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Abstract: The ability to grasp objects in-the-wild from open-ended language
instructions constitutes a fundamental challenge in robotics. An open-world
grasping system should be able to combine high-level contextual with low-level
physical-geometric reasoning in order to be applicable in arbitrary scenarios. Re-
cent works exploit the web-scale knowledge inherent in large language models
(LLMs) to plan and reason in robotic context, but rely on external vision and
action models to ground such knowledge into the environment and parameter-
ize actuation. This setup suffers from two major bottlenecks: a) the LLM’s rea-
soning capacity is constrained by the quality of visual grounding, and b) LLMs
do not contain low-level spatial understanding of the world, which is essential
for grasping in contact-rich scenarios. In this work we demonstrate that mod-
ern vision-language models (VLMs) are capable of tackling such limitations, as
they are implicitly grounded and can jointly reason about semantics and geome-
try. We propose OWG, an open-world grasping pipeline that combines VLMs with
segmentation and grasp synthesis models to unlock grounded world understand-
ing in three stages: open-ended referring segmentation, grounded grasp planning
and grasp ranking via contact reasoning, all of which can be applied zero-shot
via suitable visual prompting mechanisms. We conduct extensive evaluation in
cluttered indoor scene datasets to showcase OWG’s robustness in grounding from
open-ended language, as well as open-world robotic grasping experiments in both
simulation and hardware that demonstrate superior performance compared to pre-
vious supervised and zero-shot LLM-based methods. Project material is available
at https://gtziafas.github.io/OWG_project/.
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Following grasping instructions from free-form
natural language in open-ended environments is a
multi-faceted problem, posing several challenges
to robot agents. Consider the example of Fig. 1:
The robot has to decipher the semantics of the
user instruction (i.e., “what would a child want
to play with?”), recognize the appearing objects
and ground the target (i.e., the white toy), reason Figure 1: Challenges of open-world grasping tack-
about the feasibility of the grasp to generate an ap- led with VLMs.  The overall pipeline combines
propriate plan (i.e., first remove the blocking juice Y 1-Ms With segmentation and grasp synthesis mod-

. els to ground open-ended language instructions plan
box), and finally select a suitable grasp based on and reason about how to grasp the desired object.
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the object geometry and potential collisions. It becomes clear that to deal with the full scope of
open-world grasping, agents should integrate high-level semantic with low-level physical-geometric
reasoning, while doing so in a generalizable fashion.

In recent years, Large Language Models (LLMs) [1, 2, 3, 4, 5], have emerged as a new paradigm
in robotics and embodied Al, due to their emergent general knowledge, commonsense reasoning
and semantic understanding of the world [6, 7, 8, 9, 10]. This has led to a multitude of LLM-based
approaches for zero-shot robotic task planning [11, 12, 13, 14, 15], navigation [16, 17, 18, 19] and
manipulation [20, 21, 22, 23, 24, 25], where the LLM decomposes a high-level language instruction
into a sequence of steps, therefore tackling complex, long-horizon tasks by composing primitive
skills. However, a notorious limitation of LLMs is their lack of world grounding — they cannot di-
rectly reason about the agent and environment physical state [26], and lack deep knowledge when it
comes to low-level, physical properties, such as object shapes, precise 3D geometry, contact physics
and embodiment constraints [27]. Even when equipped with external visual modules for perceiving
the world, the amount of information accessed by the LLM is bottlenecked by the visual model’s
interface (e.g. open-vocabulary detectors [28, 29, 30] cannot reason about object relations such as
contacts). Recently, Large Vision-Language Models (LVLMs) integrate visual understanding and
language generation into a unified stream, allowing direct incorporation of perceptual information
into the semantic knowledge acquired from language [31, 32, 33, 34]. Preliminary explorations
with LVLMs [35] have illustrated two intriguing phenomena, namely: a) by combining LVLMs
with segmentation models and constructing suitable visual prompts, LVLMs can unleash extraor-
dinary open-ended visual grounding capabilities [26], and b) effective prompting strategies like
chain-of-thought [36] and in-context examples [1] seem to also emerge in LVLMs. Motivated by
these results, we perform an in-depth study of the potential contributions of LVLMs in open-ended
robotic grasping. In this paper, we propose Open World Grasper (OWG): an integrated approach
that is applicable zero-shot for grasping in open-ended environments, object catalogs and language
instructions. OWG combines LVLMs with segmentation [37] and grasp synthesis models [38],
which supplement the LVLM’s semantic knowledge with low-level dense spatial inference. OWG
decomposes the task in three stages: open-ended referring segmentation, where the target object is
grounded from open-ended language, (ii) grounded grasp planning, where the agent reasons about
the feasibility of grasping the target and proposes a next action, and (iii) grasp ranking, where the
LVLM ranks grasp proposals generated from the grasp synthesizer based on potential contacts.

In summary, our contributions are threefold: a) we propose a novel algorithm for grasping from
open-ended language using LVLMs, b) we conduct extensive comparisons and ablation studies in
real cluttered indoor scenes data [39, 40], where we show that our prompting strategies enable
LVLM:s to ground arbitrary natural language queries, such as open-vocabulary object descriptions,
referring expressions and user-affordances, while outperforming previous zero-shot vision-language
models by a significant margin, and c) we integrate OWG with a robot framework and conduct
experiments both in simulation and in the real world, where we illustrate that LVLLMs can advance
the performance of zero-shot approaches in the open-world setup.

2 Related Works

Visual Prompting for Vision-Language Models Several works investigate how to bypass fine-
tuning VLMs, instead relying on overlaying visual/semantic information to the input frame, a prac-
tise commonly referred to as visual prompting. Colorful prompting tuning (CPT) is the first work
that paints image regions with different colors and uses masked language models to “fill the blanks”
[41]. Other methods try to use CLIP [42] by measuring the similarity between a visual prompt and
a set of text concepts. RedCircle [43] draws a red circle on an image, forcing CLIP to focus on a
specific region. FGVP [44] further enhances the prompt by specifically segmenting and highlight-
ing target objects. Recent works explore visual prompting strategies for LVLMs such as GPT-4v, by
drawing arrows and pointers [35] or highlighting object regions and overlaying numeric IDs [26]. In
the same vein, in this work we prompt GPT-4v to reason about visual context while being grounded
to specific spatial elements of the image, such as objects, regions and grasps.



LLMSs/LVLMs in Robotics Recent efforts use LLMs as an initialization for vision-language-action
models [45, 46], fine-tuned in robot demonstration data with auxiliary VQA tasks [46, 45, 47]. Such
end-to-end approaches require prohibitive resources to reproduce, while still struggling to general-
ize out-of-distribution, due to the lack of large-scale demonstration datasets. Alternatively, modular
approaches invest on the current capabilities of LLMs to decompose language instructions into a
sequence of high-level robot skills [48, 11, 12, 22, 14], or low-level Python programs composing
external vision and action models as APIs [13, 23, 21, 22, 25, 49]. Such approaches mostly focus
on the task planning problem, showcasing that the world knowledge built in LLMs enables zero-
shot task decomposition, but require external modules [28, 29, 30, 42] to ground plan steps to the
environment and reason about the scene. Recent works study the potential of LVLMs for inherently
grounded task planning [27, 50, 51]. In [50], the authors use GPT-4v to map videos of human per-
forming tasks into symbolic plans, but do not consider it for downstream applications. VILA [27]
feeds observation images with text prompts to an LVLM to plan without relying on external detec-
tors. However, produced plans are expressed entirely in language and assume an already obtained
skill library to execute the plans. MOKA [51] proposes a keypoint-based visual prompting scheme
to parameterize low-level motions, but still relies on external vision models to perform grounding,
and does not consider referring expressions and clutter.. In our work, we use visual marker prompt-
ing to leverage LVLMs for the full stack of the open-world grasping pipeline, including grounding
referring expressions, task planning and low-level motion parameterization via grasp ranking.

Semantics-informed Grasping Most research on grasping assumes golden grounding, i.e., the
target object is already segmented from the input scene. Instead, they focus on proposing 4-
DoF grasps from RGB-D views [52, 53, 54, 38, 55, 56, 57], or 6-DoF poses from 3D data
[58, 59, 60, 61, 62, 63, 64]. Recently, several works study language-guided grasping in an end-
to-end fashion, where a language model encodes the user instruction to provide conditioning for
grasping [65, 66, 39]. However, related methods typically train language-conditioned graspers that
struggle to generalize outside the training distribution. Another similar line of works is that of
task-oriented grasping [67, 68], where recent LLM-based methods [69] exploit the vast knowledge
of LLMs to provide additional semantic context for selecting task-oriented grasps, but do not con-
sider the grounding problem, clutter or referring expressions. Further, none of the above approaches
consider the planning aspect, typically providing open-loop graspers that do not incorporate envi-
ronment feedback. In this work, we leverage LVLMs to orchestrate a pipeline for language-guided
grasping in clutter, exploiting it’s multimodal nature to jointly ground, reason and plan.

