
is a mismatch that leads directly to parameter redundancy and computational waste.

Recent research has started to process local and global components differently. One approach, found
in models like DeepGate (Park et al., 2022), decomposes the time series first. However, such a method
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often still relies on complex, parameter-heavy modules for both components, failing to achieve the
desired level of efficiency. Another approach uses the frequency domain. Models like FITS (Xu
et al., 2024) are highly efficient for global patterns. However, using global frequency components to
model localized, transient variations is inherently inefficient; it requires a disproportionate number
of coefficients to capture sharp features that would be simple to represent in the time domain. This
diminishes the efficiency gains from spectral compression. Therefore, the central challenge is
to design a framework that can effectively model both global and local patterns while remaining
computationally efficient.

Our work is motivated by a core insight about time series patterns: local trends can be efficiently
captured through segment-based extraction in the time domain, while global trends exhibit sparsity in
the frequency domain and benefit from adaptive low-rank filtering. This insight suggests that optimal
efficiency requires not just separating patterns, but processing each in its most natural domain—time
for local trends and frequency for global trends. To realize this vision, we introduce MixLinear, a dual-
pathway framework that systematically processes local trends through factorized linear decomposition
in the time domain and global trends through adaptive low-rank spectral filtering in the frequency
domain. MixLinear addresses three fundamental challenges: (1) developing parameter-efficient
segment-based extraction that reduces complexity from O(n2) to O(n) (for an original series length
L and downsampling factor π, n = L/π) while preserving hierarchical temporal structures, (2)
achieving extreme compression through rank-constrained spectral filtering that focuses on dominant
frequency modes, and (3) integrating dual pathways through learnable upsampling without parameter
explosion.

Our contributions are as follows:

• We introduce an efficient approach for local trend processing that reduces complexity from O(n2)
to O(n) through strategic segmentation and dual linear transformations for intra-segment and
inter-segment dependencies.

• We propose a complex-valued transformation approach with adaptive low-rank filtering that com-
presses global trends into a minimal latent space, achieving unprecedented parameter efficiency
while preserving essential spectral information.

• We create a novel synthesis that seamlessly combines time-domain and frequency-domain process-
ing to achieve an unprecedented operating point on the efficiency-accuracy curve.

• Extensive experiments on benchmark datasets demonstrate that MixLinear achieves competitive
forecasting performance with remarkable efficiency — orders of magnitude fewer parameters
than existing lightweight models. Our work opens new possibilities for forecasting on resource-
constrained devices and provides a practical framework for efficient time series representation
learning.

2 MIXLINEAR DESIGN

2.1 PRELIMINARY

LTSF involves predicting future values over an extended horizon using previously observed multi-
variate time series data. It is formalized as x̂t+1:t+H = f(xt−L+1:t), where xt−L+1:t ∈ RL×C and
x̂t+1:t+H ∈ RH×C . In this formulation, L denotes the length of the historical observation window, C
represents the number of distinct features or channels, and H denotes the length of the forecast hori-
zon. Extending the forecast horizon H is crucial for LTSF as it allows more comprehensive long-term
planning and decision making in practical applications. However, increasing the forecast horizon H
usually requires more parameters and significantly increases the computational complexity of the
forecasting model. Efficiently balancing extended forecast horizons with model complexity remains
a key challenge in LTSF research, necessitating novel architectural designs and parameter-efficient
strategies to maintain both accuracy and scalability.

2.2 FRAMEWORK OVERVIEW

We propose MixLinear, a dual-domain architecture that fundamentally reconceptualizes temporal
pattern modeling through factorized representational learning. Our theoretical contribution rests on
the Spectral-Temporal Decomposition Principle: real-world time series exhibit intrinsic structural
duality —– local dynamics manifest as segment-wise correlations amenable to factorized linear
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Figure 1: MixLinear Architecture Overview. Our dual-pathway framework efficiently processes
time series data. The Segment-based pathway (top) downsamples input X ∈ RL into segments
Xseg ∈ RL/π, applies linear transformations for intra-segment (blue) and inter-segment (orange)
correlations, then upsamples to XT ∈ RH . The Frequency-domain pathway (bottom) transforms
segments via FFT (XS ∈ CL/π), compresses trends through adaptive low-rank filtering to latent
space ZS ∈ Cnz , reconstructs via iFFT, and outputs XF ∈ RH . Final predictions Y ∈ RH combine
both outputs, achieving competitive forecasting with only 0.1K parameters.

decomposition, while global patterns demonstrate spectral concentration enabling extreme low-rank
compression in the frequency domain (Zhou et al., 2022b).

MixLinear operates through a sophisticated dual-pathway architecture that synergistically processes
complementary temporal manifolds. Given input X ∈ RL×C , our framework produces predictions
through the learned compositional mapping:

Y = Fsegment(X;Θs) + Ffrequency(X;Θf ), (1)

where Fsegment performs segment-based trend extraction with parameters Θs, and Ffrequency performs
adaptive low-rank spectral filtering with parameters Θf . This additive composition preserves the
independence of domain-specific representations while enabling joint optimization through backpropa-
gation, contrasting with multiplicative fusion approaches that suffer from gradient instability (Vaswani
et al., 2017).

The architecture achieves parameter efficiency (0.1K parameters) through principled exploitation
of inherent structural sparsity: factorized linear projections capture segment-wise correlations (Ki-
taev et al., 2020), while rank-constrained spectral filtering enables extreme compression of global
modes (Tay et al., 2020). This decomposition fundamentally avoids the parameter explosion endemic
to hybrid time-frequency models (Zhou et al., 2021; Liu et al., 2021).

2.3 SEGMENT-BASED TREND EXTRACTION

The segment-based pathway introduces a Factorized Linear Decomposition framework that disen-
tangles intra-segment and inter-segment correlations through specialized linear projections. This
approach transcends traditional segmentation methods (Zeng et al., 2023) by introducing transforma-
tions that separate local shape modeling from global trend aggregation.

We implement a principled temporal decomposition strategy through adaptive downsampling and
non-overlapping segmentation. Given input X ∈ RL×C , we first apply downsampling by factor π to
obtain Xdown ∈ R(L/π)×C , implementing implicit low-pass filtering that attenuates high-frequency
noise while preserving trend information (Wu et al., 2021; Cleveland et al., 1990). The downsampled
sequence undergoes structured partitioning into M segments of length r = L/(π ·M):

Xseg = {x(s) ∈ Rr×C}Ms=1 (2)
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This decomposition enables parallel processing of local patterns while maintaining computational
tractability, analogous to efficient attention mechanisms (Wang et al., 2020; Choromanski et al., 2021).
Within each segment x(s) ∈ Rr×C , we apply complementary linear transformations that disentangle
distinct correlation structures. For intra-segment modeling, we compute h

(s)
intra = Linearintra(x

(s)) ∈
Rd×C , which compresses r temporal samples into a d-dimensional summary that captures short-
range waveform information including local slopes, short periodicity, and morphological features
through parameter-efficient linear mapping. For inter-segment dependencies, we stack intra-segment
embeddings to form Hintra = [h

(1)
intra, . . . ,h

(M)
intra ] ∈ RM×d×C and apply a second transformation

Hinter = Linearinter(Hintra) ∈ RM×d×C that models dependencies across segments, capturing slow
drift, segment-level periodicity, and cross-segment correlations. The separation between intra and
inter projections ensures parameter efficiency and stable training (Tolstikhin et al., 2021).

Following the factorized linear transformations, we implement reconstruction with upsampling:
XT = Upsample(Reshape(Hinter), H) ∈ RH×C . The segment-based pathway requires dr + dM +
d + M parameters, achieving linear complexity O(n) (n = L/π) while preserving hierarchical
temporal structures through factorized linear decomposition. This enables our model to achieve
complexity reduction from O(n2) to O(n) while maintaining expressiveness via two-layer linear
networks over segmented inputs (Hornik et al., 1989).

2.4 ADAPTIVE LOW-RANK SPECTRAL FILTERING

The frequency domain pathway introduces an Adaptive Low-Rank Spectral Filtering framework that
explicitly targets persistent spectral components through rank-constrained matrix factorization. This
approach advances beyond conventional frequency domain methods (Oppenheim & Schafer, 1999)
by learning adaptive spectral bases with extreme compression.

