ProtoKV: A Hybrid Semantic Prototype-based Framework for Efficient KV
Cache Compression

Anonymous ACL submission

Abstract

Key-Value (KV) caching accelerates LLM in-
ference but incurs high memory overhead. Ex-
isting methods focus on preserving only critical
KYV pairs for inference. While clustering-based
strategies excel preserve critical KV pairs with
semantic coherence, they suffer from computa-
tional inefficiency and limited parallelization.
In this paper, we identify a dichotomy in token
representations: while most tokens exhibit se-
mantic similarity to their surrounding tokens,
a distinct subset deviating from this pattern ex-
hibits clustered semantic embeddings in the
latent space. Leveraging this, we propose Pro-
toKV, a novel KV cache compression frame-
work that combines chunk-aware local aggre-
gation and LSH-driven global consolidation to
construct hybrid semantic prototypes. These
prototypes guide head-wise attention redistri-
bution via cluster-aware pooling, efficiently re-
taining critical KV pairs. Experiments on Long-
Bench show ProtoKV achieves 2.11% higher
accuracy than state-of-the-art under identical
memory constraints; in Needle-In-A-Haystack
task, it achieves 96.8% retrieval accuracy at
1.6% cache retention. Furthermore ProtoKV
reduces inference latency by up to 3.9x com-
pared with clustering-based strategies.

1 Introduction

Large language models (LLMs), exemplified by
GPT (Brown et al., 2020), PaLM (Chowdhery et al.,
2023), and LLaMA (Touvron et al., 2023), have
emerged as revolutionary forces in modern artifi-
cial intelligence. Their architectures are built upon
the transformer framework (Vaswani et al., 2017),
which superseded conventional sequential model-
ing paradigms through parallelized self-attention
mechanisms and multi-scale feature representation.
Built upon it, LLMs have demonstrated remarkable
capabilities on tasks like dialogue generation (Li
et al., 2024a), question answering (Ho et al., 2020)
and logical reasoning (Wei et al., 2022).

9 - Tokens (color represents
* Semantic Prototypes . Q Token ID from 0-1023)
7", Cluster formed by ™. Cluster formed by
. Regular Tokens < Irregular Tokens

11000

800

600

400

200

-50
(b) SAMSum

(a) TriviaQA

Figure 1: Clustering visualization of ProtoK'V-processed
key vectors from L1ama2-7B-chat, where color repre-
sents token ID from 0-1023. As illustrated, regular
tokens exhibit similar representations to their surround-
ing tokens, forming clusters with internally consistent
colors. In contrast, irregular tokens typically violate
such locality, resulting in clusters containing elements
of diverse colors.

However, deploying large language models un-
der fixed-memory hardware constraints entails sub-
stantial computational challenges.The primary bot-
tleneck stems from the Key-Value (KV) cache
mechanism, which maintains historical KV vectors
to prevent recomputation but exhibits memory re-
quirements scaling with respect to batch size b and
sequence length n. Specifically, the cache mem-
ory footprint grows as O(b - n) and often surpasses
static model parameter memory by an order of mag-
nitude. Empirical analysis reveals that a LLaMA-
7B model with b = 8 and n = 65,536 generates
KV cache exceeding 256 GB, which brings critical
pressure on memory budgets during long-context
processing.

To address this challenge, eviction strategies
have been proposed to optimize the KV cache
by prioritizing and retaining important tokens for
generation. The importance of tokens is typically
determined by various configurable schemes, in-
cluding prior knowledge (e.g., "attention sink"
in (Zhang et al., 2023)) and cumulative attention

BN SnapKV
ProtoKV
ClusterKV

—O0— Layer4
Layer20
—~— Layer28

EN
N
N

N W

Clustering Degree
5

Normalized Time

0.8

0.00 0.25 0.50 0.75
Locality Degree

(b) Token Property Analysis

o

2k 4k 8k 16k
Sequence Length

(a) Inference latency

Figure 2: (a) Comparison of inference latency with vary-
ing sequence length. (b) Relationship between locality
and clustering property on SAMSum, with detailed mea-
surement and implementation in Appendix D.

scores (Zhang et al., 2023). Yet these token-wise
retention approaches struggle to globally preserve
semantic coherence. Recently, clustering-based
KV cache methods (Wang et al., 2024; Tang et al.,
2024; Wu et al., 2024; Fountas et al., 2024) group
tokens into semantic clusters (as illustrated in Fig-
ure 1) according to their key vectors and selectively
recalls them during inference, but always face com-
putational inefficiency and parallelization bottle-
necks. We take ClusterKV (Liu et al., 2024b) as
the example and demonstrate its great inference
latency in Figure 2(a). This motivates the need for
an efficient KV-cache compression algorithm that
preserves semantic integrity.

In this paper, we propose a novel KV cache com-
pression method named ProtoKV for long-context
inference via hybrid semantic prototype construc-
tion. Unlike extant clustering-based strategies that
require iterative refinement, ProtoKV eschews com-
plex clustering process by directly extracting se-
mantic prototypes as clustering anchors. Figure 1
demonstrates that our ProtoKV exhibits excellent
clustering performance, and Figure 2(a) shows our
ProtoKV ensures semantic coherence with negli-
gible additional inference latency compared with
SnapKV (Li et al., 2024b), reducing by up to 3.9x
compared to ClusterKV (Liu et al., 2024b).

In ProtoKV, we categorize tokens of input se-
quences into two distinct types: regular tokens,
which exhibit strong semantic similarity (evidenced
by high cosine similarity between key embeddings)
with their contextual neighbors; and irregular to-
kens, which lack such local semantic coherence but
demonstrate precise geometric clustering patterns
of key embeddings in the semantic space. We visu-
alize this in Figure 2(b). For regular tokens, we em-
ploy positional segmentation to partition them into
distinct chunks and construct regular semantic pro-
totypes (RSP) via intra-chunk aggregation. For ir-
regular tokens, we employ Locality-Sensitive Hash-

ing (LSH) to cluster them into buckets, and gen-
erate irregular semantic prototypes (ISP) through
bucket-wise feature consolidation. After obtaining
the hybrid prototypes, importance score of each
token is then quantified via sliding window voting
and redistributed through intra-cluster mean pool-
ing. Tokens with top scores are retained for answer
generation.

Extensive experiments demonstrate that Pro-
toKV achieves superior semantic preservation ef-
ficacy under identical memory budgets compared
to existing KV cache baselines. Specifically, Pro-
toKV delivers SOTA accuracy (2.11% gain) on
LongBench under fixed memory constraints, main-
tains 96.8% retrieval accuracy with 1.6% KV cache
retention, and shows complementary benefits when
combined with budget allocation methods.

2 Related Work

KV Cache Quantization involves converting
high-precision numerical values of KV states into
lower-precision formats, primarily through two
paradigms: uniform compression for general to-
kens (Yao et al., 2022; Sheng et al., 2023; Zandieh
et al., 2025) and dynamic bit allocation guided by
token relevance (Hooper et al., 2024b; Liu et al.,
2024e; Kang et al., 2024), with layer-adaptive pre-
cision schemes prioritizing semantically rich initial
layers (Liu et al., 2024d; Tao et al., 2025). De-
spite its simplicity, current quantization methods
always face accuracy degradation from irreversible
information loss during low-bit quantization.

KYV Cache Selection focuses on retaining criti-
cal key-value pairs while permanently discarding
unimportant ones to optimize memory and infer-
ence. Two dominant strategies emerge: (1) static
methods with prefill-phase token selection (Ge
et al., 2024; Li et al., 2024b; Zeng et al., 2024), and
(2) dynamic approaches updating cached entries
via attention-based metrics or structural patterns
during decoding (Xiao et al., 2024; Han et al., 2024;
Zhang et al., 2023; Zhao et al., 2024). Recent ad-
vancements address persistent eviction challenges
through multi-tier caching and asynchronous re-
trieval (Lee et al., 2024; Tang et al., 2024; Zhang
et al., 2024a; Hooper et al., 2024a; Liu et al.,
2024a). However, existing solutions fail to effi-
ciently preserve semantic coherence, leading to
suboptimal selection decisions.

KV Cache Budget Allocation LLMs’ hierarchi-
cal layers exhibit distinct information extraction

patterns, motivating adaptive memory allocation
across layers/heads. Layer-wise strategies (Cai.
et al., 2024; Yang et al., 2024; Huang et al., 2024;
Zhang et al., 2024b) prioritize resource distribu-
tion by analyzing attention concentration gradients,
where lower layers retain uniform contextual sig-
nals while higher layers preserve semantic focal
points. Head-wise approaches (Feng et al., 2024;
Zhang et al., 2024c; Fu et al., 2024b) further en-
able finer-grained optimization through intra-layer
importance differentiation.