3 Method

3.1 Prerequisites and Problem Statement

Large Vision-Language Models VLMs receive a set of RGB images of size H x W: Zy.5r, T €
RA*Wx3 and a sequence of text tokens 7, and generate a text sequence ) of length L: Y = wy.;, =
{w1,...,wy} from a fixed token vocabulary w; € W, such that: ) = F(Zy.ps, T ). The images-text
pair input X = (Zy.ps, T) is referred to as the prompt, with the text component 7 typically being a
user instruction or question that primes the VLM for a specific task.

Grasp Representations We represent a grasp via an end-effector gripper pose G, with G € R* for
4-DoF and G € RS for 6-DoF grasping. Such representation contains a 3D position and either a yaw
rotation or a full SO(3) orientation for 4-DoF and 6-DoF respectively. 4-DoF grasps assume that the
approach vector is calibrated with the camera extrinsics, and hence can be directly drawn as rectan-
gles in the 2D image plane (see bottom of Fig. 2), which happens to be a favorable representation for
VLMs, as grasp candidates can be interpreted as part of the input image prompt. A motion primitive
is invoked to move the arm to the desired gripper pose G, e.g. via inverse-kinematics solvers. !

"More sophisticated motion planning algorithms, e.g. with integrated obstacle avoidance, can be utilized
orthogonal to our approach.
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Figure 2: Overview of OWG: Given a user instruction and an observation, OWG first invokes a segmentation
model to recover pixel-level masks, and overlays them with numeric IDs as visual markers in a new image. Then
the VLM subsequently activates three stages: (i) grounding the target object from the language expression in
the marked image, (ii) planning on whether it should grasp the target or remove a surrounding object, and
(iii) invoking a grasp synthesis model to generate grasps and ranking them according to the object’s shape and
neighbouring information. The best grasp pose (highlighted here in pink - not part of the prompt) is executed
and the observation is updated for a new run, until the target object is grasped. Best viewed in color and zoom.

Problem Statement Given an RGB-D observation Z, € R¥*W>3 D, ¢ REXW and an open-
ended language query 7, which conveys an instruction to grasp a target object, the goal of OWG
is to provide a policy 7(a; | Zy, Dy, T). Assuming n € {1,..., N} the N objects that appear in
the scene and n* the target object, then at each time step ¢, the policy outputs a pose for grasping
an object: a; = G¢(n), Gi(n) = G(n,Z;,D:), t = 1,...,T, where the last step T’ always maps
to grasping the target object: ar = Gr(n*). We refer to the function G as the grasp generation
function, which corresponds to a pretrained grasp synthesis network from RGB-D views [38] > We
note that our policy 7 outputs directly the actual gripper pose G = G(n), and the object-centric
abstraction n is used implicitly (details in next sections).

‘We wish to highlight that in most grasp synthesis pipelines [38, 55, 53, 57, 56], it’s always 7' = 1 and
ay; = G1(n*), which corresponds to an open-loop policy attempting to grasp the object of interest
once. Our formulation for 7" > 1 allows the VLM to close the loop by re-running after each step,
which enables visual feedback for planning and recovery from failures / external disturbances.

3.2 Pipeline Overview

OWG combines VLMs with pretrained 2D instance segmentation and grasp synthesis models. Seg-
mentation methods like SAM [37] and its variants [70, 71] have demonstrated impressive zero-shot
performane. Similarly, view-based grasp synthesis networks [56, 55, 38, 53, 57] have also shown to
be transferable to unseen content, as they are trained without assumptions of objectness or semantics
in their training objectives. The zero-shot capabilities of these models for low-level dense spatial
tasks is complementary to the high-level semantic reasoning capabilities of VLMs, while both use
images as the underlying representation, hence offering a very attractive coupling for tackling the
open-world grasping problem. The overall pipeline can be decomposed in three subsequent stages:
(i) open-ended referring segmentation, (ii) grounded grasp planning, and (iii) grasp generation and
ranking. A schematic of OWG is shown in Fig. 2 and described formally in Algorithm 1. Prompt
implementation details can be found in Appendix A.

Open-ended referring segmentation In this stage, the target object of interest must be segmented
from the input RGB image Z; given the instruction 7. To enable this, we first run our segmentation
model S : RE>XW>3 5 10 1}XW and then draw the N generated masks My.y = S(Z;) with
additional visual markers in a new frame Z;". This step aims to exploit the VLM’s OCR capabilities

2Other point-cloud [59] or voxel-based [62] methods for 3D grasp generation can be utilized orthogonal to
our approach, which uses single RGB-D view.



User: I broke my mug, can you get me something to fix it?
GPT-4v: To find the object that best matches the description: "I broke my
mug, can you get me something to fix it?", I will look for an item that could be

adhesive. In the first image, there are several items on the table, but the one that

used to repair a broken mug, which would most likely be some form of

Prompt: [..] determine a plan to ensure a target object is graspable. [...]
Respond with a numbered list of objects to manipulate, by referring to their
numeric IDs [.... Task instruction: "Grasp object [9]".

GPT-4v: To grasp [9], it appears that objects [17] and [6] are dircctly breaking
access to it. These object must be removed first to clear the way for a

Prompt: [..] Provide a list of the grasp IDs sorted from best to worst.

GPT-4v: The object of interest outlined with a red line appears to be a
banana [...]. The grasp poses closest to surrounding object are [1], [2]
and [9] [...]. Good grasp poses are those whose centers are inside the
body of the banana and not close to surrounding objects. These would

likely be: [4], [5), [6] and [7]. The next best would be those that are
inside the body but closer to the edges, which might be [3] and [8]. The

stands out as the potential adhesive is the tube near the bottom of the image.
This tube could be a glue or a similar substance that could be used to fix a

successful grasp of [9].
My final answer is:
broken mug. In the second image, the tube is marked with the color blue and
has the ID number 3 inside a black rectangle.

My final answer is: [3]

1. remove [17] least favorable grasp poses are the closest to surrounding objects or at
2. remove [6] the very ends of the banana, which are [1], [2] and [9].

3. pick [9] My final answer is: [4, 5. 6,7, 3, 8, 1,2,9]

AN AN J

Figure 3: Example GPT-4v responses (from left to right): a) Open-ended referring segmentation, i.e., ground-
ing, b) Grounded grasp planning, and ¢) Grasp ranking via contact reasoning. We omit parts of the prompt and
response for brievity. Full prompts in Appendix A and more example responses in Appendix E.

and link each segment in the frame with a unique ID that the VLM can use to refer to it. After
augmenting the image with visual markers, we pass the prompt < Z;,Z;",T > to the VLM. We
refer to this VLM generation as 97" such that: n* = F97°und(Z, 7™ T) where n* the target
object and M,,~ its segmentation mask. We note that 7 can contain free-form natural language
referring to a target object, such as open object descriptions, object relations, affordances etc.

Grounded grasp planning This
stage attempts to leverage VLM’s vi-
sual reasoning capabilities in order to
produce a plan that maximizes the
chances that the target object nx is
graspable. If the target object is
blocked by neighboring objects, the

Algorithm 1: Open-World Grasper (OWG)

Require: Initial observation (Z;,D;), language instruc-
tion 7, segmentor S(-), grasp generator G(-), VLMs
]:ground’ ]:plan’ ]:rank

Ensure: n* #n
t+—1
while n* #£ 71 do

agent should remove them first by
picking them an placing them in free
tabletop space. Similar to [27], we
construct a text prompt that describes
these two options (i.e., remove neigh-
bor or pick target) as primitive actions
for the VLM to compose plans from.
We provide the marked image Z;™ to-
gether with the target object n* (from

Generate segmentation masks M7,y with S(Z;)
Draw visual markers from M.y in a new frame Z;"
n* < Foround(T, Tm T) > Object of interest
L FPlan(zm n*)[0] > Next object to grasp
G1.x < G(Z;, Dy, M) > Grasp generation
Crop Rol and draw grasps ¢y from Z;, My, G1.x
G+ Fromk(cpr) > Grasp ranking
Execute grasp Gy

t+—t+1 > Update observation Z;, D,

the previous grounding stage) to de- end while

termine a plan: py.7 = FP"(I™ n*), p, € {1,..., N}. Bach p, corresponds to the decision to
grasp the object with marker ID n € {1,..., N}. As motivated earlier, in order to close the loop,
we take the target of the first step of the plan 7 = p; and move to the grasping stage of our pipeline.

