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Abstract

Diffusion models for tabular data generation face
a conundrum between separate and unified data
representations. The former struggles with jointly
capturing multi-modal distributions, while the lat-
ter often relies on sparse, suboptimal encodings
and incurs high computational costs. In this work,
we address the latter by presenting TABREP, a dif-
fusion architecture trained with a unified, continu-
ous representation tailored for tabular data. Moti-
vated by geometric insights of the data manifold,
our representation is dense, separable, and pre-
serves intrinsic relationships. TABREP achieves
state-of-the-art performance, synthesizing data
that surpasses the original in downstream quality,
while maintaining privacy and efficiency.

1. Introduction
The best-performing tabular generative models have been
based on diffusion models (Ho et al., 2020b; Song & Er-
mon, 2020)—both continuous and discrete (Lee et al., 2023;
Kotelnikov et al., 2023; Shi et al., 2024b; Hoogeboom et al.,
2021)—to model mixed-type tabular data. However, these
approaches often require complex multimodal objectives
or rely on heuristics like one-hot encodings (Kim et al.,
2022) or latent embeddings via β-VAEs (Zhang et al., 2023),
which introduce sparsity or additional computational over-
head (Krishnan et al., 2017; Poslavskaya & Korolev, 2023;
Higgins et al., 2017; Kingma & Welling, 2013).

Since diffusion models rely on continuous transformations
of denoising score-matching, or invertible mappings be-
tween data and latent spaces, designing an effective data
representation is critical (Bengio et al., 2014). In this work,
we propose TABREP, a simple and effective continuous rep-
resentation tailored for tabular diffusion. Our design is mo-
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tivated by geometric insights on the tabular data manifold,
promoting separability for nominal features, supporting ordi-
nal encoding via cyclicality, and maintaining compactness to
avoid the curse of dimensionality. These attributes present
desirable characteristics that make it easier for diffusion
models to extract meaningful information from a unified
continuous tabular data representation. Extensive experi-
ments show that TABREP outperforms existing methods in
fidelity, privacy, and efficiency across diverse benchmarks.
Our architecture is in Figure 3.

2. Method
Tabular data consist of heterogeneous features. In our analy-
sis, we represent a dataset with N rows asD = {z(i)}Ni=1 =
{[x(i), c(i)]}Ni=1, where x(i) ∈ RDcont are continuous fea-
tures and c(i) ∈

∏
j∈{1,...,Dcat}{1, . . . ,Kj} are categorical

features, with Kj being the number of unique categories for
the j-th categorical feature. Tabular data undergo prepro-
cessing before the diffusion process. Designing an effective,
unified continuous representation streamlines and improves
model performance. See Appendix D.1 for related works.

2.1. Geometric Implications on the Data Representation

In traditional deep learning (Goodfellow et al., 2016), a
sparse representation suffers from the curse of dimension-
ality (Bellman, 1957), where the feature space grows ex-
ponentially with the number of categories, reducing model
generalization (Krishnan et al., 2017; Poslavskaya & Ko-
rolev, 2023). While maintaining a dense representation is
key, representation learning also (Bengio et al., 2013; Le-
Cun et al., 2015) emphasizes the importance of separability,
enabling the neural network to learn decision boundaries in
the continuous embedding space. In the following excerpt,
we find that balancing both density and separability while
incorporating order is essential for unified tabular diffusion.

Density. Diffusion models, which learn to generate data
through iterative perturbations and reconstructions of noise,
encounter geometric challenges when applied to high-
dimensional, sparse representations of categorical features.
In this discussion, we use the sparse one-hot representa-
tion as an exemplar to provide geometric insights into these
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challenges.

Let {e1, e2, . . . , eK} ⊂ RK denote the set of one-hot vec-
tors, where

ek = (0, . . . , 0, 1︸︷︷︸
k-th entry

, 0, . . . , 0), (1)

represents the k-th category. For any point x ∈ RK , let

dk(x) = ∥x− ek∥2, (2)

denote the Euclidean distance between x and ek. On the
data manifold, there exist “singular” (Wikipedia contribu-
tors, 2025) points where the vector field is hard to learn for
diffusion models with Gaussian transitions. We demonstrate
this with a uniform K-categorical distribution. Specifically,
we define:
Definition 2.1 (n-singular point). A point x ∈ RK is an
n-singular point if there exists a subset S ⊆ {1, . . . ,K}
with |S| = n such that:

1. dk(x) = dk′(x), ∀k, k′ ∈ S.

2. dk(x) ̸= dm(x), ∀k ∈ S, ∀m /∈ S.

An n-singular point can be extended as a minimal n-singular
point if it satisfies Definition 2.1, and minimizes the Eu-
clidean distance to all one-hot vectors in S: min

x
∥x− ek∥2

∀k ∈ S. Hence, the minimal n-singular point is given by:

x
(n)
S =

1

n

∑
k∈S

ek, (3)

that corresponds to the centroid of the n one-hot vectors.
Definition 2.2 (n-singular hyperplane). For each minimal
n-singular point, there exists an n-singular hyperplane that
is comprised of the set of all n-singular points associated
with its respective n one-hot vectors in S. Formally, it is
defined as:

HS =
{
x ∈ RK

∣∣ dk(x) = dk′(x), ∀k, k′ ∈ S
}
, (4)

where HS is an affine subspace in RK of dimension
dim(HS) = K − |S|+ 1. The hyperplane spans the corre-
sponding minimal n-singular point x(n)

S and non-minimal
n-singular points. For each n < K, there are

(
K
n

)
distinct

n-singular hyperplanes, one for each subset S of size n.
Across all 2 ≤ n ≤ K, the number of minimal n-singular
points on the probability simplex scales combinatorially:∑K

n=2

(
K
n

)
= 2K − (K + 1). Thus, each minimal singu-

lar point carries the additional complexity of a continuous
singular hyperplane.

Diffusion models rely on gradients derived from a learned
vector field to denoise data iteratively (Ho et al., 2020a;

y

z
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Figure 1. Singular Regions in a 3D One-Hot Setting.

Lipman et al., 2022). For regions within proximity of the
singular hyperplanes, learning the gradients of diffusion
models suffers from high variance due to conflicting di-
rections arising from equidistant one-hot points. We show
that the variance of the conditional score function increases
asymptotically with the degree of n-singular points.

Theorem 2.1 (Variance of Conditional Score Function).
Assume x is a noisy observation from a Gaussian centered
at a weighted one-hot vector αtek ∈ RK . We can define the
forward diffusion process as: pt(x|ek) = N (x|αtek, σ

2
t I).

We derive the variance of the conditional score function
evaluated at a minimal n-singular point as:

Var(g|x) = α2
t

σ4
t

n− 1

n
, (5)

where we define the conditional and expected score as g and
ḡ. See Appendix C.1 for proofs. We find that near a minimal
n-singular point, x, the posterior-weighted variance of the
conditional score function is strictly positive and increases
asymptotically with n. In contrast, at a non-singular point,
the posterior leans towards ek∗ , leading the score variance
to approach zero.

In Figure 1, we depict a three-dimensional setting of the
one-hot representation. As illustrated, a minimal 3-singular
point occurs at the (red) centroid,

(
1
3 ,

1
3 ,

1
3

)
. Along with

the non-minimal 3-singular points, these points form a
(red-dashed) 1-dimensional singular hyperplane H{1,2,3}
perpendicular to the centroid of the probability simplex
formed by e1, e2, e3. Similarly, there are

(
3
2

)
2-singular

(blue) points accompanied by their respective (blue-dashed)
hyperplanes H{1,2}, H{1,3}, and H{2,3}, each of which is
a 2-dimensional affine subspace (plane). These singular
hyperplanes pose more difficulty for diffusion models to
learn effectively, especially when K is large.

Separability and Order. A sparse representation naturally
accommodates separability for nominal features, enabling
one-hot to assign each category to each dimension. How-
ever, higher-dimensional spaces introduce higher-order sin-
gular hyperplanes that complicate training. This presents
a density-separability trade-off. In our experiments (Table
10), we discover that sparse representations has a signifi-
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REPRESENTATION DIMENSIONS

ONE-HOT
∑DCAT

j=1 Kj

LEARNED EMBEDDING dEMB ·DCAT

ANALOG BITS
∑DCAT

j=1 ⌈log2(Kj)⌉
DICTIONARY DCAT

CATCONVERTER 2 ·DCAT

Table 1. Categorical Representation Dimensions.

cant impact on harming diffusion generative performance.
Thus, our initial goal is to reduce the dimensionality when
designing our representation.

Methods like Analog Bits (Chen et al., 2022) admit a similar
idea of shrinking data dimension. Hence, a potential concern
of a dense representation is to retain their ability to repre-
sent nominal features. However, the notion of separability
(Bengio et al., 2014) demonstrates that nominal features can
still be effectively encoded by dense representations, pro-
vided they are sufficiently separated within the embedding
space. This perspective aligns with learned entity embed-
dings (Guo & Berkhahn, 2016), which demonstrate that
nominal categories—despite lacking inherent order—can
be effectively represented as low-dimensional embeddings.
However, for datasets with a large presence of ordinal fea-
tures such as “Education” in Adult and “Day” in Beijing,
our experiment in Appendix D.3, Table 3 highlights that
order is an important factor for ordinal features. Therefore,
designing a dense representation that is separable and ca-
pable of encoding ordinal structure is critical for encoding
both nominal and ordinal features.

2.2. TABREP Architecture

CatConverter. Inspired by the discrete Fourier transform
(DFT) (Oppenheim, 1999; Bracewell & Kahn, 1966), we
draw on the concept of roots of unity to design a continuous
representation for diffusion models to generate categorical
variables. We refer to our representation as the CatCon-
verter. In harmonic analysis, the DFT maps signals into the
frequency domain using complex exponentials, where the
K-th roots of unity represent equally spaced points on the
unit circle, given by phases:

θk =
2πk

K
(i)
j

for k = 0, 1, . . . ,K
(i)
j − 1. (6)

Analogously, we treat a categorical feature c
(i)
j with K

(i)
j

distinct values as selecting one of these K
(i)
j points on the

unit circle. Each category is thus mapped to a unique phase,
and we represent it using the real and imaginary components
of the corresponding complex exponential:

CatConverter(c(i)j ,K
(i)
j ) =

[
cos

(
2πc

(i)
j

K
(i)
j

)
, sin

(
2πc

(i)
j

K
(i)
j

)]
,

(7)
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Figure 2. Separability of CatConverter. CatConverter preserves
nominal representations for up to 128 categories.

where CatConverter() ∈ R2·DCAT . Viewing a categorical
entry as a discrete harmonic index enables us to embed the
category in a two-dimensional phase space. This viewpoint
retains the geometric insight from the DFT—the roots of
unity form a symmetric and uniform structure on the unit
circle—providing a smooth, dense, and geometry-aware
representation for categorical variables.

