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Abstract

Despite the rapid progress in visual representation learning driven by self-/un-1

supervised methods, both objects and scenes have been primarily treated using the2

same lens. In this paper, we focus on learning representations for objects and scenes3

explicitly in the same space. Motivated by the observation that visually similar4

objects are close in the representation space, we argue that the scenes and objects5

should further follow a hierarchical structure based on their compositionality. To6

exploit such a structure, we propose a contrastive learning framework where a7

Euclidean loss is used to learn object representations and a hyperbolic loss is used to8

regularize scene representations according to the hierarchy. This novel hyperbolic9

objective encourages the scene-object hypernymy among the representations by10

optimizing the magnitude of their norms. We show that when pretraining on11

the COCO and OpenImages datasets, the hyperbolic loss improves downstream12

performance across multiple datasets and tasks, including image classification,13

object detection, and semantic segmentation. We also show that the properties of14

the learned representations allow us to solve various vision tasks that involve the15

interaction between scenes and objects in a zero-shot way.16

1 Introduction17

Our visual world is diverse and structured. Imagine taking a close-up of a box of cereal in the morning.18

If we zoom out slightly, we may see different nearby objects such as a bowl of milk, a cup of hot19

coffee, today’s newspaper, or reading glasses. Zooming out further, we will probably recognize that20

these items are placed on a dining table with the kitchen as background rather than inside a bathroom.21

Such scene-object structure is diverse, yet not completely random. In this paper, we aim at learning22

visual representations of both the cereal box (objects) and the entire dining table (scenes) in the same23

space while preserving such hierarchical structures.24

Un-/self-supervised learning has become a standard method to learn visual representations [27, 12,25

25, 13, 6, 7, 49]. Although these methods attain superior performance over the supervised pretraining26

on object-centric datasets such as ImageNet [25, 6], inferior results are observed on images depicting27

multiple objects such as OpenImages or COCO [67]. Several methods have been proposed to mitigate28

this issue [67, 68, 37, 1], but all focus on learning improved object representations or dense pixel29

representations, instead of explicitly modeling the representations for scene images. The object30

representations learned by these methods present a natural topology [66]. That is, the objects from31

visually similar classes lie close to each other in the representation space. However, it is not clear32

how the representations of scene images should fit into that topology. Naively applying existing33

contrastive learning results in sub-optimal topology of scenes and objects as well as unsatisfactory34

performance as we will show in the experiment. To this end, we argue that a hierarchical structure35

can be naturally adopted. Considering scenes as the composition of different kinds of objects, we36
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can construct a forest structure to describe such relationships, where the root nodes are the visually37

similar objects, and the scene images consisting of them are placed as the descendants. We call this38

structure the object-centric scene hierarchy.39

𝑂

Figure 1: Illustration of the representation space
learned by our models. Object images of the
same class tend to gather near the center around
similar directions, while the scene images are far
away in these directions with larger norms.

The intermediate modeling difficulty induced by40

this structure is the combinatorial explosion. A41

finite number of objects can lead to exponentially42

many kinds of scenes due to the composition. Hy-43

perbolic space is known for its provably better44

capacity in modeling infinite trees compared with45

Euclidean space [21, 26, 34]. Therefore, we pro-46

pose to employ a hyperbolic objective to regularize47

the scene representations. Our framework builds48

upon MoCo [27], which has been shown to learn49

good object representations. To learn representa-50

tions of scenes, we sample the co-occurring scene-51

object pairs as the positive pairs, and objects that52

are not part of that scene as the negative samples,53

and use these pairs to compute an auxiliary hyper-54

bolic contrastive objective. Our model is trained55

to reduce the distance between positive pairs and56

push away the negative pairs in a hyperbolic space.57

Contrastive learning models generally compute58

their objectives on a hypersphere [27, 12]. By59

discarding the norm information, these models60

effectively circumvent the shortcut of minimizing61

objectives by tuning the norms and obtain better62

downstream performance. At the same time, they also lose control of the representative power in the63

magnitude of the norm and leave the images disorganized. However, in hyperbolic space, it is the64

magnitude of the norm that is used to model the hypernymy of the hierarchical structure [43, 58, 51].65