Grasp generation and ranking After determining the current object to grasp 7, we invoke our
grasp synthesis model G to generate grasp proposals. To that end, we element-wise multiply the
mask M; with the RGB-D observation, thus isolating only object n* in the input frames: I, =
7, ® My, D, = Dy ® M;. The grasp synthesis network outputs pixel-level quality, angle and width
masks which can be directly transformed to 4-DoF grasps G1.x = G(ft, ﬁt) [56, 55, 38], where K
the total number of grasp proposals. Then, we crop a small region of interest c; around the bounding
box of the segment in the frame Z;, from its mask Mj;. We draw the grasp proposals G;.x as 2D
grasp rectangles within the cropped image c;; and annotate each one with a numeric ID marker,
similar to the grounding prompt. We refer to the marked cropped frame as ¢;. Then, we prompt the
VLM to rank the drawn grasp proposals: G/ . = F"*"¥(c..) where the prompt instructs the VLM
to rank based on each grasp’s potential contacts with neighboring objects. Finally, the grasp ranked
best by the VLM G is selected and sent to our motion primitive for robot execution.

4 Experiments

In this section, we compare the open-ended grounding capabilities of OWG vs. previous zero-shot
methods in indoor cluttered scenes (Sec. 4.1). Then, we demonstrate its potential for open-world



grasping both in simulation and in hardware (Sec. 4.2). Finally, we investigate the effect of several
components of our methodology via ablation studies (Sec. 4.3).

4.1 Open-Ended Grounding in Cluttered Scenes

In order to evaluate Found.

Method pand: | Name  Attribute Spatial - Visual - Semantic g 400 Ni‘:}'ﬁ‘ Ave.

the open-ended po- ReCLIP[72]  CLIP[42] | 714 577 273 474 462 62.5 208 47.6:17.0
; RedCircle [43]  CLIP[42] | 524  53.9 182 421 462 189 125 348+164
tential of OWG for FGVP [44] CLIP[42] | 500 539 333 36.9 53.8 433 201 43.0+03
grounding, we cre- FGVP* [44] CLIP[42] | 657 654 333 01 9.2 56.2 201 518+154
QWEN-VL2[31] QWENDI] | 643 609 524 440 471 119 021 46.1x159

ate a small subset of SoM [26] GPT4v (73] | 548 423 546 579 53.9 625 458 530464
OCID-VLG test split OWG (Ours)  GPT4v[73] | 857 808 758 737 769 93.8 792 80.8+6.4

[39], which we man- Table 1: Zero-shot referring segmentation - mloU(%) results per language
ually annotate for a instruction type for cluttered indoor scenes from OCID [40].

broad range of grasping instructions. As we strive for zero-shot usage in open scenes, we
mostly experiment with previous visual prompting techniques for large-scale VLMs, such as CLIP
[43, 44, 72], as well as the recent Set-of-Mark prompting methodology for GPT-4v [26], which con-
stitutes the basis of our method. We also include comparisons with open-source visually-grounded
LVLM QWEN-VL-2 [31]. Please see Appendix C for details on the test dataset, baseline imple-
mentations and more comparative ablations and qualitative results.

We observe that both CLIP-based visual prompting techniques and open-source LVLMs are decent
in object-based but fail to relate objects from the visual prompts. Even GPT-4v-based SoM prompt-
ing method is not directly capable of handling cluttered tabletop scenes from depth cameras, as is
evident by the 53.1% averaged mIoU across all query types. Overall, our OWG-grounder achieves
an averaged mloU score of 80.8%, which corresponds to a 27.7% delta from the second best ap-
proach. Importantly, OWG excels at semantic and affordance-based queries, something which is
essential in human-robot interaction applications but is missing from modern vision-language mod-
els. We identify two basic failure modes: a) the LVLM confused the target description with another
object, e.g. due to same appearance or semantics, and b) the LVLM reasons correctly about the
object and where it is roughly located, but chooses a wrong numeric ID to refer to it.

4.2 Open-World Grasping Robot Experiments @) recvenmmiien

Pass the flashlight that
is behind the blue cereal box

In this section we wish to evaluate the full stack of
OWG, incl. grounding, grasp planning and grasp
ranking via contact reasoning, in scenarios that emu-
late open-world grasping challenges. To that end, we
conduct experiments in both simulation and in hard-
ware, where in each trial we randomly place 5-15
objects in a tabletop and instruct the robot to grasp
an object of interest. We conduct trials in two scenar-
ios, namely: a) isolated, where all objects are scat-
tered across the tabletop, b) cluttered, where objects
are tightly packed together leading to occlusions and
rich contacts. We highlight that object-related query
trials contain distractor objects that share the same
category with the target object.

Baselines We compare with two baselines, namely:
a) CROG [39], an end-to-end referring grasp syn-
thesis model trained in OCID [40] scenes, and b)
SayCan-IM [12], an LLM-based zero-shot plan-
ning method that actualizes embodied reasoning via
chaining external modules for segmentation, grounding and grasp synthesis, while reasoning with
LLM chain-of-thoughts [74]. Our choice of baselines aims at showing the advantages of using an

Figure 4: Open-ended language-guided
grasping trials in Gazebo (fop) and real robot
(bottom), in isolated (left column) and clut-
tered (right column) scenes.



LVLM-based method vs. both implicit end-to-end approaches, as well as modular approaches that
rely solely on LLMs to reason, with visual processing coming through external tools. See details in
baseline implementations in Appendix B.

Implementation Our robot setup consists of

two URSe arms with Robotiq 2F-140 parallel =~ Setup CROG [39]  SayCan-IM[12] OWG (Ours)

JaW grippers and an ASUS thon depth Cam_ seen unseen seen unseen seen unseen
. .. Simulation (x50)

era. We conduct 50 trials per scenario in the -Isolated 660 360 620  60.0 780 820

Gazebo simulator [75], using 30 unique object - ’flx’e;:l"( 5 B0 20 480 60 620 660
. eal-Worl X0,

models. For real robot experiments, we conduct -Isolated 500 166 666 333 833  66.6

-Cluttered 16.6 0.0 16.6 16.6 50.0 50.0

6 trials per scenario having the initial scenes as

similar as possible between baselines. In both
SayCan-IM and our method, Mask-RCNN [76]
is utilized for 2D instance segmentation while

Table 2: Averaged success rates (%) over simulated
and real-world grasping trials. The X represents num-
ber of trials per cell.

GR-ConvNet [38] pretrained in Jacquard [52] is used as the grasp synthesis module. Our robotic
setup is illustrated in Fig. 4, while more details can be found in Appendix B. To investigate general-
ization performance, all method are evaluated in both scenarios, in two splits: (i) seen, where target
objects and queries are present in the method’s training data or in-context prompts, and (ii) unseen,
where the instruction refers to objects that do not appear in CROG’s training data or SayCan-IM’s
in-context prompts. Averaged success rate per scenario is reported, where a trial is considered suc-
cessful if the robot grasps the object and places it in a pre-defined container position.

Results We observe that the supervised

method CROG struggles when used at un-

seen data, in both scenarios. In con- -
trary, both SayCan-IM and OWG demon-
strate immunity to seen/unseen objects, il- r
lustrating the strong zero-shot capabilities <
of LLM-based approaches, which can nat-
urally generalize the concepts of object —

Cluttered

Method

80 1000 20 a0 60 80 100
Success Rate (%)

categories/attributes/relations from language.
SayCan-IM is limited by the external vision
models and hence struggles in cluttered scenes,

Figure 5: Distribution of failures across grounding and
grasping in Gazebo grasping trials for isolated (left) and
cluttered (right). OWG improves performance across

where its detector sometimes fails to perceive Poth modes in both setups and test splits.

the target object, resulting in lower final success rates compared to OWG, especially in the real-
world experiments. OWG consistently outperforms both baselines both in simulation and in the
real robot, with an ~ 15% and ~ 35% improved averaged success rate respectively. In Fig. 5,
we illustrate the decomposition of failures across grounding and grasping in our baselines for 25
Gazebo trials per scenario, where we automatically test for the target object’s grounding results
alongside success rate. We observe that OWG consistently reduces the error rates in both grasping
and grasping compared to the baselines in all scenarios and test splits. We believe that these results
are encouraging for the future of LVLMs in robot grasping.