In Table 1, CatConverter offers a dense 2D representation
relative to alternate categorical representations. For CatCon-
verter, there exists one minimal K-singular point. Despite
that, and K number of 2-singular points, there are no n
singular points or hyperplanes for 2 < n < K. Therefore,
any n-singular point for n > 2 coincides with the minimal
K-singular point in this 2D representation.

Next, we show that CatConverter’s representation has am-
ple separability for handling high-cardinality nominal cat-
egorical features commonly found in tabular datasets. As
illustrated in Figure 2, our representation could be easily dis-
tinguished by a small MLP among 128 categories mapped
onto a continuous phase space.

In addition to nominal features, the separability of CatCon-
verter coupled with its circular geometry naturally accom-
modates both periodic and ordinal features. This facilitates
an enhanced preservation of the feature’s intrinsic nature
and characteristics. Note that prior to CatConverter, we
introduced a static one-dimensional embedding, Dictionary
(DIC), but we found that it underperformed.

We evaluate the performance of TABREP-DDPM and
TABREP-FLOW against baselines. Information regarding
implementation, datasets, baselines, benchmarks, as well
as the ablation studies we perform can be found in Ap-
pendix E.1.

Diffusion Model. We demonstrate that TABREP’s repre-
sentation is effective when modeled by either a DDPM (Ho
et al., 2020b) or a Flow Matching (Lipman et al., 2022) uni-
fied continuous diffusion process. To unify the dataspace,
we represent discrete variables via CatConverter(c0,K) and
concatenate with continuous features forming our dataset.
Our dataset can be denoted as {zCC

0 } = {[x0, c
CC
0 ]}.
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Table 2. AUC, F1 (classification), and RMSE (regression) scores of Machine Learning Efficiency.

AUC ↑ F1 ↑ RMSE ↓
METHODS ADULT DEFAULT SHOPPERS STROKE DIABETES BEIJING NEWS

REAL 0.927±.000 0.770±.005 0.926±.001 0.852±.002 0.384±.003 0.423±.003 0.842±.002

STASY 0.906±.001 0.752±.006 0.914±.005 0.833±.030 0.374±.003 0.656±.014 0.871±.002

CODI 0.871±.006 0.525±.006 0.865±.006 0.798±.032 0.288±.009 0.818±.021 1.21±.005

TABDDPM 0.910±.001 0.761±.004 0.915±.004 0.808±.033 0.376±.003 0.592±.012 3.46±1.25

TABSYN 0.906±.001 0.755±.004 0.918±.004 0.845±.035 0.361±.001 0.586±.013 0.862±.021

TABDIFF 0.912±.002 0.763±.005 0.919±.005 0.848±.021 0.353±.006 0.565±.011 0.866±.021

TABREP-DDPM 0.913±.002 0.764±.005 0.926±.005 0.869±.027 0.373±.003 0.508±.006 0.836±.001

TABREP-FLOW 0.912±.002 0.782±.005 0.919±.005 0.854±.028 0.377±.002 0.536±.006 0.814±.002

For DDPM (Ho et al., 2020b), we define the forward pro-
cess by progressively perturbing the data distribution using
a Gaussian noise model, where the latent state at time t,
zt, is computed as zt = αz

t z
CC
0 + σz

t ϵ with ϵ ∼ N (0, I).
The denoising model pθ(zt) is trained to predict the poste-
rior gradients ∇zt log q(zt|zCC

0 ), minimizing the weighted
variance loss LTABREP-DDPM:

Et,zCC
0 ,zt

[∥∥∇zt log q(zt|zCC
0 )−∇zt log pθ(zt)

∥∥2] . (8)

For Flow Matching (Lipman et al., 2022), we instead de-
fine the dynamics in terms of a conditional vector field
ut(zt|zCC

0 ) = ϵ − zCC
0 with zt := (1 − t)zCC

0 + tϵ. The
model learns the target field by minimizing the discrepancy
between the predicted vector vθ(zt) and the ground truth
ut(zt|zCC

0 ) through the flow matching loss LTABREP-FLOW:

Et,zCC
0 ,zt

[∥∥vθ(zt)− ut(zt|zCC
0 )

∥∥2] . (9)

At sampling time, TABREP-DDPM performs reverse diffu-
sion by iteratively denoising zt back to zCC

0 , while TABREP-
FLOW solves a deterministic ordinary differential equation
(ODE) of the vector field. Our complete training and sam-
pling algorithms can be found in Figure 4.

3. Experiments
3.1. Experimental Setup

We evaluate the performance of TABREP against existing
baselines across multiple datasets. Details on experimental
setup, datasets, baselines, benchmarks, and ablations can be
found in Appendix E.1.

3.2. Experimental Results

Generation Quality. We benchmark TABREP against base-
lines on a downstream machine learning efficiency task.
As observed in Table 2, CatConverter demonstrates effec-
tiveness on both DDPM and Flow Matching, consistently
attaining the best MLE performance compared to existing

baselines. Our method is also the first to yield performance
levels greater than that using the real datasets for Default,
Stroke, and News. The results of our ablation studies on
representation schemes and encoding schemes also show
superior performance, as seen in Table 9 and Table 10 re-
spectively. We also provide additional experiments on Gen-
eration Quality using a number of other metrics for both
our baseline and ablation experiments in Appendix G.1 and
Appendix G.2 respectively.

Privacy Preservation. We perform membership inference
attacks to evaluate privacy preservation by assessing the
vulnerability of the methods to privacy leakage (Shokri
et al., 2017). Table 11 and Appendix G.1 demonstrate that
our method effectively preserves privacy with MIAs scoring
close to 50% for recall and precision.

Generation Efficacy. Training and Sampling TABREP is
the most efficient among all baselines and does not neces-
sitate additional computing power. Our results in Table 12
show that TABREP is the quickest to train and sample in
duration. We also conduct experiments on the convergence
speed for the training process. As illustrated in Figure 5a,
our method converges to a high AUC earliest in the training
stages. Lastly, we assess the number of function evaluations
(NFEs) the models take to sample. Figure 5b indicates that
TABREP-FLOW can attain its best performance as early as
8 NFEs. At 1000 NFEs, we observe that both TABREP
models are the best-performing.

4. Conclusion
In this work, we present TABREP, a simple and effective
continuous representation for training tabular diffusion mod-
els. Motivated by geometric implications on the data man-
ifold, our representation is dense, separable, and captures
meaningful information for diffusion models. We conducted
extensive experiments to evaluate TABREP. The results
showcase TABREP’s prowess in generating high-quality,
privacy-preserving synthetic data while remaining computa-
tionally inexpensive.
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A. Architecture

Noise

Sampling

Training

23 50.0
36 35.0

Bachelors White
Preschool Black

... ... ... ...

23 50.0
36 35.0

Bachelors White
Preschool Black

... ... ... ...

Figure 3. The TABREP Architecture. TABREP transforms and unifies the data space under a continuous regime via the our representation.
A diffusion or flow matching process is trained to optimize the denoising network. Once training is completed, samples can be generated
through a reverse denoising process before inverse transforming back into their original data representation.
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B. Algorithm

Algorithm 1 Training TABREP-DDPM/FLOW

1: DDPM: FLOW MATCHING:
2: while not converged do
3: Sample z0 = [x0, c0] ∼ p(z)
4: Encode cCC

0 ← CatConverter(c0,K)
5: Encode x0 ← QUANTILETRANSFORMER(x0)
6: zCC

0 ← CONCAT(x0, c
CC
0 )

7: Sample t ∼ Uniform({1, . . . , T})
8: Sample noise ϵ ∼ N (0, I)
9:

Compute zt = αz
tz

CC
0 + σz

t ϵ Compute zt = (1− t)zCC
0 + tϵ

Define ut(zt|zCC
0 ) = ϵ− zCC

0

Compute LTABREP-DDPM = Compute LTABREP-FLOW =

Et,zCC
0 ,zt

[∥∥∇zt log q(zt|zCC
0 )−∇zt log pθ(zt)

∥∥2] Et,zCC
0 ,zt

[∥∥vθ(zt)− ut(zt|zCC
0 )
∥∥2]

Update θ via gradient descent for∇θLTABREP-DDPM and∇θLTABREP-FLOW

10: end while

Algorithm 2 Sampling TABREP-DDPM/FLOW

1: DDPM: FLOW MATCHING:
2: Sample zCC

T ∼ N (0, I)
3: for t = T, . . . , 1 do
4:

Sample ϵ ∼ N (0, I) if t > 1, Discretize time ti = i/T ,
else ϵ = 0 for i = T, T − 1, . . . , 1

zt−1 = 1√
αz
t

(
zt − 1−αz

t√
1−ᾱz

t

∇zt log pθ(zt)

)
+ σz

t ϵ zti−1 = zti − 1
T
· vθ(zti),

via Euler ODE Solver

5: end for
6: Output zCC

0 = [x0, c
CC
0 ]

7: Decode c0 ← InvCatConverter(cCC
0 ,K)

8: Decode x0 ← INVQUANTILETRANSFORMER(x0)
9: z0 ← CONCAT(x0, c0)

10: return zCC
0

Figure 4. Training and sampling algorithms of TABREP-DDPM/FLOW.
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C. Proofs
C.1. Variance of Learning Gradients in Diffusion Models

Proof. Uniform Prior. We show that the variance of the score function at a minimal n-singular point increases asymptoti-
cally with respect to n dimensions. Assume x is a noisy observation from a Gaussian centered at a weighted one-hot vector
αtek ∈ RK . We can define the forward diffusion process as:

pt(x|ek) = N (x|αtek, σ
2
t I) (10)

Hence, the score function of the conditional distribution pt(x|ek) is given by:

∇x log pt(x|ek) = ∇x log

[
1

(2πσ2
t )

K/2
exp

(
− 1

2σ2
t

||x− αtek||2
)]

(11)

= ∇x

[
−K

2
log(2πσ2

t )−
1

2σ2
t

||x− αtek||2
]

(12)

= − 1

σ2
t

(x− αtek) (13)

In which we define it as the gradient:

gk(x) := ∇x log pt(x|ek) = −
1

σ2
t

(x− αtek) (14)

Assume we have a uniform prior over categories:

p(ek) =
1

K
∀k ∈ S = {1, . . . ,K} (15)

Per Bayes’ Rule, we compute the posterior over ek:

q(ek|x) =
p(x|ek)p(ek)∑K

m=1 p(x|em)p(em)
(16)

=
p(x|ek)∑K

m=1 p(x|em)
(17)

