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ABSTRACT

Spatio-temporal prediction holds immense significance in urban computing as it
enables decision-makers to anticipate critical phenomena such as traffic flow, crime
rates, and air quality. Researchers have made remarkable progress in this field by
leveraging the graph structure inherent in spatio-temporal data and harnessing the
power of Graph Neural Networks (GNNs) to capture intricate relationships and
dependencies across different time slots and locations. These advancements have
significantly improved representation learning, leading to more accurate predic-
tions. This study focuses on exploring the capacity of Large Language Models
(LLMs) to handle the dynamic nature of spatio-temporal data in urban systems.
The proposed approach, called STLLM, integrates LLMs with a cross-view mutual
information maximization paradigm to capture implicit spatio-temporal dependen-
cies and preserve spatial semantics in urban space. By harnessing the power of
LLMs, the approach effectively captures intricate and implicit spatial and temporal
patterns, resulting in the generation of robust and invariant LLM-based knowledge
representations. In our framework, the cross-view knowledge alignment ensures
effective alignment and information preservation across different views while also
facilitating spatio-temporal data augmentation. The effectiveness of STLLM is
evaluated through theoretical analyses, extensive experiments, and additional inves-
tigations, demonstrating its ability to align LLM-based spatio-temporal knowledge
and outperform state-of-the-art baselines in various prediction tasks.

1 INTRODUCTION

Spatio-temporal prediction refers to the task of forecasting future events or conditions by taking into
account both spatial and temporal information (Pan et al., 2019). It holds immense significance in the
field of urban computing as it enables the prediction of various phenomena such as traffic flow (Zheng
et al., 2020), crime rates (Wang et al., 2022a), and air quality (Liang et al., 2023). By providing these
predictions, decision-makers can take proactive measures, allocate resources efficiently, and engage
in effective urban planning, thereby enhancing efficiency, sustainability, and public safety in cities.

In the pursuit of achieving accurate forecasting results, researchers have made significant strides
in developing innovative techniques that exploit the inherent graph structure of spatio-temporal
data, enabling them to capture intricate relationships and dependencies across different time slots
and locations. Notably, Graph Neural Networks (GNNs) have emerged as a powerful tool in this
field, offering the ability to incorporate both spatial and temporal information into the representation
learning process. Recent advancements in spatio-temporal GNNs, including graph convolutional
networks (Yu et al., 2018), graph attention mechanisms (Lan et al., 2022), and graph transformers (Huo
et al., 2023), have been proposed to enhance the representation learning capabilities of spatio-temporal
graphs. These GNN-based techniques employ diverse embedding propagation schemes over the
generated spatio-temporal graph structures to effectively capture spatial and temporal patterns.

Spatio-temporal prediction presents several challenges that require careful consideration in practical
urban computing scenarios. i) Long-Range Spatio-Temporal Dependencies: capturing long-range
dependencies is crucial as spatio-temporal phenomena often exhibit dependencies that span extensive
time intervals and distant locations. This poses a challenge, as short-term local interactions may
not fully reflect the underlying dynamics accurately. ii) Data Sparsity and Noise: data sparsity is
prevalent in spatio-temporal datasets, where limited observations (e.g., crimes, traffic accidents) are
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available for certain locations and time intervals. Moreover, missing and noisy values in the spatio-
temporal data further hinder the prediction task, often due to sensor failures or noisy connections
in the constructed spatio-temporal graphs. iii) Dynamic and Evolving Nature: Spatio-temporal
systems are inherently dynamic and subject to changes over time. Predictive models need to adapt to
these dynamic characteristics by effectively distilling invariant representations with spatio-temporal
semantics, enabling them to handle evolving patterns and shifts.

In this study, our focus is on exploring the application of Large Language Models (LLMs) in spatio-
temporal prediction to address the aforementioned challenges. While LLMs have gained substantial
attention and success in domains of NLP (Zhao et al., 2023; Ji et al., 2023) and multi-modal
understanding (Yin et al., 2023; Driess et al., 2023), their exploration in forecasting spatio-temporal
graph data remains relatively unexplored. This work aims to bridge this gap by harnessing the
superior capabilities of LLMs in distilling intricate and implicit spatial and temporal patterns.

Contribution. This study presents STLLM, a new LLM-enhanced spatio-temporal learning paradigm
that leverages Large Language Models to enhance the understanding of spatio-temporal data. By
integrating a LLM-based spatio-temporal knowledge learner with a cross-view mutual information
maximization paradigm, our approach effectively captures spatio-temporal connections and preserves
point of interest information across the urban space, offering a comprehensive view of spatio-temporal
features. The LLM-based knowledge can serve as robust and invariant representations, particularly in
scenarios involving spatio-temporal distribution shifts. Furthermore, our spatio-temporal knowledge
alignment paradigm maximizes mutual information between LLM-based knowledge representations
and GNN-based structural embeddings, ensuring effective alignment and information preservation
across different views. This cross-view knowledge alignment process not only facilitates effective data
augmentation but also addresses inaccuracies in the raw spatio-temporal graph data by denoising noisy
connections. The effectiveness of our proposed STLLM is further strengthened by theoretical analyses,
demonstrating its ability to align LLM-based spatio-temporal knowledge through the maximization
of mutual information. Extensive experiments are conducted to evaluate the effectiveness of STLLM
in various spatio-temporal prediction tasks, comparing it with state-of-the-art baselines. Additional
analyses, such as model ablation studies, robustness investigations, and efficiency evaluations,
are performed to validate the efficacy of STLLM. To access the model implementation for result
reproducibility, please visit the following link: https://anonymous.4open.science/r/STLLM.