We first use FFT on the data to see its spectral makeup (how much of each frequency it contains).
More specifically, we apply FFT to the down-sampled series to form the spectral tensor:

F = FFT(Xdown) ∈ C(L/π)×C (3)

This approach enables parallel spectral processing while preserving temporal locality.

Traditional filtering can be complex and prone to overfitting (getting too specific to the training data
and failing on new data). Instead of using an enormous, full-size filter, we use a technique called
low-rank factorization. Instead of learning computationally expensive full (L/π)× (L/π) complex
filters prone to overfitting, we parameterize the frequency transform as a rank-nz operator:

Φ(F) = U(VF) ∈ C(L/π)×C , (4)

where U ∈ C(L/π)×nz and V ∈ Cnz×(L/π) with nz ≪ (L/π). This factorization projects each
segment spectrum into a shared low-dimensional latent space, then reconstructs filtered spectra
through adaptive basis U. The rank constraint nz = 2 enforces extreme compression that focuses
representational capacity on dominant spectral modes, leveraging the low-rank structure of natural
signals in the frequency domain (Donoho, 2006; Halko et al., 2011).

From the rank-constrained spectral representation, we reconstruct temporal signals via:

XF = Upsample(Real(iFFT(Φ(F)))) ∈ RH×C . (5)

The frequency pathway requires only 4rnz real parameters, achieving extreme compression while
preserving essential global spectral information through adaptive filtering (Howard et al., 2017;
Sandler et al., 2018).

2.5 COMPLEXITY ANALYSIS

MixLinear introduces a dual-domain decomposition that models data through the exploitation of
complementary structural sparsity in time series data. Our comprehensive analysis demonstrates
substantial improvements over existing approaches across multiple dimensions.

Time Complexity. Given an effective processing length n = L/π after downsampling, the segment-
based pathway operates with O(n) complexity for orthogonal linear transformations. This represents
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an exponential improvement over theO(L2) complexity of self-attention mechanisms (Vaswani et al.,
2017). The spectral pathway requires O(n log n) operations for FFT transformations (Cooley &
Tukey, 1965) and O(rnz) for rank-constrained filtering, which is a significant reduction from the
quadratic O(r2) complexity of full filtering approaches. The overall time complexity simplifies to
O(n log n), dominated by the FFT operations in the spectral pathway.

Space Complexity. Memory requirements scale linearly asO(n), incorporating storage for downsam-
pling operations, dual-pathway processing, and rank-constrained filtering components. This shows an
important improvement over attention-based models that requireO(L2) memory allocation (Tay et al.,
2022), enabling deployment on resource-constrained devices while processing longer sequences.

The linear scaling properties enable MixLinear to process sequences orders of magnitude longer than
existing methods without proportional increases in computational overhead. The orthogonal temporal
factorization and rank-constrained spectral filtering create an unprecedented efficiency-expressiveness
trade-off that maintains state-of-the-art predictive capabilities even in resource-constrained environ-
ments (Chen & Ran, 2019; Lim et al., 2021).

3 EXPERIMENT

In this section, we first outline our experimental setup. We then compare MixLinear with baseline
models to evaluate its performance across eight LTSF benchmarks. Next, we assess the effectiveness
of time domain segmentation and frequency domain filtering. Prediction visualizations (Appendix D)
are provided in the Appendix.

3.1 EXPERIMENT SETUP

Datasets. We conduct experiments using eight benchmark LTSF datasets: ETTh1, ETTh2, ETTm1,
ETTm2, Exchange, Solar, Electricity, and Traffic. More details on this are provided in Appendix B.3.

Baselines. We conduct a comparative analysis of MixLinear against transformer based state-of-the-
art baselines in the field TimesNet (Wu et al., 2022) and PatchTST (Nie et al., 2023). In addition, we
compare MixLinear against three linear based state-of-the-art baselines models: DLinear (Zeng et al.,
2023), FITS (Xu et al., 2024), and SparseTSF (Lin et al., 2024). More details on these baselines can
be found in Appendix B.2.

Environment. MixLinear and our baselines are implemented using PyTorch (Paszke et al., 2019).
All experiments are performed on a single NVIDIA A100 GPU with 80GB of memory. More details
on our experimental setup are presented in Appendix B.1.

3.2 MAIN RESULTS

We evaluate the performance of MixLinear with eight benchmark LTSF datasets. We consider a
look-back window of 720 and four forecast horizons: 96, 192, 336, and 720. Table 1 provides a
detailed comparison of MixLinear against five competitive baseline models, including SparseTSF,
FITS, DLinear, PatchTST, and TimesNet. The evaluation considers two key metrics: Multiply-
Accumulate Operations (MACs) and Mean Square Error (MSE). MACs quantify the computational
cost per prediction, which serves as an important measure on model efficiency, while MSE is a
metric to quantify prediction accuracy. In addition, the Relative Percentage Difference (RPD) in MSE
relative to SparseTSF offers insights into the comparative performance of the models. A positive RPD
indicates superior performance over SparseTSF, whereas a negative RPD implies reduced accuracy.

Small Parameter Size (81% Parameter Reduction). As Table 1 lists, MixLinear provides competi-
tive forecasting accuracy while using significantly fewer parameters than our baselines. It contains
only 0.1K parameters—substantially smaller than SparseTSF (1K) and FITS (10K). Figure 2 further
highlights its parameter efficiency across different look-back windows on the Electricity dataset:
MixLinear maintains near-linear growth in parameter count as the forecast horizon increases, in con-
trast to the much steeper scaling of SparseTSF and FITS. Consistent with our O(n) space-complexity
analysis, MixLinear requires only 45–176 parameters across all configurations—-a 11–81% reduction
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Table 1: Comparisons on MACs and MSE among various LTSF models when being applied in eight
data sets. The best MACs are highlighted with bold fonts. RPD denotes the relative percentage
difference in MSE compared to SparseTSF’s MSE. A higher RPD indicates a larger improvement.
RPD values are marked with: *** for RPD greater than 10%, ** for RPD between 3% and 10%, *
for RPD between 0% and 3%, and no marking for negative RPD (%).

Models SparseTSF MixLinear FITS DLinear PatchTST TimesNet

(2024) (ours) (2024) (2023) (2023) (2023)

Data Horizon MACs ↓ MSE ↓ MACs ↓ RPD(%) ↑ MACs ↓ RPD(%) ↑ MACs ↓ RPD(%) ↑ MACs ↓ RPD(%) ↑ MACs ↓ RPD(%) ↑

E
T

T
h1

96 146.16K 0.362 167.66K 3.0%∗∗ 165.44K -5.5% 0.98M -11.0% 4.13G -12.0% 4901.32G -12.3%
192 166.32K 0.403 174.05K 2.0%∗ 184.73K -3.5% 1.95M -7.0% 4.16G -10.0% 5481.17G -2.5%
336 196.56K 0.434 181.10K 5.3%∗∗ 214.16K -0.5% 3.4M -2.7% 4.21G -1.4% 6337.34G -13.2%
720 277.20K 0.426 196.56K 0.7%∗ 292.32K -1.6% 7.28M -18.3% 4.33G -7.0% 8640.14G -22.3%

E
T

T
h2

96 146.16K 0.294 167.66K 3.7%∗∗ 165.44K 7.5%∗∗ 0.98M 4.1%∗∗ 4.13G 6.8%∗∗ 4901.32G -15.6%
192 166.32K 0.339 174.05K 0.9%∗ 184.73K 1.8%∗ 1.95M -0.3% 4.16G 0.3%∗ 5481.17G -18.6%
336 196.56K 0.359 181.10K 2.3%∗ 214.16K 2.3%∗ 3.4M -15.3% 4.21G -2.2% 6337.34G -25.9%
720 277.20K 0.383 196.56K 0.8%∗ 292.32K -1.3% 7.28M -50.3% 4.33G -2.1% 8640.14G -20.6%