=
p(x|ek)∑

k∈S p(x|ek) +
∑

m/∈S p(x|em)
(18)

Since the forward process is modeled as: pt(x|ek) = N (x|αtek, σ
2
t I), we can infer that:

p(x|ek) ∝ exp

(
− 1

2σ2
t

||x− αtek||2
)

(19)

Then, ∀k ∈ S, the likelihood terms are identical:

pt(x|ek) = exp

(
− d2k
2σ2

t

)
:= A (20)

where d is defined in Equation 2. ∀m /∈ S, dm(x)2 > dk(x)
2, thus:

pt(x|em) = exp

(
− d2m
2σ2

t

)
≪ A (21)

Therefore, the posterior simplifies to:

q(ek|x) =
p(x|ek)∑

k∈S p(x|ek)
(22)

≈ A

nA
(23)

=
1

n
, ∀k ∈ S. (24)

10



TABREP: Training Tabular Diffusion Models with a Simple and Effective Continuous Representation

We now compute the expected score:

ḡ(x) =

K∑
k=1

q(ek|x) · gk(x) (25)

≈
∑
k∈S

1

n
· gk(x) (26)

= − 1

nσ2
t

∑
k∈S

(x− αtek) (27)

= − 1

σ2
t

(x− αtē) , (28)

where ē := 1
n

∑
k∈S ek is the centroid of the vectors in S. Next, compute the variance:

Var(g|x) =
∑
k∈S

1

n
∥gk(x)− ḡ(x)∥2 (29)

=
∑
k∈S

1

n

∥∥∥∥− 1

σ2
t

(x− αtek) +
1

σ2
t

(x− αtē)

∥∥∥∥2 (30)

=
∑
k∈S

1

n
· 1

σ4
t

∥αt(ē− ek)∥2 (31)

=
α2
t

σ4
t

∑
k∈S

1

n
∥ē− ek∥2 (32)

To complete the variance computation, we compute the squared distance between each one-hot vector and the centroid:

∥ē− ek∥2 =

K∑
i=1

(ēi − ek(i))
2 (33)

=

(
n− 1

n

)2

+ (n− 1) ·
(
1

n

)2

(34)

=
n− 1

n
(35)

Note that for i = k ∈ S, ēk = 1
n
, ek(k) = 1 and for i ̸= k ∈ S, ek(k) = 0. Substituting into the variance:

Var(g|x) = α2
t

σ4
t

·
∑
k∈S

1

n
· n− 1

n
(36)

=
α2
t

σ4
t

· n− 1

n
(37)

We find that at a minimal n-singular point x, the posterior-weighted variance of the score function is strictly positive and increases
asymptotically with n. In contrast, at a non-singular point, the posterior leans towards ek∗ :

q(ek∗ |x) ≈ 1, q(ek|x) ≈ 0 ∀k ̸= k∗ (38)

Then, the expected score becomes:

ḡ(x) =

K∑
k=1

q(ek|x) · gk(x) ≈ gk∗(x) (39)

And the variance reduces to:

Var(g|x) =
K∑

k=1

q(ek|x) · ∥gk(x)− ḡ(x)∥2 (40)

≈ 1 · ∥gk∗(x)− gk∗(x)∥2 +
∑
k ̸=k∗

0 · ∥gk(x)− gk∗(x)∥2 (41)

= 0 (42)
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Categorical Prior. We now generalize the above result to an arbitrary categorical prior Π = {πk}k∈S over categories {ek}k∈S , where
x0 ∼ Π and the forward diffusion process is defined as:

pt(x|x0) = N (x|αtx0, σ
2
t I). (43)

The marginal likelihood is then given by:

pt(x) =
∑
k∈S

pt(x|x0 = ek)πk =
∑
k∈S

N (x|αtek, σ
2
t I)πk. (44)

Suppose we observe a noised sample x ∈ Rk at time t. Then the posterior probability that x was generated by adding noise to ek is:

qt(x0 = ek|x) =
pt(x|x0 = ek)πk∑

m∈S pt(x|x0 = ej)πm
. (45)

We compute the expected score at time t as follows:

Ept(x)[∇x log pt(x)] = Ex0∼Π

[
Ept(x|x0) [∇x log pt(x|x0)]

]
(46)

=
∑
k∈S

πkN (x|αtek, σ
2
t I)∇x logN (x|αtek, σ

2
t I). (47)

The score of the Gaussian is:
∇x logN (x|αtek, σ

2
t I) = −

1

σ2
t

(x− αtek) =
αtek − x

σ2
t

. (48)

Therefore, the expected score becomes:

ḡ := Ept(x)[∇x log pt(x)] =
∑
k∈S

πkN (x|αtek, σ
2
t I) ·

(
αtek − x

σ2
t

)
(49)

= C
∑
k∈S

πk exp

(
−∥x− αtek∥2

2σ2
t

)(
αtek − x

σ2
t

)
, (50)

where C := 1

(2π)k/2σk
t

.

Next, we compute the variance of the conditional score around its expectation:

Ex0∼Π

[
Ept(x|x0)

[
∥∇x log pt(x|x0)− ḡ∥2

]]
=
∑
k∈S

πkN (x|αtek, σ
2
t I)

∥∥∥∥αtek − x

σ2
t

− ḡ

∥∥∥∥2 (51)

= C
∑
k∈S

πk exp

(
−∥x− αtek∥2

2σ2
t

)∥∥∥∥αtek − x

σ2
t

− ḡ

∥∥∥∥2 . (52)

This formulation reveals that score variance is low when the posterior is sharply peaked (i.e., x is close to a single one-hot
vector), and increases when the posterior mass is spread over multiple categories. The minimal n-singular point case is
recovered when πk = 1

n for k ∈ S and x = 1
n

∑
k∈S ek, confirming the consistency of both analyses.
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D. Implementation
The following delineates the foundation of our experiments:

• Codebase: Python & PyTorch

• CPU: AMD EPYC-Rome 7002

• GPU: NVIDIA A100 80GB PCIe

D.1. Related Works

The latest tabular diffusion models have made considerable progress compared to previous generative models such as VAEs
(Xu et al., 2019) and GANs (Xu et al., 2019). This included STaSy (Kim et al., 2022), which employed a score-matching
diffusion model paired with self-paced learning and fine-tuning to stabilize the training process, and CoDi (Lee et al., 2023),
which used separate diffusion schemes for categorical and numerical data along with interconditioning and contrastive
learning to improve synergy among features. TabDDPM (Kotelnikov et al., 2023) presented a similar diffusion scheme
compared to CoDi and showed that the simple concatenation of categorical and numerical data before and after denoising
led to improvements in performance. TabSYN (Zhang et al., 2023) is a latent diffusion model that transformed features
into a unified embedding via a β-VAE (Kingma & Welling, 2013) before applying EDM diffusion (Karras et al., 2022) to
generate synthetic data. CDTD (Mueller et al., 2025) combines score matching and score interpolation to enforce a unified
continuous noise distribution for both continuous and categorical features but different benchmarks are used to perform
evaluation. TabDiff, couples DDPM (Ho et al., 2020b) and Discrete Masked Diffusion (Shi et al., 2024a; Sahoo et al., 2024)
to synthesize tabular data.

D.2. Categorical Representations

One-Hot Encoding. The one-hot encoding (ONEHOT) representation of c(i) is constructed by concatenating the one-hot
encoded vectors of each individual feature c

(i)
j . Specifically, the one-hot encoding for c(i)j is a vector e(c(i)j ) ∈ {0, 1}Kj ,

where the k-th entry is defined as:

e(c
(i)
j )k =

{
1 if k = c

(i)
j ,

0 otherwise,
(53)

for k ∈ {1, 2, . . . ,Kj}. The one-hot encoded representation of c(i) is then:

ONEHOT(c(i)) = [e(c
(i)
1 ), e(c

(i)
2 ), . . . , e(c

(i)
Dcat

)]. (54)

The resulting vector has a total length of
∑Dcat

j=1 Kj , which corresponds to the sum of the unique categories across all
categorical features. A softmax or a logarithm is then applied to the one-hot representation to yield a continuous probability
distribution.

Learned Embeddings. Learned Embeddings (LEARNED) (Mikolov et al., 2013) encode the categorical component c(i)

using a representation trained directly within the model. Specifically, each categorical feature c
(i)
j (the j-th element of c(i))

is assigned a trainable embedding vector of fixed dimensionality dEMB. Hence, for each j ∈ {1, . . . , Dcat}, we have an
embedding matrix

Ej ∈ RKj×dEMB .

The embedding lookup operation retrieves the embedding vector for each c
(i)
j , and these vectors are then concatenated to

form the full embedding for the categorical features:

LEARNED(c(i)) = concat
(
E1[c

(i)
1 ], E2[c

(i)
2 ], . . . , EDcat [c

(i)
Dcat

]
)
∈ RDcat·dEMB . (55)

To decode the learned embeddings back into categorical values, a nearest-neighbor approach is applied. For each embedding
segment corresponding to a categorical feature, the pairwise distance between the embedding and the learned weights is
computed, and the category with the minimum distance is selected:

ĉ
(i)
j = argmin

k∈{1,...,Kj}

∥∥∥c̃(i)j − Ej [k]
∥∥∥ , (56)
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where c̃
(i)
j ∈ RdEMB is the segment of the concatenated embedding corresponding to the j-th categorical feature, and

Ej ∈ RKj×dEMB is the embedding matrix for that feature.

Analog Bits. Analog Bits (I2B) (Chen et al., 2022) encode categorical features using a binary-based continuous representa-
tion. The encoding process involves two steps. We convert the categorical value to a real-valued binary representation where
each category can be expressed using ⌈log2(K)⌉ binary bits based on the number of categories:

I2B(c
(i)
j ,K

(i)
j ) ∈ R⌈log2 K

(i)
j ⌉ (57)

followed by a shift and scale formula:

I2B(c
(i)
j ,K

(i)
j )← (I2B(c

(i)
j ,K

(i)
j ) · 2− 1). (58)

Thus, training and sampling of continuous-feature generative models (e.g., diffusion models) become computationally
tractable. To decode, thresholding and rounding are applied to the generated continuous bits from the model to convert them
back into binary form, which can be decoded trivially back into the original categorical values.

Dictionary. Dictionary encoding (DIC) represents categorical features using a continuous look-up embedding function. The
encoding assigns equally spaced real-valued representations within a tunable specified range, [−1, 1], to balance sparsity
and separability. For categorical features with more categories, a wider range may be necessary to ensure proper distinction
between values. The encoding process is defined as:

DIC(c
(i)
j ,K

(i)
j ) = −1 +

2c
(i)
j

K
(i)
j − 1

, DIC(c
(i)
j ,K

(i)
j ) ∈ [−1, 1] (59)

To decode, the nearest embedding is determined by comparing the encoded continuous value with all K(i)
j possible

embeddings, selecting the category with the smallest Euclidean distance.