2 RELATED WORK

Region Representation Learning. The representation of regions in the spatial-temporal semantic
space has long been a subject of scholarly research (Wang & Li, 2017; Yao et al., 2018; Zhang
et al., 2021; 2019; Fu et al., 2019; Wu et al., 2022; Zhang et al., 2023b). Specifically, Fu et al.
(2019) recommend utilizing both intra- and inter-region information to enhance representations.
Building upon this idea, Zhang et al. (2019) employ a collective adversarial training method. In
a recent study by Zhang et al. (2021), they propose a multi-view joint learning model for region
representation, which captures region correlations from various perspectives (e.g., region attributes)
and employs graph attention for representation learning. Conversely, Wu et al. (2022) focus on
extracting traffic patterns for area representation, but their approach disregards essential POI data.
To address the reliance on high-quality region graphs and the challenges associated with learning
from noisy and skewed spatial-temporal data, Zhang et al. (2023b) propose an adversarial contrastive
learning paradigm for robust spatial-temporal graph augmentation. Despite the effectiveness of
previous methods, their reliance on structure information hinders adaptability. In this paper, we
address this limitation by leveraging LLMs’ global knowledge to uncover additional region global
relationships, thereby enhancing the overall performance of region representation.

Large Language Model. LLMs extensively trained on large corpus, have demonstrated exceptional
performance in NLP tasks (Ji et al., 2023; Wang et al., 2022b). Primarily based on the Transformer
architecture (Vaswani et al., 2017), these models can be classified into three categories: encoder-only,
encoder-decoder, and decoder-only (Pan et al., 2023). (i) Encoder-only LLMs utilize only the encoder
for word associations and encoding sentences, like BERT (Devlin et al., 2018; Liu et al., 2019; Lan
et al., 2019), requiring an additional prediction head for downstream tasks. These models excel
in tasks demanding full sentence understanding (Zhang et al., 2022). (ii) Encoder-decoder LLMs
employ both encoder and decoder modules for input encoding (Raffel et al., 2020; Zeng et al., 2023)
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Figure 1: Architecture of our proposed STLLM framework.

and output generation, offering more flexible training techniques (Zoph et al., 2022; Xue et al., 2020).
(iii) Decoder-only LLMs rely solely on the decoder module for output generation, with training
centered around predicting subsequent words. Models like Chat-GPT (Ouyang et al., 2022) and GPT-
4 can often complete tasks with minimal sample or instruction input. However, their closed-source
nature limits further research. Recently, open-source models such as Alpaca and Vicuna have shown
comparable performance (Touvron et al., 2023). This study applies decoder-only LLM (GPT-3.5) to
enhance the quality of the spatio-temporal graph with effective augmentation.

3 METHODOLOGY

This section elaborate on the technical details of the proposed STLLM. The model architecture is
depicted in Figure 1. We begin with an introduction to the spatio-temporal prediction task as follows.

3.1 PRELIMINARIES

The urban space is partitioned into I spatial regions, indexed by i, and J time slots, indexed by
j. Each region is denoted as ri, and each time slot is denoted as tj . To facilitate comprehensive
spatio-temporal (ST) representation learning, we construct a spatio-temporal graph by incorporating
urban contextual information from diverse data sources. Specifically, we utilize the following data:

i) Human Mobility Trajectories M. This data comprises real human mobility trajectories, where
each trajectory is represented as (rs, rd, ts, td, v). Here, rs and rd denote the source and target
regions, respectively, while ts and td refer to the corresponding timestamps. v denotes the mobility
volume of this trajectory. These trajectories capture the temporal region-wise connections in terms
of human mobility, making them essential for various urban prediction tasks. ii) Region-wise
Distance Information D. This data includes a weighted adjacency matrix that records neighborhood
information based on region-wise distances. It encompasses all pairs of regions (rs, rd, d) with a
physical distance of less than 2.5km, and d denotes the distance in kilometers. This data provides
valuable spatial contextual information about urban regions, facilitating spatial analysis and modeling.

Spatio-Temporal Graph. Leveraging the foregoing data, we construct the spatio-temporal graph
G = (V, E). The node set V consists of J time-slot-specific copies for each of the I regions, resulting
in a total of |V| = I × J nodes. The weighted edge set E incorporates the two heterogeneous data
sources, along with residual connections across adjacent time slots. Using ritj to represent the node
for the ri-th region in the tj-th time slot, we define the edge set as follows:

E = {(rsts, rdtd, v) : M}∪ {(rstj , rdtj , d) : D,∀tj} ∪ {(ritj , ritj+1, 1) : tj < J,∀ri} (1)

Problem Statement: Given the spatio-temporal graph G constructed from the heterogeneous data, our
objective in spatio-temporal representation learning is to generate an embedding matrix E ∈ R|V|×d.
Each row vector eij ∈ Rd in E refers to the representation vector for the ri-th region in the tj-th time
slot. This learned embedding facilitates accurate predictions in various types of downstream tasks in
urban scenarios, such as traffic prediction, crime prediction, and house price prediction.

3.2 DUAL-VIEW SPATIO-TEMPORAL MODELING

3.2.1 SPATIO-TEMPORAL GRAPH NEURAL NETWORK

Our STLLM framework incorporates two modeling views to capture spatio-temporal patterns. The
first view focuses on extracting the high-order connectivity of the spatio-temporal graph through
iterative graph neural propagation. It begins by generating an initial embedding for each node vi ∈ V
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by projecting its node-specific point of interest (POI) tags into a d-dimensional latent representation
h0
i ∈ H0 using a transformer-based neural language model (Vaswani et al., 2017). Subsequently,

leveraging the graph structures in the aforementioned ST graph G, STLLM performs multiple GNN
iterations to capture and refine the spatio-temporal dependencies as follows:

H =

L∑
l=0

Hl, Hl = σ(D−1/2AD−1/2Hl−1Wl−1), Di,j = |Ni| if i = j otherwise 0 (2)

where H = {hi} ∈ R|V|×d denotes the final embedding matrix given by the graph modeling view
of our STLLM. A ∈ R|V|×|V| denotes the adjacent matrix of the ST graph G. This spatio-temporal
GNN aggregates the embeddings of different propagation iterations. Each iteration is done by the
graph convolution operator with the learnable linear projection Wl−1 ∈ Rd×d and the ReLU-based
non-linear projection σ(·). D denotes the symmetric degree matrix of the adjacent matrix A.