When projecting the representations to the hyperbolic space, the norm information is preserved and66

used to determine the Riemannian distance, which eventually affects our loss. Since the hyperbolic67

space is diffeomorphic and conformal to the Euclidean, our hyperbolic contrastive loss is completely68

differentiable and complementary to the original contrastive objective.69

When training simultaneously with the original contrastive objective for objects and our proposed70

hyperbolic contrastive objective for scenes, the resulting representation space exhibits the desired71

hierarchical structure while keeping the object clustering topology intact as shown in Figure 1. We72

demonstrate the effectiveness of the learned representations on several downstream tasks, from image73

classification to object detection. We also show that the properties possessed by the representations74

allow us to perform various vision tasks in a zero-shot way, from label uncertainty quantification to75

out-of-context object detection. Our contributions are summarized below:76

1. We propose to learn representations for both object and scene images simultaneously77

using un-/self-supervised methods. We identify an object-centeric scene hierarchy that the78

representations are expected to follow.79

2. We propose a framework with a novel hyperbolic contrastive loss to regularize the scene80

representations with positive and negative pairs sampled from the hierarchy.81

3. We show that the magnitude of representation norms effectively reflect the scene-objective82

hypernymy, and such representations transfer better to multiple downstream tasks.83

2 Method84

In this section, we elaborate our approach to learn visual representations of object and scene images.85

We start with describing the hierarchical structure between objects and scenes.86
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2.1 Object-Centric Scene Hierarchy87

From simple object co-occurrence statistics [20, 39] to finer object relationships [29, 31], using88

hierarchical relationships between objects and scenes to understand images is not new. Previous89

studies primarily work on an instance-level hierarchy by dividing an image into its lower-level90

elements recursively - a scene contains multiple objects, an object has different parts, and each part91

may consist of even lower-level features [47, 46, 15]. While this is intuitive, it describes a hierarchical92

structure contained in the individual images. In our task, we would like to work on the structure from93

the view of the entire dataset to learn a representation space shared by objects and scenes. To this94

end, we argue that it is more natural to consider an object-centric hierarchy.95

It is known that when training an image classifier, though not being optimized directly, the objects96

from visually similar classes often lie close to each other in the representation space [66], which has97

become the cornerstone of contrastive learning [27, 12]. Motivated by this observation, we believe98

that the representation of each scene image should also be close to the object clusters it consists of.99

However, they require a much larger volume due to the exponential number of possible compositions.100

Another way to think about the object-centric hierarchy is through the generality and specificity as101

often discussed in the language literature [40, 43]. An object concept is general when standing alone102

in the visual world, and it will become specific when a certain context is given. For example, “a desk”103

is thought to be a more general concept than “a desk in a classroom with a boy sitting on it”.104

Therefore, we propose to study an object-centric hierarchy across the entire dataset. Formally,105

given a set of images S = {s1, s2, · · · , sn}, Oi = {o1i , o2i , · · · , o
ni
i } are the object bounding106

boxes contained in the image si. We define the regions of scene Ri = {r1i , r2i , · · · , r
mi
i } to be107

partial areas of the image si that contain multiple objects such that rji = ∪ko
k
i , where oki ∈108

Oi and object k is in the region j. We define the object-centric forest T = (V,E) to be that V =109

S ∪O∪R, where R = R1 ∪ · · · ∪Rn and O = O1 ∪ · · · ∪On. For u, v ∈ V , e = (u, v) is an edge110

of T if u ⊆ v or v ⊆ u. Note that the natural scene images S are always put as the leaf nodes.111

2.2 Representation Learning beyond Objects112

To describe our proposed model that is built on this hierarchy, we begin with a brief review of113

the hyperbolic space and its several properties that will be used in our model. For comprehensive114

introductions to the Riemannian geometry and hyperbolic space, we refer the readers to [32, 17].115