4.3 Ablation Studies

In out ablations we wish to answer the following questions: a) What is the bottleneck introduced by
the segmentation model in the open-ended grounding performance?, b) What are the contributions
of all the different visual prompt elements considered in our work?, and ¢) What is the contribution
of the LVLM-based grasp planning and ranking in robot grasping experiments? The grounding
ablations for the first two questions are organized in Table 3, while for the latter in Table 4.

Instance segmentation bottleneck We compare the averaged mloU of our OWG grounder in a
subset of our OCID-VLG evaluation data for three different segmentation methods and ground-truth
masks. We employ: a) SAM [37], b) the RPN module of the open-vocabulary detector ViLD [28],
and c) the RGB-D two-stage instance segmentation method UOIS [77], where we also provide the
depth data as part of the input. VILD-RPN and UOIS both achieve a bit above 70%, which is a



~ 15% delta from ground-truth masks, while SAM offers the best baseline with a 10.8% delta from
ground-truth. Implementation details and related visualizations in Appendix C.

Visual prompt components Visual prompt design  Method mloU (%)
choices have shown to significantly affect the perfor- ~ OwG (w/ Ground-Truth Mask) 86.6
mance of LVLMs. We ablate all components of our -wi/o reference 23.2
grounding prompt and observe the contribution of each g;g E;‘g’;‘:’reergoverlay g‘llg
one via its averaged mloU in the same subset as above -wlo self-consistency 70.9
(see details in Appendix A.2). The most important -w/ box 74.6
prompt component is the reference image, provided -w/o CoT prompt 77.6
alongside the marked image. Due to the high clutter of ~wio mask fll S11
our test scenes, simply highlighting marks and label IDs E,?Ll\g_[l‘zyN 78] ;gg

in a single frame, as in SoM [26] hinders the recogni-  yOIS [77] 71.1
tion capabilities of the LVLM, with a mIoU drop from
86.6% to 23.2%. Further decluttering the marked image
also helps, with overlaying the numeric IDs, using high-resolution images and highlighting the in-
side of each region mask being decreasingly important. Surprisingly, also marking bounding boxes
leads to a 12% mloU drop compared to avoiding them, possibly due to occlusions caused by lots
of boxes in cluttered areas. Finally, self-consistency and chain-of-thought prompting components
that were added also improve LVLM’s grounding performance by ~ 16 and 10% respectively, by
ensembling multiple responses and enforcing step-by-step reasoning.

Table 3: Grounding ablation studies.

Grasp-Related Ab.latlons We q}lantlfy the .contrlbutlon Method Isolated  Cluttered
of our grasp plapmpg and ranklng stages in .the open- o 4.0 68.0
world grasping pipeline, by replicating trials as in the pre- -w/o planning 80.0 46.0
vious section and potentially skipping one or both of these -w/o grasp ranking  82.0 60.0

stages. As we see in Table 4, the effect of these compo- ~w/o both 800 12.0

nents is not so apparent in isolated scenes, as objects are  Table 4: Averaged success rates (%) over
not obstructed by surroundings and hence most proposed 50 simulated grasping trials per scenario.
grasps are feasible. The effect becomes more prominent in the cluttered scenario, where the lack of
grasp planning leads to a success rate decrease of 22%. This is because without grasp planning the
agent attempts to grasp the target immediately, which almost always leads to a collision that makes
the grasp fail. Grasp ranking is less essential, as a lot of contact-related information is existent in
the grasp quality predictions of our grasp synthesis network. However, it still provides an important
boost in final success rate (8% increase). When skipping both stages, the agent’s performance drops
drastically in cluttered scenes, as it is unable to recover from grasp failures, and hence always fails
when the first attempted grasp was not successful.

5 Conclusion, Limitations & Future Work

In this paper we introduce OWG, a novel system formulation for tackling open-world grasping. Our
focus is on combining LVLMs with segmentation and grasp synthesis models, and visually prompt
the LVLM to ground, plan and reason about the scene and the object grasps. Our works sets a
foundation for enabling robots to ground open-ended language input and close-the-loop for effective
grasp planning and contact reasoning, leading to significant improvements over previous zero-shot
approaches, as demonstrated by empirical evaluations, ablation studies and robot experiments.

Limitations First, as OWG is a modular approach, it suffers from error cascading effects intro-
duced by the segmentor and grasp synthesis models. However, improvements in these areas mean
direct improvement to the OWG pipeline. Second, we currently use 4-DoF grasps to communicate
them visually to GPT-4v, which constrains grasping to single view. In the future we would like to
integrate 6-DoF grasp detectors and explore new prompting schemes to aggregate and rank grasp
information visually. Third, our results suggest that LVLMs still struggle to ground complex object
relationships. More sophisticated prompting schemes beyond marker overlaying, or instruct-tuning
in grasp-related data, might be a future direction for dealing with this limitation.
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Towards Open-World Grasping with Large
Vision-Language Models

Supplementary Material

A LVLM prompts

A.1 Prompts

Prompts for the three use cases considered in this work, namely: open-ended referring segmentation,
grounded grasp planning, and grasp ranking can be found below.

* Open-ended referring segmentation: referring_segmentation.txt
Takes an observation image, a marked copy with highlighted instance masks and label IDs
and an open-ended language query referring to a particular object instance, and outputs
the label ID of the referred object. The LVLM is encouraged to provide chains-of-thought
reasoning in cases where the input query contains complex expressions that involve multiple
object and spatial relations.

* Grounded grasp planning: grasp_planning.txt
Takes the marked image and the label ID of the target object to be grasped, and outputs a
plan to ensure the target object will be graspable. The plan consists of remove actions for
blocking objects and a final pick action for the target.

* Grasp ranking: grasp_ranking.txt
Takes a cropped bounding box image around the next object to be picked, marked with
grasp proposals from a 4-DoF grasp synthesis model and a set of label IDs, and outputs a
sorted list of grasp IDs, from most to least confidence for a successful grasp. The LVLMs is
encouraged to reason about the object shape and their neighbouring objects before producing
a final ranking.

A.2 Visual Prompt Design

In the following, we summarize the key visual prompting elements that were used for prompting the
LVLM in the context of OWG:

Clarity of visual markers The most common failure mode of visual marker prompting with GPT-4v
is that it sometimes struggles to discriminate which ID corresponds to what segment. Especially in
cluttered scenes, label IDs might severely overlap within small frame regions. Several techniques can
assist in making the markers more clear to the LVLM: a) we adopt the algorithm of [1] for overlaying
numeric IDs within the frame with minimal overlap, b) we paint both the internal of each segment’s
mask and its ID with the same unique color (colors are chosen to be visually distinguishable), and c)
increase the resolution of the marked image and the size layout of the markers.

Reference Image If not highlighting the internal of each segment, GPT-4v sometimes refers to
regions with wrong IDs, especially in highly cluttered scenes. But if the masks are highlighted
with high opacity, then the appearance of the object becomes less visible and GPT-4v struggles to
recognize it. We propose a technique to ameliorate this is by passing both the original (reference) and
the marked image and constructing a text prompt that explains that the latter corresponds to annotated
segments of the first.
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Chain-of-thoughts Chain-of-Thought (CoT) prompting is a well-established methodology for guid-
ing LLMs to perform multi-step reasoning and reduce hallucinations [2]. We find that LVLMs share
similar properties and prompting them to reason about their final answer before producing it can
robustify the response quality. For grounding, we ask GPT-4v to decompose the input instruction
in steps and refer to all intermediate referenced objects. For grasp planning, we ask it to explicitly
mention all object IDs that are blocking the target object, before producing a plan. For grasp ranking,
we decompose the prompt in three steps: (i) identify the category of the target object and provide a
general description of what constitutes a good grasp for it given its shape, (ii) list the grasp IDs that
will most likely lead to contact with neighboring objects, and (iii) rank the grasp IDs based on the
previous two steps.

Self-consistency Even with zero temperature, we observe that the outputs of GPT-4v are not always
reproducible. We find that sometimes GPT-4v might produce different responses at different runs,
even with exactly the same prompt. In an attempt to reduce the effect of this phenomenon and
robustify LVLM outputs, we use the self-consistency method developed for LLMs [3]. In particular,
we ask GPT-4v to provide multiple responses, parse each one separately and then perform majority
voting to determine the most consistent output.