3 Preliminary and Motivation

3.1 Problem Formulation

Consider an autoregressive transformer layer
with L layers and H attention heads. Let x; € R¢
denote the input token embedding at decoding step
t, and {Kg{?fl, Vg?fl}thl represent the cached
key-value pairs from previous steps for each of the
H heads. The attention output ogh) € R% atstep t
is computed by:

(h) (g (PN T
h q; (Ki/) h
ol(t) = Softmax (t\/d%t> ngt) (1)

where qgh) = xtW((Ih), kgh) = th(h), vgh) =
xtWQ(,h) are query/key/value vectors, with projec-
tion matrices Wgh), W,(Ch), Wq(,h) € Réxdn,

Our objective is to find compressed representa-
tions {tht) , \Nfght) ML | satisfying:

o™ — 6{"||y < ¢, Vh € [H])

where 61@ denotes the approximate output using
compressed KV pairs, and ¢ is a pre-defined error

tolerance. The compression ratio p should satisfy:

() 7 (h)
K- V.
max { ” b’lt)||07 H bf)”o} <pkl (3
he[H] HKlzt HO ” v 1:t HO

with || - || counting non-zero elements, while main-
taining Htht) llo = vaht) |lo for computation align-
ment.

3.2 Selection Strategy

Early KV cache compression methods dynam-
ically determine and retain KV pairs for criti-
cal tokens based on their cumulative attention
score (Zhang et al., 2023). Recently, SnapKV (Li
et al., 2024b) simplifies it through an observation

window-based selection mechanism. Given an in-
put sequence of length Lyompt = Lprefix + Lobs»
where L denotes the observation window at the
sequence end, the method first computes attention
patterns in the final Ly, tokens to identify critical
positions in the prefix. For each attention head
h € [H], we calculate the attention weight summa-
tion across the observation window queries:

Lprompt
=% Wyl 4)
1=Lprefix+1

where Wéﬁz € REobsXLpeiix contains the softmax-
normalized attention weights for head h in the
observation window. The top-k indices (") =
Top,,(C"), k) are selected where k = | pLprefix]
with p being the target compression ratio, as de-
fined in Equation (3). To preserve contextual conti-
nuity, SnapKV applies 1D max-pooling with kernel
size along the prefix dimension:

¢ = MaxPool,.(C™) (5)

The compressed KV representations Kth) and

\Nfﬁ) are constructed by concatenating: 1) The
clustered features around top-pooled positions
(k"™ v). 2) The full KV pairs from the

Lprompt

: : (h) (h)
observation window {k;"”, v, } .7 Lo 1

3.3 Clustering-based Strategy

The window-based selection strategy in SnapKV
was proposed under the assumption that selecting
only top-scoring tokens would lead to the loss of
semantic coherence. The max-pooling operation
(Equation 5) preserves tokens that are semantically
similar to the top features, even if their own scores
are relatively low. However, it operates on the
premise that adjacent tokens typically share simi-
lar semantics (measured by key-vector similarity),
which fails to hold in many practical scenarios.

To overcome this limitation, clustering-based
strategy (Liu et al., 2024b; Hooper et al., 2024a)
employs a more robust approach by globally captur-
ing semantically similar tokens through clustering.
During inference, it compares query vectors against
clustering centroids to identify and load the most
semantically relevant keys from the prefix.

However, the clustering-based strategy intro-
duces several critical limitations. First, their itera-
tive clustering process (mostly through K-means
algorithm) requires excessive computation. As il-
lustrated in Figure 3, Squeeze Attention (Hooper

Squeeze Attention

-=-- StreamingLLM SnapKV _* (Kmeans-based)
--- H20 -== PyramidKV
95
86 1 |
[ro========== i I O S =t |
084 o 90 3
8 Loo____ e [T o
D821 #T oo 85 of
— x ol
[T 80 ¥
O
78
2 5 8 11 14 17 20 23 2 5 8 11 14 17 20 23

Number of iterations
(b) LIaMa3-8B-Instruct

Number of iterations
(a) Llama2-7B-chat

Figure 3: Clustering-based strategy requires 20 itera-
tions before surpassing existing KV cache compression
methods on TriviaQA dataset.

et al., 2024a) takes over 20 iterations to outperform
baselines and increases compression time remark-
ably (2.8 x on Multi-Document QA tasks and 3.2 x
on Summarization tasks). Moreover, such cluster-
ing algorithms pose significant challenges to paral-
lelization efficiency. For example, ClusterKV (Liu
et al., 2024b) only achieves thread-level parallelism
across attention heads. These issues demand a re-
designed clustering-based KV retention approach
that balances algorithmic performance and compu-
tation overhead.

3.4 Observation

In LLMs, we revealed an interesting phe-
nomenon (based on Fig 1 and Fig 2(b)): tokens
that satisfy locality prior are typically scattered,
while those that violate locality prior are likely
clustered. First, we provide the formal definition
of “locality”. For token ¢ with key kl(h), we its
k-neighborhood similarity in head h as follows:

i+|k/2

st = 1 Eis () 1.0

K (Z)_; Z COS(ki akj) (6)
j=i—|x/2]

This metric quantifies the outlier degree of the
ith token within the chunk spanning from i — | k/2]
to ¢ + [x/2]. Our analysis reveals that despite a
high expected value E[S,gh) (7)], a specific S,gh)(i)
frequently attains low values for a small subset of
tokens across different attention heads. We define
tokens with low S,gh)(i) as violating the locality
prior. Interestingly, instead of randomly distributed
in the semantic space, these outliers seem to exhibit
tight mutual proximity, and in most cases form a
single cohesive group.

To quantitatively validate it, we first measure the
outlier degree O(7) for ith token as:

(i) = (8 (i) —E[sM(@)]) /\/ VIS? (i) ()

Clustering Degree

155 2.0 2’5 300 15 2.0 25 30
Value of threshold 8 Value of threshold 8

(a) Layer 8 (a) Layer 20
Figure 4: Irregular tokens form progressively compact
clustering with the increasing the threshold 3 on SAM-
Sum, with H; denoting the ith attention head.

By setting a threshold 3, we group tokens with
©(i) > [into cluster C. We then compute its intra-
cluster and inter-cluster similarity metrics with:

1
Sinea(€) = 17 2 cos(k{" k), (8)
i,j€C
Siec.jge cos(kl” k)
Sinter(c) - cC.gc J (9)

ICI(N = c]) ’

where N denotes the total number of tokens. The
clustering degree that measures C’s compactness is
then defined as the ratio of Sinra/Sinter- As shown
in Figure 4, increasing (3 leads to a more compact
cluster of C. Notably, when 3 exceeds a critical
threshold, the clustering degree exhibits a sharp
increase. We will provide complete experimental
results in the Appendix G to validate the pervasive-
ness of this phenomenon.

Based on this observation, we categorize tokens
into two distinct groups: 1) Regular tokens adher-
ing to the spatial locality prior. Their semantics
are determined by their positions, so we cluster
them based on their positional attributes. 2) Irreg-
ular tokens violating locality principles. Despite
positional dispersion, they exhibit semantic simi-
larity, which can be clustered efficiently via a local-
sensitive hashing approach. The detailed ProtoKV
method is presented below.

4 Method

We introduce ProtoKV, which directly obtains
semantic prototypes (i.e., cluster centroids) with-
out iterative refinement. ProtoKV captures regu-
lar semantic prototypes (RSP) for regular tokens
through position-aware chunk aggregation, while
employing Locality-Sensitive Hashing (LSH) to
derive irregular semantic prototypes (ISP) for irreg-
ular tokens. To accelerate compression, we deter-
mine token importance using observation window
queries and preserve semantic integrity through
intra-cluster mean pooling. Pseudo-code for our
ProtoKYV is presented in Appendix E.

4.1 Chunk-based RSP Consolidation

Given an input sequence of n tokens with corre-
sponding key vectors {k;}?_; C R%, we initially
partition it into k consecutive chunks {C,,}% _;
of equal length |n/k]. For each chunk C,,, we
compute its mean i, and standard deviation o, to
establish local reference patterns. The irregularity
detection metric §; for each token within chunk
Cy, is computed through the standardized cosine
dissimilarity with the chunk center:

k;r Hm

1
5 :(1—). (10)
" lomll2 (k|2 2ml|2

Tokens with top-p &; values across all chunks are
identified as irregular ones O = {k;},_,. After
filtering these tokens, we distill each chunk into a
compact semantic prototype. Specifically, the m-th
regular semantic prototype derives with:

(regular) __ Zktecm\(’) kt .
" 12 keeco Kell2

1D

C

4.2 LSH-guided ISP Consolidation

These identified irregular tokens are then allo-
cated into u hash buckets. Specifically, the key vec-
tor for jth token is projected into low-dimensional
space using Random Fourier Features (RFF) map-
ping ¢ : R% — R" with Gaussian kernel approxi-
mation:

o(kj) = \/fcos (Wk; +b), (12)

where projection matrix W~ AN(0,+%I) and
phase shift b ~ Uniform(0, 27). The real-valued
projections are then binarized to {0, 1} codes:

h; =1(¢(k;) >0) € {0,1}" (13)
with I(-) denoting the element-wise indicator func-
tion. Each binary code h; is subsequently inter-
preted as an r-bit integer for bucket allocation:

H(k;) = (Z 2Tih§.i)> mod u, (14)
=1

where hgl) denotes the i-th bit of h;, and u repre-
sents the total number of hash buckets. To ensure
clustering effectiveness, we typically require that
u = 2". For example, a 3-bit code [1, 0, 0] converts
to decimal 4 and would be assigned to bucket By.