2.2.1 Hyperbolic Space116

A hyperbolic space (Hm, g) is a complete, connected Riemannian manifold with constant negative117

sectional curvature. These special manifolds are all isometric to each other with the isometries118

defined as O+(m, 1). Among these isometries, there are five common models that previous studies119

often work on [5]. In this paper, we choose the Poincaré ball Dn :=
{
p ∈ Rn | ∥p∥2 < r2

}
as our120

basic model [43, 58, 22], where r > 0 is the radius of the ball. The Poincaré ball is coupled with121

a Riemannian metric gD(p) =
4

(1−∥p∥2/r2)2
gE, where p ∈ Dn and gE is the canonical metric of the122

Euclidean space. For p, q ∈ D, the Riemannian distance on the Poincaré ball induced by its metric gD123

is defined as follows:124

dD(p, q) = 2r tanh−1

(
∥−p⊕ q∥

r

)
, (1)

where ⊕ is the Möbius addition and it is clearly differentiable. In addition, the Poincaré ball can be125

viewed as a natural counterpart of the hypersphere as it allows all directions, unlike the other models126

such as the halfspace or hemisphere models that have constraints on the directions. The hyperbolic127

space is globally differomorphic to the Euclidean space, which is stated in the theorem below:128

Theorem 1. (Cartan–Hadamard). For every point p ∈ Hn the exponential map expp : TpHn ≈129

Rn → Hn is a smooth covering map. Since Hn is simply connected, it is diffeomorphic to Rn.130

Specifically, for p ∈ Dn and v ∈ TpDn ≈ Rn, the exponential map of the Poincaré ball expp :131

TpDn → Dn is defined as132

expp(v) := p⊕
(
tanh

(
r∥v∥

r2 − ∥p∥2

)
rv

∥v∥

)
, (2)
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Figure 2: Our Hyperbolic Contrastive Learning (HCL) framework has two branches: given a scene
image, two object regions are cropped to learn the object representations with a loss defined in the
Euclidean space focusing on the representation directions. A scene region as well as a contained
object region are used to learn the scene representations with a loss defined in the hyperbolic space
that affects the representation norms.

The exponential map gives us a way to map the output of a network, which is in the Euclidean space,133

to the Poincaré ball. In practice, to avoid numerical issues, we clip the maximal norm of v with r − ε134

before the projection, where ε > 0. During the backpropagation, we perform RSGD [4] by scaling135

the gradients with gD(p)
−1. Intuitively, this forces the optimizer to take a smaller step when p is136

closer to the boundary. The scaling factor is lower bounded by O(ε2).137

The immediate consequence of the negative curvature is that for any point p ∈ Hm, there are no138

conjugate points along any geodesic starting from p. Therefore, the volume grows exponentially139

faster in hyperbolic space than in Euclidean space. Such a property makes it suitable to embed the140

hierarchical structure that has constant branching factors and exponential number of nodes. This is141

formally stated in the theorem below:142

Theorem 2. [21, 26] Given a Poincaré ball Dn with an arbitrary dimension n ≥ 2 and any set of
points p1, · · · , pm ∈ Dn, there exists a finite weighted tree (T, dT ) and an embedding f : T → Dn

such that for all i, j,∣∣dT (
f−1 (xi) , f

−1 (xj)
)
− dD (xi, xj)

∣∣ = O(log(1 +
√
2) log(m))

Intuitively, the theorem states that any tree can be embedded into a Poincaré disk (n = 2) with143

low distortion. On the contrary, it is known that the Euclidean space with unbounded number of144

dimensions is not able to achieve such a low distortion [34]. One useful intuition [51] to help145

understand the advantage of the hyperbolic space is given two points p, q ∈ Dn s.t. ∥p∥ = ∥q∥,146

dD(p, q) → dD(p, 0) + dD(0, q), as ∥p∥ = ∥q∥ → r (3)