B Robot experiments

B.1 Setups

Our object catalog for seen/unseen trials is shown in Fig. 1. In Gazebo, isolated scenarios are
generated by ensuring all spawned objects have a fixed 3D distance, while in cluttered scenarios
we ensure contact between the target object and neighbouring objects, by first spawning the target
and then sampling different poses for other object models around it. In real-robot experiments,
we manually setup the scenes while making sure to replicate the setup as close as possible for fair
comparisons between baselines. In all trial scenes that contain distractor objects, the user instruction
refers to some property that disambiguates the target instance from other objects of the same category,
using names, attributes and spatial relations. We also conduct experiments without distractors for
affordance-based queries, which require semantic reasoning to be correctly grounded.

For real robot experiments, we use the default
torchvision implementation of Mask-RCNN, with
the model weights provided by PyTorch Hub, fine-
tuned in a few annotated scenes captures from our
robot setup. For grasp synthesis, we generate a top-
down orthographic projection of the scene, both for
color and for depth (i.e. reverse depth - heightmap).
This is the input we pass to the pretrained GR-
ConvNet. In order to align regions from the 2D
frame where Mask-RCNN provides segmentations
and the orthograpic projection where our grasp syn-
thesis model provides grasp poses, we use the Hun-
garian matching algorithm to match the centers of
outputs from both models, after projected to 3D and
transformed to a world reference frame (robot base), using 3D euclidean distance as the cost function.

Figure 1: Seen (left column) and unseen (right
column) object used in our robot experiments
in Gazebo (fop) and the real world (bottom).

B.2 Baseline Implementation

CROG CROG receives an single 448 x 448 RGB view and a natural language query, and provides
both an instance segmentation mask for the target object, as well as a set of 4-DoF grasp proposals,
assuming that the gripper approaches the object aligned with the perspective of the camera. We
use the checkpoint provided by the original paper, trained in the multiple split of OCID-VLG
dataset, which contains 90k scene-query-grasp data from around 1,000 unique scenes from 31



Name Attribute Spatial Rel. Visual Rel. Sem. Rel. Multi-hop Affordance Total
42 26 33 19 13 24 16 173

Table 1: Number of samples in grounding evaluation dataset.

object categories. The model uses CLIP’s pretrained ResNet-50 visual and BERT text encoders, but
fine-tunes them end-to-end in OCID scenes for joint grounding and grasp synthesis tasks.

SayCan-IM Our SayCan-IM baseline follows the implementation publicly released by the SayCan
work [4], which can be found in this HTTP URL. In particular, the pipeline uses the ViLD [5]
open-vocab object detector to turn the input observation image into a list of object names and then
lets the LLM generate a sequence of pick-and-place actions to perform in order to solve the task
given by the user. We made the following modifications to the above baseline:

1. In the original implementation, the robot only has access to a pick_and_place skill, and
the output plan is confined to only selecting what objects to pick and where to place them
(based on the detected object list from ViLD). In our implementation, we also provide a
visual_grounding tool, which lets the LLM invoke CLIP [6] to rank a list of candidate
objects with a given text description and select the most similar one. This is to allow the
LLM reason about attribute concepts besides object category (e.g. “get the blue mug”).

2. Besides the names of the appearing objects, we also provide their bounding box coordinates,
as detected by ViLD, in x1y1x2y2 format in the prompt. This was introduced in order to
enable the LLM to also reason about the locations of objects and resolve spatial relation
queries, as well as reason about the feasibility of grasping objects by checking whether their
bounding boxes overlap.

3. We replace the pick_and_place primitive skill with two distinct skills: remove and pick.
The first skill corresponds to removing a blocking object in order to clear the path for
grasping the target. The second skill corresponds to picking the target object that the user
requested. Both skills use GR-ConvNet [7] under-the-hood to sample grasp proposals, select
the one with higher predicted grasp quality, and use an IK solver to control the robot arm.

4. We used the observe-reason-act prompting style first introduced by Inner Monologue [§]
and later improved by ReAct [9]. Unlike the vanilla implementation, which simply produces
a plan of steps without feedback, with this technique we let the LLM plan one step at a time,
and integrate feedback from the environment (e.g. CLIP outputs, grasp failures etc.) before
planning again.

The system prompt and in-context examples used in our SayCan-IM baseline are shown in Fig. 2.
As we mention in our main paper, for the real robot experiments, we replace ViILD-RPN with a
Mask-RCNN [10] for instance segmentation, and use CLIP with prompts for all object used in
experiments to recognize the categories and provide the object list state to the LLM.

C Offline grounding experiments

C.1 OCID Dataset Details

We manually annotate 173 images from OCID dataset with the following query types: a) name
(open-vocabulary object descriptions), b) attribute, c) spatial relations, d) visual relations, ¢)
semantic relations, f), multi-hop reasoning, and g) user-affordances. The number of annotations
per query type given in Table 1. We make sure to include unique test scenes from the dataset and
include images with heavy clutter. The target of each scene within a query type is unique, and we
make sure to include images with distractor objects (of the same category as the target) for all query
types that require relational reasoning (all except name and affordance).


https://github.com/google-research/google-research/blob/master/saycan/SayCan-Robot-Pick-Place.ipynb

Regarding our custom FGVP-CLIP baseline (FGVP*), we present analytical comparisons and ablation
in the following subsection.

C.2 Baselines Implementation and Ablations

We utilize the provided demo applications for the end-to-end methods (SEEM, PolyFormer) to
conduct grounding experiments manually. For CLIP-based baselines, we re-implement all methods
from the corresponding papers (ReCLIP, RedCircle, FGVP) . We use the ViT-B visual encoder to
extract features from image segments and the default BERT text encoder to represent the input query.
CLIP-based baselines compute the cosine similarity between segment and text features to rank them
and select the most similar segment as the final result via the argmax operator. Ground-truth masks
are used for all CLIP-based baselines, similar to GPT-4v ones. We would like to highlight that in
the original papers, the aforementioned baselines use potential post-processing steps to enhance the
grounding capabilities of CLIP. In particular, ReCLIP uses syntactic parsing to extract entity and
relation words/phrases from the input query, as well as spatial relation resolution heuristics (e.g.
’left’, *on’ etc. - designed specifically for the RefCOCO dataset) to process the relations analytically
and combine CLIP predictions only for the entities. RedCircle and FGVP additionally utilize a
"subtraction" post-processing step, where they further subtract from the similarity values the average
in a set of mined hard-negative queries (again selected for a specific dataset). We believe that such
steps constitute domain-aware hand-crafted efforts, which even though helpful, do not represent the
challenges of open-ended generalization, which is the primary focus of this work. As a result, we do
not consider such post-processing steps in our baseline implementation.

Comparisons with end-to-end approaches The need for manual annotations to exhaust all possible
language query inputs, as well as the need for manual testing via online demo applications for
the considered specialist end-to-end methods (SEEM, PolyFormer) restrained us from conducting
experiments in large-scale. Instead, we originally conducted experiments in a smaller subset of 52
images. Results are given in Table 3. Results follow similar patterns to the larger test set of the main
paper. Specialist models (SEEM, PolyFormer) struggle with even simple name queries, scoring below
15% on average. This is potentially due to the high discrepancy between the training distribution of
RefCOCO and Visual Genome and our test data, as well as the lack of relational and affordance-based
language in these datasets. GPT-4v-based methods still compare favourably to CLIP-based baselines,
even in the SoM setting where single marked image is used. Overall, our OWG-grounder achieves an
averaged mloU score of 70.4%, which is almost x 2 from the previous approach.

CLIP Visual Prompt Ablations To further analyze the performance of CLIP-based baselines, we
conduct ablation studies where we use specific elements of each method. In particular, we study:
a) effect of using multi-templates for the text prompt, where we average text embeddings from
multiple versions of the query, using templates from the original paper, b) averaging similarity scores
from the visual prompt and crops of each segment, as originally proposed in ReCLIP, c) different
visual prompt schemes, like drawing a boundary (rectangle or ellipse - as in RedCircle), converting

w/ Crop w/ White-Back. w/Blur-Rev w/ Gray-Rev w/Multi Temp. Rect. Ellipse Mask \ mloU

X 18.3

X 31.1

X 34.8

X X 33.7

X X 24.6

X X 26.3

X X X 34.9

X X X X 415

X X X X X 43.0

X X X X X X 51.8
X X X X X X X | 512

Table 2: Component ablation studies for CLIP-based visual prompting. Results in %.