3.2.2 LLM-BASED SPATIO-TEMPORAL KNOWLEDGE LEARNING

Drawing inspiration from the LLM’s ability to understand real-world knowledge, we propose lever-
aging a well-trained LLM to generate semantic node representations. Specifically, STLLM first
generates a text-based description Pi = (ri,Qi,Si, Ti) for each region ri. This description is con-
structed by concatenating the region ID ri, its point of interest (POI) information Qi, the spatial
context Si derived from distance data D, and the temporal context Ti derived from mobility data M.

Using these text descriptions, STLLM proceeds with two steps to acquire LLM-based knowledge
representations. Firstly, we prompt the pretrained LLM to generate a summary for each node. This
involves inputting the descriptions of the target node and its surrounding nodes together into the
LLM to facilitate comprehension of the spatio-temporal context. Secondly, STLLM obtains latent
representation vectors F = fi ∈ RI×d for the summary text of the regions. Leveraging the LLM’s
profound understanding of general-purpose knowledge, the generated embeddings in F effectively
preserve the POI information within each region and capture the spatio-temporal connections to its
neighborhood. This approach, in contrast to the GNN-based modeling view that focuses on local
structure extraction, represents the spatio-temporal features from a global perspective by distilling
general knowledge from the LLM. Appendix A.5 provides examples of descriptions and summaries.

3.3 CROSS-VIEW MUTUAL INFORMATION MAXIMIZATION

With the GNN-based ST dependencies modeling and the LLM-based global knowledge mining,
we aim at maximizing their mutual information to minimizes their respective noise and irrelevant
information. To do so, STLLM is tuned utilizing the following cross-view mutual information
maximization objective, with I(·) denoting the mutual information function:

H = argmax
H

I(h, f), where I(h, f) =
∑
hi,fi

p(hi, fi) log
p(hi|fi)
p(hi)

(3)

To make this loss function tractable, we follow Oord et al. (2018) to utilize the infoNCE loss
function for optimization, which is proved to be the lowerbound of the mutual information function.
Specifically, the infoNCE loss between embeddings from the two views is defined as follows:

LNCE = −Eh[log
g(h, f)∑

hi′∈H g(hi′ , f)
] = −

∑
hi∈H

log
g(hi, fi)∑

hi′∈H g(hi′ , fi)
(4)

where g(h, f) ∝ p(h|f)/p(h) denotes some measurement for the probability ratio. We show that
with this function g(·), the tractable infoNCE loss LNCE is a lowerbound of the mutual information
between embeddings of the GNN view h and embeddings of the LLM view f, as follows:

Eh[log
g(h, f)∑

hi′∈H g(hi′ , f)
] ∝ Eh[log

p(h|f)
p(h)∑

hi′∈H
p(hi′ |f)
p(hi′ )

] ≈ −Eh log[1 +
p(h)
p(h|f)

(N − 1)]

≤ −Eh log[
p(h)
p(h|f)

N ] = I(h, f)− log(N) (5)
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3.4 SPATIO-TEMPORAL KNOWLEDGE ALIGNMENT

Based on the foregoing discussions, we apply the infoNCE loss to the alignment between the
two modeling views, by instantiating g(h, f) = exp cos(h, f). Specifically, STLLM aligns the
representation for the mobility data and for the distance data, respectively. And we further enrich the
training objective of our ST representation learning framework with two consine-based loss terms:
the alignment between the overall embeddings from the two views, and the alignment between the
shallow and the deep GNN embeddings. In total, we have the following four training objectives:

LM =
∑
vi∈V

LNCE(hM
i , fMi ), LD =

∑
vi∈V

LNCE(hD
i , fDi )

LM,D =
∑
vi∈V

cos(hi, fi), LG =
∑
vi∈V

cos(hi,h0
i ) (6)

Combining the above four loss terms, we obtain the final loss for our STLLM: L = γ1LM,D +
γ2LG + γ3LM + γ4LD, where γ1, γ2, γ3, γ4 ∈ R denote the hyperparameters for the loss weights.

Model Complexity: Our method, STLLM, incorporates a spatio-temporal graph neural network
that involves graph information propagation in the encoder. The time complexity of our method is
determined by the graph operations and is given by O(|E| × L× d), where |E| denotes the number
of edges in the graph, L represents the number of graph layers, and d is the dimensionality of the
embeddings. It is important to note that the LLM-based generation is performed only once and is
not counted in the time complexity. The resulting time complexity is comparable to that of other
state-of-the-art methods, ensuring efficient computation and maintaining competitive performance.

4 EVALUATION

Our experiments investigate the following research questions: RQ1: How does STLLM compare to
state-of-the-art baselines in different spatio-temporal learning applications, such as traffic prediction
and crime prediction? RQ2: How do different data sources and model components impact the
effectiveness of region representation learning for downstream tasks? RQ3: To what extent is
STLLM successful in representation learning for predicting traffic flows and crimes, considering
varying degrees of data sparsity? RQ4: What impact do various hyperparameter settings have on
the region representation performance of STLLM for traffic flow and crime prediction? RQ5: How
efficient is STLLM compared to other baseline methods? RQ6: How effective is STLLM compared
to other techniques of region representation, such as MV-PN, MVURE, MGFN, and GraphST?

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND EVALUATION METRICS

We assess the performance of our spatio-temporal representation learning framework, STLLM, on
three distinct prediction tasks: crime prediction, traffic flow forecasting, and property price prediction.
These tasks are evaluated using real-world datasets obtained from Chicago and NYC. Following
previous studies (Xia et al., 2021), we consider multiple crime types such as Theft, Battery, Assault,
and Damage for Chicago, and Burglary, Larceny, Robbery, and Assault for NYC. Table 3 in appendix
provides detailed statistics of the datasets used. We utilize three evaluation metrics: Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE).