This binary-to-decimal conversion preserves the

Hamming distance between original codes while
enabling efficient bucket indexing.

Following the hashing-based bucketing opera-
tion, we generate u irregular semantic prototypes.
The s-th irregular semantic prototype aggregates
bucket-specific directional patterns with:

(meguar) __ 2yt Ki

4.3 Attention Contribution Redistribution

(15)

The hybrid semantic prototypes M contains n
elements, M = {c,, }!,_;, which is obtained via:

M = {Cglegular)}i:"b:1 U {Cgirregular)}r:1 (16)

with both components emerge from Equation (11)
and Equation (15) respectively. Based on these
semantic prototypes, we perform token clustering.
Specifically, the cluster assignment for token k;
is determined by the semantic prototype with the
highest cosine similarity to it:

T

c(k;) = argmax (17)

t
ceM |[kil2]lcll2

After dividing all tokens into {C;}"_;, we cal-
culate the attention weight summation across the
observation window queries with Equation (4) to
get C (M), and redistribute it through intra-cluster
mean pooling:

R 1

M (4) = T >), (18)
| ‘]| iECj

Given budget size B, tokens with top B — Lops

importance scores C'" are retained for inference

generation in head h, along with Ly, tokens in

observation windows.

4.4 Efficiency Analysis

The efficiency of our algorithm is reflected in
three aspects. Firstly, while other clustering-based
strategies (Liu et al., 2024b; Hooper et al., 2024a)
requires computational complexity for clustering
with O(n * k), our method achieves efficient proto-
type consolidation with complexity O(n + p); Sec-
ondly, our approach employs the static token reten-
tion strategy, avoiding dynamic token retrieval that
requires frequent interaction with CPU memory.
Building on these two advantages, our ProtoKV
also achieves efficient matrix parallelism, enabling
our algorithm to process multiple attention heads
concurrently.

‘ Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
|ad N N > > .
N 8 Qb & o Q> W ¥ o W@ ¢ . X o ge Lo oX
RESIC RTINS R o q}ﬂ\\“\\h W 60\8&9 ¥ @&\‘\A ¥ < 5"&[\% QU I A T Ave
‘ 18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206 -
‘ - FullKV 2516 3229 4043 4535 37.04 23.84 28,62 2334 2633 7500 9023 42.65 5.10 70.0 59.41 55,60‘ 42.34
SLM 1747 855 2131 3286 26.28 1554 1791 2042 20.16 4500 7336 30.78 5.75 68.5048.3849.31| 31.29
H20 2158 12.54 2857 39.86 28.62 18.88 20.23 2216 20.14 3550 86.62 39.19 5.83 69.50 54.46 50.81| 34.66
g 5 \2® SnapKV 2235 1600 31.52 36.82 2839 1949 19.06 21.36 20.07 50.00 87.74 38.94 5.75 68.0057.4251.84| 35.92
:.; Z Pyramid 21.80 16.65 30.73 38.48 28.80 19.26 1992 2206 20.12 66.50 88.95 3820 5.92 68.0057.88 51.54| 37.16
s £ ProtoKV 2226 17.05 31.84 39.68 29.28 1935 1983 2231 20.82 62.00 89.35 38.74 5.37 69.00 58.84 54.61| 37.52
<
= SLM 1798 11.09 2385 37.83 29.97 16.02 2030 2094 2456 52.00 79.68 34.82 5.83 69.50 54.84 50.46| 34.30
H20 23.67 16.85 3270 41.57 31.08 1891 2228 2281 23.69 41.00 90.36 40.19 5.54 69.5057.5252.16| 36.85
qﬁ(’ SnapKV 2332 20.31 3735 42.70 31.08 2047 22,63 23.04 2393 71.00 9039 39.78 5.50 69.50 60.27 55.62| 39.81
Pyramid 23.46 18.76 35.06 42.33 3156 20.73 2337 2311 2437 7200 9043 39.54 5.50 69.50 59.2554.87| 39.61
ProtoKV 23.58 19.92 36.38 43.72 3229 2089 2325 2298 2342 70.00 90.81 40.07 5.80 69.50 61.2255.49| 39.95
‘ - FullKV 2507 3292 4934 39.77 27.32 16.83 32.87 2424 27.10 70.00 86.57 4330 2.75 59.2556.86 50.48‘ 40.29
SLM 17.76 13.46 3511 27.25 2229 9.80 1826 19.02 19.16 4350 74.12 36.50 2.67 27.1743.6543.79| 28.34
H20 19.99 20.34 38.60 28.50 21.63 12.88 20.65 22.61 22.08 53.00 81.29 39.75 2.20 75.3849.54 44.27| 33.83
g \2® SnapKV 22.14 21.14 42.98 3296 22.12 1412 19.19 21.89 21.01 64.00 83.77 39.92 2.51 66.5051.8146.51| 35.84
= E Pyramid 22.32 22.52 43.65 33.07 2245 1572 2056 2252 2136 64.00 83.84 4043 2.74 67.9551.6446.47| 36.29
‘2] ProtoKV 23.11 23.70 44.89 36.12 22.88 1557 21.63 2375 2249 67.50 84.89 41.96 3.10 72.3053.5447.95| 37.84
= SLM 1926 17.78 36.82 27.74 22.78 10.53 2447 19.84 2548 51.00 7639 4024 2.50 31.9246.1545.56| 31.14
H20 2235 2322 41.76 30.76 22.88 14.03 2353 2296 2453 5350 83.82 41.08 1.66 78.49 50.77 46.70 | 36.39
@56 SnapKV 23.08 2595 48.04 34.79 24.75 1441 2414 23.69 2447 6750 85.64 41.51 195 68.1153.7449.31| 38.19
Pyramid 23.49 26.39 4822 3523 2551 13.65 2479 2352 2449 68.50 8543 41.58 2.33 69.07 53.4548.23| 38.37
ProtoKV 23.76 26.02 48.82 34.96 2632 14.66 24.69 23.62 2491 70.50 86.02 4276 2.90 71.4055.6251.14| 39.25
‘ - Full 1482 95 2276 735 10.71 9.23 2563 2379 2651 65.00 89.16 3428 250 9.50 68.24 61.83| 29.72
SLM 10.12 494 158 5.93 9.07 3.05 18.07 1930 1830 4250 76.97 24.18 2.00 3.11 61.474426| 22.93
H20 1322 455 16.28 6.58 9.01 3.82 20.92 21.86 1844 40.00 79.40 27.85 1.20 7.38 55.7553.36| 24.09
A \3® SnapKV 13.13 584 21.62 7.12 9.19 3.90 1891 2141 1821 4500 84.12 2785 1.60 7.02 61.48 54.87| 25.62
Q4 B Pyramid 13.78 575 2237 7.62 9.68 3.96 19.24 2047 18.18 59.00 84.38 29.42 1.50 8.22 62.24 54.51| 26.45
E ProtoKV 13.97 594 22.08 7.76 9.29 4.09 20.85 21.60 19.02 59.50 84.69 29.99 1.50 8.18 63.2256.97 | 26.94
= SLM 1274 494 158 5.93 9.12 3.48 2570 1931 24.87 54.00 81.67 31.47 2.00 4.38 61.8752.20| 25.60
H20 1455 595 18.67 6.42 8.67 4.17 23.69 2207 2272 56.00 82.66 30.48 2.50 8.89 58.8356.83| 26.45
qf)f’ SnapKV 17.12 6.75 21.52 7.38 10.03 4.12 2456 2239 23.07 63.00 8496 31.54 1.52 7.25 64.9456.88| 28.01
Pyramid 17.84 7.28 20.37 7.14 10.47 429 2359 2230 2241 64.00 85.17 32.72 2.67 8.23 65.7557.50| 28.30
ProtoKV 17.29 7.34 2094 7.58 11.43 4.80 2473 2257 2289 68.00 86.78 3451 1.68 7.67 66.88 60.34| 29.11

Table 1: Performance comparison on the LongBench dataset for full KV cache, extant KV baselines (including
StreamingL. LM, H20, SnapKV, PyramidKV) and our ProtoKV. Bold indicates the best performance and underline

the second performance.