Found. . Spatial Visual  Semantic Multi-
Method Model Name  Attribute Relation Relation Relation Affordance hop Avg.
PolyFormer - 20.9 13.3 2.6 0.8 3.1 6.7 8.3 8.0
SEEM - 233 10.1 4.6 10.5 10.2 7.9 17.5 12.1
ReCLIP CLIP 36.9 40.0 12.7 14.2 20.1 23.0 340 259
RedCircle CLIP 333 21.1 19.7 15.4 18.8 24.0 474 257
FDVP CLIP 25.1 19.0 23.7 25.2 12.3 22.5 22.8 21.6
SoM GPT-4v | 40.1 25.0 233 40.3 42.5 60.0 212 36.1
OWG (Ours) GPT-4v | 83.3 80.1 45.7 554 78.8 90.3 594 704

Table 3: Segmentation - mloU(%) results in different language input types for cluttered indoor scenes
from OCID.

to grayscale or blurring the rest of the frame (as proposed in FGVP), as well as a prompt that we
discover ourselves works good, using a white background for the rest of the frame. We note that in
our paper’s results the element combinations we used are the following:

ReCLIP: rectangle prompt, multi-templates, blur-reverse + crop,

RedCircle: ellipse prompt, multi-templates, gray-reverse + blur-reverse,

FGVP: mask prompt, multi-templates, gray-reverse + blur-reverse

Ablation results are shown in Table 2. Our findings are the following: 1) drawing a rectangle prompt
outperforms ellipse and mask (object contours) in itself, but ensembling rectangles and masks gives
the best result, 2) using multiple text templates outperforms single-template only when ensembling
multiple visual inputs, c) the most effective component is our method of replacing the rest of the frame
with white background, compared to grayscale and reverse operators of FGVP, while ensembling
all together gives the best performance. We call our custom FGVP baseline FGVP*. We present
analytical results per query type for CLIP-based baselines versus GPT-4v methods, as in the original
paper, for our extended evaluation dataset in Table ??. FGVP*represents the best configuration of
CLIP-based visual prompting as found by our ablation experiments. Results follow similar patterns to
the smaller subset of the main paper, with a significant performance boost for CLIP-based baselines.
However, GPT-4v-based methods still compare favourably to CLIP-based baselines, even in the
SoM setting where single marked image is used. Our OWG visual prompt scheme dramatically
outperforms all baselines, with a margin of 27.7% from SoM and 29.0% from the best found CLIP
visual prompt methodology, showcasing its superiority in cluttered indoor scenes context as in OCID.

C.3 Instance Segmentation Ablations

We use the checkpoints provided by the authors for UOIS [11] unseen object instance segmentation,
as well as the VIRL-RPN checkpoint and hyper-params from the implementation in this HTTP
URL. For SAM, we use the ViT-L variant of the released SAM [12] checkpoints, and search for
optimal hyper-parameters for automatic mask generator, resulting in the following configuration:
points_per_side=24, pred_iou_thresh=0.92, stability_score_thresh=0.95. We ap-
ply non-maximum suppression with an iou_threshold=0.5 and remove nested masks, i.e. masks
that are completely inside other masks of higher score threshold. This step aids in keeping only
object-level SAM predictions and decreasing the over-segmentation behavior that default SAM
provided in our first implementation. In turn, this leads to less cluttered visual markers for our OWG
grounding module. Example instance segmentation masks for the different methods are illustrated in
Fig. 5.

D GPT-4v Example Responses

In Figs. 6, 7, 8, we provide example responses for grounding different types of language queries
in OCID scenes. We observed that GPT-4v, augmented with marked image prompting, can ground
not just object-related queries but also complex referring expressions that require reasoning about
space, visual attributes, semantics and user-affordances. Interestingly, we find that GPT-4v responds
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to queries that require symbolic reasoning concepts such as counting and negation, which are
notoriously hard to emerge in specialist grounding models. In Fig. 9, we provide some example
responses corresponding to failure cases. Main failure modes include: a) grounding a distractor
instead of the desired object, b) not finding the object of interest at all, ¢) providing a correct reasoning
and identifying the target in the raw image, but providing a wrong ID of an irrelevant object.
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You are highly skilled in robotic task planning, identifying what object to grasp from a given user's instruction and planning how to grasp it successfully. If the object is in sight, you need to dircctly
manipulate it. If the object is not in sight, you need to use tools to find the object first. If the target object is overlapping with other objects, you need to remove all the blocking objects before picking up
the target object. The overlap condition requires that: For two bounding boxes [x1_a, y1_a, x2_a, y2_a] and [x1_b, y1_b, x2_b, y2_b], they overlap if:

2 bandx2 a>=xI_b

yla<=y2 bandy2 a>=yl b

Remember your last step plan needs to be "done"".

Consider the following tools the robot can use:

1. visual_grounding <list of object IDs> <text description to be grounded> (e.g. visual_grounding [3,4,7,11] 'blue and green'). The visual grounding tool should be used to determine which of the objects in
the input ID list best matches the text description.

2. remove <object ID> (e.g remove [6]). The remove tool should be used to pick blocking objects and move them to free space, in order to make the target object more graspable.

3. pick <object ID> (e.g pick [1]). The pick tool should be used to pick the target object and give it to the user.

You are only allowed to use the provided skills. It's essential to stick to the format of these basic skills. When creating a plan, replace the object ID placeholders with specific object instances using their
unique ID in square brackets as in the examples above.

Use the following two examples as a demonstration of how you should interact with the tools to control the robot and understand what the response format should be like.

#i Start of episode
User Input: "It's dark around here, I need some light".

Observation:

ID: 1, 'name’: binder’, 'x 1y 1x2y2': [0.49, 0.11, 0.68, 0.49]
ID' 2, 'name’s 02,027,042, 0.48]

'ID': 3, 'name': 'food bag!, 'x1y1x2y2': [0.66, 0.6, 0.78, 0.81]

'ID": 4, 'name': 'food can', 'x1y1x2y2": [0.3, 0.66, 0.38, 0.78]

'ID'; 5, 'name': ‘cereal box', 'x1y1x2y2": [0.23, 0.09, 0.47, 0.31]

'ID'; 6, 'name’; kleenex', 'x1y1x2y2": [0.37, 047, 0.55, 0.61]

'ID'; 7, 'name’: 'flashlight’, 'x 1y 1x2y2": [0.45, 0.79, 0.48, 0.95]

'ID'; 8, 'name’: 'marker’, 'x1y1x2y2"; [0.47, 0.73, 0.59, 0.85]

'ID'; 9, 'name': ‘glue stick', 'x1y1x2y2": [0.45, 0.63, 0.48, 0.7]

#Robot thought: The user mentions "It's dark around here, I need some light", indicating that they would like to use a tool that can act as a light source, such as a light bulb, a lamp or a flashlight. A
flashlight exists in the scene with ID [7], so I should pick it to provide it to the user. After inspecting the location coordinates of flashlight [7] compared to other objects, it appears that there is an overlap
with the marker [8]. x1=0.47 for marker [8] is between x1=0.45 and x2=0.48 of flashlight [7], and y2=0.85 for marker [8] is between y1=0.79 and y2=0.95 of flashlight [7]. This indicates that directly
picking flashlight [7] could lead to a failure, so T should first remove the neighboring marker [8].

#Robot action: remove [8]

Observation: You failed to grasp object [8]

#Robot thought: I failed to grasp the marker [8], so I should try again.

#Robot action: remove [8]

Observation: You successfully removed object [8]

#Robot thought: Since the target (flashlight [7]) is now available, I should pick it to give it to the user.

#Robot action: pick [7]

Observation: You successfully picked object [7]

#Robot thought: I have completed the task.