D.3. Implementation Specifics

Ordering of Categorical Feature. Our CATCONVERTER representation induces an order on the categorical features. We
assess how the order influences the results. By default, we assign a lexicographic ordering to the categorical features for
simplicity purposes. We conducted an experiment to display the performance of lexicographic ordering vs. random ordering
on the Adult and Beijing datasets. These datasets are chosen since they contain variables with a natural ordering such as
“Education” (ordinal) and “Day” (periodic). As observed by the AUC disparity in Table 3, the order is an important factor in
our CATCONVERTER representation. It also implicitly highlights that CATCONVERTER’s geometry aids in preserving the
inherent semantics of ordinal and cyclical categorical features.

Table 3. AUC (classification) and RMSE (regression) scores of Machine Learning Efficiency. Higher scores indicate better performance.

AUC ↑ RMSE ↓
METHODS ADULT BEIJING

TABREP-DDPM (RANDOM) 0.776±.002 1.050±.006

TABREP-DDPM (LEXICOGRAPHIC) 0.913±.002 0.508±.006

TABREP-FLOW (RANDOM) 0.807±.003 1.041±.005

TABREP-FLOW (LEXICOGRAPHIC) 0.912±.002 0.536±.006

Out-of-index (OOI). Out-of-index (OOI) can potentially occur due to the generative nature of DDPM and FM. For
CATCONVERTER, OOI values are cast to the value of the 0-th index. Although casting ensures that all generated categorical
values fall within the valid range, it introduces a bias. We conducted additional experiments highlighting the casting rate
that occurs when using our method. As observed in Table 4, casting rate is relatively low for most datasets, ranging between
5% to 20% apart from the Stroke dataset at around 30%. Nonetheless, we still achieve exceptional results across all datasets
and benchmarks validating the effectiveness of our method.

14



TABREP: Training Tabular Diffusion Models with a Simple and Effective Continuous Representation

Table 4. Out-of-Index Casting Rate

METHODS ADULT DEFAULT SHOPPERS STROKE DIABETES BEIJING NEWS

TABREP-DDPM 0.100±.001 0.094±.001 0.112±.005 0.272±.003 0.183±.002 0.072±.002 0.092±.003

TABREP-FLOW 0.108±.001 0.069±.001 0.138±.001 0.348±.002 0.149±.001 0.054±.001 0.093±.001

Flow Matching/DDPM Denoising Network. The input layer projects the batch of tabular data input samples zt, each with
dimension din, to the dimensionality dt of our time step embeddings temb through a fully connected layer. This is so that
we may leverage temporal information, which is appended to the result of the projection in the form of sinusoidal time step
embeddings.

hin = FCdt(zt) + temb (60)

Subsequently, the output is passed through hidden layers h1, h2, h3, and h4 which are fully connected networks used to learn
the denoising direction or vector field. The output dimension of each layer is chosen as dt, 2dt, 2dt, and dt respectively. On
top of the FC networks, each layer also consists of an activation function followed by dropout, as seen in the formulas below.
This formulation is repeated for each hidden layer, at the end of which we obtain hout. The exact activations, dropout, and
other hyperparameters chosen are shown in Table 5.

h1 = Dropout(Activation(FC(hin))) (61)

At last, the output layer transforms hout, of dimension temb back to dimension din through a fully connected network, which
now represents the score function∇zt

log pθ(zt).

∇zt log pθ(zt) = FCdin(hout) (62)

D.4. Hyperparameters

The hyperparameters selected for our model are shown in Table 5. The remaining hyperparameters of the baselines are
tuned accordingly.

Table 5. TABREP Hyperparameters.

General Flow Matching/DDPM Denoising MLP

Hyperparameter Value Hyperparameter Value

Training Iterations 100, 000 Timestep embedding dimension dt 1024
Flow Matching/DDPM Sampling Steps 50/1000 Activation ReLU
Learning Rate 1e−4 Dropout 0.0
Weight Decay 5e−4 Hidden layer dimension [h1, h2, h3, h4] [1024, 2048, 2048, 1024]
Batch Size 4096
Optimizer Adam
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E. Experiments
E.1. Overview

Implementation Information. Experimental results are obtained over an average of 20 sampling seeds using the best-
validated model. Continuous features are encoded using a QuantileTransformer (Pedregosa et al., 2011). The order in which
the categories of a feature are assigned in our encoding schemes is based on lexicographic ordering for simplicity. Further
details are in Appendix D.

Datasets. We select seven datasets from the UCI Machine Learning Repository to conduct our experiments. This includes
Adult, Default, Shoppers, Stroke, Diabetes, Beijing, and News which contain a mix of continuous and discrete features.
Further details are in Appendix E.2.

Baselines. We compare our model against existing diffusion baselines for tabular generation since they are the best-
performing. This includes STASY (Kim et al., 2022), CODI (Lee et al., 2023), TABDDPM (Kotelnikov et al., 2023),
TABSYN (Zhang et al., 2023), and TABDIFF (Shi et al., 2024b). Further details are in Appendix E.3.

Benchmarks. We observe that downstream task performance measured by machine learning efficiency (MLE) typically
translates to most other benchmarks. Thus, the primary quality benchmark in our main paper will be MLE for brevity, and a
privacy benchmark, membership inference attacks (MIA). The remaining fidelity benchmarks include: column-wise density
(CWD), pairwise-column correlation (PCC), α-precision, β-recall, and classifier-two-sample test (C2ST). Further details
regarding benchmark information and additional results are in Appendix E.4 and G.

Ablation: Unified and Separate Data Representations. We analyze the impact of training tabular diffusion models
between our unified data representation and a separate data representation. We compare TABREP-DDPM and TABREP-
FLOW to TABDDPM (Kotelnikov et al., 2023) and TABFLOW. Note that we introduce TABFLOW, by modeling continuous
features using Flow Matching (Lipman et al., 2022; Liu et al., 2022) and categorical features using Discrete Flow Matching
(Campbell et al., 2024) under the same separate continuous-discrete data representation as TABDDPM.

Ablation: Categorical Representations. We conduct ablation studies with respect to categorical data representations
used in existing diffusion baselines to assess the performance of diffusion models under a unified data representation. This
includes one-hot encoding used in (Kim et al., 2022; Lee et al., 2023; Shi et al., 2024b), learned one-dimensional and
two-dimensional embeddings (Mikolov et al., 2013; Guo & Berkhahn, 2016), and Analog Bits (I2B) (Chen et al., 2022) from
the discrete image diffusion domain. Additionally, we introduce an intuitive static one-dimensional embedding, Dictionary
(DIC).

E.2. Datasets

Experiments were conducted with a total of 7 tabular datasets from the UCI Machine Learning Repository (Dua & Graff,
2017) with a (CC-BY 4.0) license. Classification tasks were performed on the Adult, Default, Shoppers, Stroke, and Diabetes
datasets, while regression tasks were performed on the Beijing and News datasets. Each dataset was split into training,
validation, and testing sets with a ratio of 8:1:1, except for the Adult dataset, whose official testing set was used and the
remainder split into training and validation sets with an 8:1 ratio, and the Diabetes dataset, which was split into a ratio of
6:2:2. The resulting statistics of each dataset are shown in Table 6.

Table 6. Dataset Statistics. “# Num” and “# Cat” refer to the number of numerical and categorical columns.

Dataset # Samples # Num # Cat # Max Cat # Train # Validation # Test Task Type

Adult 48, 842 6 9 42 28, 943 3, 618 16, 281 Binary Classification
Default 30, 000 14 11 11 24, 000 3, 000 3, 000 Binary Classification
Shoppers 12, 330 10 8 20 9, 864 1, 233 1, 233 Binary Classification
Beijing 41, 757 7 5 31 33, 405 4, 175 4, 175 Regression
News 39, 644 46 2 7 31, 714 3, 965 3, 965 Regression
Stroke 4, 909 3 8 5 3, 927 490 490 Binary Classification
Diabetes 99, 473 8 21 10 59, 683 19, 895 19, 895 Multiclass Classification
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E.3. Baselines

TabRep’s performance is evaluated in comparison to previous works in diffusion-based mixed-type tabular data generation.
This includes STaSy (Kim et al., 2022), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov et al., 2023), TabSYN (Zhang
et al., 2023), and TabDiff (Shi et al., 2024b). The underlying architectures and implementation details of these models are
presented in Table 7. Note that different benchmarks were used for CDTD (Mueller et al., 2025) thus, we decided to not
include it in our baselines.

Table 7. Comparison of tabular data synthesis baselines.

Method Model1 Type2 Categorical
Encoding

Numerical
Encoding

Additional Techniques

STaSy Score-based
Diffusion

U One-Hot
Encoding

Min-max scaler Self-paced learning and fine-tuning.

CoDi DDPM/
Multinomial
Diffusion

S One-Hot
Encoding

Min-max scaler Model Inter-conditioning and Contrastive learning to
learn dependencies between categorical and numerical
data.

TabDDPM DDPM/
Multinomial
Diffusion

S One-Hot
Encoding

Quantile
Transformer

Concatenation of numerical and categorical features.

TabSYN VAE + EDM U VAE-
Learned

Quantile
Transformer

Feature Tokenizer and Transformer encoder to learn
cross-feature relationships with adaptive loss weighing
to increase reconstruction performance.

TabDiff EDM/Masked
Diffusion

S One-Hot
Encoding

Quantile
Transformer

Joint continuous-time diffusion process of numerical
and categorical variables under learnable noise sched-
ules, with a stochastic sampler to correct sampling er-
rors.

TABREP-DDPM DDPM U CAT-
CONVERTER

Quantile
Transformer

Plug-and-play for Diffusion Models.

TABREP-Flow Flow
Matching

U CAT-
CONVERTER

Quantile
Transformer

Plug-and-play for Diffusion Models.

1 The “Model” Column indicates the underlying architecture used for the model. Options include Denoising Diffusion Probabilistic
Models or DDPMs (Ho et al., 2020b), Multinomial Diffusion (Hoogeboom et al., 2021), EDM, as introduced in (Karras et al., 2022).