StreamingLLM SnapKV ClusterkV
PyramidKV H20 —e— ProtoKV
20 . [
© /./ 40.0 /
] /'
o R 37.5 0
P 35, & y
=) 35.0s
o
% 30 325
— T T 0Lb——— T T
64 96128 256 512 64 96128 256 512

KV Budget Size
(a) Mistral-7B-Instruct

KV Budget Size
(b) Llama-3-8B-Instruct

Figure 5: Experimental results on LongBench dataset
under different KV cache budget conditions. The final
experimental results are the average score.

S Experiment

5.1 Implementation

Dataset We use LongBench (Bai et al., 2024)
dataset to assess the performance of ProtoKV on
tasks involving long-context inputs. The dataset
comprises 14 English tasks and 2 code-related
tasks. The majority of these tasks have an aver-

age length ranging from 5k to 15k tokens, with a
total of approximately 3,750 test samples. A de-
tailed description of LongBench dataset is provided
in the Appendix A.

Baseline We benchmark our method against
Streamingl.LLM (Xiao et al., 2024), H20 (Zhang
et al., 2024d), SnapKV (Li et al., 2024b), Pyra-
midKV (Cai. et al., 2024). We use state-of-the-
art open-sourced LL.Ms include the Llama fam-
ily (Llama-2-7B-chat, LlaM A-3-8B-instruct) and
Mistral-7B-Instruct-v0.2, which can handle up to
32k context length. Detailed description of these
three LLMs is provided in the Appendix C.

Experiment Setup We maintain identical av-
erage KV cache sizes across baseline to ensure
fair memory comparison. All experiments use two
NVIDIA 3090 GPUs (48GB total) with consistent
prompts across datasets. Our configuration bal-
ances experimental uniformity with task-specific
optimizations. We use the same prompt for each
dataset in all the experiments.

(a) Fullkv (c) PyramidKV 1.0
- HEEEEN HENEEENEEE NN
c
o 33
9 0.8
£ 67
o
)]
10045 . 100fF = 0.6
2000 4000 6000 8000 2000 4000 6000 800 2000 4000 6000 800 g
(d) SnapkV (e) H20 (f) StreamingLLM 8
H] | 0.4
€]] .
Q]]
=] H
&
= 0.2
Qo
[}
a)

ENEEEEEEEEENEEEEEN
2000 4000 6000 8000HEgp o
Context Length

HEEEENEENEENEEEEN
2000 4000 6000 8000
Context Length

HENENENEEEEEEEEEEN
2000 4000 6000 8000
Context Length
Figure 6: Results of the Needle In A HayStack experiment, where LLMs are required to retrieve a target sentence
("needle") inserted in long documents. The x-axis represents the context length while y-axis the depth where the
needle is inserted. E.g., context length of 4000 and depth of 11.0 implies that the needle is inserted at location 4000

x 11% = 440 in the sequence. The color indicates retrieval accuracy, the greener, the better.

5.2 Result Analysis

Table 1 and Figure 5 demonstrate the experi-
mental results on LongBench across diverse KV
cache configurations. Generally, our method main-
tains the best performance between 64-512 bud-
gets, with an average improvement of 2.11%. For
LlaMA-3-8B-Insturct and Mistral-7B (Figure 5),
ProtoKV outperforms Sota baselines by 0.35% to
4.27% across diverse budget sizes. We also com-
pare ProtoKV with the clustering-based compres-
sion method ClusterKV (Liu et al., 2024b), and
ProtoKV outperforms it under relaxed memory con-
straints (256 and 512 budget size).

Task-specific experimental results are reported
in Table 1. As presented, our method demonstrates
consistent performance advantages over diverse
long-context tasks. Notably, with a cache size of
256, ProtoKV attains 39.95 (+0.35% over SnapKV)
for LlaMA-3-8B-Instruct, 39.25 (+2.29% over
PyramidKV) for Mistral-7B-Instruct, and 29.11
(+2.86% over PyramidKV) for Llama2-7B-chat,
showing robust generalization capabilities. The
improvements are particularly pronounced in chal-
lenging multi-document QA tasks (e.g., +2.38%
over SnapKV on HotpotQA for LIaMA-3-8B-256)
and code-related tasks (e.g., +3.73% over SnapKV
on RepoBench-P for Mistral-7B-256). Moreover,
ProtoKV maintains competitive performance com-
pared to the FullKV baseline while using merely
2.6%-3.9% of the original KV cache size, demon-
strating its effectiveness in resource-constrained
scenarios. These results validate our method’s abil-

Tasks ProtoKV — + LA. + HA.

SDQA 32.87 3312, 0 5u) 33581 (1.00%)
MDQA 2531 25.72,(1 46%) 26.141(1.24%)
SUM 24.41 24.89, 4rry 25293 (1.15%)
Few shot 66.43 66.85,(1 019%) 67-341(1.65%)
SYN 37.15 37434 0,829 37914(1.73%)
Code 59.38 5977, 1057y 60-161(3.275%)

Table 2: Compatibility Analysis on Mistral-7B-Instruct
with KV budget size of 256, with 1 (-) denoting the
improvement compared with SnapKV+LA./HA..

ity to preserve critical attention patterns through
context-aware retention while minimizing informa-
tion loss.

5.3 Needle In A Haystack

We conduct the "Fact Retrieval Across Context
Lengths" (Needle In A Haystack) experiment (Liu
et al., 2024c; Fu et al., 2024a) using LlaMA-3-
8B-Instruct with 8K context length to evaluate
in-context retrieval capabilities of LLMs. This
task requires precise information retrieval from
extensive contexts, simulating real-world scenar-
ios where relevant data is buried among vast irrel-
evant information.We compare other KV Cache
techniques at a consistent cache budget size of 128
(a retention ratio of 1.6%). Results in Fig 6 indi-
cate that StreaminglLLM and H20 almost collapses
on retrieval task. In contrast, SnapKV achieves
94.2% accuracy, PyramidKV reaches 95.5%, and
our ProtoKV attains 96.8% accuracy, which closely
matches the fully cached case. These results show
that our proposed method effectively maintains re-

I ProtoKV B Chunk Clustering B L SH Clustering

N
°
=}

40.0

w
N
3}

37.5
35.0

[
N
)

325

Average Score
w
(4]
o

w
©
=}

30.0

128 256 512
KV Budget Size

(a) Mistral-7B-Instruct
Figure 7: Ablation Study for different KV budget sizes.

128 256 512
KV Budget Size

(b) LIaMa-3-8B-Instruct

8 3863 39.31 |l 8 3798 3889 3929 IECH N 47

50 100 150 200 100 150 200
Prototype Number Prototype Number

(a) Mistral-7B-Instruct (b) LIaMa-3-8B-Instruct
Figure 8: Hyperparameter Analysis for irregular clus-
tering size (vertical axis) and total clustering size (hor-
izontal axis). We report the averaged score on Long-
Bench.

Irregular Prototype Number

trieval performance across long contexts (up to 8K
tokens) with minimal performance degradation.

5.4 Compatibility Analysis

KV cache selection and budget allocation rep-
resent orthogonal optimization directions, and we
aim to investigate the compatibility between our
method and the budget allocation methods. Specif-
ically, we study two prominent allocation strate-
gies: Layer-wise Allocation (LA.) (Nawrot et al.,
2024) and Head-wise Allocation (HA.) (Feng et al.,
2024), which dynamically distribute token budgets
across attention different layers/attention heads. As
demonstrated in Table 2, ProtoKV exhibits strong
compatibility with these techniques by achieving
additional compression effectiveness.

5.5 Ablation Study

We conduct ablation experiments to verify
whether dividing tokens into regular/irregular ones
and processing them separately are reasonable.
Specifically, we compare ProtoKV with its two
variants: chunk-clustering that only uses chunk-
based aggregation to obtain semantic prototypes,
and LSH-clustering that buckets and groups all to-
kens via LSH. Two variants adopt the same number
of semantic prototypes (i.e., cluster count) as Pro-
toKV. Figure 7 shows both variants reduce KV
cache compression performance, especially LSH-
clustering, showcasing the validity of ProtoK'V.

1.2

EEE SnapKV —o— LlaMa2
. H20 1.0/ —°— LlaMa3
g s ProtoKV —— Mistral
g 0.8 {o————0————0—""10
E
0.61 —
>————————O——0
128 256 512 1024 50 100 150 200

Budget Size
(a) Inference latency

Clustering Number
(b) Computation time

Figure 9: (LEFT) Comparison of inference latency with
varying budget size. (RIGHT) ProtoKV’s inference
latency with different clustering number. Vertical axis
denotes average time consumed for LongBench dataset.