#Robot action: done

### End of episode

### Start of episode

User Input: "get the comn flakes next to the gray keyboard".
Observation:

'ID": 1, 'name': 'cereal box', 'x1y1x2y2": [0.57, 0.28, 0.82, 0.47]

'ID": 2, 'name': 'marker’, 'x1y1x2y2": [0.39, 0.44, 0.7, 0.64]

'ID": 3, 'name": 'flashlight’, 'x1y1x2y2": [0.38, 0.75, 0.49, 0.85]

'ID': 4, 'name': ‘cereal box', 'x1y1x2y2': [0.24, 0.46, 0.45, 0.69]

'ID": 5, 'name’; 'keyboard', 'x1y1x2y2': [0.6, 0.8, 0.95, 0.97]

'ID'; 6, 'name': 'keyboard', "x1y1x2y2": [0.19, 0.56, 0.32, 0.67]

'ID': 7, 'name’: ‘shampoo’, 'x 1y 1x2y2': [0.74, 0.48, 0.81, 0.6]

'ID'; 8, 'name’: ‘unknown’, "x1y1x2y2": [0.62, 0.64, 0.71, 0.74]

'ID'; 9, 'name’: Kleenex', 'x1y1x2y2": [0.46, 0.2, 0.56, 0.41]

'ID'; 10, 'name’: 'soda can’, 'x1y1x2y2'; [0.32, 0.69, 0.38, 0.71]

'ID': 11, 'name’: ball, 'x1y1x2y2": [0.55, 0.57, 0.63, 0.69]

'ID': 12, 'name': 'hand towel', 'x1y1x2y2": [0.17, 0.71, 0.35, 0.95]

'ID': 13, 'name’: ‘stapler’, 'x1y1x2y2": [0.53, 0.7, 0.57, 0.84]

'ID"; 14, 'name': 'ball’, 'x1y1x2y2"; [0.6, 0.7, 0.67, 0.79]

'ID"; 15, 'name': 'food bag', 'x1y1x2y2": [0.17, 0.41, 0.28, 0.58]

'ID": 16, 'name': 'food can', 'x1y1x2y2": [0.65, 0.32, 0.71, 0.4]

'ID'; 17, ‘name': 'sponge’, 'x1y1x2y2": [0.35, 0.59, 0.42, 0.7]

#Robot thought: The user mentions "get the corn flakes next to the gray keyboard", so I should: 1) identify the gray keyboard, 2) identify the corn flake objects, 3) filter the one whose next to the gray
keyboard, 4) pick the filtered corn flakes. There are two keyboard items in the scene ([5], [6]), T should find which one is the gray one. I will invoke the visual grounding tool to determine which one of the
two keyboards is gray.

#Robot action: visual_grounding [5,6] ‘gray'

Observation: Keyboard [6] is gray.

#Robot thought: I identified the gray keyboard [6]. Now I have to identify the corn flake objects. There are two cereal box items in the scene ([1], [4]). I have to look at their location coordinates and
identify which one is next to the keyboard.

Keyboard [6] coordinates are: (x1=0.19, y1=0.56, x2=0.55,y2=0.76), so the center would be: (x0=0.255, y0=0.66)

Cereal box [1] coordinates are: (x1=0.57, y1=0.28, x2=0.82, y2=0.47), so the center would be: (x0=0.695, y0=0.375)

Cereal box [4] coordinates are: (x1=0.24, y1=0.46, x2=0.45, y2=0.69), so the center would be: (x0=0.345, y0=0.575)

Therefore, the cereal box that is closest to the keyboard [6] is cereal box [4]. After inspecting the location coordinates of cereal box [4] compared to other objects, it appears that there is an overlap with
four other objects:

Marker [2] coordinates are: (x1=0.39, y1=0.44, x2=0.7,y2=0.64) which are overlapping with cereal box [4] coordinates: (x1=0.24, y1=0.46, x2=0.45, y2=0.69).

Keyboard [6] coordinates are: (x1=0.19, y1=0.56, x2=0.55,y2=0.76) which are overlapping with cereal box [4] coordinates: (x1=0.24, y1=0.46, x
Soda can [10] coordinates are: (x1=0.32, y1=0.69, x2=0.38,y2=0.71) which are overlapping with cercal box [4] coordinates: (x1=0.24, y
Sponge [17] coordinates are: (x1=0.35, y1=0.59, x2=0.42,y2=0.7) which are overlapping with cereal box [4] coordinates: (x1=0.24, y1=0.46, x2=0.45, y2=0.69).

This indicates that directly picking cereal box [4] could lead to a failure, so I should first remove the neighbouring objects ([2], [6], [10], [17]).

#Robot action: remove [2]

Observation: You successfully removed object [2]

#Robot thought: The marker [2] is out of the way. I will proceed with removing the keyboard [6].

#Robot action: remove [6]

Observation: You failed to grasp object [6]

#Robot thought: I failed to grasp the keyboard [6], so I should try again.

#Robot action: remove [6]

Observation: You failed to grasp object [6]

#Robot thought: I failed to grasp the keyboard [6], so I should try again.

#Robot action: remove [6]

Observation: You successfully removed object [6]

#Robot thought: The marker [2] and the keyboard [6] are out of the way. T will proceed with removing the soda can [10].

#Robot action: remove [10]

Observation: You successfully picked object [10]

#Robot thought: The marker [2], the keyboard [6] and the soda can [10] are out of the way. I will proceed with removing the sponge [17].

#Robot action: remove [17]

Observation: You failed to grasp object [17]

#Robot thought: I failed to grasp the sponge [17], so I should try again.

#Robot action: remove [17]

Observation: You successfully picked object [17]

#Robot thought: The marker [2], the keyboard [6], the soda can [10] and the sponge [17] are out of the way. Since the target (cereal box [4]) is now available, I should pick it to give it to the user.
#Robot action: pick [4]

Observation: You successfully picked object [4]

#Robot thought: I have completed the task.

#Robot action: done

### End of episode

Now begin:
#iit Start of episode

User Input: "{user_input}".
{episode_history}
Observation: {obs}
#Robot thought:""™"

8
Figure 2: System prompt and in-context examples for the LLM in the SayCan-IM baseline. The input field
user_input corresponds to the task given by the user, obs contains the scene state or feedback from actions
that is updated in each episode step, and episode_history the previous observation-thought-action cycles in
the current episode.
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I want to eat something healthy

Figure 3: Example output segmentation masks of different grounding methods for OCID scenes.
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Figure 4: Comparison of different segmentation models for seven example cluttered indoor scenes
from OCID dataset
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OCID Segmentation Mask comparisons

Ground-Truth ViLD-RPN

ViLD-RPN

Figure 5: Comparison of different segmentation models for seven example cluttered indoor scenes
from OCID dataset
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User: Feh package

GPT-4v: To find the object that matches the description "Feh package," I will
first look at the raw image to identify any packages that could potentially match
the description. Upon examining the raw image, I notice a package with the
text "Feh" on it. This package is located towards the left side of the image,
standing upright, and appears to be a box of some sort. Next, I will look at the|
marked image to find the same package and determine its unique ID. The
package with the text "Feh" on it in the raw image corresponds to the package|
in the marked image with the ID [12] on it. The package is in the same position
in both images, confirming that this is the correct object.

My final answer is: [12].

User: non ripe pear

GPT-4v: To find the 'non ripe pear,' I will first identify the pears in the raw
image. There are two pears visible on the floor. To determine which one is not
ripe, I will look for visual cues such as color. Typically, a non-ripe pear may
have a greener and firmer appearance compared to a ripe one, which would be
more yellow and possibly softer looking. In the raw image, the pear on the left
appears greener and is likely the non-ripe pear, while the pear on the right
seems more yellow and could be considered ripe. Now, I will look at the
marked image to find the ID corresponding to the greener pear. In the marked
image, the greener pear on the left has the ID [4]. Therefore, this is the ID that
corresponds to the 'non ripe pear.’

My final answer is: [4]
J

User: noodles

GPT-4v: To find the object that matches the description "noodles," I will first
examine the raw image to identify any items that could be noodles. Upon
inspection, I see a package with an image that appears to represent noodles on
the left side of the table. Next, I will look at the marked image to find the same
package and determine its unique ID. The package with the noodles is
highlighted with a unique color and is associated with the ID [5].

My final answer is: [5].

Object Attribute: S

User: green and red corn flakes

GPT-4v: To find the "green and red corn flakes," I will first look at the raw
image to identify the box of corn flakes. In the image, there are two cereal
boxes visible. One of them has a predominantly green color scheme with some
red elements, which matches the description of "green and red corn flakes."
This box is on the right side of the image, next to another cereal box with a blue
and yellow color scheme. Now, I will switch to the marked image to find the
same box of corn flakes with the corresponding ID. The box with the green and
red color scheme is highlighted with the same color as the ID number 9.

My final answer is: [9].

J

User: red soft thing for the hair

GPT-4v: To find the object that matches the description "red soft thing for the
hair," T will follow these steps: 1. Identify any red objects in the raw image, 2.
Determine which of these red objects could be described as "soft" and used for
the hair. In the raw image, there is a red object with white text that appears to
be a towel, which is typically soft and can be used for drying hair. This object is
located in the center of the image, draped over other items. Now, I will look at
the marked image to find the same object and its corresponding ID. The red
towel in the marked image has been highlighted with a unique color and is
labeled with the ID number 4.