4.1.2 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

For our STLLM, we fix the dimensionality d to 96 in accordance with earlier region representation
studies (Wu et al., 2022; Zhang et al., 2023b). Our STLLM performs at its optimum when the GCN
depth is set to 2, the weight decay is set to 0.0005, and the learning rate is set to 0.001, according to
the hyperparameter trials. Following previous studies (Zhang et al., 2023a;b), we employ different
downstream models for different prediction tasks. For crime prediction, we utilize ST-SHN (Xia
et al., 2022). For traffic flow forecasting, we employ ST-GCN (Yu et al., 2018). For property price
prediction, we utilize a simple Lasso regression (Ranstam & Cook, 2018). ST-SHN is configured
with 0.001 learning rate, 0.96 learning rate decay, 2 spatial aggregation layers. ST-GCN is configured
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with 12 input time intervals with a 5-minute interval length. And the traffic prediction task aims at
predicting the future 15 minutes. The majority of baselines are implemented with their released code.

4.1.3 BASELINES FOR COMPARISON

We compare our method STLLM with various state-of-art baselines to evaluate performance in terms
of MAE, MAPE and RMSE. Because of page limits, detailed descriptions for each method are showed
in Appendix A.3. The baselines include the following categories. Graph Representation Methods: We
compare our method STLLM with several graph representation methods, including Node2vec (Grover
& Leskovec, 2016), GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al., 2017), GAE (Kipf
& Welling, 2016) and GAT (Veličković et al., 2018). Graph Contrastive Learning Methods: We
also conduct expriments via two recent graph contrastive learning methods, GraphCL (You et al.,
2020) and RGCL (Li et al., 2022). Spatio-Temporal Region Representation: We compare our method
STLLM with state-of-art region representation learning methods including HDGE (Wang & Li, 2017),
ZE-Mob (Yao et al., 2018), MV-PN (Fu et al., 2019), CGAL (Zhang et al., 2019), MVURE (Zhang
et al., 2021), MGFN (Wu et al., 2022) and GraphST (Zhang et al., 2023b).

4.2 MODEL EFFECTIVENESS (RQ1)

We compare the performance of STLLM with state-of-the-art baselines across various downstream
tasks. The results are presented in Table 1, based on which we draw the following discussions:

Consistent Performance Superiority across Tasks. Our STLLM framework surpasses all baselines
across distinct research lines, demonstrating excellent performance due to the effective distillation
of global spatial-temporal knowledge from LLMs. This knowledge is incorporated into the local
ST graph modeling process via contrastive learning, conferring several benefits. It allows precise
comprehension and use of textual ST features, improving prediction accuracy. It also increases
robustness against structural noises in the ST graph. Significant enhancements are observed across
all three tasks: traffic prediction, crime prediction, and house price prediction, attesting to the general
applicability of our LLM-based ST graph mining techniques.

Advantages of Graph Contrastive Learning. Among the baseline methods, those utilizing graph
contrastive learning (GCL) techniques, such as GraphCL and GraphST, exhibit notable advantages in
terms of accuracy compared to other baselines. This validates the effectiveness of GCL in addressing
data deficiency issues, such as noise and skewness, thereby improving the accuracy of spatio-temporal
prediction. Drawing inspiration from this advantage, our STLLM incorporates the GCL method to
maximize the mutual information between LLM-based ST knowledge mining and local ST graph
modeling. By contrasting the two views, our model effectively enhances the representation quality.

Advantages of Region Representation Learning: When compared to end-to-end spatio-temporal
prediction methods, pretrained region representation learning approaches (e.g., MGFN) demonstrate
clear advantages. These advantages can be attributed to the superiority of pretrained embeddings over
randomly-initialized embeddings. Pretrained embeddings are enriched with abundant spatial and
temporal patterns, providing a more refined and informative initialization compared to end-to-end
models. The limited optimization steps in end-to-end models make it challenging to acquire such
sophisticated embeddings during training, leading to the sub-optimal performance.

4.3 ABLATION STUDY (RQ2)

In this section, we conduct ablation study to investigate the influence of different components of our
STLLM. Specifically, we study the following variants: -CL. This version replaces the contrastive
learning with the cosine similarity in the cross-view mutual information maximization. -S. This
variant removes the spatial information Si from in the input description Pi for the LLM, to study the
influence of textual spatial features. -T. Similar to the last one, this variant eliminates the temporal
information Ti from Pi. -S&T removes both the spatial descriptions and the temporal descriptions
for the LLM. Based on the results depicted in Figure 2, we draw the following conclusions.

Effectiveness of Contrastive Learning. The evaluation results reveal that in many scenarios,
replacing InfoNCE-based contrastive learning with maximizing cosine similarity leads to a significant
decline in performance. This observation highlights the effectiveness of our contrastive learning
(CL)-based design, which derives its advantage from its close theoretical relationship with mutual
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Table 1: Overall performance comparison in urban three tasks.

Model
Crime Prediction Traffic Prediction House Price Prediction

CHI-Crime NYC-Crime CHI-Taxi NYC-Bike NYC-Taxi CHI-House NYC-House
MAE MAPE MAE MAPE MAE RMSE MAE RMSE MAE RMSE MAE MAPE MAE MAPE

ST-SHN 2.0373 0.9996 3.6740 0.9997 – – – – – – – – – –
ST-GCN – – – – 0.0898 0.5285 0.0358 0.0480 0.0385 0.0495 – – – –

Node2vec 1.6972 0.9013 3.1494 0.8027 0.0874 0.5196 0.0345 0.0467 0.0360 0.0490 12148.3202 32.8987 4789.6429 13.0938
GCN 1.6653 0.8915 3.0852 0.7248 0.0849 0.4953 0.0327 0.0428 0.0351 0.0472 12054.8121 31.3830 4764.6871 12.7329
GAT 1.6421 0.8716 3.0935 0.7473 0.0852 0.5036 0.0342 0.0439 0.0347 0.0469 11983.4383 29.7822 4753.8454 11.5405

GraphSage 1.6055 0.8697 3.0991 0.7252 0.0842 0.4976 0.0331 0.0437 0.0366 0.0492 11894.3823 28.3732 4739.4906 11.8970
GAE 1.5972 0.8576 3.0757 0.7357 0.0837 0.4893 0.0324 0.0420 0.0336 0.0457 11847.4378 28.4743 4716.4906 12.3987