E
T

T
m

1 96 146.16K 0.314 167.66K 1.9%∗ 165.44K 2.9%∗ 0.98M 4.8%∗∗ 4.13G 6.7%∗∗ 4901.32G -7.6%
192 166.32K 0.343 174.05K 1.7%∗ 184.73K 1.2%∗ 1.95M 2.3%∗ 4.16G 2.9%∗ 5481.17G -9.0%
336 196.56K 0.369 181.10K 1.1%∗ 214.16K 0.5%∗ 3.4M 0.0% 4.21G 0.0% 6337.34G -11.1%
720 277.20K 0.418 196.56K 0.7%∗ 292.32K 0.0% 7.28M -1.7% 4.33G 0.5%∗ 8640.14G -14.4%

E
T

T
m

2 96 146.16K 0.165 167.66K 0.0% 165.44K 0.6%∗ 0.98M -1.2% 4.13G -0.6% 4901.32G -13.3%
192 166.32K 0.218 174.05K -0.5% 184.73K 0.5%∗ 1.95M -1.4% 4.16G -2.3% 5481.17G -14.2%
336 196.56K 0.272 181.10K 1.1%∗ 214.16K 1.1%∗ 3.4M -0.7% 4.21G -0.7% 6337.34G -18.0%
720 277.20K 0.350 196.56K -0.3% 292.32K 0.9%∗ 7.28M -5.1% 4.33G -3.4% 8640.14G -16.6%

E
le

ct
ri

ci
ty 96 6.7M 0.138 7.69M 0.0% 7.44M -5.1% 44.91M -1.4% 189.39G 6.5%∗∗ 4905.39G -21.7%

192 7.63M 0.151 7.98M -2.0% 8.47M -5.3% 89.42M -1.3% 190.77G 1.3%∗ 5485.72G -21.9%
336 9.01M 0.166 8.30M -2.4% 9.82M -5.4% 156.09M -1.8% 193.06G 0.0% 6342.60G -19.3%
720 12.71M 0.205 9.01M -2.0% 13.40M -3.4% 333.75M 0.5% 198.65G -2.4% 8647.31G -7.3%

Tr
af

fic

96 18.00M 0.389 20.65M 0.0% 20.37M -2.3% 120.61M -6.2% 508.58G 6.0%∗∗ 4902.21G -52.4%
192 20.48M 0.398 21.43M -1.3% 22.74M -2.8% 239.94M -6.3% 512.27G 2.5%∗ 5482.17G -55.0%
336 24.20M 0.411 22.30M -1.2% 26.37M -2.4% 418.93M -6.3% 518.43G 3.2%∗∗ 6338.49G -53.0%
720 34.14M 0.448 24.20M -0.9% 36.00M -2.0% 896.25M -4.0% 533.45G -2.0% 8641.71G -42.9%

E
xc

ha
ng

e 96 167.04K 0.105 191.62K 16.2%∗∗∗ 189.08K 18.1%∗∗∗ 1.12M 17.1%∗∗∗ 4.72G 17.1%∗∗∗ 4905.39G -1.9%
192 190.08K 0.196 198.91K 10.7%∗∗∗ 211.12K 8.2%∗∗ 2.23M -28.1% 4.75G 6.6%∗∗ 5485.72G -15.3%
336 224.64K 0.358 206.98K 11.2%∗∗∗ 244.76K 7.0%∗∗ 3.89M -12.7% 4.81G -8.9% 6343.75G -2.5%
720 316.80K 0.954 224.64K 3.2%∗∗ 334.08K 1.4%∗ 8.32M -43.0% 4.95G -8.8% 8647.31G -1.0%

So
la

r 96 2.86M 0.211 3.28M 0.0% 3.24M 3.7%∗∗ 19.17M -46.5% 80.84G -24.7% 4906.51G -76.8%
192 3.26M 0.225 3.41M -0.9% 3.62M 4.0%∗∗ 38.13M -42.2% 81.35G -28.0% 5486.97G -76.4%
336 3.85M 0.241 3.54M 0.4%∗ 4.19M 3.7%∗∗ 66.58M -46.5% 82.38G -24.9% 6345.20G -74.3%
720 5.43M 0.241 3.85M 0.4%∗ 5.72M -0.4% 142.44M -48.1% 84.78G -22.4% 8639.18G -74.3%

compared to SparseTSF and a 94–98% reduction compared to FITS. At the longest setting (720
look-back/horizon), MixLinear only uses 176 parameters, whiles FITS uses 10,512 parameters.
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Figure 2: Parameter count comparisons across different look-back windows on Electricity dataset.
MixLinear demonstrates consistently better parameter efficiency compared to SparseTSF and FITS
across all configurations.

High Efficiency. As Table 1 shows, MixLinear exhibits a significantly slower increase in MACs
compared to FITS and SparseTSF as the forecast horizon expands. This characteristic highlights Mix-
Linear’s scalability advantages, making it particularly well-suited for more difficult and challenging
long-horizon forecasting applications. In datasets with fewer channels (low-dimensional datasets),
such as ETTh1 with a channel size of 7, MixLinear achieves the smallest MAC at 196.56K under the
forecast horizon 720, outperforming SparseTSF at 277.20K (a 41.32% increase) and FITS at 292.32K
(a 48.98% increase). For datasets with a large number of channels (high-dimensional datasets), such
as Traffic with a channel size of 862, MixLinear maintains its efficiency. For example, under the
forecast horizon 720, it achieves the lowest MAC at 24.2M, compared to SparseTSF at 34.14M (a
41.67% increase) and FITS at 36.00M (a 48.76% increase).
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Figure 3: Comparisons on MSE among various LTSF models at forecast horizon 720.

State-of-the-art Forecasting Performance. Table 1 demonstrates that MixLinear outperforms
SparseTSF, achieving up to a 16.2% improvement on the Exchange dataset, a 5.3% improvement
on ETTh1, and a 3.7% improvement on ETTh2. As Figure 3 shows, MixLinear consistently deliv-
ers competitive, and in some instances superior, predictive performance across all eight datasets,
demonstrating its effectiveness in capturing long-term dependencies. More experimental results with
additional baselines are provided in Appendix C.1.

3.3 RUNTIME EFFICIENCY

To examine the runtime efficiency of MixLinear, we measure the inference time (Tin).

Speedup in Low-Dimensional Scenarios (Up to 3.2×). As Figure 4 shows, MixLinear consistently
outperforms baseline models in inference time. For example, MixLinear achieves an inference time of
0.25ms on the Exchange dataset, significantly outperforming SparseTSF (0.80ms) and FITS (0.43ms).
These results represent inference speedups of 3.2× compared to SparseTSF and 1.72× compared to
FITS, establishing MixLinear as the most computationally efficient model in the comparison.
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Figure 4: Inference time among efficient LTSF models in low- and High-Dimensional scenarios.

Speedup in High-Dimensional Scenarios (Up to 2.58×). The efficiency advantage becomes even
more pronounced in High-Dimensional scenarios. MixLinear achieves an inference time of 2.05ms
on the Electricity dataset, demonstrating notable improvements over SparseTSF (4.20ms) and FITS
(4.77ms). These results represent inference speedups of 2.12× compared to SparseTSF and 2.58×
compared to FITS.

3.4 ABLATION STUDY

To evaluate the contribution of each pathway in our dual-domain design, we conduct an ablation study
by comparing MixLinear against two single-pathway variants: w/o Segment (removing the segment-
based dual linear transformations) and w/o Filtering (removing the adaptive low-rank spectral filter).
The w/o Segment variant captures only global spectral dynamics, while the w/o Filtering variant relies
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solely on local temporal processing through segmentation. This setup highlights the complementary
roles of local and global trend extraction in achieving high forecasting accuracy.

Table 2: Performance for MixLinear and its single-pathway variants at forecast horizon 720.