This property basically reflects the fact that the shortest path in a tree is the path through the earliest147

common ancestor, and it is reproduced in the Poincaré when points are both close to the boundary.148

2.2.2 Hyperbolic Contrastive Learning149

With the theoretical benefits of the hyperbolic space stated above, we propose a contrastive learning150

framework as shown in Figure 2. We adopt two losses to learn the object and scene representations.151

First, as shown in the top branch of Figure 2, we crop two views of a jittered and slightly expanded152

object region as the positive pairs and feed into the base and momentum encoders to calculate the153

object representations. We denote the output after the normalization to be z1euc and z2euc. Considering154

the computational cost of large batch sizes, we follow MoCo [27, 14] to leverage a memory bank to155

store the negative representations zn
euc which are the features z2euc from the previous batches. The156

Euclidean loss for this image is then calculated as:157

Leuc = − log
exp

(
z1euc · z2euc/τ

)
exp (z1euc · z2euc/τ) +

∑
n exp (z

1
euc · zneuc/τ)

,
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where τ is a temperature parameter.158

While this loss aims at learning object representations, we also design a hyperbolic contrastive159

objective to learn the representations for scene images. We sample the positive region pairs u and v160

from object-centric scene hierarchy T such that (u, v) ∈ E. In other words, as shown in the bottom161

branch of Figure 2, the objects contained in one region are required to be a subset of the objects in162

the other. We sample the negative samples of u to be Nu = {v|(u, v) ̸∈ E}. However, building and163

sampling from the entire hierarchy explicitly is slow and memory consuming. Instead, according to164

the assumption that there are exponentially more scenes than object classes in practice, given a scene165

image s, we always sample u ∈ R ∪ {s} to be a scene region, v ∈ O to be an object that occurs in u,166

and Nu to be the other objects that are not in u.167

The pair of scene and object images are fed into the base and momentum encoders that share the168

weights with the Euclidean branch. However, instead of normalizing the output of the encoders, we169

use the exponential map defined in the equation (2) to project these features in the Euclidean space to170

the Poincaré ball, which are denoted as z1hyp and z2hyp. Further, we replace the inner product in the171

cross-entropy loss with the negative hyperbolic distance as defined in equation (1). We calculate the172

hyperbolic contrastive loss as follows:173

Lhyp = − log
exp

(
−dD(z

1
hyp, z

2
hyp)/τ

)
exp

(
−dD(z1hyp, z

2
hyp)/τ

)
+
∑

n exp
(
−dD(z1hyp, z

n
hyp)/τ

) ,
When minimizing the distances of all the positive pairs, With the intuition from Equation (3), it would174

be beneficial to put the nodes near the root close to the center to achieve a overall lower loss. The175

overall loss function of our model is as follows:176

L = Leuc + λLhyp,

where λ is an scaling parameter to control the trade-off between hyperbolic and Euclidean losses.177

3 Experiments178

3.1 Implementation Details179

Pre-training phase. We pre-train our method on two datasets: COCO [33] and a subset of Open-180

Images [41]. Both of these datasets are multi-object datasets; OpenImages [41] (∼ 212k images)181

contains 12 objects on average per image and COCO (∼ 118k) contains 6 objects on average. We182

experiment with both the ground truth bounding box (GT) and using selective search [60] following183

the previous method [67] (SS) to acquire objects. For the optimizer setups and augmentation recipes,184

we follow the standard protocol described in MoCo-v2 [14] unless denoted otherwise. We find that a185

base learning rate of 0.3 works better for us as compared to 0.03. We adopt the linear learning rate186

scaling receipt that lr = 0.3× BatchSize/256 [24] and batch size of 128 by default on 4 NVIDIA187

p6000 gpus. To ensure fair comparison, we also pre-train the baselines with a learning rate of 0.3.188