GraphCL 1.1957 0.5736 2.5743 0.5875 0.0776 0.4335 0.0278 0.0366 0.0275 0.0367 10782.3711 24.1711 4678.8939 12.3803
RGCL 1.1089 0.5421 2.5672 0.5781 0.0754 0.4282 0.0254 0.0361 0.0270 0.0361 10262.9604 23.4849 4602.2038 11.2930
HDGE 1.4481 0.8133 2.8137 0.6728 0.0792 0.4697 0.0296 0.0398 0.0284 0.0355 10738.4378 25.8290 4679.8239 11.9808

ZE-Mob 1.4965 0.8201 2.8090 0.6616 0.0806 0.4748 0.0312 0.0417 0.0326 0.0419 107859.0494 26.0239 4654.1917 10.9033
MV-PN 1.3462 0.8019 2.7431 0.6606 0.0787 0.4517 0.0299 0.0402 0.0315 0.0474 10362.2637 24.2733 4646.6755 11.2351
CGAL 1.3315 0.7955 2.7362 0.6665 0.0773 0.4492 0.0290 0.0397 0.0286 0.0414 10983.9058 26.3947 4658.8221 11.0988

MVURE 1.2772 0.7285 2.6258 0.6035 0.0763 0.4483 0.0289 0.0377 0.0261 0.0349 10573.3678 25.3784 4638.9010 11.1276
MGFN 1.2689 0.6943 2.5829 0.5997 0.0759 0.4335 0.0268 0.0367 0.0256 0.0339 10463.7834 25.4762 4623.4184 10.8816

GraphST 1.0539 0.4943 2.5454 0.5675 0.0748 0.4226 0.0260 0.0347 0.0263 0.0312 90492.2723 22.1827 4578.9023 9.6732
STLLM 1.0481 0.4808 2.5243 0.5318 0.0739 0.4137 0.0253 0.0317 0.0236 0.0292 89271.5857 20.2836 4552.8932 8.9766
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Figure 2: Ablation study of STLLM on crime prediction

information maximization. Compared to cosine similarity, InfoNCE incorporates negative relation
learning to promote a beneficial uniform embedding distribution, enhancing its prediction accuracy.

Benefits Brought by Si and Ti. The results show that the removal of either the spatial information Si

or the temporal information Ti causes a notable performance decline. This finding not only validates
the effectiveness of our LLM-based textual feature extraction but also confirms the positive impact of
incorporating distance information and mobility trajectories in our global knowledge mining.

Comparing -S&T with -S and -T. In some cases (e.g., NYC-Larceny, CHI-Assault), removing both
Si and Ti yields even better performance than removing only one of them. This observation can be
attributed to the bias effect that arises when utilizing only a single data source for knowledge mining.
In such cases, the LLM may be misled by the limited information, resulting in sub-optimal represen-
tations. By constructing comprehensive ST descriptions, our STLLM avoids such circumstances.

4.4 PERFORMANCE OVER SPARSE DATA (RQ3)

In this study, we examine the robustness of our STLLM framework when applied to sparse spatio-
temporal data for crime prediction. Specifically, we divide the regions of NYC and Chicago into
two sets based on their density degrees. The density degree is determined as the ratio of time
slots with non-zero crime cases to the total number of time slots for each region. The two sets of
regions correspond to density ratio ranges of (0.0, 0.25] and (0.25, 0.5], respectively. To assess the
performance of our STLLM method and compare it to six representative baselines, we present the
results in Figure 3. From the results, we have two major observations as discussed below.

Firstly, it is observed that all methods achieve lower MAE values on the subset with higher data
density. This finding confirms that sparse data has a detrimental effect on both representation learning
and accurate spatio-temporal prediction. The limited amount of data available in sparse regions results
in reduced supervision signals, which in turn leads to suboptimal model training. Secondly, our
STLLM consistently maintains its superior performance across different levels of data sparsity. This
can be attributed to the enrichment of representations through the distillation of global knowledge
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from the LLM. Additionally, the contrastive knowledge alignment employed by our method enhances
the supervision signals, thereby facilitating effective model training.
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Figure 3: Results on NYC and CHI crime for four crime types w.r.t different data density degrees.

4.5 HYPERPARAMETER STUDY (RQ4)

In this section, we conducted a parameter study to evaluate the impact of important parameters on
the performance of our model, STLLM. The results are presented in Figure 4. Specifically, we vary
the number of GNN layers l within the range {2, 3, 4, 5} and the temperature coefficient τ in the
InfoNCE function within the range {0.3, 0.4, 0.5, 0.6}. We summarize our observations regarding
the two parameters and their effect on the downstream performance of traffic prediction as follows:

Firstly, we investigated the impact of the number of GCN layers (l) on the model’s performance. We
found that our STLLM achieves the best performance with l = 2. As the number of GCN layers
increases beyond this point, we observed diminishing returns in terms of model representation ability
for downstream tasks. This suggests that additional GCN layers may lead to an over-smoothing
effect, which hampers the model’s performance. Secondly, we examined the effect of the temperature
parameter (τ ) on the model’s representation ability. We observed that our STLLM achieves the
highest representation ability with τ = 0.4. Deviating from this optimal value, either by increasing
or decreasing τ , did not result in further improvements in the model’s representation ability.