Model ETTh1 ETTh2 Exchange Solar Electricity Traffic
MACs MSE MACs MSE MACs MSE MACs MSE MACs MSE MACs MSE

w/o Filtering 181.44K 0.425 181.44K 0.389 207.36K 0.954 3.55M 0.262 8.32M 0.245 22.34M 0.528
w/o Segment 141.12K 0.474 141.12K 0.411 161.28K 0.949 2.76M 0.267 6.47M 0.245 17.38M 0.478

MixLinear 196.56K 0.423 196.56K 0.380 224.64K 0.923 3.85M 0.240 9.01M 0.209 24.20M 0.452

As shown in Table 2, MixLinear consistently achieves lower MSE than both single-pathway variants
while maintainingO(n log n) complexity. In low-dimensional datasets (ETTh1/ETTh2), w/o Filtering
outperforms w/o Segment, confirming that local dual linear transformations are more effective when
inter-channel correlations are limited (e.g., 0.425 vs. 0.474 MSE on ETTh1). MixLinear further
improves performance (0.423 on ETTh1, 0.380 on ETTh2) by integrating spectral modeling. In high-
dimensional datasets (Electricity/Traffic), w/o Segment achieves lower error than w/o Filtering (e.g.,
0.478 vs. 0.528 MSE on Traffic), showing the benefit of low-rank spectral filtering in compressing
global dynamics. Again, MixLinear delivers the best overall results (0.209 on Electricity, 0.452 on
Traffic) by unifying both local and global pathways. From an efficiency standpoint, MixLinear adds
only a marginal cost (224.64K vs. 207.36K MACs on Exchange), mainly from FFT/iFFT operations,
yet still achieves superior accuracy–efficiency trade-offs with only ∼0.1K parameters.

3.5 HYPERPARAMETER STUDY
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Figure 5: Impact of segment length on MACs and MSE of MixLinear at forecast horizon 720.
Impact of Segment Length. The sensitivity analysis of segment length demonstrates the robustness
of our orthogonal linear projections across varying temporal granularities while maintaining compu-
tational efficiency. As shown in Figure 5, both ETTh1 and ETTh2 exhibit stable MSE performance
across segment lengths from 2 to 16, with ETTh1 maintaining MSE values in the 0.42–0.43 range
and minimal variation. Computational cost decreases substantially as segment length increases, with
ETTh1 showing a reduction from 290K to 220K MACs due to reduced inter-segment projection
complexity. The computational cost reduction reflects the inverse relationship between segment count
M and individual segment length r in ourO(dr+dM) parameter complexity, where longer segments
require fewer inter-segment operations while maintaining sufficient intra-segment modeling capacity.
This robustness validates our orthogonal factorization design, demonstrating that the separation of
local shape modeling from global trend aggregation remains effective across different temporal scales
without requiring careful hyperparameter tuning. More discussions are in Appendix C.2.
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Figure 6: Impact of spectral rank on MACs and MSE of MixLinear at forecast horizon 720.

Impact of Spectral Rank. The spectral rank sensitivity analysis of our adaptive low-rank spectral
filtering reveals that extremely low-rank approximations achieve near-optimal performance with
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minimal computational overhead. As demonstrated in Figure 6, increasing nz from 2 to 24 on
ETTh1 yields only marginal MSE improvement (approximately 0.005) while computational cost
increases substantially from 275K to 350K MACs. ETTh2 exhibits similar performance saturation
beyond nz = 4, providing empirical evidence for the spectral sparsity assumption underlying
our frequency domain pathway. This confirms that global temporal patterns concentrate in a low-
dimensional spectral subspace corresponding to dominant periodicities. The rank-2 approximation
achieves 6× parameter reduction compared to nz = 16 while maintaining comparable accuracy,
enabling deployment in resource-constrained environments without sacrificing predictive capability.
The gradual increase in computational cost with rank reflects the linear scaling of our low-rank
formulation (O(rnz)) compared to quadratic complexity (O(r2)) of full spectral filtering, validating
the effectiveness of our rank-constrained parameterization for scalable spectral processing. More
discussions are provided in Appendix C.3.

4 RELATED WORK

Long-term Time Series Forecasting. LTSF is challenging due to the complexity and high dimension-
ality of temporal data (Zheng et al., 2024; 2023; Ma et al., 2024; 2025b;a; Ma & Sha, 2025; Ma et al.,
2025d). Traditional methods, such as ARIMA (Contreras et al., 2003) and Holt-Winters (Chatfield
& Yar, 1988), perform well in short-term settings but often fail at long horizons. Machine learn-
ing models, including SVM (Wang & Hu, 2005), Random Forests (Breiman, 2001), and Gradient
Boosting (Natekin & Knoll, 2013), improve forecasting accuracy via non-linear modeling but rely on
manual feature engineering. Deep learning models, such as RNNs, LSTMs, GRUs, and Transformers,
such as Informer and Autoformer, are good at capturing long-range dependencies. Hybrid approaches
that combine statistical and neural models further improve forecast performance. Recently developed
models, such as FEDformer (Zhou et al., 2022b), FiLM (Zhou et al., 2022a), PatchTST (Nie et al.,
2023), and SparseTSF (Lin et al., 2024), employ frequency-domain processing and efficient attention
mechanisms to improve scalability and accuracy. Despite these advances, existing models largely
overlook how to effectively and efficiently integrate time and frequency domain features—an area
with significant potential to further advance the state of LTSF.

Time Series Decomposition. Time series often comprise trend, seasonal, and residual components.
Classical decomposition techniques, such as STL (Cleveland et al., 1990), TBATS (De Livera
et al., 2011), and trend filtering (Moghtaderi et al., 2011; Tibshirani, 2014)—are effective but
limited by seasonal shifts, long periods, and sensitivity to noise (Gao et al., 2020). Alternatively,
frequency-domain decomposition provides compact, expressive representations (Xu et al., 2020).
FEDformer (Zhou et al., 2022b) and TimesNet (Wu et al., 2022) extract frequency modes to capture
periodic structure, while FITS (Xu et al., 2024) uses sinusoidal decomposition to preserve signal
fidelity. However, extracting robust temporal features in the frequency domain remains challenging
and requires task-specific neural designs. Moreover, little attention has been given to compressing
features in the frequency domain to enhance model efficiency, leaving a gap in the design of scalable
and lightweight forecasting models in the frequency domain.

5 CONCLUSION

In this paper, we present MixLinear, a dual-domain framework that achieves competitive long-term
time series forecasting performance with only 0.1K parameters. By processing local trends through
segment-based extraction in the time domain and global trends through adaptive low-rank spectral
filtering in the frequency domain, MixLinear exploits the complementary structural sparsity inherent
in time series data, reducing complexity fromO(n2) toO(n) while maintaining comparable accuracy.
Extensive experiments across eight benchmark datasets demonstrate up to 16.2% improvement in
forecasting accuracy and 3.2× speedup in inference time, with robust performance across both
low-dimensional and high-dimensional scenarios. The significant parameter reduction enables new
deployments of LTSF models on resource-constrained devices and offers new opportunities for
real-time forecasting in edge computing scenarios for many applications, such as flooding detection,
environmental health monitoring, and traffic control, where traditional deep learning models are
computationally prohibitive. Besides, the underlying idea is also applicable to the development of
more efficient Large Language Models and foundation models. Our implementation of MixLinear
can be found at Ma et al.
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A IMPLEMENTATION DETAILS

A.1 TRAINING THE DUAL-DOMAIN TREND EXTRACTOR

MixLinear employs a dual-domain architecture that processes temporal patterns through both segment-
based and frequency-based pathways. We formulate the forecasting function as fθ(x) : RL → RH ,
where θ represents the learnable parameters, L is the lookback window length, and H is the forecast
horizon. For multivariate time series forecasting, MixLinear adopts a Channel-Independent strategy
where multiple channels are modeled using shared parameters to enhance generalization and reduce
computational overhead.

The segment-based pathway captures local temporal dependencies through orthogonal linear transfor-
mations applied to reshaped trend sequences. Given a downsampled trend sequence xtrend ∈ Rn, we
reshape it into a square matrix Xseg ∈ R

√
n̂×

√
n̂ where n̂ = ⌈

√
n⌉2. The dual linear transformation is

formulated as:
Xout = WT

2 (W1Xseg)
T , (6)

where W1,W2 ∈ R
√
n̂×d are learnable projection matrices that capture intra-segment and inter-

segment correlations respectively.

The frequency-based pathway leverages spectral sparsity through adaptive low-rank filtering in the
frequency domain. After applying FFT to the trend sequence, we compress the spectral representation
using a low-rank approximation:

ZS = Wenc · LPF(FFT(xtrend)), (7)

Xfreq = iFFT(Wdec · ZS), (8)

where Wenc ∈ Rnz×r and Wdec ∈ Rr×nz are encoding and decoding matrices, nz is the latent
dimension, and LPF denotes low-pass filtering.