Hyperparameter Analysis. We primarily investi-
gate the impact of the irrgular semantic prototype
number v and the regular semantic prototype num-
ber k£ on model performance. Experimental results
in Figure 8 reveal that compression performance
generally improves with increasing total prototype
size, whereas the impact of w is less pronounced.
In practice, we set detected irregular tokens number
p to a small value as 3u to ensure that no position-
determined tokens are included. Though this may
exclude many tokens that violate locality assump-
tions, these selected tokens sufficiently represent
viable irregular patterns.

5.6 Inference Latency Analysis

We investigate the inference latency of our pro-
posed ProtoKV for KV cache compression. As
illustrated in Figure 9, our method maintains com-
parable inference latency to most commonly used
approaches like H20 and SnapKV. However, these
approaches cannot globally retain semantic coher-
ence, while ours can. Figure 2(a) shows our Pro-
toKV reduce inference latency by up to 3.9x com-
pared to ClusterKV (Liu et al., 2024b). Further-
more, we find that different cluster numbers have
minimal impact on ProtoKV’s inference latency.

6 Conclusion

While existing clustering-based KV cache com-
pression methods achieve impressive compression
performance by globally retaining semantic coher-
ence, they suffer from time-consuming clustering
algorithms that are difficult to parallelize. To ad-
dress this, we propose ProtoKV, a simplified algo-
rithm that significantly improves time efficiency
by identifying semantic prototypes before perform-
ing clustering. Our approach builds upon the phe-
nomenon that tokens that satisfy locality prior are
typically scattered, while those that violate locality
prior are likely clustered.

Limitation

Our current understanding of the positional-
semantic dichotomy phenomenon remains pri-
marily at the statistical observation level. Sev-
eral fundamental questions remain open, includ-
ing why this phenomenon exhibits such patterns
and whether it generalizes beyond the LongBench
datasets or LLMs with more parameters. Further-
more, when the number of clusters is small, our
clustering method still shows non-negligible perfor-
mance gaps compared to existing clustering-based
KV cache compression approaches. The underly-
ing reasons for these gaps and potential improve-
ment strategies warrant further investigation.

Ethical Considerations

The primary objective of this paper is to provide
a KV cache compression framework that designed
to accelerate inference. By eliminating the need
for iteration refinements of cluster-based method,
ProtoKV improves the memory usage and reduces
latency. This work is based on the publicly avail-
able LongBench dataset, which predominantly con-
tains English text, and the associated questions-
answer pairs are also in English. We comply with
all dataset licenses, and confirm the content con-
tains neither private nor offensive information. We
utilized Claude-3.7-Sonnet to assist us with code
generation.

References

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3119-3137. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Zefan Cai., Yichi Zhang, Bofei Gao, Yuliang Liu,
Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. 2024. Pyra-
midKV: Dynamic KV Cache Compression based on
Pyramidal Information Funneling. arXiv preprint.
ArXiv:2406.02069 [cs].

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, and 1 others. 2023. Palm: Scaling
language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1-113.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and
S. Kevin Zhou. 2024. Ada-KV: Optimizing KV
Cache Eviction by Adaptive Budget Allocation
for Efficient LLM Inference. arXiv preprint.
ArXiv:2407.11550 [cs].

Zafeirios Fountas, Martin A Benfeghoul, Adnan Oomer-
jee, Fenia Christopoulou, Gerasimos Lampouras,
Haitham Bou-Ammar, and Jun Wang. 2024. Human-
like episodic memory for infinite context llms. arXiv
preprint arXiv:2407.09450.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han-
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024a.
Data engineering for scaling language models to 128k
context. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue
Dong, and Wen Xiao. 2024b. Not All Heads Matter:
A Head-Level KV Cache Compression Method with
Integrated Retrieval and Reasoning. arXiv preprint.
ArXiv:2410.19258 [cs].

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells you
what to discard: Adaptive KV cache compression for
LLMs. In The Twelfth International Conference on
Learning Representations.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong,
Yu Chen, Heng Ji, and Sinong Wang. 2024. LM-
infinite: Zero-shot extreme length generalization for
large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 39914008, Mexico City, Mexico. Association
for Computational Linguistics.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609—6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Monishwaran Maheswaran, June Paik, Michael W
Mahoney, Kurt Keutzer, and Amir Gholami. 2024a.
Squeezed attention: Accelerating long context length
IIm inference. arXiv preprint arXiv:2411.09688.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W. Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024b. Kvquant: To-
wards 10 million context length LLM inference with
KV cache quantization. In Advances in Neural In-
formation Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,

https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://doi.org/10.18653/V1/2024.ACL-LONG.172
https://doi.org/10.18653/V1/2024.ACL-LONG.172
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2407.11550
http://arxiv.org/abs/2407.11550
http://arxiv.org/abs/2407.11550
http://arxiv.org/abs/2407.11550
http://arxiv.org/abs/2407.11550
https://openreview.net/forum?id=TaAqeo7lUh
https://openreview.net/forum?id=TaAqeo7lUh
https://openreview.net/forum?id=TaAqeo7lUh
https://doi.org/10.48550/arXiv.2410.19258
https://doi.org/10.48550/arXiv.2410.19258
https://doi.org/10.48550/arXiv.2410.19258
https://doi.org/10.48550/arXiv.2410.19258
https://doi.org/10.48550/arXiv.2410.19258
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://doi.org/10.18653/v1/2024.naacl-long.222
https://doi.org/10.18653/v1/2024.naacl-long.222
https://doi.org/10.18653/v1/2024.naacl-long.222
https://doi.org/10.18653/v1/2024.naacl-long.222
https://doi.org/10.18653/v1/2024.naacl-long.222
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/028fcbcf85435d39a40c4d61b42c99a4-Abstract-Conference.html

NeurlPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024.

Jiawei Huang, Meiting Xue, Chenpu Li, Huan Zhang,
and Bei Zhao. 2024. Dynamickv: Data storage strat-
egy based on partition merging of log-structured
merge tree. In 2nd International Conference on
Computer, Vision and Intelligent Technology, ICCVIT
2024, Huaibei, China, November 24-27, 2024, pages
1-6. IEEE.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
2024. GEAR: An Efficient KV Cache Compression
Recipe for Near-Lossless Generative Inference of
LLM. arXiv preprint. ArXiv:2403.05527 [cs].

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong
Sim. 2024. InfiniGen: Efficient generative inference
of large language models with dynamic KV cache
management. In /8th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
24), pages 155—-172, Santa Clara, CA. USENIX As-
sociation.

Jianan Li, Quan Tu, Cunli Mao, Zhengtao Yu, Ji-Rong
Wen, and Rui Yan. 2024a. Streamingdialogue: Pro-
longed dialogue learning via long context compres-
sion with minimal losses. In Advances in Neural
Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December
10- 15, 2024.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024b. Snapkv:
LLM knows what you are looking for before genera-
tion. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Van-
couver, BC, Canada, December 10 - 15, 2024.

Di Liu, Meng Chen, Baotong Lu, Huigiang Jiang,
Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, and 1 others.
2024a. Retrievalattention: Accelerating long-context
Ilm inference via vector retrieval. arXiv preprint
arXiv:2409.10516.

Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang,
and Minyi Guo. 2024b. ClusterKV: Manipulating
LLM KV Cache in Semantic Space for Recallable
Compression. arXiv preprint. ArXiv:2412.03213
[cs].

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024c. Lost in the middle: How language
models use long contexts. Trans. Assoc. Comput.
Linguistics, 12:157-173.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi
Yao, Shan Lu, Ganesh Ananthanarayanan, Michael
Maire, Henry Hoffmann, Ari Holtzman, and Junchen
Jiang. 2024d. Cachegen: KV cache compression and
streaming for fast large language model serving. In
Proceedings of the ACM SIGCOMM 2024 Confer-

10

ence, ACM SIGCOMM 2024, Sydney, NSW, Australia,
August 4-8, 2024, pages 38-56. ACM.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024e. KIVI: A tuning-free asymmetric 2bit
quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski,
David Tarjan, and Edoardo M. Ponti. 2024. Dynamic
memory compression: Retrofitting llms for accel-
erated inference. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ton Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single GPU. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
31094-31116. PMLR.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. QUEST: query-
aware sparsity for efficient long-context LLM infer-
ence. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net.