2 3 4 5
2.0

2.2

2.4

M
AE

 (1
0

2 )

NYC-Taxi-GCN Layer

MAE
2.7

3.0

3.3

RM
SE

 (1
0

2 )

RMSE

2 3 4 5
2.2

2.4

2.6

2.8

3.0

M
AE

 (1
0

2 )

NYC-Bike-GCN Layer

MAE
3.0

3.2

3.4

3.6

3.8

4.0

RM
SE

 (1
0

2 )

RMSE

2 3 4 5

7

8

9

M
AE

 (1
0

2 )

CHI-Taxi-GCN Layer

MAE 4.2
4.5
4.8
5.1
5.4
5.7
6.0

RM
SE

 (1
0

1 )

RMSE

0.3 0.4 0.5 0.6
2.0

2.2

2.4

2.6

M
AE

 (1
0

2 )

NYC-Taxi-Tau

MAE 2.6

2.8

3.0

3.2

3.4

RM
SE

 (1
0

2 )

RMSE

0.3 0.4 0.5 0.6
2.0

2.5

3.0

3.5

M
AE

 (1
0

2 )

NYC-Bike-Tau

MAE
3.0

3.2

3.4

3.6

3.8

4.0

RM
SE

 (1
0

2 )

RMSE

0.3 0.4 0.5 0.6

8

10

M
AE

 (1
0

2 )

CHI-Taxi-Tau

MAE
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4

RM
SE

 (1
0

1 )

RMSE

Figure 4: Hyperparameter study on traffic prediction and crime prediction w.r.t MAE and RMSE

4.6 EFFICIENCY STUDY (RQ5)

Experimental Settings: We assess the model efficiency of STLLM by comparing it with several
region representation methods in terms of training time. The results, including MAE and MAPE
values, can be found in Table 2. All methods are implemented using the same software environment
(Python 3.7, TensorFlow 1.15.3 for traffic prediction, and PyTorch 1.7.0 for other tasks) and hardware
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environment (a 10-core Intel Core i9-9820 CPU@3.30Hz, 64GB RAM, and four NVIDIA GeForce
RTX 3090 GPUs). Observations and Analysis: It is worth noting that, our STLLM model achieves
the best performance while maintaining efficiency comparable to other region representation methods.
This finding validates that our STLLM framework is capable of handling large-scale spatio-temporal
data. The scalability of STLLM can be attributed to the efficiency of the InfoNCE-based contrastive
learning, which plays an important role in the process of knowledge alignment.

Table 2: The training time and performance of our STLLM and the state-of-the-art spatio-temporal
region representation methods for the crime prediction task in the NYC and Chicago datasets.

Models HDGE ZE-Mob MV-PN CGAL MVURE MGFN GraphST STLLM HDGE ZE-Mob MV-PN CGAL MVURE MGFN GraphST STLLM
Training 298.5 79.4 28.7 4077.6 220.1 843.5 259.3 122.4 347.8 102.4 38.4 5273.8 280.2 108.9 334.7 158.1

MAE 2.8137 2.8090 2.7431 2.7362 2.6258 2.5829 2.5454 2.5243 1.4481 1.4965 1.3462 1.3315 1.2772 1.2689 1.0539 1.0481
MAPE 0.6728 0.6616 0.6606 0.6665 0.6035 0.5997 0.5675 0.5318 0.8133 0.8201 0.8019 0.7955 0.7285 0.6943 0.4943 0.4808

4.7 CASE STUDY (RQ6)

We conduct a case study to demonstrate the ability of our STLLM to learn global region dependency
in terms of geographical semantics, as depicted in Figure 5. Specifically, we select two pairs of
regions for analysis: nearby region pairs (such as region 170 and region 164) and faraway region
pairs (such as region 144 and region 14). We want to highlight two key observations as follows:

Firstly, upon examination, we observe that despite the close proximity and smaller geographical
distance between region 170 and region 164, they exhibit distinct urban functions. However, GraphST
indicates their similarity. In contrast, the embedding vectors learned by our method, STLLM,
successfully capture their differences, highlighting the effectiveness of our approach in capturing
geographical semantics from a global perspective. Secondly, for the faraway region pairs, such
as region 144 and region 14, the figure indicates that they share similar urban functions, which is
reflected in the embedding vectors obtained from our method, STLLM. Conversely, GraphST fails to
identify their similar functions. In summary, these observations validate the effectiveness of our
STLLM in capturing global-view geographical semantics. This capability is likely achieved due to
the successful expressive ability of LLM in capturing the global view.
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Mapped vectors via ours
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BenchBar
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Bicycle Rental

Bar
Bar

Cafe

Bicycle Parking

Bar

Place of Worship

Mapped vectors via GraphST
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Mapped vectors via ours

Mapped vectors via GraphST

3.33KM

3.33KM

13.56KM

13.56KM

Cafe

Bicycle Parking

Pharmacy

Dentist

Figure 5: Case study of our STLLM method on New York City datasets.

5 CONCLUSION

This study highlights the potential of LLMs in enhancing spatio-temporal prediction and provides a
comprehensive framework, STLLM, that integrates LLM-based knowledge learning with cross-view
alignment for improved spatio-temporal understanding and forecasting. This simple yet effective
paradigm captures spatio-temporal connections by aligning LLM-based knowledge representations
with GNN-based structural embeddings, while also providing data augmentation and denoising
capabilities. By incorporating urban semantics from a global view of LLM-augmented spatio-
temporal knowledge, the framework successfully preserves both short-term and long-range cross-time
and location dependencies in the latent representation space. The evaluation results of extensive
experiments and comparisons with state-of-the-art baselines validate the effectiveness of the STLLM
framework in achieving superior predictive performance. While our STLLM has exhibited impressive
capabilities, their internal mechanisms remain opaque. Our future work involves in understanding
and explaining the predictions of our LLM-based spatio-temporal learning in the context of natural
language, so as to help practitioners make informed decisions and mitigate potential biases or errors.
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A APPENDIX

A.1 ALGORITHM OF STLLM

Algorithm 1: The STLLM Learning Algorithm
Input: The spatial-temporal graph G, the maximum epoch number E, the learning rate η;
Output: Regional Embedding H
and trained parameters in Θ;

1 Initialize all parameters in Θ;
2 Design the spatial-temporal prompt P;
3 Obtain the Embedding matrix F via LLM and P;
4 Train the framework STLLM by Equation 6
5 for epoch = 1, 2, ..., E do
6 Generate the subgraph G1 via teh random walk algorithm;
7 Send G1 and the corresponding adjacent matrix to GCN Encoder;
8 Obtain the embedding matrix H of N samples of subgraphs;
9 Minimize the loss L by Equation 6 using gradient decent with learning rate η;

10 for θ ∈ Θ do
11 θ = θ − η · ∂L

∂θ
12 end
13 end
14 Return H and all parameters Θ;

In this algorithm, the framework begins by designing a spatial-temporal prompt, which serves as input.
The prompt is then passed into a Large Language Model (LLM) to generate an embedding matrix
F. Subsequently, a Graph Convolutional Network (GCN) encoder is trained to generate another
embedding matrix H using the GCN equation 2 and optimizing it with the specified loss function 6.
Steps 2 and 3 are repeated until convergence, ensuring that the resulting region embedding matrix is
representative and captures the desired spatial-temporal information.