A.2 TRAINING ALGORITHM

The MixLinear training process integrates dual-domain processing with efficient downsampling and
upsampling operations. Algorithm 1 describes the complete workflow for single-step inference.

Algorithm 1: MixLinear Training Algorithm

Input: Historical window xt−L+1:t ∈ RL, downsampling period w, forecast horizon H
Output: Forecasted output x̂t+1:t+H ∈ RH

Preprocessing and Downsampling:
xmean ← 1

L

∑t
i=t−L+1 xi ; // Compute temporal mean

xnorm ← xt−L+1:t − xmean ; // Zero-mean normalization
xagg ← Conv1d(xnorm, w) + xnorm ; // Temporal aggregation
n← ⌈L/w⌉, n̂← ⌈

√
n⌉2 ; // Compute dimensions

xtrend ← Reshape(xagg, (n,w)) ; // Extract trend sequence
Segment-based Pathway:
Xseg ← Reshape(xtrend, (

√
n̂,
√
n̂)) ; // Square matrix formation

Xtemp ←W1Xseg ; // Intra-segment transformation
Xout ←WT

2 XT
temp ; // Inter-segment transformation

xT ← Reshape(Xout,m) where m = ⌈H/w⌉ ; // Temporal output
Frequency-based Pathway:
xS ← FFT(xtrend) ; // Frequency domain transformation
xLPF
S ← LPF(xS , ncutoff) ; // Low-pass filtering

zS ←Wencx
LPF
S ; // Latent space encoding

xrecon ←WdeczS ; // Spectral reconstruction
xF ← iFFT(xrecon) ; // Time domain conversion
Combination and Output:
xM ← xT + xF + xmean ; // Dual-domain fusion
x̂t+1:t+H ← Upsample(xM , H) ; // Final forecast
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The training objective minimizes the Mean Squared Error (MSE) between predicted and actual values:

L =
1

H

H∑
i=1

(xt+i − x̂t+i)
2. (9)

During training, we optimize all parameters θ = {W1,W2,Wenc,Wdec} simultaneously using Adam
optimizer with learning rate 0.02. The model converges within 30 epochs due to the limited parameter
space and efficient gradient flow through linear transformations.

B EXPERIMENTAL SETTINGS

B.1 HYPERPARAMETERS

We implement MixLinear with PyTorch (Paszke et al., 2019) and optimize hyperparameters to ensure
fair comparison with baseline methods. Due to MixLinear’s minimal design complexity, hyperparam-
eter tuning is straightforward and requires limited search space. We provide all hyperparameters and
their configurations as follows:

• Optimizer: Adam optimizer (Diederik, 2015) with learning rate set to 0.02 for all datasets.
The relatively large learning rate accelerates training convergence given the small parameter
count in MixLinear. Default decay rates are set to (0.9, 0.999).

• Training configuration: Training is conducted for 30 epochs with early stopping based on
validation loss with patience of 10 epochs. This prevents overfitting while ensuring sufficient
training iterations.

• Batch size: Batch sizes are determined by dataset channel dimensions to maximize GPU
parallelism while preventing out-of-memory issues. Specifically, batch size is set to 256 for
datasets with fewer than 100 channels (e.g., ETTh1, ETTh2, Exchange) and 128 for datasets
with fewer than 300 channels (e.g., Electricity, Traffic).

• Segment-based pathway hyperparameters: Segment length LSeg is tuned in {2, 4, 6, 8,
10, 12, 16} with optimal values typically ranging from 4 to 8 across datasets. The dual linear
transformation dimensions d and M are set to 8 and 4 respectively based on sensitivity
analysis.

• Frequency-based pathway hyperparameters: Frequency latent dimension nz is searched
in {2, 4, 6, 8, 12, 16, 24} with nz = 2 achieving optimal accuracy-efficiency trade-offs
across most datasets. Rank parameter r is set to 8 for all experiments.

• Input configuration: Following FITS baseline setup, input length is uniformly set to 720
for all models to ensure fair comparison. Forecast horizons are set to {96, 192, 336, 720} as
standard evaluation metrics.

• Dataset splitting and normalization: We follow the procedures outlined in FITS and
Autoformer (Wu et al., 2021) for dataset splitting. ETT datasets are divided into training,
validation, and test sets with a 6:2:2 ratio, while other datasets use a 7:1:2 ratio. Both our
model and baselines use StandardScaler normalization to ensure consistent preprocessing.
The baseline results reported come from the first version of the FITS paper for direct
comparison.

B.2 BASELINE SETTINGS

As shown in Table 3, we summarize the baseline models used in this study, covering a diverse set of
architectures, including Transformer-based, CNN-based, MLP-based, and frequency-domain models.
Each of these models has been proposed to address different challenges in long-term time series
forecasting (LTSF) by leveraging unique architectural designs, such as decomposition techniques,
convolutional feature extraction, frequency-domain transformations, and lightweight linear modeling.

FEDformer. FEDformer (Zhou et al., 2022b) is a Transformer-based model that introduces a
seasonal-trend decomposition mechanism and exploits the sparsity of time series in the frequency do-
main. By leveraging Fourier transform properties, it selectively learns relevant frequency components,
improving efficiency in LTSF tasks.
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Table 3: Summary of baseline models used in our experiments.

Model Year Description Code

FEDformer 2022 Transformer-based model that incorporates seasonal-trend decom-
position and exploits the sparsity of time series in the frequency
domain.

https://github.
com/DAMO-DI-ML/
ICML2022-FEDformer

TimesNet 2023 CNN-based model with TimesBlock as a task-general backbone.
It transforms 1D time series into 2D tensors to capture intraperiod
and interperiod variations.

https://github.com/
thuml/TimesNet

SCINet 2022 Recursive downsample-convolve-interact architecture that applies
multiple convolutional filters to extract distinct yet valuable tem-
poral features from downsampled sub-sequences.

https://github.com/
cure-lab/SCINet

iTransformer 2022 Transformer-based architecture that applies attention and feed-
forward networks on inverted dimensions.

https://github.com/
thuml/iTransformer

PatchTST 2022 Transformer-based model utilizing patching and channel-
independent (CI) techniques. It also enables effective pre-training
and transfer learning across datasets.

https://github.com/
yuqinie98/PatchTST

DLinear 2023 MLP-based model with a single linear layer that outperforms
Transformer-based models in long-term time series forecasting
(LTSF) tasks.

https://github.
com/cure-lab/
LTSF-Linear

FITS 2023 Linear model that processes time series data through interpolation
in the complex frequency domain.

https://github.com/
VEWOXIC/FITS

SparseTSF 2024 Extremely lightweight model designed for LTSF, addressing the
challenges of modeling complex temporal dependencies over
extended horizons with minimal computational resources.

https://github.com/
lss-1138/SparseTSF

TimesNet. TimesNet (Liu et al., 2023) is a CNN-based model that introduces the TimesBlock, a
task-general backbone designed to process temporal patterns effectively. It converts 1D time series
into 2D tensors, allowing for better feature extraction of both intraperiod and interperiod variations
through convolutional layers.

SCINet. SCINet (Liu et al., 2022) is a recursive downsample-convolve-interact architecture de-
signed to capture multi-scale temporal dependencies. It applies multiple convolutional filters to
downsampled sub-sequences, enhancing feature extraction across different resolutions while main-
taining computational efficiency.

iTransformer. iTransformer (Wu et al., 2022) is a Transformer-based model that applies self-
attention mechanisms and feed-forward networks on inverted dimensions. By reordering dimensions
before applying traditional Transformer operations, iTransformer enhances dependency modeling
across time series data.

PatchTST. PatchTST (Nie et al., 2023) is a Transformer-based model that utilizes patching tech-
niques and a channel-independent (CI) approach. This model segments time series into patches,
allowing the self-attention mechanism to focus on localized patterns, leading to improved learning
efficiency. Additionally, it supports pre-training and transfer learning across different datasets.

DLinear. DLinear (Zeng et al., 2023) is an MLP-based model with a single linear layer, demon-
strating that Transformer-based models are not always necessary for LTSF tasks. By reducing
architectural complexity while maintaining strong predictive performance, DLinear outperforms
many Transformer-based approaches in efficiency and generalization.