Qian Tao, Wenyuan Yu, and Jingren Zhou. 2025.
Asymkyv: Enabling 1-bit quantization of KV cache
with layer-wise asymmetric quantization configu-
rations. In Proceedings of the 31st International
Conference on Computational Linguistics, COLING
2025, Abu Dhabi, UAE, January 19-24, 2025, pages
2316-2328. Association for Computational Linguis-
tics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia
Zhang. 2024. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks.
arXiv preprint arXiv:2407.08454.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS °22,
Red Hook, NY, USA. Curran Associates Inc.

https://doi.org/10.1109/ICCVIT63928.2024.10872622
https://doi.org/10.1109/ICCVIT63928.2024.10872622
https://doi.org/10.1109/ICCVIT63928.2024.10872622
https://doi.org/10.1109/ICCVIT63928.2024.10872622
https://doi.org/10.1109/ICCVIT63928.2024.10872622
http://arxiv.org/abs/2403.05527
http://arxiv.org/abs/2403.05527
http://arxiv.org/abs/2403.05527
http://arxiv.org/abs/2403.05527
http://arxiv.org/abs/2403.05527
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
http://papers.nips.cc/paper_files/paper/2024/hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9c43057f39d49b8b5c989cc1aac70ab7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2412.03213
https://doi.org/10.48550/arXiv.2412.03213
https://doi.org/10.48550/arXiv.2412.03213
https://doi.org/10.48550/arXiv.2412.03213
https://doi.org/10.48550/arXiv.2412.03213
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://aclanthology.org/2025.coling-main.158/
https://aclanthology.org/2025.coling-main.158/
https://aclanthology.org/2025.coling-main.158/
https://aclanthology.org/2025.coling-main.158/
https://aclanthology.org/2025.coling-main.158/

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao
Peng, and Yao Fu. 2024. Retrieval Head Mecha-
nistically Explains Long-Context Factuality. arXiv
preprint. ArXiv:2404.15574 [cs].

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024. Pyramidinfer: Pyramid
KV cache compression for high-throughput LLM
inference. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 3258—
3270. Association for Computational Linguistics.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168—
27183.

Amir Zandieh, Majid Daliri, and Insu Han. 2025. Qjl:
1-bit quantized jl transform for kv cache quantization
with zero overhead. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 39, pages
25805-25813.

Zihao Zeng, Bokai Lin, Tianqi Hou, Hao Zhang, and
Zhijie Deng. 2024. In-context KV-Cache Evic-
tion for LLMs via Attention-Gate. arXiv preprint.
ArXiv:2410.12876 [cs].

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu,
Xupeng Miao, Xiaonan Nie, Weipeng Chen, and
Bin Cui. 2024a. Pqcache: Product quantization-
based kvcache for long context llm inference. CoRR,
abs/2407.12820.

Xuan Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei
Gao, and Min Lin. 2024b. Simlayerkv: A sim-
ple framework for layer-level KV cache reduction.
CoRR, abs/2410.13846.

Yangi Zhang, Yuwei Hu, Runyuan Zhao, John Lui, and
Haibo Chen. 2024c. Unifying kv cache compres-
sion for large language models with leankv. arXiv
preprint arXiv:2412.03131.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya
Kailkhura, Beidi Chen, and Atlas Wang. 2024d. Q-
hitter: A better token oracle for efficient LLM infer-
ence via sparse-quantized KV cache. In Proceedings
of the Seventh Annual Conference on Machine Learn-
ing and Systems, MLSys 2024, Santa Clara, CA, USA,
May 13-16, 2024. mlsys.org.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,
Zhangyang Wang, and Beidi Chen. 2023. H2O:
heavy-hitter oracle for efficient generative inference
of large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,

11

NeurlIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Jungi Zhao, Zhijin Fang, Shu Li, Shaohui Yang,
and Shichao He. 2024. BUZZ: Beehive-structured
Sparse KV Cache with Segmented Heavy Hit-
ters for Efficient LLM Inference. arXiv preprint.
ArXiv:2410.23079 [cs].

https://doi.org/10.48550/arXiv.2404.15574
https://doi.org/10.48550/arXiv.2404.15574
https://doi.org/10.48550/arXiv.2404.15574
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.195
https://doi.org/10.48550/arXiv.2410.12876
https://doi.org/10.48550/arXiv.2410.12876
https://doi.org/10.48550/arXiv.2410.12876
https://doi.org/10.48550/arXiv.2407.12820
https://doi.org/10.48550/arXiv.2407.12820
https://doi.org/10.48550/arXiv.2407.12820
https://doi.org/10.48550/ARXIV.2410.13846
https://doi.org/10.48550/ARXIV.2410.13846
https://doi.org/10.48550/ARXIV.2410.13846
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2410.23079
https://doi.org/10.48550/arXiv.2410.23079
https://doi.org/10.48550/arXiv.2410.23079
https://doi.org/10.48550/arXiv.2410.23079
https://doi.org/10.48550/arXiv.2410.23079

A LongBench Dataset Details

Dataset LongBench is a large-scale benchmark
dataset designed for evaluating language models’
capabilities in understanding and generating long
texts. It covers various types of tasks including, but
not limited to, Single-Document Question Answer-
ing (QA), Multi-Document QA, Summarization,
Few-shot Learning, and Synthetic tasks. The aim is
to comprehensively assess models across different
application scenarios.

Here are some specific tasks included in the
LongBench dataset along with their characteristics:

NarrativeQA: Focuses on understanding nar-
rative texts, requiring models to read and answer
questions about stories or narratives.

Qasper: Involves asking and answering ques-
tions based on academic articles, testing the
model’s ability to understand scholarly literature.

MultiFieldQA-en: Covers QA tasks across mul-
tiple fields, enhancing the model’s capability to
understand texts from diverse domains.

HotpotQA, 2WikiMultihopQA, MuSiQue:
These tasks emphasize reasoning and information
integration across multiple documents, challeng-
ing the model’s ability to find answers in a multi-
document environment.

GovReport, QMSum, MultiNews: Concen-
trate on extracting key information and generat-
ing summaries from lengthy texts, assessing the
model’s summarization capability.

TREC, TriviaQA, SAMSum: Evaluate the
model’s learning ability and domain-specific
knowledge acquisition through few-shot examples.

PassageCount, PassageRetrieval-en: Synthetic
tasks designed to test the model’s performance un-
der specific conditions, such as document counting
or retrieval accuracy.

LCC, RepoBench-P: Involve code understand-
ing and evaluation of editing similarity, catering
to the unique requirements of programming lan-
guages.

Each task comes with its own set of evaluation
metrics (e.g., F1 Score, Rouge-L, Accuracy) to
quantify model performance. Moreover, Long-
Bench includes texts from different languages and
domains, ensuring broad applicability and linguis-
tic diversity of the models. This dataset plays a
crucial role in advancing the field of natural lan-
guage processing, especially in improving models’
abilities to handle long texts. Detailed information
is demonstrated in Table 3.

12

B Eval Mertic

F1 Score is the harmonic mean of Precision and
Recall. It is particularly useful when dealing with
imbalanced datasets. The formula is given by:

P-R

F1=2.
P+R

(19)

Where P is the proportion of true positive predic-
tions among all positive predictions and R is pro-
portion of true positive predictions among all actual
positive instances.

ROUGE-L measures the similarity between gen-
erated text and reference text based on the longest
common subsequence (LCS). It takes into account
both n-gram co-occurrence and word order. The
score is calculated as:

LCS(X,Y)

ROUGE-L = ——————~
max(| X[, [Y)

(20)
Where X is generated output, Y is reference text
and LCS(X,Y) is the length of the longest com-
mon subsequence between X and Y.

Edit Sim measures the similarity between two
sequences based on the minimum number of edit
operations (insertions, deletions, substitutions) re-
quired to transform one sequence into another. It is
often normalized by the length of the longer string:

LD(X,Y)

Edit Sim =1 — — =2
max(|X|, [Y])

21
X, Y are two input strings and LD is Minimum
number of single-character edits needed to convert
XtoY.

Accuracy is a basic evaluation metric that mea-
sures the proportion of correct predictions (both
true positives and true negatives) among the total
number of cases examined.

TP+ TN
TP+TN+ FP+FN

Accuracy = (22)
T P is when the model correctly predicts a positive
class, T'N is when it correctly predicts a negative
class, F'P is when it incorrectly predicts a positive
class, and F'N is when it incorrectly predicts a
negative class.

C LLM Model Details

We introduce the three LLMs used in this paper.
Detailed Statistics for them are shown in Table 4.