We train our models on both datasets for 200 epochs. For the hyperparameters of our hyperbolic189

objective, we use r = 4.5, λ = 0.1, and ε = 1e−5. More details on the OpenImages dataset as well190

as training setups can be found in Appendix A.191

Downstream tasks. We evaluate our pre-trained models on image classification, object-detection192

and semantic segmentation. For classification, we show linear evaluation (lineval) accuracy, i.e we193

freeze the backbone and only train the final fc layer. We test on VOC [19], ImageNet-100 [57] and194

ImageNet-1k [16] datasets. To test the discriminative capacity of the representations on both objects195

and scenes, we create a dataset by mixing the ImageNet-100 and a subset of Place-205 [70] datasets,196

which we refer to as the INPMix dataset. More details of this dataset can be found in Appendix A.197

For object detection and semantic segmentation, we show results on the COCO and Pascal VOC198

trainval2017 datasets. For VOC object detection, COCO object detection and COCO semantic199

segmentation, we closely follow the common protocols listed in Detectron2 [65].200
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Pre-train Bbox VOC IN-100 INPMix IN-1kdataset type

MoCo-v2 COCO - 64.79 64.84 41.83 51.17
HCL/Lhyp COCO SS 73.13 73.84 51.28 54.21
HCL/Lhyp COCO GT 75.55 76.22 51.25 54.52
HCL COCO SS 74.19 75.16 51.35 55.03
HCL COCO GT 76.51 76.74 51.63 55.63

MoCo-v2 OpenImages - 69.95 72.80 49.59 54.12
HCL/Lhyp OpenImages GT 73.79 77.36 52.96 57.57
HCL OpenImages SS 74.31 78.14 53.21 58.12
HCL OpenImages GT 75.40 79.08 53.82 58.51

Table 1: Classification results with linear evaluation. Our
model improves scene-level classification on the VOC [19]
and INPMix [70] datasets, and object-level classification on
ImageNet-100 [57] and ImageNet-1k [16] datasets.

Detection Dataset AP AP50 AP75

MoCo-v2 COCO 34.6 53.5 37.0
HCL/Lhyp COCO 36.1 55.2 37.9
HCL COCO 37.0 56.1 39.8
MoCo-v2 VOC 51.5 79.4 56.1
HCL - Lhyp VOC 53.7 80.5 59.4
HCL VOC 54.4 81.4 60.2
Segmentation Dataset APs APl APm

MoCo-v2 COCO 30.4 50.1 32.3
HCL/Lhyp COCO 31.5 52.0 33.8
HCL COCO 32.5 52.9 34.6

Table 2: Object detection and Semantic
Segmentation results. Our model im-
proves on both tasks on COCO [33] and
VOC [19] datasets.

3.2 Main Results201

This section discusses our main results on the downstream image classification, object detection,202

and semantic segmentation tasks. As the goal of this paper is not to present another state-of-the-art203

self-supervised learning method, we primarily compare with the backbone model MoCo-v2 [27].204

Another important baseline we consider is our model without the hyperbolic loss Lhyp; therefore only205

the object representations are learned, which we denote as HCL/Lhyp.206

Image classification. As shown in Table 1, HCL improves image classification on both scene-level207

datasets (VOC and INPMix) and object-level datasets (ImageNet). When pretraining on OpenImages,208

HCL improves ImageNet lineval accuracy by 0.94% and VOC lineval classification accuracy by209

1.61 mAP. We observe similar improvements when pretraining on COCO. HCL improves accuracy210

whether we use ground truth object bounding boxes or boxes generated by selective search. In general,211

we observe a larger improvement of using HCL on OpenImages than COCO, which supports our212

observation that HCL would improve more on the dataset with more objects per images.213

Object detection and semantic segmentation. Table 2 reports the object detection and semantic214

segmentation results using Mask R-CNN, following [14]. It shows consistent improvements over the215

baselines on VOC object detection, COCO object detection, and COCO semantic segmentation.216

3.3 Properties of Models Trained with HCL217

The visual representations learned by HCL have several useful properties. In this section, we evaluate218

the representation norm as an measure of the label uncertainty for image classification datasets, and219

evaluate the object-scene similarity in terms of out-of-context detection.220

3.3.1 Label Uncertainty Quantification221

Figure 4: Average representation
norms of images with different num-
ber of labels in ImageNet-ReaL [3].