FITS. FITS (Xu et al., 2024) is a frequency-domain model that manipulates time series data through
interpolation in the complex frequency domain. By transforming signals into frequency space, FITS
enables smooth interpolation and efficient learning, making it well-suited for capturing periodic and
long-range dependencies.

SparseTSF. SparseTSF (Lin et al., 2024) is a novel, extremely lightweight model designed specifi-
cally for LTSF tasks. It addresses the challenge of modeling long-term dependencies while main-
taining minimal computational cost. SparseTSF achieves this by strategically reducing redundant
computations and focusing on essential temporal patterns.
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B.3 DATASET DESCRIPTION

This section provides a detailed description of the datasets used in our experiments. Table 4 sum-
marizes the eight benchmark datasets, including the number of channels, sampling rate, and total
timesteps available for each dataset.

Table 4: Benchmark dataset description.

Dataset Traffic Electricity Solar Exchange ETTh1 ETTh2 ETTm1 ETTm2

Channels 862 321 137 8 7 7 7 7
Sampling Rate 1 hour 1 hour 10 min 1 day 1 hour 1 hour 15 min 15 min
Total Timesteps 17,544 26,304 52,560 7,588 17,420 17,420 69,680 69,680

Traffic Dataset1. The Traffic dataset contains hourly road occupancy rates recorded by 862 sensors
on major freeways in the San Francisco Bay Area. Provided by the California Department of
Transportation, it consists of 17,544 total timesteps and captures key traffic patterns such as rush-hour
congestion, seasonal variations, and long-term trends in freeway usage.

Electricity Dataset2. The Electricity dataset comprises hourly electricity consumption measurements
from 321 residential and commercial customers in Portugal, covering the period from 2012 to 2014.
It consists of 26,304 total timesteps and is useful for analyzing demand patterns, seasonal variations,
and peak load forecasting.

Solar Dataset3. The Solar-Energy dataset records solar power generation from 137 photovoltaic
(PV) power plants located in Alabama. This dataset contains 52,560 total timesteps sampled at
a 10-minute resolution throughout 2016, offering detailed insights into solar energy production
dynamics, including seasonal trends, weather influences, and variations in power output.

Exchange Dataset4. The Exchange-Rate dataset records the daily exchange rates of eight major
foreign currencies, including those of Australia, the United Kingdom, Canada, Switzerland, China,
Japan, New Zealand, and Singapore, spanning from 1990 to 2016. With a total of 7,588 timesteps,
this dataset captures global economic trends, market fluctuations, and currency volatility, making it
valuable for financial time series forecasting.

ETT Dataset5. The ETTh1, ETTh2, ETTm1, and ETTm2 datasets, originally introduced in In-
former (Zhou et al., 2021), contain industrial load and oil temperature readings collected from an
electrical transformer station. These datasets span from July 2016 to July 2018 and differ in their
temporal resolutions. ETTh1 and ETTh2 are sampled at 1-hour intervals, each containing 17,420
total timesteps across 7 channels. In contrast, ETTm1 and ETTm2 are sampled at 15-minute intervals,
significantly increasing the total number of timesteps to 69,680 while maintaining the same number of
channels. These datasets are widely used for evaluating long-term forecasting performance, capturing
both short-term fluctuations and long-term trends in electricity consumption and environmental
conditions.

C FULL EXPERIMENT RESULTS

In this section, we compare MixLinear with more baseline models, examine the effectiveness of time
domain segmentation, and frequency domain filtering.

C.1 MAIN RESULTS

We evaluate the performance of MixLinear across eight benchmark LTSF datasets, including ETTh1,
ETTh2, Exchange, Solar, ETTm1, ETTm2, Electricity, and Traffic. Our experiments use a look-back
window of 720 and four forecast horizons: 96, 192, 336, and 720. Table 5 provides a comprehensive

1http://pems.dot.ca.gov
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3http://www.nrel.gov/grid/solar-power-data.html
4https://github.com/laiguokun/multivariate-time-series-data
5https://github.com/zhouhaoyi/ETDataset
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Table 5: MSE results of multivariate long-term time series forecasting comparing MixLinear against
baselines.

Models MixLinear SparseTSF FITS DLinear PatchTST iTransformer SCINet TimesNet FEDformer

Data Horizon (ours) (2024) (2024) (2023) (2023) (2023) (2022) (2022) (2022)

Parameter(720) 0.176K 0.925K 41.76K 485.3K 6.31M 7.04M 23.62M 301.7M 17.98M

E
T

T
h1

96 0.351 0.362 0.382 0.384 0.385 0.386 0.375 0.384 0.375
192 0.395 0.403 0.417 0.443 0.413 0.441 0.429 0.436 0.427
336 0.411 0.434 0.436 0.446 0.440 0.487 0.504 0.491 0.459
720 0.423 0.426 0.433 0.504 0.456 0.503 0.544 0.521 0.484

E
T

T
h2

96 0.283 0.294 0.272 0.282 0.274 0.297 0.289 0.340 0.340
192 0.336 0.339 0.333 0.340 0.338 0.380 0.372 0.402 0.433
336 0.355 0.359 0.355 0.414 0.367 0.428 0.365 0.452 0.508
720 0.380 0.383 0.378 0.588 0.391 0.427 0.475 0.462 0.480

E
xc

ha
ng

e 96 0.088 0.105 0.086 0.087 0.087 0.086 0.267 0.107 0.148
192 0.175 0.196 0.180 0.251 0.183 0.177 0.351 0.226 0.271
336 0.318 0.358 0.333 0.403 0.390 0.331 0.424 0.367 0.460
720 0.923 0.954 0.941 1.364 1.038 0.970 1.058 0.964 1.195

So
la

r 96 0.211 0.211 0.195 0.290 0.265 0.203 0.237 0.373 0.286
192 0.227 0.225 0.216 0.320 0.288 0.233 0.280 0.397 0.291
336 0.240 0.241 0.232 0.353 0.301 0.248 0.304 0.420 0.354
720 0.240 0.241 0.242 0.357 0.295 0.249 0.308 0.420 0.380

E
T

T
m

1 96 0.308 0.314 0.305 0.299 0.293 0.334 0.418 0.338 0.379
192 0.337 0.343 0.339 0.335 0.333 0.377 0.439 0.374 0.426
336 0.365 0.369 0.367 0.369 0.369 0.429 0.490 0.410 0.445
720 0.415 0.418 0.418 0.425 0.416 0.491 0.595 0.478 0.543

E
T

T
m

2 96 0.165 0.165 0.164 0.167 0.166 0.180 0.286 0.187 0.203
192 0.219 0.218 0.217 0.221 0.223 0.250 0.399 0.249 0.269
336 0.269 0.272 0.269 0.274 0.274 0.311 0.637 0.321 0.325
720 0.351 0.350 0.347 0.368 0.362 0.412 0.960 0.408 0.421

W
ea

th
er 96 0.170 0.172 0.145 0.176 0.149 0.174 0.221 0.172 0.217

192 0.212 0.215 0.188 0.218 0.194 0.221 0.261 0.219 0.276
336 0.257 0.260 0.236 0.262 0.245 0.278 0.309 0.280 0.339
720 0.321 0.318 0.308 0.323 0.314 0.358 0.377 0.365 0.403

E
le

ct
ri

ci
ty 96 0.138 0.138 0.145 0.140 0.129 0.148 0.168 0.168 0.188

192 0.154 0.151 0.159 0.153 0.149 0.162 0.175 0.184 0.197
336 0.170 0.166 0.175 0.169 0.166 0.178 0.189 0.198 0.212
720 0.209 0.205 0.212 0.204 0.210 0.225 0.231 0.220 0.244

Tr
af

fic

96 0.389 0.389 0.398 0.413 0.366 0.395 0.613 0.593 0.573
192 0.403 0.398 0.409 0.423 0.388 0.417 0.535 0.617 0.611
336 0.416 0.411 0.421 0.437 0.398 0.433 0.540 0.629 0.621
720 0.452 0.448 0.457 0.466 0.457 0.467 0.620 0.640 0.630

comparison between MixLinear and leading baseline models, such as SparseTSF, FITS, DLinear,
PatchTST, iTransformer, SCINet, TimesNet, and FEDformer.