Meta-Llama-3-8B-Instruct is an 8B-parameter
instruction-tuned variant of LLaMA-3, optimized

Task Task Type Source Eval metric Avglen Language License

NarrativeQA Single-Doc. QA Literature, Film F1 18,409 EN MIT License
Qasper Single-Doc. QA Science F1 3,619 EN MIT License
MultiFieldQA-en Single-Doc. QA Multi-field F1 4,559 EN MIT License
HotpotQA Multi-Doc. QA Wikipedia F1 9,151 EN MIT License
2WikiMultihopQA Multi-Doc. QA Wikipedia F1 4,887 EN MIT License
MuSiQue Multi-Doc. QA Wikipedia F1 11,214 EN MIT License
GovReport Summarization Government report Rouge-L 8,734 EN MIT License
QMSum Summarization ~ Meeting Rouge-L 10,614 EN MIT License
MultiNews Summarization News Rouge-L 2,113 EN MIT License
TREC Few shot Web question Accuracy 5,177 EN MIT License
TriviaQA Few shot Wikipedia, Web F1 8,209 EN MIT License
SAMSum Few shot Dialogue Rouge-L 6,258 EN MIT License
PassageCount Synthetic Wikipedia Accuracy 11,141 EN MIT License
PassageRetrieval-en ~ Synthetic Wikipedia Accuracy 9,280 EN MIT License
LCC Code Github Edit Sim 1,235 Python/C#/Java MIT License
RepoBench-P Code Github Edit Sim 4,206 Python/Java MIT License

Table 3: An overview of the dataset statistics in LongBench.

Configuration LlaMA-3-8B-Instruct Mistral-7B-Instruct-v0.2 Llama2-7B-chat
Hidden Size 4,096 4,096 4,096
Layers 32 32 32

Q Heads 32 32 32

KV Heads 8 8 32
Attention Heads 32 32 32

Max Position Embeddings 8,192 32,768 4,096
Intermediate Size 14,336 14,336 11,008
Vocabulary Size 128,256 32,000 32,000

Table 4: Configuration of Models.

for dialogue tasks. Using transformer architecture
with SFT and RLHEF, it features a 128K vocabu-
lary and GQA for efficiency. The model supports
8K-context (extendable to 128K) and demonstrates
strong performance in text generation and reason-
ing tasks.

Mistral-7B-Instruct-v0.2 is a 7.3B-parameter
instruction-tuned model by Mistral Al, featuring
32K context length via optimized RoPE embed-
dings. With grouped-query attention for efficiency,
it excels in conversational and coding tasks while
supporting GGUF quantization. Benchmarks show
it outperforms comparable 7B models, particularly
in code generation.

Llama2-7B-chat is Meta’s 7 billion parameter
chat-optimized language model, fine-tuned for dia-
logue applications using RLHF. The model features
a 4K token context window and demonstrates im-
proved safety and helpfulness compared to its base
version. It achieves strong performance in conver-
sational tasks while maintaining efficient inference
through optimized transformer architecture.

13

D Locality & Clustering Degree

In the main text, we introduced the relationship
between locality degree and clustering degree, but
did not explicitly specify their quantitative mea-
sures. We hereby provide the details:

D.1 Locality Degree

The locality of a token is quantified via -
neighborhood similarity as introduced in Equa-
tion 6. In experiments, we set kK = 5 to capture
local contextual interactions. We rank all tokens
by their 5-neighborhood similarity Séh)(i) in as-
cending order and partition them into 10 equal-
frequency bins (deciles). Let Gi denote the k-th
bin (k = 1, ..., 10), where G, contains tokens with
the lowest 10% similarity scores and G the high-
est 10%. The locality of a specific Gy, is defined
by the average 5-neighborhood similarity of the
tokens belong to it.

D.2 Clustering Degree

For each bin G, we compute its clustering de-
gree with the ratio of intra-group cohesion to inter-

group separation according to Equation 8. The
finally reported Locality Degree and Clustering De-
gree is averaged across different attention heads in
a specific layer.

E Pseudocode

We present the pseudo-code for our ProtoKV as
follows, it is worth noting that all loop statements in
this code can be executed in parallel, significantly
reducing inference latency.

Algorithm 1 Algorithm of ProtoKV

Require: Key vectors {k:}}";, chunk size k, hash
bits r, buckets u, irregular number p, observa-
tion window size Lgps

Ensure: Compressed KV cache { K (") V(")} 1

1: form =1to k do

2 Con = {E(m—1)[n/k]+15 - Fm[n/k) }
& om iy Dk = p)?
s: O <« Top-p of 41_C|(|)§,(:ﬁ;um)
6: Cgfgular) + L2-Norm (Zkt €Cm\O kt>
7. end for
8: ¢(kj) < /2/rcos(Wkj +b)
9: hj < Binarize(¢(k;))
10: for s = 1to u do
11: Bs — {kﬂ?‘[(k]) = 8}
12: e 15 Norm (Z ky B kj)
13: end for _
140 M« {cgfgular)}fn:1 U {C(Slrregular)}g:1
15: for each token k; do
Elc
16: C(kt) < arg max.c 7”kt”’;”c”2
17: end for
18: for each head h € [H] do
9 O S W]

) A(h 1 h
200 CW(k) ¢ rema=ay oc ()=t C:((1)
21: I Top-(B — Lobs) indices of ¢t

o h h)y Lprompt
2 KO (b} m U R L
¥ h h)y Lprompt
23 VO e e UL I
24: end for

F Clustering Visualization

We visualize some clustering examples, includ-
ing the K-means algorithm, our ProtoKV clustering
method, and the chunk-based method that relies
solely on the locality assumption. We use circles
to represent regular tokens whose key vectors are

14

(a) Kmeans (b) ProtoKV (c) Chunk-based

25 25 25

-25 -25 -25

=50 =50 =50

40 40

20 20

-20 -20 —20

-40 -40 -40

-25 0 25 -25 0 25 -25 0 25

Figure 10: T-SNE visualization of key embeddings for
clustering results of different methods.

primarily determined by their positions, while irreg-
ular tokens are denoted by pentagrams. As shown
in Figure 10, our method achieves nearly identi-
cal results to K-means, whereas the chunk-based
method fails to effectively cluster tokens that vio-
late the locality assumption.

G Additional Experimental Results

We present two additional experimental results:
(1) a complete exposition of the results in Sec-
tion 3.4, and (2) a visualization-based demonstra-
tion of the pervasiveness of the phenomenon iden-
tified in Section 3.4.

1. As mentioned in the Section 3.4, when we
progressively tighten the selection criteria for
irregular tokens, they form increasingly com-
pact clusters. While the main text only reports
results from two layers, here we present find-
ings across all 32 layers (see Figure 11).

2. We visualize key embeddings with a color gra-
dient from dark to light, representing the se-
quential order of tokens in a sentence (earlier
tokens are darker). Since we define irregular
tokens as those that violate the locality as-
sumption yet form tight clusters, so if tokens
with significantly different colors (i.e., distant
in sequence) group into an isolated cluster,
this confirms the existence of irregular tokens.
As shown in the Figure 12 and Figure 13, we
observe irregular tokens exist across different
large language models, different datasets, and
different attention heads, demonstrating that
this is a widespread phenomenon.

Layer 0 Layer 3
18
0.7 @~ Head 15 16 =@= Head 1
“l- Head 25 16 = Head 27
g 0.6 1 =gy~ Head 3] & 14 g 149 e Head 17
Bos | ¥ hes g ¥
o o o o
o o 210 210
£ 04 £ £ £
g g go® g°°
Sos] EX Zos
© © © o4 ©oa
02
02 02
15 20 25 15 20 25 3.0 15 20 25 3.0 15 20 25 3.0
Value of threshold g Value of threshold g Value of threshold g Value of threshold B
Layer 4 Layer 5 Layer 6 Layer 7
1.6 { “@= Head 13 1.6 | =@ Head 5
- Head 14
gm— F H g“’ Head 3
fadi
S 1,4 a a a ea
ot o o o 1.0
£ £ £ £
£°°] g B 3os
3os1 2 E 3 064
5] o o o
044