A.2 DETAILED ANALYSIS FOR STLLM

In this section, we provide a comprehensive theory analysis based on the work of Oord et al. (2018)
on representation learning. This analysis forms the foundation for our approach of spatial-temporal
graph contrastive learning using embeddings from a Large Language Model (LLM). The key concept
is to leverage the principles outlined in Oord et al. (2018)’s work to enhance the effectiveness of our
spatial-temporal graph contrastive learning framework.

EH̃[log
g(h, f)∑

hi∈H̃ g(hi, f)
]
g(h,f)=eG(h,f)

= E(h,f)[G(h, f)]− E(h,f)[log
∑
hi∈H̃

eG(hi,f)]

= E(h,f)[G(h, f)]− E(h,f)[log(e
G(h,f)) +

∑
hi∈H̃neg

eG(hi,f)]

≤ E(h,f)[G(h, f)]− E(h,f)[log
∑

hi∈H̃neg

eG(hi,f)]

= E(h,f)[G(h, f)]− Eh[log
1

N − 1

∑
hi∈H̃neg

eG(hi,f) + log(N − 1)] (7)

A.3 DESCRIPTION OF BASELINES

We compare our model, STLLM, with baseline techniques from three research areas: graph represen-
tation, graph contrastive learning, and spatial-temporal region representation. This comprehensive
analysis allows us to evaluate the strengths and advancements of our model in terms of graph
representation, contrastive learning, and spatial-temporal information encoding.
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Table 3: Data Description of Experimented Datasets
Data Census Taxi TripsCrime Data POI Data House Price

Description of Chicago data234 regions 54,420 319,733 3,680,125 POIs (130 categories) 44,447
Description of NYC data 180 regions 128,566 60,002 20,659 POIs (50 categories) 22,540

Network Embedding/GNN Approaches. We contrast our model STLLM with a number of typical
network embedding and graph neural network models in order to assess its performance. To create
region embeddings, we apply these models to our region graph G. Following is a description of
each baseline’s specifics: Node2vec Grover & Leskovec (2016): Using a Skip-gram algorithm
based on random walks, it encodes network structure information. GCN Kipf & Welling (2017): It
carries out the convolution-based message transmission along the edges between neighbor nodes
for embedding refinement. It is a graph neural design that permits information aggregation from
the sampled sub-graph structures, as stated in the text after the GraphSage Hamilton et al. (2017).
Graph Auto-encoder encodes nodes into a latent embedding space with the input reconstruction
aim across the graph structures, according to GAE Kipf & Welling (2016). By distinguishing the
degrees of significance among nearby nodes, the Graph Attention Network improves the classification
capabilities of GNNs. GAT Veličković et al. (2018): By varying the relevance levels among nearby
nodes, the Graph Attention Network improves the capacity of GNNs to discriminate.

Graph Contrastive Learning Methods.We compare our model STLLM with two graph contrastive
learning models, and in addition to the aforementioned graph representation and GNN-based models,
namely, GraphCL You et al. (2020): Based on the maximizing of mutual knowledge, this strategy
generates many contrastive viewpoints for augmentation. The goal is to ensure embedding consistency
across various connected views. RGCL Li et al. (2022): This cutting-edge graph contrastive learning
method augments the data based on the intended rationale generator.

Spatial-Temporal Region Representation Models. We contrast it with contemporary spatial-
temporal representation techniques for region embedding as well. The following are these techniques:
HDGE Wang & Li (2017): It creates a crowd flow graph using human trajectory data and embeds
areas into latent vectors to maintain graph structural information. ZE-Mob Yao et al. (2018): This
method uses region correlations to create embeddings while taking into account human movement
and taxi moving traces. MV-PN Fu et al. (2019): To represent intra-regional and inter-regional
correlations, an encoder-decoder network is used. CGAL Zhang et al. (2019): An adversarial learn-
ing technique that takes into account pairwise graph-structured relations to embed regions in latent
space. MVURE Zhang et al. (2021): In order to simulate region correlations with inherent region
properties and data on human mobility, it makes use of the graph attention mechanism. MGFN Wu
et al. (2022): In order to aggregate information for both intra-pattern and inter-pattern patterns, it
encodes region embeddings with multi-level cross-attention. GraphST Zhang et al. (2023b): A
robust spatial-temporal graph augmentation is achieved using this adversarial contrastive learning
paradigm, which automates the distillation of essential multi-view self-supervised data. By enabling
GraphST to adaptively identify challenging samples for improved self-supervision, it improves the
representation’s resilience and discrimination capacity.

A.4 CATEGORY-SPECIFIC CRIME PREDICTION RESULTS

In the supplemental materials, we present the comprehensive evaluation findings on various criminal
offense types for the cities of Chicago and New York in terms of the MAE and MAPE of 14 techniques.
The foundational method for the other 14 methods is ST-SHN. The results in Table 4 demonstrate that
our method STLLM consistently produces the best results on all crime categories for the two cities.
This clearly demonstrates the substantial advantages that our region’s embedding learning framework
model brings. We credit the effectiveness of the spatial-temporal region graph’s graph encoding
in extracting useful regional features for region representation, as well as the various contrastive
learning tasks, such as the contrastive learning paradigm for pulling close from the embedding matrix
from LLM to that of GCN encoder. Besides, capturing global-view spatial-temporal graph knowledge
via LLM is also beneficial to boosting the representation ability of our method.