Compact Model with 81% Parameter Reduction. As shown in Table 1 and Table 5, MixLinear
achieves exceptional parameter efficiency, requiring only 0.1K parameters, significantly fewer
than SparseTSF (1K) and FITS (10K). This results in an 81% reduction in parameter size at a
forecast horizon of 720 compared to SparseTSF, the second-best linear-based LTSF model. Figure 7
further illustrates the stark contrast in parameter sizes among models, where TimesNet, PatchTST,
DLinear, and FITS exhibit considerably larger parameter footprints, while SparseTSF represents a
moderate reduction. By achieving the smallest parameter size among all compared models, MixLinear
drastically minimizes computational overhead and accelerates inference speed, making it highly
suitable for resource-constrained environments.

State-of-the-Art Forecasting Performance. Table 5 highlights MixLinear’s superior forecasting
capabilities across diverse datasets and forecasting horizons. In Low-Dimensional scenarios, such
as ETTh1 and ETTh2 (each with 7 channels), MixLinear consistently outperforms baseline models,
achieving the lowest MSE across multiple horizons. Notably, on ETTh1 at horizon 336, MixLinear
reduces MSE by 5.3% (+0.023) compared to the best baseline, demonstrating its effectiveness in
capturing essential time-series patterns in data with limited variates. In High-Dimensional scenarios,
such as Electricity (321 channels) and Traffic (862 channels), MixLinear maintains strong perfor-
mance, ranking among the top two models across most cases. Even when compared to lightweight
models like DLinear, FITS, and SparseTSF, MixLinear remains highly competitive. Moreover, despite
its significantly smaller parameter size (0.1K), MixLinear performs on par with parameter-heavy
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Figure 7: Comparisons on number of parameters among various LTSF models at forecast horizon
720. The Y-axis uses logarithmic scale.

architectures, such as PatchTST (6M parameters), highlighting its efficiency in learning complex
temporal dependencies without the need for excessive computational resources. At an extended
forecast horizon of 720, MixLinear further demonstrates its robustness in long-term forecasting,
ranking within the top two models across all datasets except Electricity. On ETTh1, MixLinear
reduces MSE by 0.003 at this horizon, while maintaining an MSE increase of less than 0.005 on other
datasets. These results underscore MixLinear’s ability to effectively model long-range dependencies
while maintaining exceptional efficiency in both computation and parameter utilization.

C.2 IMPACT OF SEGMENT LENGTH

The sensitivity analysis of segment length demonstrates the robustness of our segment-based trend
extraction across varying temporal granularities while maintaining computational efficiency. As
shown in Figures 8 and 9, the experimental results reveal distinct behavioral patterns between Low-
Dimensional and High-Dimensional datasets, providing insights into the fundamental relationship
between temporal decomposition and forecasting performance.

Low-Dimensional Dataset Analysis: For Low-Dimensional datasets (Figure 8), ETTh1 and ETTh2
exhibit optimal performance with moderate segment lengths (4-8 time points), maintaining MSE
valuesaround 0.38-0.42 with controlled variation across different segmentation strategies. The ETTh1
dataset demonstrates remarkable stability, with MSE fluctuating minimally between 0.38-0.40 across
both forecast horizons, while computational cost (MACs) decreases substantially from approximately
300K to 180K as segment length increases from 2 to 16. This inverse relationship reflects the reduced
inter-segment projection complexity inherent in our temporal decomposition framework. Conversely,
the Exchange dataset exhibits different sensitivity patterns, showing optimal performance at longer
segment lengths (8-16), particularly evident in the 720-horizon forecasting where MSE stabilizes
around 0.9-1.0.

High-Dimensional Dataset Robustness: High-Dimensional datasets (Figure 9) demonstrate superior
stability across varying segment lengths, validating the hypothesis that cross-channel information
compensates for suboptimal temporal segmentation choices. The Electricity dataset maintains
consistent MSE performance across all tested segment configurations while achieving significant
computational savings, with MACs reducing from 28K to 8K. Most remarkably, the Traffic dataset
exhibits exceptional robustness, showing virtually flat MSE curves across all segment lengths for
both forecast horizons, with computational costs decreasing linearly from 45K to 15K MACs. The
Solar dataset presents an intermediate behavior, with slight performance variations but overall stable
trends, particularly at longer forecast horizons.

Computational Efficiency Patterns: The computational cost analysis reveals a consistent inverse
relationship between segment length and MACs across all datasets. This efficiency gain is particularly
pronounced in High-Dimensional datasets, where the Traffic dataset achieves a 3× computational
reduction while maintaining performance stability. The computational savings validate our design
philosophy of separating local temporal pattern extraction from global trend aggregation.

Forecast Horizon Sensitivity: Comparing short-term (336) and long-term (720) forecasting reveals
interesting temporal dynamics. Low-Dimensional datasets show increased sensitivity to segment
length at longer horizons, suggesting that extended predictions require more careful temporal decom-
position strategies. High-Dimensional datasets maintain their robustness across forecast horizons,
with Traffic and Solar showing minimal performance degradation even at 720-step predictions.
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(b) Dataset ETTh1 at the forecast horizon 720
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(c) Dataset ETTh2 at the forecast horizon 336
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(d) Dataset ETTh2 at the forecast horizon 720
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(e) Dataset Exchange at the forecast horizon 336

2 4 6 8 10
Segment Length

220

230

240

250

260
M

AC
s (

K)
MACs

0.8

0.9

1.0

1.1

1.2

M
SE

MSE

(f) Dataset Exchange at the forecast horizon 720

Figure 8: Performance of MixLinear with different segment lengths on low-dimensional datasets.

Universal Performance Improvements: Across all tested configurations, the segmented approach
consistently outperforms baseline methods, with improvement margins varying systematically by
dataset characteristics. The convergence patterns observed indicate natural temporal scales that,
once captured, provide stable forecasting benefits regardless of further segmentation refinement.
This validates our segmentation-based design, demonstrating that the orthogonal separation of
temporal components remains effective across diverse datasets and forecast horizons without requiring
extensive hyperparameter tuning.

C.3 IMPACT OF SPECTRAL RANK

The spectral rank sensitivity analysis provides compelling evidence for the effectiveness of our
adaptive low-rank spectral filtering, demonstrating that extremely low-rank approximations achieve
near-optimal performance with minimal computational overhead. As illustrated in Figures 10 and 11,
the relationship between spectral rank and forecasting performance reveals distinct patterns across
dataset categories, validating our theoretical premise that global temporal patterns concentrate within
low-dimensional spectral subspaces.

Low-Dimensional Dataset Analysis: For Low-Dimensional datasets (Figure 10), both ETTh1 and
ETTh2 exhibit remarkable performance stability across varying spectral ranks, with MSE remaining
virtually constant around 0.38–0.42 despite rank variations from 2 to 24. This stability demonstrates
that dominant periodicities in these datasets can be effectively captured with minimal spectral
dimensions. Computational complexity increases linearly from approximately 200K to 350K MACs
as rank increases, reflecting our low-rank formulation’s O(rnz) scaling. Notably, the Exchange
dataset shows slightly different behavior with modest MSE fluctuations, but maintains overall stability,
suggesting that currency exchange patterns also concentrate in low-dimensional frequency subspaces.
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(a) Dataset Electricity at the forecast horizon 336
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(b) Dataset Electricity at the forecast horizon 720
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(c) Dataset Traffic at the forecast horizon 336
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(d) Dataset Traffic at the forecast horizon 720
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(e) Dataset Solar at the forecast horizon 336
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(f) Dataset Solar at the forecast horizon 720

Figure 9: Performance of MixLinear with different segment lengths on high-dimensional datasets.

High-Dimensional Dataset Robustness: High-Dimensional datasets (Figure 11) demonstrate excep-
tional robustness to rank variations, with Traffic and Solar datasets maintaining virtually flat MSE
curves across all tested ranks for both forecast horizons. The Electricity dataset exhibits minimal
performance variations (MSE ≈ 0.2) while computational costs scale linearly from 8K to 17K MACs.
This robustness suggests that the cross-channel information in multivariate time series provides natu-
ral regularization against rank selection, enabling stable performance even with extremely low-rank
approximations.