1s 20 25
Value of threshold g

15 2.0 25 3.0

Value of threshold 8

15 20 25
Value of threshold B

15 20 2s
Value of threshold B

3.0

Layer 8 Layer 9 Layer 10 Layer 11
1.6 { =@~ Head 28 16| @ Head 15 16 @~ Head 28 1.6 { =@= Head 13
141 - Head 9 © | <l Head 26 144 - Head 15 M- Head 23
@ 47 oA Head 18 @ 1.4 e Head 19 @ 17 oA Head 9 @ 147 o Head s
4 o o o
£124 Head 7 5., Head 13 £124 Head 3 £124 Head 24
g Head 12 g Head 5 g Head 0 g Head 28
=07 o 1.0 o 10 o 10
2 2 2 g
R 5 08 5 08 S 081
G 056 2 064 g 2 061
k] 3 3 0.6 3
S 5] 9] s
7 044 0.4 4 047
02 02 s K 02|
15 2.0 25 30 15 20 25 3.0 15 20 25 3.0 15 20 25 3.0
Value of threshold B Value of threshold g Value of threshold B Value of threshold B
Layer 12 Layer 13 Layer 14 Layer 15
1.6 1 =@= Head 17 16 “@- Head 17 1.6 { =@~ Head 6 16 @~ Head 11
Head 20 . M- Head 9 144 M Head 16
o 141 Head 4 014 o 14 Head 30 o Head 24
o " o @ " @
S Head 8 5. £z Head 31 £.21 Head 18
g Head 27 g 2 Head 27 2 Head 1
= 104 @10 o 10 > 104
£ £ £ £
© 0.8 © 08 § 08 © 0.8
g PR 506 3
20619 2 2o 2 06
044 04 0.4 0.44
0.2 02 0.2
15 2.0 25 3.0 15 20 25 3.0 15 20 25 3.0 15 20 25 3.0
Value of threshold g Value of threshold g Value of threshold g Value of threshold 8
Layer 16 Layer 17 Layer 18 Layer 19
1.6 16 1.6 16
o 144 o 1.4 o 144 o 144
4 o o o
212 212 212 212
a o a a
> 1.0 =10 =104 = 1.04
£ £ £ £
5 0.8 5 08 S 0.8 g o
) @ i k)
ERXE S 06 3 06 3o
s} 5] 5] 5]
0.44 04 0.4 4 0.44
15 2.0 25 30 15 20 25 30 15 20 25 3.0 15 20 25 3.0
Value of threshold B Value of threshold g Value of threshold g Value of threshold g
Layer 20 Layer 21 Layer 22 Layer 23
1.6 | “@= Head 7 16 @~ Head 0 16 <@~ Head 11 1.6 =@= Head 4
14 Head 15 14 - Head 6 M- Head 16
g 14] Head 9 g™ Head 21 o 14 Head 18
ea e e
S 10 S 10 S 104 8o
£ £ £ £
g os g oe < 08 £ 0e
@ @ @ B
306 306 =2 0.6 306
5] 5] 5] 5]
04 04 0.44 0.4
02 T - - T 02 T T - - 02 T - - 02 T T T T
15 2.0 25 3.0 15 20 25 3.0 15 20 25 3.0 15 20 25 3.0
Value of threshold g Value of threshold g Value of threshold g Value of threshold B
Layer 24 Layer 25 Layer 26 Layer 27
1.6 { =@= Head 23 1.6 1 =@~ Head 28 1.6 { @ Head 15 1.6 1 =@~ Head 16
<M Head 14 < Head 12 - Head 9 144 - Head 15
g 4] Head 18 g] Head 4 g 149 Head 23 g Head 4
212 Head 15 212 Head 9 P Head 26 S12 Head 27
2 =W~ Head 16 2 W= Head 5 2 =W~ Head 3 8 =W~ Head 2
1.0 1.0 104 1.0
2 2 2 2
5 o8| 5 o8| 5 081 5097
5 06 506 EXYE EXXE
5] 5] 5] 5]
044 044 0.4 0.4 4
02 02 024 02
15 2.0 25 3.0 15 20 25 3.0 15 20 25 3.0 15 20 25 3.0
Value of threshold g Value of threshold B Value of threshold B Value of threshold 8
Layer 28 Layer 29 Layer 30 Layer 31
1.6 | “@= Head 25 1.6 { =@= Head 30 1.6 =@= Head 12 144 @~ Head 25
M Head 3 M Head 23 M- Head 29 - Head 4
g 141 e Head 14 1.4 e Head 10 @ 1.4 e Head 18 9 1, | e Heas2
g Head 13 g Head 9 g Head 27 g Head 3
12+ H 2124 212 2
g ead 12 g Head 17 g Head 1 g0 Head 24
o 1.0 o 1.0 o104 =
£ £ £ £ 084
FRLE! § 081 @ 081 b
] @ @ 2 06
2064 = 0.6 2061 2
5] 5] 5] [s)
0.4 0.4 0.4 044
02 L 02 021 0.2

Figure 11: Non-regular tokens form progressively compact clustering with the increasing the threshold 5, with H;

denoting the <th at

15 20 25
Value of threshold g

tention head.

1s 20 25
Value of threshold g

3.0

15

s 20 25
Value of threshold B

s 20 25
Value of threshold B

layer-4 head-13 layer-4 head-13 layer-4 head-13 layer-4 head-13

aaafBipRes o sl
'ri "1? 40 4 “ od
. ;‘.' T PO ‘i' t:-—
.j# o aBm 20 z " 0 v A $
A SRR R L Y
L € o e -20
+ s O
l -2 hikd . —40 LN
L 4 S ..
Tio 30 6 20 40 %0 25 0 25 50 -25 25 50
Iayer -4 head-13 layer-4 head-13 layer-4 head-13

20 L)
gg’ {m }Wg‘ Z ‘ﬁg""rﬁrm?%
: S 1
E ‘ % ! _20 & ml _20 ‘k
201 G 3 -20 & ﬁ "
m%g —40 ‘&, 40 ‘1."'."' —40

25 0 50 -50 -25 0 25 50 -50 -25 0 25 50 50 -25 0 25 50
layer-4 head-13 layer-4 head-13 layer-4 head-13 layer-4 head-13
40 a7 e,
. 40 = - I
g f adibe DK o oI

20 ‘,"—"“‘ o 2
R RV AR [PS>
o im.M AR I~ o

-50 =25 0 25 4 -40 =20 0 20 40 -50 =25 0 25 50
layer-8 head 27 layer-4 head-13 layer-4 head-13
60 40 s
"'ﬂt o -F ik
AR i "
J& R e | o aM

'
Ny pgi® Y l%
s ‘*‘ -20 - — el J‘
oo £ | -20 Sfw ¥
“" —40 w0
L) 6o
a0 -20 0 20 40 - 0 50 50 25 0 25 50 -25 0 25 50

Figure 12: T-SNE visualization of key embeddings from Llama2-7B-chat on (qasper, hotpotqa, musique, 2wikimqa)
dataset. Each subplot represents different combinations of layers and heads within the model architecture. The color
gradient indicates the sequence of tokens in the input text.

layer-8 head-5 layer-8 head-9 layer-12 head-13 layer-28 head-9

"-\ 40 60
-h 40

20 ‘-‘, ¢ 20 o 20 ﬁu,_

€ A Ty Rl Yy

-20 'Sv “‘: 20 SN h 20 % L'x .{ -20 %&F’v

i N | o
-50 -25 0 25 -50 [50 -25 0 25 50 -50 -25 0 25

layer-12 head-1 Iayer -16 head 25 layer-20 head-13 layer-28 head-9
ol

:: Il‘.‘:;~ 20 q :: | {'ﬁ"\ 20 %!1.'~
. "1"2»’ - ClUle’ P ICR

o

o i -
s Wie . e W 1%:‘ 7
20 q':». i!- L) j’i L2 N 20 " 'g. IPYY . v,..l.‘ &
o] 7
-40 N W 40 40 o
-50 -25 0 25 50 —50 0 50 -50 -25 0 25 50 —50 0 50
layer-8 head-17 layer-16 head-5 layer-24 head-5 layer-28 head-25

a
MR Y !r 20 » L 2k 2 20 : 20
o g ot LV W
- -40 K L o VY
: %% o ORSE Lo g
-50 =25 0 25 50 =50 0 50 -50 =25 0 25 50 -50 =25 0 25 50
layer-8 head-1 layer-20 head-21 layer-28 head-1 layer-28 head-9
40 S 40 @ 2. AR 40
’ 40 e -
ey || A% FED || iyt
20 [, 3 gl 20 t‘ 3 20 3 '-- 20 % bl T
. X NP L BINE & e
0 0 <¢ [= 5% [t]
e TN 2 20 <3 S s
-20 S 20 & X 20 i |20 e 300>
[& 8 | b g
a0 e X3
_a0 a0 40 E o
, 60 -7 § 2
-60 60 ot -60]
=50 -25 0 25 50 =50 0 50 =50 =25 0 25 50 -50 -25 0 25 50

Figure 13: T-SNE visualization of key embeddings from Llama3-8B-Instruct on (gasper, hotpotqa, musique,
2wikimqa) dataset. Each subplot represents different combinations of layers and heads within the model architecture.
The color gradient indicates the sequence of tokens in the input text.

16

	Introduction
	Related Work
	Preliminary and Motivation
	Problem Formulation
	Selection Strategy
	Clustering-based Strategy
	Observation

	Method
	Chunk-based RSP Consolidation
	LSH-guided ISP Consolidation
	Attention Contribution Redistribution
	Efficiency Analysis

	Experiment
	Implementation
	Result Analysis
	Needle In A Haystack
	Compatibility Analysis
	Ablation Study
	Inference Latency Analysis

	Conclusion
	LongBench Dataset Details
	Eval Mertic
	LLM Model Details
	Locality & Clustering Degree
	Locality Degree
	Clustering Degree

	Pseudocode
	Clustering Visualization
	Additional Experimental Results