My final answer is: [4].
My [4]

J

User: cube

GPT-4v: To find the object that matches the description "cube," I will first
look at the raw image to identify any objects that have a cubic shape. In the raw
image, there is an object that appears to be a cube towards the right side of the
image, slightly above the center. It has a rusted appearance and seems to be a
cube due to its equal-length edges and square faces. Now, I will look at the
marked image to find the same object with its corresponding ID. The object
with the cubic shape in the same location is highlighted with a color and has the
ID number 9 next to it.

My final answer is: [9]

\.

Figure 6: Example GPT-4v responses (1/3): object-related queries
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User: food box under the choco-banana

GPT-4v: To find the "food box under the choco-banana,” T will first identify
the choco-banana in the raw image. The choco-banana appears to be a box with
an image of a banana and chocolate on it, located towards the bottom right of
the image. Now, I will look for any food box that is positioned under it. In the
raw image, there is a box directly underneath the choco-banana box. This box
is likely the "food box" mentioned in the description. To find the corresponding
ID, I will now switch to the marked image and look for the same box under the
choco-banana box, which is labeled with ID 8. Directly underneath the choco-
banana box with ID 8, there is another box highlighted with a different color
and labeled with ID 1. This is the food box that is under the choco-banana.

\My final answer is: [1].

Relations: Absolute Location

User: leftmost toothpaste product

GPT-4v: To find the "leftmost toothpaste product,” T will first identify any
toothpaste products in the raw image. Looking at the raw image, I can see two
items that resemble toothpaste tubes. They are located towards the center of the
image, one standing upright and the other lying down to its right. Now, I will
switch to the marked image to find the corresponding IDs for these toothpaste
products. The leftmost toothpaste product, which is standing upright, has a
highlighted color and an ID next to it. The ID next to this toothpaste product is
[10].

My final answer is: [10].

S

User: mug of same color as the keyboard
GPT-4v: To find the mug of the same color as the keyboard, I will first
identify the color of the keyboard in the raw image. The keyboard appears to be
white. Next, I will look for a mug that is also white. In the raw image, there are
two mugs on the table to the left of the keyboard. One of these mugs is white,
which matches the color of the keyboard. Now, T will locate this white mug in
the marked image to find its corresponding ID. In the marked image, the white
mug is highlighted with a unique color and has the ID number next to it. The
white mug has the ID [11] next to it.
My final answer is: [11].

|

Relations: Same Attribute Relations: Superlative Attribute

VAN

User: thickest marker

GPT-4v: To find the "thickest marker," I will first identify all the markers in
the raw image. There are two markers visible: one with a blue cap and one with
a green cap. Between these two, the marker with the blue cap appears to be
thicker than the one with the green cap. Now, I will look at the marked image to
find the ID corresponding to the thicker marker with the blue cap. In the
marked image, the thicker marker with the blue cap is highlighted and has the
ID number next to it. The thicker marker with the blue cap is associated with
the ID [6].

My final answer is: [6].

J/

Multi-Hop Reasoning: Counting

User: fourth spherical object from the top
GPT-4v: To find the "fourth spherical object from the top" in the raw image, I
will first identify all the spherical objects and then count from the top of the
image down to the fourth one. In the raw image, starting from the top, 1 see
several spherical objects which appear to be fruits and a ball. Counting these
objects from the top, the first spherical object is an orange, the second is
another orange, the third is the red ball, and the fourth is yet another orange.
Now, I will look at the marked image to find the ID corresponding to the fourth
spherical object from the top, which is the orange. In the marked image, this
orange is highlighted with a color and has the ID number next to it. Upon
examining the marked image, I can see that the fourth spherical object from the
top, the orange, has the ID number 11 next to it.
\My final answer is: [11].

J

Mult

User: shampoo that is not standing upright

GPT-4v: To find the shampoo that is not standing upright, T will first look at
the raw image to identify any objects that resemble shampoo bottles. In the raw
image, there are two bottles on the table. One is standing upright, and the other
is lying on its side. Now, I will look at the marked image to find the ID of the
shampoo bottle that is not standing upright. The bottle lying on its side has a
unique color and a numeric ID next to it. This ID is [3].

My final answer is: [3].

.

Figure 7: Example GPT-4v responses (2/3): relational reasoning queries
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User: something to put my cereal in
GPT-4v: To find "something to put my cereal in,” I'm looking for a bowl or a
similar container that would be appropriate for holding cereal. In the raw
image, 1 can see a bowl on the left side of the table, near the center of the
image. It's placed in front of a cereal box and to the left of a keyboard. Now, T'll
look at the marked image to find the same bowl and its corresponding ID. The
bowl is in the same location as in the raw image, and it has a unique color and a
numeric ID next to it. The ID next to the bowl is [10].
\My final answer is: [10].

J/

User: something that grows organically

GPT-4v: In the raw image, there is an orange, which is an object that grows
organically. Now, I will look at the marked image to find the same orange and
its corresponding ID. The orange in the marked image is highlighted with a
unique color and has the numeric ID 3 next to it.

My final answer is: [3].

.

User: my hands are wet

GPT-4v: To find the object that best matches the description "My hands are
wet," I need to identify an object that could be associated with wet hands. In the
context of the items present in the image, the most likely candidate would be a
towel or a cloth that one would use to dry their hands. Looking at the raw
image, I can see a pink towel-like object on the left side of the image. This
object seems to be the one that would be used to dry wet hands. Now, I will
look at the marked image to find the same towel-like object and its
corresponding ID. The pink towel-like object in the marked image has the ID
number highlighted in the same color as the object's mask. The ID number for
the towel-like object is [18].

My final answer is: [18].

User: I need a toy to release some stress

GPT-4v: To find a toy to release some stress, I will look for an object that is
commonly used for stress relief, such as a stress ball or a fidget toy. In the raw
image, I can see an object that resembles a ball with a pattern on it, which could
potentially be a toy used for stress relief. It is located towards the right side of
the image, near the center, and is red with white spots. Now, I will look at the
marked image to find the same object and its corresponding ID. The object that
matches the description and location in the raw image is highlighted with a
unique color and has the ID number next to it. In the marked image, the ball
with the red and white pattern has been highlighted and is associated with the
1D number [7].

AN

My final answer is: [7].

J

Figure 8: Example GPT-4v responses (3/3): semantics-related queries
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User: canned food

GPT-4v: To find the "canned food" in the raw image, I will look for an object
that resembles a can or a container typically used for preserving food. In the
raw image, I can see a box of what appears to be cereal on the right side, but
that is not canned food. However, there is no object that clearly resembles a
traditional metal can used for canned food. Since there is no object that matches
the description of "canned food" in the raw image, I cannot provide an ID from
the marked image. Therefore, there is no label ID to match the description of
"canned food" in these images.

My final answer is: there is no label ID for "canned food" in the provided
images.

\. J

User: corn flakes that is laying on its side

GPT-4v: To find the "corn flakes box that is laying on its side," T will first
look at the raw image to identify the box that resembles a corn flakes box and is
positioned on its side. In the raw image, there is a box with what appears to be
a corn flakes design on the bottom right, and it is indeed laying on its side.
Next, I will look at the marked image to find the same box and determine its
unique ID. The box that matches the description in the marked image is
highlighted with a color and has the number 2 next to it.

My final answer is: [2].

N

User: stapler next to the marker

GPT-4v: To find the stapler standing next to the marker, I will first identify
these objects in the raw image and then locate their corresponding IDs in the
marked image. In the raw image, I can see a stapler to the left of a black
keyboard, and immediately to the right of the stapler is a marker. Now, I will
switch to the marked image to find the IDs that correspond to these objects. In
the marked image, the stapler has a unique color and ID next to it, and the
marker also has a different color and ID. The stapler is marked with the ID [7],
and the marker is right next to it with the ID [6].

My final answer is: [7].

.

J

g

User: blue and black marker

GPT-4v: ITo find the "blue and black marker," T will first look at the raw
image to identify any markers that match this description. In the raw image,
there are several markers on the table. I can see one marker that appears to have
a blue cap and a black body, which is located towards the bottom right of the
table. Now, I will switch to the marked image to find the same marker with the
corresponding ID. The marker with the blue cap and black body in the marked
image has a unique color and ID number next to it. It is the same marker that I
identified in the raw image, and it has the ID number [12] next to it.

My final answer is: [12].

Figure 9: Example of GPT-4v response failures.
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