Method Indicator Datasets
IN-Real COCO

MoCo Entropy 0.633 0.791
Supervised Entropy 0.671 0.793
HCL Norm 0.655 0.839
Ensemble Entropy+Norm 0.717 0.823

Table 3: NDCG scores of the image rankings based on
the different indicators and models, and evaluated by the
the number of labels per image.

ImageNet [16] is an image classification dataset consisting of object-centered images, each of which222

has a single label. As the performance on this dataset gradually saturated, the original labels have223

been scrutinized more carefully [50, 59, 54, 3, 61]. Prevailing labeling issues in the validation set224
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Smallest norms (objects) Largest norms (scenes)

Figure 3: Images from ImageNet training set. The 5 images on the left have the smallest representation
norms among all the images from the same class, and the 5 on the right have the largest norms.

have been recently identified [59, 54, 3], including labeling errors, multi-label images with only a225

single label provided, and so on. Although Beyer et al. [3] provide reassessed labels for the entire226

validation set, relabeling the entire training set can be infeasible.227

Our learned representations provide a potential automatic way to identify images with multiple labels228

from datasets like ImageNet. Specifically, we first show in Figure 4 that there is a strong correlation229

between the representation norms and the number of labels per image according to the reassessed230

labels. For each class of the ImageNet training set, we rank the images according to their norms.231

The extreme images of some classes are shown in Figure 3 and also Appendix. Images with smaller232

norms tend to capture a single object, while those with larger norms are likely to depict a scene.233

To quantitatively evaluate this property, we report the NDCG metric on the ranked images as shown234

in Table 3. NDCG assesses how often the scene images are ranked at the top. As a baseline, we rank235

the images based on the entropy of the class probability predicted by a classifier, which is a widely236

adopted label uncertainty indicator [11, 45]. We use both MoCo-v2 and supervised ResNet-50 as the237

classifier. As shown in Table 3, using norms with HCL achieves similar rank quality as using entropy238

with the supervised ResNet-50 on the ImageNet-ReaL dataset. In addition, when combining two239

ranks using simple ensemble methods such as Borda count, the score is further improved to 0.717.240

This shows that the entropy and the norm might look at different aspects of the multi-label issue. For241

example, the entropy indicator can be affected by the bias of the model and the norm indicator can be242

wrong on the images with multiple objects from the same class. In addition, our method is dataset243

agnostic and does not need further training. To demonstrate this benefit, we report the same metric on244

the COCO validation, where we also have the number of labels for each image. Our method achieves245

much better NDCG scores than the supervised ResNet-50 as shown in Table 3. This finding can be246

potentially useful to guide label reassessment, or provide an extra signal for model training.247

3.3.2 Out-of-Context Detection248

Our hyperbolic loss Lhyp essentially encourages the model to capture the similarity between the249

object and scene. We further investigate this property on detecting the out-of-context objects, which250

can be useful in designing data augmentation for object detection [18]. We are especially interested251

in the out-of-context images with conflicting backgrounds. To this end, we use the out-of-context252

images proposed in the SUN09 dataset [15]. We first compute the representation of each object as253

well as the entire scene image with that object masked out. We then calculate the hyperbolic distance254

between the representations mapped to the Poincaré ball. Some example images from this dataset as255

well as the distance of each contained object are shown in Figure 5. We find that the out-of-context256

objects generally have a large distance, i.e. smaller similarity, to the overall scene image. To quantify257

this finding, we compute the mAP of the object ranking on each image and obtain 0.61 for HCL. As258

a comparison, the MoCo similarity gives mAP = 0.52 and the random ranking gives mAP = 0.44.259
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Figure 5: Out-of-context images from the SUN09 dataset [15]. The bounding box of each object,
as well as its hyperbolic distance to the scene are displayed. The regular objects are in blue and the
out-of-context objects are in purple. Note that the out-of-context objects tend to have large distances.