2 The “Type” column indicates the data integration approach used in the model. “U” denotes a unified data space where numerical and
categorical data are combined after initial processing and fed collectively into the model. “S” represents a separated data space, where
numerical and categorical data are processed and fed into distinct models.
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E.4. Benchmarks

We evaluate the generative performance on a broad suite of benchmarks. We analyze the capabilities in downstream tasks
such as machine learning efficiency (MLE), where we determine the AUC score for classification tasks and RMSE for
regression tasks of XGBoost (Chen & Guestrin, 2016) on the generated synthetic datasets. Next, we conduct experiments
on low-order statistics where we perform column-wise density estimation (CDE) and pair-wise column correlation (PCC).
Lastly, we examine the models’ quality on high-order metrics such as α-precision and β-recall scores (Alaa et al., 2022).
We add three additional benchmarks including a detection test metric, Classifier Two Sample Tests (C2ST) (SDMetrics,
2024), and privacy preservation metrics: the precision and recall of a membership inference attack (MIA) (Shokri et al.,
2017). In this section, we expand on the concrete formulations behind our benchmarks including machine learning efficiency,
low-order statistics, and high-order metrics. We also provide an overview on the detection and privacy metrics used in our
experiments.

Machine Learning Efficiency. To evaluate the quality of our generated synthetic data, we use the data to train a
classification/regression model, using XGBoost (Chen & Guestrin, 2016). This model is applied to the real test set. AUC
(Area Under Curve) is used to evaluate the efficiency of our model in binary classification tasks. It measures the area under
the Receiver Operating Characteristic (or ROC) curve, which plots the True Positive Rate against the False Positive Rate.
AUC may take values in the range [0,1]. A higher AUC value suggests that our model achieves a better performance in
binary classification tasks and vice versa.

AUC =

∫ 1

0

TPR(FPR) d(FPR) (63)

RMSE (Root Mean Square Error) is used to evaluate the efficiency of our model in regression tasks. It measures the average
magnitude of the deviations between predicted values (ŷi) and actual values (yi). A smaller RMSE model indicates a better
fit of the model to the data.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (64)

Low-Order Statistics. Column-wise Density Estimation between numerical features is achieved with the Kolmogorov-
Smirnov Test (KST). The Kolmogorov-Smirnov statistic is used to evaluate how much two underlying one-dimensional
probability distributions differ, and is characterized by the below equation:

KST = sup
x
|F1(x)− F2(x)|, (65)

where Fn(x), the empirical distribution function of sample n is calculated by

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi) (66)

Column-wise Density Estimation between two categorical features is determined by calculating the Total Variation Distance
(TVD). This statistic captures the largest possible difference in the probability of any event under two different probability
distributions. It is expressed as

TVD =
1

2

∑
x∈X

|P1(x)− P2(x)|, (67)

where P1(x) and P2(x) are the probabilities (PMF) assigned to data point x by the two sample distributions respectively.

Pair-wise Column Correlation between two numerical features is computed using the Pearson Correlation Coefficient (PCC).
It assigns a numerical value to represent the linear relationship between two columns, ranging from -1 (perfect negative
linear correlation) to +1 (perfect positive linear correlation), with 0 indicating no linear correlation. It is computed as:

ρ(x, y) =
cov(x, y)

σxσy
, (68)
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To compare the Pearson Coefficients of our real and synthetic datasets, we quantify the dissimilarity in pair-wise column
correlation between two samples

Pearson Score =
1

2
Ex,y|ρ1(x, y)− ρ2(x, y)| (69)

Pair-wise Column Correlation between two categorical features in a sample is characterized by a Contingency Table. This
table is constructed by tabulating the frequencies at which specific combinations of the levels of two categorical variables
work and recording them in a matrix format.

To quantify the dissimilarity of contingency matrices between two different samples, we use the Contingency Score.

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|P1,(α,β) − P2,(α,β)|, (70)

where α and β describe possible categorical values that can be taken in features A and B. P1,(α,β) and P2,(α,β) refer to the
contingency tables representing the features α and β in our two samples, which in this case corresponds to the real and
synthetic datasets.

In order to obtain the column-wise density estimation and pair-wise correlation between a categorical and a numerical
feature, we bin the numerical data into discrete categories before applying TVD and Contingency score respectively to
obtain our low-order statistics.

We utilize the implementation of these experiments as provided by the SDMetrics library1.

High-Order Statistics. We utilize the implementations of High-Order Statistics as provided by the synthcity2 library.
α-precision measures the overall fidelity of the generated data and is an extension of the classical machine learning quality
metric of ”precision”. This formulation is based on the assumption that α fraction of our real samples are characteristic of
the original data distribution and the rest are outliers. α-precision therefore quantifies the percentage of generated synthetic
samples that match α fraction of real samples. β-recall characterizes the diversity of our synthetic data and is similarly
based on the quality metric of ”recall”. β-recall shares a similar assumption as α-precision, except that we now assume that
β fraction of our synthetic samples are characteristic of the distribution. Therefore, this measure obtains the fraction of the
original data distribution represented by the β fraction of our generated samples (Alaa et al., 2022).

Detection Metric: Classifier Two-Sample Test (C2ST). The Classifier Two-Sample Test, a detection metric, assesses
the ability to distinguish real data from synthetic data. This is done through a machine learning model that attempts to
label whether a data point is synthetic or real. The score ranges from 0 to 1 where a score closer to 1 is superior, indicating
that the machine learning model cannot concretely identify whether the data point is real or generated. We select logistic
regression as our machine learning model, using the implementation provided by SDMetric (SDMetrics, 2024).

Privacy Metric: Membership Inference Attacks (MIA). Membership inference attacks evaluate the vulnerability of
machine learning models to privacy leakage by determining whether a given instance was included in the training dataset
(Shokri et al., 2017). The attacker often constructs a shadow model to mimic the target model’s behavior and trains a binary
classifier to distinguish membership status based on observed patterns. We replaced DCR with Membership Inference
Attacks since existing privacy ML literature (Ganev & Cristofaro, 2024; Ward et al., 2024) conducted research highlighting
the “Inadequacy of Similarity-based Privacy Metrics” such as DCR.

These attacks are evaluated using precision, the fraction of inferred members that are true members, and recall, the fraction
of true members correctly identified. When records are equally balanced between members and non-members, the ideal
precision and recall are 0.5, indicating that the attack is no better than random guessing. Higher values suggest privacy
leakage and reveal vulnerabilities in the model. Implementation of this metric is provided by SynthEval (Lautrup et al.,
2024).

1https://github.com/sdv-dev/SDMetrics
2https://github.com/vanderschaarlab/synthcity
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F. Experimental Results

Table 9. Ablation study on TABREP’s unified representation versus a separate representation.

AUC ↑ F1 ↑ RMSE ↓
METHODS ADULT DEFAULT SHOPPERS STROKE DIABETES BEIJING NEWS

TABDDPM 0.910±.001 0.761±.004 0.915±.004 0.808±.033 0.376±.003 0.592±.012 3.46±1.25

TABREP-DDPM 0.913±.002 0.764±.005 0.926±.005 0.869±.027 0.373±.003 0.508±.006 0.836±.001

TABFLOW 0.908±.002 0.742±.008 0.914±.005 0.821±.082 0.377±.002 0.574±.010 0.850±.017

TABREP-FLOW 0.912±.002 0.782±.005 0.919±.005 0.830±.028 0.377±.002 0.536±.006 0.814±.002

Table 10. Ablation study on categorical representations under a unified continuous data space.

AUC ↑ F1 ↑ RMSE ↓
METHODS ADULT DEFAULT SHOPPERS STROKE DIABETES BEIJING NEWS

ONEHOT-DDPM 0.476±.057 0.557±.052 0.799±.126 0.797±.133 0.363±.008 2.143±.339 0.840±.020

LEARNED1D-DDPM 0.611±.008 0.575±.012 0.876±.028 0.743±.032 0.179±.010 0.921±.006 0.858±.010

LEARNED2D-DDPM 0.793±.003 0.290±.009 0.103±.011 0.850±.035 0.205±.007 0.969±.005 0.857±.023

I2B-DDPM 0.911±.001 0.762±.003 0.919±.004 0.852±.029 0.370±.008 0.542±.008 0.844±.013

DIC-DDPM 0.912±.002 0.763±.003 0.910±.004 0.824±.027 0.375±.006 0.547±.008 0.851±.013

TABREP-DDPM 0.913±.002 0.764±.005 0.926±.005 0.869±.027 0.373±.003 0.508±.006 0.836±.001

ONEHOT-FLOW 0.895±.003 0.759±.005 0.910±.006 0.812±.129 0.372±.005 0.765±.016 0.850±.017

LEARNED1D-FLOW 0.260±.014 0.438±.009 0.134±.015 0.142±.033 0.184±.007 0.806±.009 0.873±.007

LEARNED2D-FLOW 0.126±.012 0.709±.008 0.868±.007 0.180±.030 0.177±.008 0.787±.007 0.866±.005

I2B-FLOW 0.911±.001 0.763±.004 0.910±.005 0.797±.027 0.372±.003 0.543±.007 0.847±.014

DIC-FLOW 0.912±.002 0.763±.004 0.903±.005 0.807±.028 0.376±.007 0.561±.007 0.853±.014

TABREP-FLOW 0.912±.002 0.782±.005 0.919±.005 0.830±.028 0.377±.002 0.536±.006 0.814±.002

Table 11. Recall Scores of MIAs. A score closer to 50% is better for privacy-preservation.

METHODS ADULT DEFAULT SHOPPERS STROKE DIABETES BEIJING NEWS

STASY 24.51±0.44 30.37±0.99 17.54±0.19 34.63±1.39 29.75±0.16 34.06±0.33 23.49±0.67

CODI 0.05±0.01 3.41±0.53 1.36±0.45 27.32±3.50 0.00±0.00 0.40±0.09 0.04±0.02

TABDDPM 56.90±0.29 44.96±0.59 46.08±1.57 55.12±0.81 52.06±0.11 48.35±0.79 9.88±0.52

TABSYN 42.91±0.31 43.71±0.89 42.14±0.76 47.97±1.27 44.42±0.28 46.53±0.52 34.42±0.90

TABDIFF 52.00±0.35 46.67±0.55 46.86±1.20 47.15±1.30 31.01±0.22 48.20±0.65 16.03±0.66

TABREP-DDPM 52.78±0.21 48.96±0.41 48.16±0.90 50.89±0.93 51.43±0.13 49.50±0.52 40.10±0.55

TABREP-FLOW 50.51±0.21 47.07±0.40 49.19±0.86 49.43±1.16 50.33±0.13 49.14±0.81 35.48±0.78

Table 12. Training and Sampling Duration.

METHODS TRAINING (S) SAMPLING (S) TOTAL (S)

STASY 6608.84 12.93 6621.77
CODI 24039.96 9.41 24049.37
TABDDPM 3112.07 66.82 3178.89
TABSYN 2373.98 + 1084.82 10.54 3469.30
TABDIFF 5640 15.2 5655.2
TABREP-DDPM 2070.59 59.00 2130.59
TABREP-FLOW 2028.33 3.07 2031.40
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Figure 5. Training and Sampling Efficacy.