A.5 SPATIO-TEMPORAL PROMPT EXAMPLE

In this section, we provide an illustrative example of a spatio-temporal prompt, as depicted in Figure
7. This example highlights the effectiveness of incorporating spatial information in improving the
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Table 4: Overall performance comparison in crime prediction on both Chicago and NYC datasets.

Chicago New York City
Model Theft Battery Assault Damage Burglary Larceny Robbery Assault

MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE MAE MPAE
Node2vec 1.1472 0.9871 1.7701 0.8945 1.9781 0.9764 1.9103 0.9712 4.8328 0.8572 0.6697 0.3974 1.1272 0.9566 0.9753 0.7020

GCN 1.1143 0.9675 1.3057 0.8123 1.5578 0.8126 1.5144 0.8173 4.7211 0.8428 0.6288 0.3470 1.0213 0.8626 0.7564 0.6637
GAT 1.1204 0.9708 1.3214 0.8408 1.5942 0.8231 1.5317 0.8188 4.7801 0.8215 0.6301 0.3518 0.9301 0.9293 0.7549 0.6329

GraphSage 1.1241 0.9765 1.3653 0.8609 1.6133 0.8643 1.5801 0.8506 4.7930 0.8448 0.6587 0.3952 0.9673 0.9056 0.7346 0.6423
GAE 1.1134 0.9675 1.3188 0.8193 1.5413 0.7998 1.4997 0.8066 4.7875 0.8395 0.6226 0.3504 0.9492 0.8643 0.7502 0.6308

GraphCL 1.0893 0.9012 1.0628 0.8419 1.3021 0.5261 1.2783 0.6429 4.3819 0.6528 0.6328 0.3562 0.7018 0.4312 0.6189 0.5503
RGCL 1.0790 0.8990 1.0567 0.8312 1.2078 0.5672 1.2084 0.6214 4.3792 0.6458 0.6450 0.3561 0.6901 0.4284 0.6184 0.5497
HDGE 1.0965 0.9123 1.0976 0.8005 1.3987 0.7304 1.3780 0.7367 4.5311 0.7582 0.6655 0.3916 0.8061 0.7049 0.7564 0.6637

ZE-Mob 1.1022 0.9604 1.3246 0.8309 1.5367 0.8201 1.5176 0.8284 4.5414 0.7523 0.6542 0.3870 0.7314 0.6944 0.7355 0.6401
MV-PN 1.0878 0.9201 1.1082 0.7906 1.4032 0.7405 1.3606 0.7245 4.4832 0.7360 0.6518 0.3831 0.7028 0.6871 0.7362 0.6399
CGAL 1.0896 0.9112 1.0876 0.7912 1.3986 0.7351 1.3607 0.7233 4.4935 0.7446 0.6564 0.3898 0.6958 0.5078 0.6572 0.6034

MVURE 1.0863 0.8932 1.0578 0.7983 1.3655 0.6382 1.2985 0.6607 4.4068 0.6663 0.6390 0.3708 0.6813 0.4677 0.6324 0.5882
MGFN 1.0824 0.8953 1.0765 0.7904 1.2943 0.5986 1.2507 0.6299 4.3767 0.6494 0.6595 0.3689 0.6901 0.4530 0.6278 0.5586

GraphST 1.0722 0.4764 0.8933 0.8424 1.1796 0.4387 0.9044 0.4714 4.3564 0.6455 0.6362 0.3430 0.6802 0.4035 0.6083 0.5337
STLLM 1.0717 0.4697 0.8392 0.7892 1.1651 0.4217 0.8940 0.4508 4.3430 0.6402 0.6213 0.3261 0.6766 0.3848 0.6028 0.5075
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Figure 6: Results on NYC and CHI crime for four crime types w.r.t different data density degrees.

performance of summary generation. Additionally, we demonstrate how ChatGPT can generate
summaries specifically tailored to the functions of different regions. In the first case, we showcase
the impact of spatial information on summary generation. By considering the spatial context of
the regions, we observe improved summarization results. Furthermore, ChatGPT leverages this
spatial information to generate more informative summaries that capture the unique characteristics
and functionalities of each region. In the second case, we investigate the influence of temporal
information on the summarization process. By incorporating temporal dynamics, such as traffic flows
and temporal semantics, ChatGPT is able to deduce additional connections and relationships among
regions. This leads to more comprehensive and nuanced summaries that reflect the temporal aspects
of the regions. In summary, by examining these cases, we highlight the significance of both spatial
and temporal information in spatio-temporal prompt generation. The integration of these factors
enhances the summarization capabilities of ChatGPT, allowing for more contextually-aware and
informative summaries tailored to specific regions and their temporal dynamics.

 Region r_10_11_s 
 School,  post office, 

theatre,…
 There are 2364.195 

distance from r_10_11_s to 
r_144_12_s

Spatio-temporal Prompts Summarizations of ChatGPT-3.5

 r_10_11_s is an important centric region with various facilities such as social facilities, schools, theaters, 
post offices, places of worship, bicycle parking, drinking water points, banks, ATMs, fast food restaurants, 
cafes, restaurants, pharmacies, post boxes, ice cream shops, waste baskets, community centers, bars, 
dentists, benches, libraries, shelters, public bookcases, and bicycle rental and charging stations. 

 It is located at a distance of approximately 2364.20 units from r_144_12_s. It is also connected to 
r_10_14_s, which shares similar facilities.

 Region r_147_12
 Toilets, school, social 

facility,…
 There are 5 traffic flow from 

r_147_12 to r_9_13 at 
Tuesday

 r_147_12 is a centric region that has traffic flows to multiple connected regions, including r_9_13, r_8_13, 
r_120_13, and r_119_13. 

 It has the highest traffic flow to r_9_13 on Tuesday with 5 flows. On Wednesday, it has 5 traffic flows to 
r_9_13, 14 traffic flows to r_8_13, 2 traffic flows to r_120_13, and 2 traffic flows to r_119_13. 

 This suggests that r_147_12 is an important region in terms of traffic connections to other regions.

Figure 7: The spatio-temporal prompt example of STLLM.
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