4 Main Ablation Studies260

In this section, we report the results of several important ablation studies with respect to HCL.261

All the models are trained on the subset of the OpenImages dataset and linearly evaluated on the262

ImageNet-100 and our INPMix datasets. The top-1 accuracy is reported.263

Dist. Center IN-100 IPS

- - 77.36 52.96
Hyp. Scene 79.08 53.82
Hyp. Object 76.96 52.74
Euc. Scene 76.68 52.58

Table 4: Ablation on the similarity
measure and hierarchy center.

λ IN-100 IPS

0.01 77.70 53.43
0.1 79.08 53.82
0.2 78.64 53.84
0.5 0 0

Table 5: Ablation on the
losses trade-off.

Optim. λ IN-100 IPS

RSGD 0.1 79.08 53.82
RSGD 0.5 0 0
SGD 0.1 70.16 48.47
SGD 0.5 74.18 42.75

Table 6: Ablation on the RSGD ver-
sus SGD optimizers.

Similarity measure and the center of the scene-object hierarchy. We propose to use the negative264

hyperbolic distance as the similarity measure of the scene-object pairs. As an alternative, one can265

use cosine similarity on the hypersphere as the measure just like the original contrastive objective.266

However, this is basically minimizing the similarity between a single object and multiple objects.267

These objects are probably from different classes and hence conflict with the original objective. As268

shown in Table 4, replacing the negative hyperbolic distance with the Euclidean similarity impairs269

downstream performance. The resulting accuracy is even worse than the model without any loss270

function on the scene-object pairs. In terms of the hierarchy, we also test the assumption of scene-271

centric hierarchy [46, 47] by sampling the negative pairs as the objects and unpaired scenes. However,272

we notice a significant decrease in the downstream accuracy with this modification in Table 4.273

Trade-off between the Euclidean and hyperbolic losses. We adopt the Euclidean loss to learn274

object-object similarity and the hyperbolic loss to learn object-scene similarity. A hyperparameter λ275

is used to control the trade-off between them. As shown in Table 4, we find that a smaller λ = 0.01276

leads to marginal improvement. However, we also observe that larger λs can lead to unstable and even277

stalled training. With careful inspection, we find that in the early stage of the training, the gradient278

provided by the hyperbolic loss can be inaccurate but strong, which pushes the representations to279

be close to the boundary. As a result, the Riemannian SGD causes the gradient to be small and the280

training is consequently stuck at some the early point.281

Optimizer. With the observation above, we ask whether RSGD is still necessary for practical usage.282

We replace the RSGD optimizer with SGD. To avoid the numerical issue when the representations283

are too close to the boundary, we increase ε from 1e−5 to 1e−1. We first notice that this allows larger284

λ to be used as opposed to the RSGD. However, SGD always yields inferior performance to RSGD.285

Therefore, it shows that the accurate gradient provided by RSGD is still necessary.286

5 Related Work287

Representation Learning with Hyperbolic Space. Representations are typically learned in Eu-288

clidean space. Hyperbolic space has been adopted for its expressiveness in modeling tree-like289
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structures existing in various domains such as language [58, 21, 51, 43, 44], graphs [2, 8, 9, 48], and290

vision [30, 10, 56]. The corresponding deep neural network modules have been designed to boost the291

progress of such applications [9, 22, 35, 55]. The hierarchical structure presented in the datasets can292

come from multiple factors, motivating the use of hyperbolic space. 1) Generality: the hypernym-293

hyponym property is a natural feature of words (e.g. WordNet [40]) and the hyperbolic space is294

extensively exploited to learn word embeddings that preserve that property [58, 21, 51, 43, 44].295