G. Further Experimental Results
We perform experiments using several diffusion-based tabular generative model baselines, including STaSy (Kim et al.,
2022), CoDi (Lee et al., 2023), TabDDPM (Kotelnikov et al., 2023), TabSYN (Zhang et al., 2023). We include TabDiff’s
reported results as the authors have not released code (Shi et al., 2024b).

We also incorporate several ablation experiments. We introduce TabFlow, an adaptation of TabDDPM (Kotelnikov et al.,
2023) that models numerical and categorical tabular data with continuous flow matching (Lipman et al., 2022; Liu et al.,
2022) and discrete flow matching (Tong et al., 2023), to examine the effect of unifying the data space. Experiments are also
performed on various categorical representations on both diffusion and flow models. This includes one-hot, 1D-Learned
Embedding, 2D-Learned Embedding, and Analog Bits (Chen et al., 2022), to demonstrate TABREP’s effectiveness. We
show that our proposed TABREP framework achieves superior performance on the vast majority of metrics in Appendix G.1.

We evaluate AUC (classification), RMSE (regression), Column-Wise Density Estimation (CDE), Pair-Wise Column
Correlation (PCC), α-Precision, β-Recall scores, Classifier-Two Sample Test scores (C2ST), and Membership Inference
Attacks Precision (MIA P.) and Recall (MIA R.) scores for our 7 datasets. ↑ indicates that the higher the score, the better the
performance; ↓ indicates that the lower the score, the better the performance; ↕ indicates that an optimal score should be as
close to 50% as possible.

The metrics and error bars shown in the tables in this section are derived from the mean and standard deviation of the
experiments performed on 20 sampling iterations on the best-validated model.
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G.1. Additional Baseline Results

ADULT

METHODS AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
STASY 0.906±.001 92.26±0.04 89.15±0.10 77.05±0.29 33.54±0.36 55.37 49.52±0.50 24.51±0.44

CODI 0.871±0.006 74.28±0.08 77.38±0.21 74.45±0.35 8.74±0.16 15.80 55.00±7.26 0.05±0.01

TABDDPM 0.910±0.001 98.37±0.08 96.69±0.09 90.99±0.35 62.19±0.48 97.55 51.30±0.07 56.90±0.29

TABSYN 0.906±0.001 98.89±0.03 97.56±0.06 98.97±0.26 47.68±0.27 95.49 50.91±0.16 42.91±0.31

TABDIFF 0.912±0.002 99.37±0.05 98.51±0.16 99.02±0.20 51.64±0.20 99.50 51.03±0.12 52.00±0.35

TABREP-DDPM 0.913±0.002 99.39±0.04 98.63±0.04 99.11±0.25 52.04±0.12 99.50 50.44±0.83 52.78±0.21

TABREP-FLOW 0.912±0.002 98.63±0.02 97.55±0.23 98.21±0.34 49.91±0.28 95.48 50.65±0.20 50.51±0.21

DEFAULT

METHODS AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
STASY 0.752±0.006 89.41±0.03 92.64±0.03 94.83±0.15 40.23±0.22 62.82 51.84±0.69 30.37±0.99

CODI 0.525±0.006 81.07±0.08 86.25±0.73 81.21±0.11 19.75±0.30 42.28 46.66±2.54 3.41±0.53

TABDDPM 0.761±0.004 98.20±0.05 97.16±0.19 96.78±0.30 53.73±0.28 97.12 51.34±0.49 44.96±0.59

TABSYN 0.755±0.005 98.61±0.08 98.33±0.67 98.49±0.20 46.06±0.37 95.83 50.80±0.56 43.71±0.89

TABDIFF 0.763±0.005 98.76±0.07 97.45±0.75 98.49±0.28 51.09±0.25 97.74 51.15±0.62 46.67±0.55

TABREP-DDPM 0.764±0.005 98.97±0.19 96.74±0.62 98.66±0.24 48.22±0.48 98.90 50.07±0.41 48.96±0.41

TABREP-FLOW 0.782±0.005 97.45±0.06 92.86±1.75 96.50±0.44 49.99±0.23 89.36 50.04±0.95 47.07±0.40

SHOPPERS

METHODS AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
STASY 0.914±0.005 82.53±0.19 81.40±0.27 68.18±0.29 26.24±0.60 25.82 51.23±2.38 17.54±0.19

CODI 0.865±0.006 67.27±0.03 80.52±0.12 90.52±0.37 19.22±0.27 19.04 59.67±11.74 1.36±0.45

TABDDPM 0.915±0.004 97.58±0.18 96.72±0.22 90.85±0.60 72.46±0.46 83.49 51.24±1.48 46.08±1.57

TABSYN 0.918±0.004 96.00±0.12 95.18±0.11 96.28±0.24 45.79±0.31 83.77 51.00±1.08 42.14±0.76

TABDIFF 0.919±0.005 98.72±0.09 98.26±0.08 99.11±0.34 49.75±0.64 98.43 51.11±1.11 46.86±1.20

TABREP-DDPM 0.926±0.005 98.97±0.10 97.62±0.02 96.14±0.19 53.68±0.73 96.37 49.86±0.98 48.16±0.90

TABREP-FLOW 0.919±0.005 97.74±0.03 97.08±0.07 95.85±0.46 55.92±0.37 94.20 51.38±1.66 49.19±0.86

STROKE

METHODS AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
STASY 0.833±0.03 89.36±0.13 84.99±0.09 91.49±0.33 39.92±0.76 40.64 54.22±1.14 34.63±1.39

CODI 0.798±0.032 87.42±0.17 80.65±1.81 86.46±0.53 28.59±0.47 24.47 54.54±1.60 27.32±3.50

TABDDPM 0.808±0.033 99.10±0.05 97.09±1.17 98.05±0.14 71.42±0.30 100.00 53.45±2.89 55.12±0.81

TABSYN 0.845±0.035 96.79±0.08 95.18±0.22 95.49±0.41 48.85±0.26 89.93 51.11±1.54 47.97±1.27

TABDIFF 0.848±0.021 99.09±0.12 97.91±0.22 98.95±0.53 49.91±0.86 99.87 52.20±1.61 47.15±1.30

TABREP-DDPM 0.869±0.027 99.14±0.20 97.11±0.60 98.32±0.82 57.17±0.77 100.00 51.74±1.85 50.89±0.93

TABREP-FLOW 0.854±0.028 98.42±0.31 97.37±2.12 96.40±0.71 63.91±0.87 95.96 50.66±1.77 49.43±1.16

DIABETES

METHODS F1 ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
STASY 0.374±0.003 95.25±0.03 93.41±0.08 90.00±0.17 39.62±0.23 54.71 49.47±0.22 29.75±0.16

CODI 0.288±0.009 76.42±0.02 78.07±0.18 38.96±0.16 6.39±0.16 3.95 0.00±0.00 0.00±0.00

TABDDPM 0.376±0.003 99.26±0.01 98.71±0.01 95.36±0.32 52.65±0.03 92.18 50.40±0.65 52.06±0.11

TABSYN 0.361±0.001 99.04±0.01 98.32±0.03 98.08±0.14 45.08±0.04 93.38 50.10±0.34 44.42±0.28

TABDIFF 0.353±0.006 98.72±0.02 97.80±0.03 96.84±0.14 36.96±0.18 91.60 49.27±0.41 31.01±0.22

TABREP-DDPM 0.373±0.003 99.36±0.02 98.75±0.03 97.19±0.22 45.75±0.49 92.65 50.07±0.37 51.43±0.13

TABREP-FLOW 0.377±0.002 99.00±0.02 98.46±0.05 99.08±0.13 48.58±0.17 90.41 50.24±0.37 50.33±0.13

22



TABREP: Training Tabular Diffusion Models with a Simple and Effective Continuous Representation

BEIJING

METHODS RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
STASY 0.656±0.014 93.14±0.07 90.63±0.11 96.41±0.10 51.35±0.16 77.80 48.98±0.78 34.06±0.33

CODI 0.818±0.021 83.54±0.04 90.35±0.21 96.89±0.14 53.16±0.12 80.27 39.19±6.35 0.40±0.09

TABDDPM 0.592±0.012 99.09±0.02 96.71±0.18 97.74±0.06 73.13±0.26 95.13 50.43±0.58 48.35±0.79

TABSYN 0.555±0.013 98.34±0.01 96.85±0.24 98.08±0.27 55.68±0.16 92.92 51.31±0.42 46.53±0.52

TABDIFF 0.555±0.013 98.97±0.05 97.41±0.15 98.06±0.24 59.63±0.23 97.81 50.39±0.46 48.20±0.65

TABREP-DDPM 0.508±0.006 99.11±0.03 96.97±0.20 98.98±0.16 64.08±0.18 98.16 51.02±0.42 49.50±0.52

TABREP-FLOW 0.536±0.006 98.28±0.07 96.92±0.21 98.16±0.13 62.65±0.12 92.26 50.35±0.60 49.14±0.81

NEWS

METHODS RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
STASY 0.871±0.002 90.50±0.10 96.59±0.02 97.95±0.14 38.68±0.30 51.72 49.68±0.70 23.49±0.67

CODI 1.21±0.005 70.82±0.01 95.44±0.05 86.03±0.12 35.01±0.13 9.35 40.00±24.49 0.04±0.02

TABDDPM 3.46±1.25 94.79±0.03 89.52±0.10 90.94±0.31 40.82±0.42 0.02 50.72±0.97 9.88±0.52

TABSYN 0.866±0.021 98.22±0.04 98.53±0.02 95.83±0.33 43.97±0.27 95.85 49.86±0.75 34.42±0.90

TABDIFF 0.866±0.021 97.65±0.03 98.72±0.04 97.36±0.17 42.10±0.32 93.08 52.46±0.75 16.03±0.66

TABREP-DDPM 0.836±0.001 98.46±0.01 99.09±0.05 95.35±0.11 48.49±0.12 96.70 49.87±0.99 40.10±0.55

TABREP-FLOW 0.814±0.002 96.89±0.03 98.34±0.29 90.91±0.25 51.75±0.16 88.13 50.90±0.93 35.48±0.78
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G.2. Additional Ablation Results

ADULT

METHODS AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
ONEHOT-DDPM 0.476±0.057 48.94±0.12 38.05±0.08 17.44±0.21 0.70±0.01 1.89 38.67±19.02 0.03±0.02