Computational Efficiency Validation: The consistent linear scaling of MACs across all datasets
confirms the effectiveness of our rank-constrained parameterization compared to quadratic O(r2)
complexity of full spectral filtering methods. Remarkably, rank-2 approximations achieve 6–12×
parameter reduction compared to rank-24 while maintaining comparable accuracy across all tested
configurations. This efficiency gain is particularly pronounced in High-Dimensional datasets where
the Traffic dataset maintains optimal performance with minimal computational overhead.

Forecast Horizon Consistency: Comparing performance across different forecast horizons (336
vs. 720) reveals that spectral rank sensitivity remains consistent regardless of prediction length.
This temporal invariance suggests that the low-dimensional spectral structure captures fundamental
periodicities that persist across different forecasting contexts, validating our frequency domain
processing approach for both short-term and long-term predictions.

Spectral Sparsity Confirmation: The universal performance saturation observed beyond rank-4 to
rank-8 across all datasets provides strong empirical validation for the spectral sparsity hypothesis
underlying our frequency domain pathway. This confirms that time series data naturally exhibit
low-rank spectral structure, where a small number of dominant frequency components capture the
majority of temporal dynamics. The minimal performance degradation at extremely low ranks
(rank-2) demonstrates the effectiveness of our adaptive spectral filtering in identifying and preserving
the most informative frequency components while discarding redundant spectral information.
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(b) Dataset ETTh1 at the forecast horizon 720
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(c) Dataset ETTh2 at the forecast horizon 336
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(d) Dataset ETTh2 at the forecast horizon 720
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(e) Dataset Exchange at the forecast horizon 336
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Figure 10: Performance of MixLinear with different spectral ranks on low-dimensional datasets.

C.4 EXPERIMENTAL RESULTS ON EFFICIENCY

We evaluate the computational efficiency of the models by measuring MACs under different horizons.
As Figure 12 shows, MixLinear consistently demonstrates the lowest computational overhead and the
most stable growth rate under all tested scenarios. This best scalability is particularly evident in high-
dimensional, long-horizon tasks (H = 336 and H = 720). In these regimes, MixLinear achieves
up to a 40% reduction in MACs compared to SparseTSF. The more flat curve confirms MixLinear’s
time complexity of O(n log n). This contrasts sharply with the significantly steeper growth rates
observed for SparseTSF and FITS. In low-dimensional datasets with few channels (e.g., ETTh1
with 7 variables), MixLinear attains the lowest MAC cost—196.56K at horizon 720—outperforming
SparseTSF (277.20K, +41.32%) and FITS (292.32K, +48.98%). This efficiency persists in high-
dimensional settings: on the Traffic dataset with 862 channels, MixLinear again achieves the smallest
MAC at 24.2M for horizon 720, compared to 34.14M for SparseTSF (+41.67%) and 36.00M for FITS
(+48.76%). Overall, the experimental results unequivocally confirm that MixLinear substantially
reduces computational overhead across various datasets and forecasting horizons while maintaining
competitive predictive performance.

C.5 EFFECT OF DOWNSAMPLING FACTOR ON MIXLINEAR PERFORMANCE

To evaluate the effect of the downsampling factor π on model performance, we perform ablation
studies on both low-dimensional (ETTh2) and high-dimensional (Solar) datasets. Table 6 demon-
strates that MixLinear achieves optimal performance at π = 24 across most configurations, while
maintaining robust forecasting accuracy across a wide range of downsampling factors. The results
reveal several key insights: First, minimal downsampling (π = 2) does not yield the best performance,
suggesting that moderate temporal aggregation helps the model capture more robust patterns by
reducing noise and focusing on essential trends. Second, the optimal value π = 24 strikes an effective
balance between computational efficiency and information preservation, achieving the lowest MSE
values of 0.282, 0.336, 0.356, and 0.380 for ETTh2 across horizons 96, 192, 336, and 720 respectively.
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(a) Dataset Electricity at the forecast horizon 336
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(b) Dataset Electricity at the forecast horizon 720
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(c) Dataset Traffic at the forecast horizon 336
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(d) Dataset Traffic at the forecast horizon 720
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(e) Dataset Solar at the forecast horizon 336
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(f) Dataset Solar at the forecast horizon 720

Figure 11: Performance of MixLinear with different spectral ranks on high-dimensional datasets.
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Figure 12: Comparisons on MACs across different forecast horizons.

Third, excessive downsampling (π = 36) leads to performance degradation, indicating information
loss when compression becomes too aggressive. Notably, the performance variations across different
π values remain relatively small (typically within 2-3% MSE difference), demonstrating MixLinear’s
inherent robustness to the choice of downsampling factor. This stability across different downsam-
pling rates makes MixLinear adaptable to various computational budgets and deployment scenarios
without requiring extensive hyperparameter tuning.
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Table 6: MSEs of MixLinear with different downsampling factor π on ETTh2 and Solar datasets.
Bold values indicate best performance for each horizon.

Dataset Horizon π = 2 π = 4 π = 8 π = 16 π = 24 π = 36

E
T

T
h2

96 0.287 0.286 0.284 0.289 0.282 0.305
192 0.351 0.358 0.341 0.360 0.336 0.348
336 0.366 0.364 0.365 0.364 0.356 0.370
720 0.390 0.383 0.383 0.389 0.380 0.391

So
la

r 96 0.207 0.205 0.215 0.209 0.211 0.218
192 0.231 0.233 0.238 0.238 0.227 0.230
336 0.250 0.254 0.258 0.251 0.240 0.242
720 0.252 0.250 0.259 0.252 0.240 0.243

D VISUALIZATION

To showcase the prediction performance of MixLinear and compare it with other models, we present
visualizations of their prediction results. Figures 13 and Figures 14 display the prediction results on
the Exchange dataset for different models under two settings: input-720-predict-96 (Figure 13) and
input-720-predict-192 (Figure 14). In these figures, the blue lines represent the ground truth values,
while the orange lines denote the model predictions.

Ground Truth
Prediction
Prediction Start

(a) MixLinear

Ground Truth
Prediction
Prediction Start

(b) SparseTSF

Ground Truth
Prediction
Prediction Start

(c) FITS

Ground Truth
Prediction
Prediction Start

(d) DLinear

Ground Truth
Prediction
Prediction Start

(e) PatchTST

Ground Truth
Prediction
Prediction Start

(f) iTransformer

Figure 13: Prediction cases from Exchange by different models under the input-720-predict-96
settings. Blue lines are the ground truths, and orange lines are the model predictions.
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Figure 14: Prediction cases from Exchange by different models under the input-720-predict-192
settings. Blue lines are the ground truths and orange lines are the model predictions.

In Figure 13, the models predict 96 future time steps based on 720 past time steps. MixLinear shows
strong alignment with the ground truth, capturing short-term patterns effectively. SparseTSF performs
reasonably well, though slight deviations are observed. FITS and PatchTST closely follow the ground
truth, demonstrating robust short-term forecasting capabilities. DLinear and iTransformer, however,
exhibit larger deviations, indicating less accuracy for short-term predictions.

In Figure 14, the models are tasked with predicting 192 future time steps using 720 past time steps.
MixLinear continues to perform accurately with minimal deviations, proving its effectiveness for
longer prediction horizons. SparseTSF and FITS display moderate accuracy but show occasional
mismatches in trends. PatchTST maintains strong performance, similar to the 96-step setting, while
DLinear and iTransformer show greater discrepancies and instability, struggling with the extended
horizon.

Overall, these figures highlight the strengths and weaknesses of the models. MixLinear and PatchTST
consistently deliver accurate predictions across both settings, whereas DLinear and iTransformer face
challenges in capturing longer-term temporal patterns. This comparison underscores the importance
of robust model design for both short-term and long-term forecasting.

E USE OF LARGE LANGUAGE MODELS

ChatGPT was used as a general-purpose writing assistance tool to improve the grammar and clarity
of writing during the preparation of this paper. LLMs did not contribute to the formulation of the
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research idea, the experimental design, the data analysis, or the formulation of scientific conclusions.
The authors assume full responsibility for all contents presented in this paper.
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