Some image datasets also adopt the classes from WordNet for labeling, e.g. ImageNet [16], and296

consequently inherits the hierarchy in its labeling system. [36, 69, 38] take advantage of hyperbolic297

space to capture such information in the visual embeddings. 2) Uncertainty: Several studies have298

found that applying hyperbolic neural network modules to different tasks leads to a natural modeling299

of the uncertainty [23, 30, 56]. 3) Compositionality: The compositionality of different basic elements300

can form a natural hierarchy. We focus on learning the representations that capture the hierarchy301

between the objects and scenes. The hierarchical representations learned in the hyperbolic space have302

been applied to various tasks with the aforementioned motivations such as image classification [30]303

or segmentation [64, 23], zero-/few-shot learning [38, 36], action recognition [38], and video pre-304

diction [56]. In this paper, we aim at learning image representations for general purposes that can305

transfer to various downstream tasks.306

Self-Supervised Learning on Scenes. Self-Supervised Learning (SSL) has made great strides in307

closing the performance with supervised methods [12, 14] when pretrained on the object-centric308

datasets like ImageNet. However, recent works have shown that SSL are limited on the multi-309

object datasets like COCO [52, 63] and OpenImages [41]. Several works have tried to address this310

issue by proposing different techniques. Dense-CL [63] works on pre-average pool features and311

uses dense features on pixel level to show improved performance on dense tasks such as semantic312

segmentation. DetCon [28] uses unsupervised semantic segmentation masks to generate features313

for the corresponding objects in the two views. CAST [53] uses GradCAM [52] to figure out314

same objects across views and applies contrastive loss on these features. PixContrast [68] uses315

pixel-to-propagation consistency pretext task to build features for both dense downstream tasks and316

discriminative downstream tasks. Pixel-to-Pixel Contrast [62] uses pixel-level contrastive learning317

to build better features for semantic segmentation. Self-EMD [37] uses earth mover distance with318

BYOL [25] for pretraining on the COCO dataset. ORL [67] uses selective search to generate object319

proposals, then applies object-level contrastive loss to enforce object-level consistency. ContraCAM320

[42] removes the scene bias issue by doing self-supervised object localization and performing321

contrastive loss on them. One of the reasons below-par performance of SSL methods can be attributed322

to treating scenes and objects using similar techniques, which often results in similar representations.323

In our work, instead of treating them in the same functionality, we use a hyperbolic loss, which builds324

representation that disambiguates scenes and objects based on the norm of the embeddings. Our325

method not only separates scenes and objects, but also helps us in improving downstream tasks such326

as image classification.327

6 Closing Remarks328

Conclusion We present HCL, a contrastive learning framework that learns visual representation for329

both objects and scenes in the same representation space. The major novelty of our method is a330

hyperbolic contrastive objective built on an object-centric scene hierarchy. We show the effectiveness331

of HCL on several benchmarks including image classification, object detection, and semantic seg-332

mentation. We also demonstrate the useful properties of the representations under several zero-shot333

settings from detecting out-of-context objects to quantifying the label uncertainty in the datasets like334

ImageNet. More generally, we hope this paper can encourage studies towards building a more holistic335

visual representation space and draw attention to the non-Euclidean representation learning.336

Limitations Our model is shown to improve the classification performance on the ImageNet dataset,337

but not much on the more fine-grained classification tasks as shown in Appendix B.2. We conjecture338

that the largest improvement brought by our model to the object representations are modeling the339

context information, while most of these datasets share a general class whose contexts are more or340

less similar. In addition, although we provide some insights about the Riemannian optimization, its341

underlying mechanism in the visual representation learning is still not fully understood. We conduct342

more experiments on training hyperbolic linear classifiers in Appendix C.1. However, more efforts343

are needed to fully unleash the potential of non-Euclidean representation learning.344
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7 Societal Impact345

Our work is a technical contribution and much of societal impact depends upon the models used in346

our work. We hope that our work will be used for betterment of the society and doesn’t have any347

negative impact.348
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