LEARNED1D-DDPM 0.611±0.008 53.44±3.39 27.97±3.71 6.64±0.05 0.00±0.01 0.00 10.00±10.00 0.00±0.00

LEARNED2D-DDPM 0.793±0.003 62.69±1.16 38.53±1.54 7.11±0.21 0.02±0.03 0.00 38.00±5.61 0.03±0.01

I2B-DDPM 0.911±0.001 99.10±0.07 97.55±0.26 98.21±0.18 47.44±0.08 98.01 50.56±0.15 50.68±0.87

DIC-DDPM 0.912±0.002 98.95±0.03 97.65±0.12 97.99±0.54 51.09±0.24 93.61 51.34±0.20 51.62±0.33

ONEHOT-FLOW 0.895±0.003 90.66±0.07 84.32±0.10 88.35±0.15 30.64±0.13 38.88 51.08±0.60 13.49±0.36

LEARNED1D-FLOW 0.260±0.014 60.00±3.13 36.20±3.61 6.82±0.08 0.02±0.03 0.00 24.67±10.41 0.02±0.01

LEARNED2D-FLOW 0.126±0.012 62.37±3.03 38.94±4.20 6.64±3.49 0.05±0.04 0.00 28.19±9.68 0.04±0.01

I2B-FLOW 0.911±0.001 98.23±0.09 97.14±0.32 99.54±0.31 48.87±0.16 92.18 50.70±0.31 49.68±0.79

DIC-FLOW 0.910±0.002 98.10±0.03 96.63±0.03 99.64±0.10 50.29±0.12 90.70 50.55±0.16 42.03±0.42

TABFLOW 0.908±0.002 96.21±0.05 93.59±0.05 86.76±0.28 53.15±0.14 77.48 50.99±0.38 43.90±0.18

TABREP-DDPM 0.913±0.002 99.39±0.04 98.63±0.04 99.11±0.25 52.04±0.12 99.50 50.44±0.83 52.78±0.21

TABREP-FLOW 0.912±0.002 98.63±0.02 97.55±0.23 98.21±0.34 49.91±0.28 95.48 50.65±0.20 50.51±0.21

DEFAULT

METHODS AUC ↓ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
ONEHOT-DDPM 0.557±0.052 50.88±0.10 50.88±0.07 4.13±0.05 0.15±0.01 0.11 40.00±24.49 0.08±0.05

LEARNED1D-DDPM 0.575±0.012 72.53±1.92 51.95±2.30 10.96±2.03 0.00±0.01 0.13 0.00±0.00 0.00±0.00

LEARNED2D-DDPM 0.290±0.009 71.11±0.32 50.79±0.36 11.99±2.54 0.01±0.01 0.06 15.33±11.62 0.11±0.08

I2B-DDPM 0.762±0.003 98.76±0.06 98.36±0.12 98.20±0.17 47.46±0.37 98.34 50.95±0.45 45.33±0.77

DIC-DDPM 0.763±0.007 98.33±0.11 92.76±0.43 97.20±0.35 49.62±0.37 96.88 51.60±0.70 48.13±0.75

ONEHOT-FLOW 0.759±0.005 91.95±0.05 88.04±1.51 93.12±0.31 30.50±0.19 69.14 51.40±1.23 12.32±0.60

LEARNED1D-FLOW 0.438±0.009 73.52±0.82 53.01±0.21 20.03±5.43 0.00±0.01 0.53 10.00±10.00 0.05±0.05

LEARNED2D-FLOW 0.709±0.008 66.33±4.86 44.11±6.75 2.33±12.11 0.01±0.02 0.01 10.00±10.00 0.03±0.03

I2B-FLOW 0.763±0.004 97.67±0.13 94.65±1.28 97.42±0.57 49.15±0.48 90.04 50.66±0.33 43.09±1.25

DIC-FLOW 0.759±0.007 97.27±0.03 92.26±1.77 95.97±0.27 51.29±0.18 90.58 51.36±0.62 45.95±0.76

TABFLOW 0.742±0.008 97.38±0.03 95.01±1.44 96.92±0.12 53.12±0.29 85.89 50.05±0.53 44.11±0.65

TABREP-DDPM 0.764±0.005 98.97±0.19 96.74±0.62 98.66±0.24 48.22±0.48 98.90 50.07±0.41 48.96±0.41

TABREP-FLOW 0.782±0.005 97.45±0.06 92.86±1.75 96.50±0.44 49.99±0.23 89.36 51.02±0.95 47.07±0.40

SHOPPERS

METHODS AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
ONEHOT-DDPM 0.799±0.126 90.37±0.14 84.61±0.10 90.67±0.26 37.76±0.57 54.59 51.00±0.97 28.54±1.49

LEARNED1D-DDPM 0.876±0.028 78.94±4.13 62.67±6.40 21.94±7.75 1.17±0.81 1.36 59.09±18.85 0.84±0.26

LEARNED2D-DDPM 0.103±0.011 70.97±3.06 51.21±4.37 8.43±5.81 0.05±0.09 0.09 0.00±0.00 0.00±0.00

I2B-DDPM 0.919±0.005 98.67±0.05 98.00±0.03 97.69±0.63 50.86±0.11 96.28 51.77±0.98 46.80±1.91

DIC-DDPM 0.910±0.005 97.83±0.15 96.19±0.09 95.33±0.80 56.14±0.85 91.09 50.68±0.52 46.02±1.20

ONEHOT-FLOW 0.910±0.006 92.84±0.08 91.50±0.14 87.57±0.44 48.77±0.69 65.08 49.64±1.69 34.56±0.80

LEARNED1D-FLOW 0.134±0.015 76.25±2.16 60.05±3.32 10.78±7.79 0.10±1.00 0.01 40.00±24.49 0.13±0.08

LEARNED2D-FLOW 0.868±0.007 71.93±0.94 53.29±1.34 16.58±1.72 0.28±0.23 0.07 57.33±20.50 0.65±0.34

I2B-FLOW 0.910±0.005 97.61±0.11 97.20±0.11 97.24±0.66 54.88±0.26 91.83 51.56±1.01 45.11±1.20

DIC-FLOW 0.903±0.006 96.89±0.14 95.78±0.24 95.84±0.38 52.39±0.26 88.74 50.86±0.71 52.53±0.44

TABFLOW 0.914±0.002 95.03±0.04 92.87±0.04 77.55±0.19 61.94±0.53 73.74 51.62±0.82 42.59±0.74

TABREP-DDPM 0.926±0.005 98.97±0.10 97.62±0.02 96.14±0.19 53.68±0.73 96.37 49.86±0.98 48.16±0.90

TABREP-FLOW 0.919±0.005 97.74±0.03 97.08±0.07 95.85±0.46 55.92±0.37 94.20 51.38±1.66 49.19±0.86

STROKE

METHODS AUC ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
ONEHOT-DDPM 0.797±0.033 98.74±0.11 97.65±0.10 96.78±1.08 56.27±0.22 98.62 53.08±2.50 49.76±1.24

LEARNED1D-DDPM 0.743±0.032 60.20±11.13 35.86±15.52 6.97±42.82 0.26±3.51 0.01 15.00±0.20 0.33±10.00

LEARNED2D-DDPM 0.850±0.035 59.11±14.59 33.77±19.97 6.67±36.39 0.87±2.42 0.02 18.33±0.33 0.49±13.02

I2B-DDPM 0.852±0.029 99.02±0.18 95.12±1.47 98.14±0.16 64.11±0.75 99.77 50.72±2.05 49.11±1.59

DIC-DDPM 0.824±0.021 98.98±0.09 98.00±2.13 98.25±0.62 65.00±0.88 99.39 52.97±1.19 52.03±1.76

ONEHOT-FLOW 0.812±0.029 94.17±0.08 90.45±0.08 81.87±0.55 49.23±0.56 64.82 49.32±1.47 39.51±1.25

LEARNED1D-FLOW 0.142±0.033 75.48±6.55 56.60±9.05 71.63±35.72 0.45±0.13 0.16 47.00±0.55 1.14±20.22

LEARNED2D-FLOW 0.180±0.030 54.02±13.09 28.95±17.18 5.67±24.97 0.21±0.67 0.00 20.00±0.16 0.16±20.00

I2B-FLOW 0.797±0.027 98.72±0.11 94.65±1.33 98.26±0.27 65.23±0.26 97.19 52.72±2.26 52.03±1.18

DIC-FLOW 0.807±0.019 98.50±0.23 92.71±2.35 97.76±0.64 65.77±1.95 97.33 51.45±1.29 48.78±1.65

TABFLOW 0.868±0.035 97.72±0.01 96.00±0.03 89.21±0.82 68.30±0.60 89.19 51.80±1.67 47.32±1.95

TABREP-DDPM 0.869±0.027 99.14±0.20 97.11±0.60 98.32±0.82 57.17±0.77 100.00 51.74±1.85 50.89±0.93

TABREP-FLOW 0.854±0.028 98.42±0.31 97.37±2.12 96.40±0.71 63.91±0.87 95.96 50.66±1.77 49.43±1.16
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DIABETES

METHODS F1 ↑ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
ONEHOT-DDPM 0.363±0.008 69.22±0.04 50.14±0.06 9.93±0.16 2.34±0.11 1.74 45.56±0.03 0.36±2.52

LEARNED1D-DDPM 0.179±0.010 63.40±4.59 39.94±5.34 0.00±0.00 0.00±0.00 0.00 0.00±0.00 0.00±0.00

LEARNED2D-DDPM 0.205±0.007 64.30±1.31 41.49±1.74 0.01±0.01 0.00±0.00 0.00 8.00±0.00 0.00±8.00

I2B-DDPM 0.370±0.008 99.38±0.01 98.84±0.03 97.70±0.13 46.83±0.39 93.98 50.08±0.39 51.63±0.12

DIC-DDPM 0.375±0.006 99.50±0.02 99.12±0.01 98.92±0.13 48.34±0.18 95.03 50.37±0.25 54.48±0.74

ONEHOT-FLOW 0.372±0.005 96.65±0.03 94.61±1.99 97.43±0.06 41.64±0.16 55.44 49.49±0.21 22.78±0.26

LEARNED1D-FLOW 0.184±0.007 53.27±7.48 28.31±8.51 0.00±0.00 0.00±0.00 0.00 0.00±0.00 0.00±0.00

LEARNED2D-FLOW 0.177±0.008 68.39±9.23 46.71±10.95 0.00±0.00 0.00±0.00 0.00 0.00±0.00 0.00±0.00

I2B-FLOW 0.372±0.003 98.92±0.03 98.34±0.05 98.45±0.14 48.97±0.29 89.28 49.86±0.26 48.25±0.13

DIC-FLOW 0.376±0.007 99.01±0.03 98.54±0.03 99.65±0.10 48.98±0.10 89.06 50.10±0.12 48.01±0.18

TABFLOW 0.376±0.006 98.04±0.02 96.82±0.01 79.60±0.09 51.58±0.04 73.35 50.19±0.39 44.14±0.15

TABREP-DDPM 0.373±0.003 99.36±0.02 98.75±0.03 97.19±0.22 46.19±0.49 92.65 50.07±0.37 51.43±0.13

TABREP-FLOW 0.377±0.002 99.00±0.02 98.46±0.05 99.08±0.13 48.58±0.17 90.41 50.24±0.37 50.33±0.13

BEIJING

METHODS RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
ONEHOT-DDPM 2.143±0.339 74.21±0.07 63.68±0.05 48.88±0.03 19.07±0.13 19.68 50.28±2.95 5.44±0.50

LEARNED1D-DDPM 0.921±0.006 79.49±3.50 62.23±5.61 26.94±27.91 8.49±5.95 13.51 45.45±2.82 1.97±0.13

LEARNED2D-DDPM 0.969±0.005 81.89±1.24 66.02±2.37 79.49±16.01 7.73±1.53 55.83 49.20±1.89 2.05±0.10

I2B-DDPM 0.542±0.008 98.66±0.04 96.95±0.21 97.92±0.15 59.27±0.14 94.28 50.64±0.47 48.43±0.89

DIC-DDPM 0.547±0.007 98.83±0.04 97.21±0.16 98.97±0.30 61.90±0.12 98.83 51.32±0.35 50.61±0.66

ONEHOT-FLOW 0.765±0.016 84.61±0.02 67.28±4.64 84.38±0.61 20.32±0.19 35.76 51.44±1.49 8.12±0.43

LEARNED1D-FLOW 0.806±0.009 80.14±1.60 64.19±2.33 81.15±3.68 13.11±0.38 20.40 44.02±3.58 1.13±0.09

LEARNED2D-FLOW 0.787±0.007 79.50±0.85 63.04±1.01 43.00±4.90 7.55±4.05 14.58 54.23±1.72 2.01±0.09

I2B-FLOW 0.543±0.007 98.08±0.04 96.87±0.43 96.83±0.12 60.58±0.19 91.66 49.64±0.47 45.77±1.07

DIC-FLOW 0.561±0.013 98.09±0.03 96.37±0.08 97.04±0.22 60.78±0.10 93.96 50.86±0.71 52.53±0.44

TABFLOW 0.574±0.01 96.44±0.06 93.71±0.07 94.81±0.42 59.47±0.28 87.23 50.54±0.35 42.20±0.61

TABREP-DDPM 0.508±0.006 99.11±0.03 96.97±0.20 98.98±0.16 64.08±0.18 98.16 51.02±0.42 49.50±0.52

TABREP-FLOW 0.536±0.006 98.28±0.07 96.92±0.21 98.16±0.13 62.65±0.12 92.26 50.35±0.60 49.14±0.81

NEWS

METHODS RMSE ↓ CDE ↑ PCC ↑ α ↑ β ↑ C2ST ↑ MIA P. ↕ MIA R.↕
ONEHOT-DDPM 0.840±0.02 98.11±0.06 92.78±0.08 96.33±0.24 46.87±0.28 95.80 50.25±0.46 32.42±0.80

LEARNED1D-DDPM 0.858±0.01 96.45±0.14 95.00±0.32 90.48±9.11 19.54±4.84 21.58 51.33±0.96 17.60±1.02

LEARNED2D-DDPM 0.857±0.023 96.06±0.49 94.49±0.84 88.83±4.52 5.11±5.24 20.41 50.85±2.97 3.83±0.39

I2B-DDPM 0.844±0.013 98.41±0.02 98.57±0.18 95.02±0.10 48.22±0.18 96.07 50.88±0.57 39.82±0.93

DIC-DDPM 0.866±0.019 98.22±0.06 98.50±0.36 97.08±0.25 47.88±0.10 95.75 49.54±0.57 39.80±0.35

ONEHOT-FLOW 0.850±0.017 96.27±0.05 98.11±0.02 97.78±0.13 43.06±0.62 84.56 50.45±2.02 14.84±0.65

LEARNED1D-FLOW 0.873±0.007 95.07±0.14 95.07±0.12 89.16±5.89 18.17±6.18 79.17 49.85±1.69 10.28±0.47

LEARNED2D-FLOW 0.866±0.005 94.85±0.38 94.99±0.89 80.66±15.23 14.63±4.14 78.96 49.59±1.54 14.19±0.69

I2B-FLOW 0.847±0.014 96.64±0.05 98.38±0.34 88.39±0.11 51.85±0.24 89.47 51.12±0.71 36.35±0.53

DIC-FLOW 0.853±0.014 96.58±0.04 97.49±0.34 92.28±0.25 50.79±0.29 88.30 50.43±0.63 37.56±0.77

TABFLOW 0.850±0.017 96.51±0.08 97.93±0.02 92.68±0.31 50.03±0.26 87.33 51.01±0.24 28.00±0.89

TABREP-DDPM 0.836±0.001 98.46±0.01 99.09±0.05 95.35±0.11 48.49±0.12 96.70 49.87±0.99 40.10±0.55

TABREP-FLOW 0.814±0.002 96.89±0.03 98.34±0.29 90.91±0.25 51.75±0.16 88.13 50.90±0.93 35.48±0.78
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G.3. Additional Training and Sampling Duration Results

We conducted an additional Training and Sampling Duration experiment on the largest dataset among our dataset suite
(Diabetes dataset) with 99, 473 samples, 8 numerical features, and 21 categorical features. As observed in Table 14, we save
around 1700 seconds compared to TabDDPM and around 4900 seconds compared to TabSYN during training and sampling.

Table 14. Training and Sampling Duration in Seconds.

METHODS TRAINING SAMPLING TOTAL

TABDDPM 3455 268 3723
TABSYN 6003 + 882 18 6903
TABREP-DDPM 1980 114 2094
TABREP-FLOW 2002 7 2009

G.4. Additional Results on High Cardinality and Imbalanced Toy Datasets

We curate synthetic toy datasets of high cardinality categorical variables and imbalanced datasets to reinforce our generaliz-
ability claims. Our high cardinality toy dataset is a regression task with two categorical features. The first categorical feature
is of high cardinality, with 1000 unique categories where each category is assigned a base effect drawn from a normal
distribution. The other categorical feature may take 3 values, each having fixed effects of 1.0, −1.0, and 0.5 respectively.
The target label is computed by summing the base effect from the high-cardinality category, the fixed effect from the other
categorical feature, and an independent numerical feature drawn from a standard normal distribution. Additional Gaussian
noise is added to perturb the data.

Table 15. Performance on High Cardinality Setting.

RMSE ↓ CDE ↑ PWC ↑ C2ST ↑ α-PRECISION ↑ β-RECALL ↑
TABDDPM 0.8253±0.1419 42.93±0.17 11.20±0.09 0.41±0.02 0.46±0.01 0.02±0.01

TABSYN 0.4775±0.0129 94.23±0.56 78.37±2.00 100.00±0.00 99.13±0.31 35.35±0.47

TABREP-DDPM 0.4662±0.0071 80.88±0.15 59.96±1.08 25.45±0.10 99.31±0.21 16.47±0.32

TABREP-FLOW 0.4812±0.0104 94.38±0.28 76.84±1.08 98.59±0.94 99.32±0.22 36.00±0.24

As shown in Table 15, it is worth noting that DDPM models including TabRep-DDPM and TabDDPM perform poorly in
CDE, PWC, and C2ST tasks, yet are able to model RMSE and α-precision well. This indicates that with high cardinality,
TabRep-DDPM is less capable of learning conditional distributions across features. In contrast, our proposed TabRep-Flow
performs on par with TabSYN, as flow-matching models’ smooth differentiable transformation allows them to capture subtle
conditional variations, and TabSYN’s latent space allows for the learning of a simpler latent distribution.

The imbalanced toy dataset is a regression task with one binary categorical feature (distributed 95% class A, 5% class B).
Each row also contains a numeric feature drawn from a standard normal distribution. The target is constructed by applying a
category-specific linear function before addition of some Gaussian noise to generate variations in the data.

Table 16. Performance on Imbalanced Setting.

RMSE ↓ CDE ↑ PWC ↑ C2ST ↑ α-PRECISION ↑ β-RECALL ↑
TABDDPM 0.1694±0.0016 98.93±0.54 95.87±5.43 98.98±1.57 98.96±0.68 50.29±0.49

TABSYN 0.1708±0.0018 94.98±0.04 96.36±0.18 90.27±0.65 95.84±1.13 48.89±0.23

TABREP-DDPM 0.1688±0.0010 99.44±0.13 96.82±3.97 99.42±0.54 99.46±0.08 50.96±0.77

TABREP-FLOW 0.1689±0.0025 98.52±0.12 90.49±5.36 99.06±0.47 96.69±0.28 51.30±0.31

In Table 16, we see that for imbalanced data, our proposed methods achieve results that are better compared to existing
models like TabDDPM and TabSYN, showing that our methods are generalizable to cases where training data may be highly
imbalanced.
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G.5. TabSYN’s Latent Representation Dimension

By default, TabSYN has a latent dimensionality of 4. To address the concern regarding TabSYN’s dimensionality, we run
TabSYN using the same dimensions (2D latent space) as our TabRep representation. As observed in Table 17, TabSYN with
a 2D latent dimension performs much worse than TabSYN with a 4D latent dimension.

Table 17. AUC (classification) and RMSE (regression) scores of Machine Learning Efficiency. Higher scores indicate better performance.

AUC ↑ F1 ↑ RMSE ↓
METHODS ADULT DEFAULT SHOPPERS STROKE DIABETES BEIJING NEWS

TABSYN 0.906±.001 0.755±.004 0.918±.004 0.845±.035 0.361±.001 0.586±.013 0.862±.021

TABSYN (2D LATENT SPACE) 0.892±.002 0.752±.005 0.916±.002 0.811±.032 0.368±.002 0.720±.015 0.868±.003

TABREP-DDPM 0.913±.002 0.764±.005 0.926±.005 0.869±.027 0.373±.003 0.508±.006 0.836±.001

TABREP-FLOW 0.912±.002 0.782±.005 0.919±.005 0.830±.028 0.377±.002 0.536±.006 0.814±.002

In terms of computational costs on the Adult dataset, Table 18 highlights that TabSYN in a 2D Latent Space saves close
to 500 seconds while compromising on accuracy when compared to vanilla TabSYN (4D Latent Space). However, it still
consumes around 1000 seconds extra when compared to TabRep methods.

Table 18. Training and Sampling Duration in Seconds.

METHODS TRAINING SAMPLING TOTAL

TABSYN 2374 + 1085 11 3470
TABSYN (2D LATENT SPACE) 2333 + 670 6 3009
TABREP-DDPM 2071 59 2130
TABREP-FLOW 2028 3 2031
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