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Response Letter

Dear Editors and Reviewers :
Thanks for your careful inspections and constructive comments on our submission titiled

“A novel 3D Registration Network with Intra-class alignment for cross-domain Neonatal
Brain MRI segmentation”. We have revised the manuscript according to your comments.
The reviewers comments and our point-to-point responses are listed as follows. All of the
revised parts of our manuscript are in blue in the revised manuscript.

Response to Reviewer1(1QQm)
Summary: The authors propose a Transfer Layer (TL) to perform domain transfer following

image registration to perform intensity transformation and shape registration in infant MRI,
which exhibits large variation in shapes and intensity. The TL essentially changes the source
domain image to match that of the target domain after a VoxelMorph-based registration network
and then feeds this into a 3D U-net segmentation network. Results using infant MRI data
from two datasets, NeoBrainS12 (n=7) and dHCP (n=40) demonstrate improved segmentation
performance on 3D segmentation compared to other methods.

Strengths: The Transfer Layer (TL) appears to improve segmentation results compared to
a joint-registration-segmentation approached without TL (Table 1) Comparison to two other
unsupervised domain adaptation methods (MUNIT and CyCADA) provides good comparison to
other methods.

Weaknesses: Methodological details are unclear in the text and do not provide sufficient
description of the proposed Transfer Layer. The paper is challenging to read at times and could
benefit from significant grammatical revisions.

Q1: Sec. 3.2: The mean and variance images in the Transfer Layer calculation are not
entirely clear to me. Are these created from the set of all training data and updated at each
iteration? Otherwise, I am unsure where the mean value is coming from (and the variance).

Response 1: Thanks for your suggestion. We have revised the explanation of the Transfer
Layer and provided a detailed description for the mean and variance images in Line 168-174.
The mean and variance images have the same size L×W ×H with the xs or xt. They can be
calculated by equation 3 (xs =
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yis is the i-th class one-hot label of xs with size L×W ×H. And their specific calculation can
be described as follows:
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Q2: Sec. 3.2: Are the two MSE loss equations weighted equally? Is there a hyperparameter
weighting these two loss functions?

Response 2: Our improper expression causes this misunderstanding. The two MSE losses
do not work at the same time, thus there is no weight assigned to them. The first MSE loss
in equation 1 is used in step (i) to train the registration module without TL. Because the
segmentation network is not trained at the beginning and cannot provide the pseudo-labels
required by TL. The second MSE loss in equation 4 is used in step (iii) to train a complete
registration module with TL. We revised this in Line 138-146 for a clear expression. And the
step in which they are applied are stated before each equation.

Q3: Sec. 2: A paper (Bo Li, et al. Ias-net: Joint intraclassly adaptive gan and seg-
mentation network for unsupervised cross-domain in neonatal brain mri segmentation. Medical
Physics, 2021) from the same authors is cited is similar. The main difference in this work
appears to be the use of 3D networks compared to 2D previously. However, this is not clear in
the current paper. For clarity, it would help reader to state the differences to this prior work
from the same lab in the Background.

Response 3:
Although this paper(RS-NET) and our previous work(IAS-NET) both perform the UDA in

neonatal brain segmentation, they are quite different in many aspects:
(1) Different objectives between the two works. For the cross-domain neonatal brain segmen-

tation task, RS-NET aims to make the UDA end-to-end, which can truly bridge the differences
in both the shape and intensity across the domains. While IAS-NET is a UDA model, it cannot
adapt to the large shape difference between domains. Thus, IAS-NET is not an end-to-end sys-
tem and needs to perform complex preprocessing of registration to reduce the shape difference
before UDA. This has been troubling us during the work of IAS-NET because it is difficult to
apply to clinical practice.

(2) Different methods between the two works. IAS-NET is a GAN-based UDA model, which
consists of a generator and multiple discriminators. Due to the semantic constraints, it can only
perform intra-class intensity transfer but cannot complete shape transformation. While RS-
NET is more concise. It consists of a registration network with TL layer, which simultaneously
completes shape registration and intensity transfer.

(3) Different GPU cost between the two works. IAS-NET is a 2D model which integrates one
generator and multiple discriminators and one segmentation network. Running on 2D images
is already expensive, and it is almost impossible to expand to 3D images. But the cost of the
proposed registration model in RS-NET is only 1/4 of that of the 3D segmentation model, which
can be easily applied to the 3D segmentation network.

Regarding (1) and (3) mentioned above, we have revised the manuscript and illustrate the
differences between the proposed RS-NET and the generative-based approaches(including ITA-
NET) more clearly in Line 63-75. As for (2), we have revised the whole Method section for a
better understanding about the proposed work.

Q4: Sec. 5: Should a comparison to a standard U-net for image segmentation without reg-
istration be provided for an alternative baseline comparison segmentation approach? Otherwise,
it is difficult to put the segmentation results in context since this is the goal of this paper.

2



RS-NET For Cross-Domain 3D Brain Segmentation

Response 4: We have added the segmentation result for image segmentation without
registration in Table 1, in which the Baseline directly use original source-domain images and
Scaling is a common scaling(scaling factor = 0.9) on them.

Q5: Secs. 5 & 6: The GAN-based UDA model from previous work Li, et al 2021 is mentioned
for comparison, but quantitative comparison results are not provided in this paper.

Response 5: Our previous work IAS-NET is a 2D GAN-based UDA model for 2D segmen-
tation network and the proposed 3D RS-NET is used for 3D segmentation network. Even the
same UDA model would have large differences in the result between 3D and 2D segmentation
network. Thus, it is unfair to quantitatively compare the two methods in Table 1. But, we
supplemented the analysis of the differences in the performance between the proposed 3D work
and the previous 2D work in our cross-domain segmentation task in Line 241-252.

Although the 3D model always achieve better results than the 2D model in the same-domain
segmentation. Due to the scarce training samples, the shape diversity of 3D samples is largely
limited. While the training samples of the 2D model are 48 times that of the 3D model, so this
poor shape diversity is greatly relieved in the 2D case. Therefore, the shape difference between
domains have much greater impact on the 3D model. The segmentation effect of 3D models in
areas with large differences is not as good as that of 2D models. Additional training samples in
the future can alleviate this problem of 3D cross-domain segmentation.

Q6: Sec. 5: The Baseline registration method uses a scale transformation. Does this include
translation, rotation, and scaling (an affine transformation)? Or, is it a isotropic scaling?
Please clarify what is meant by scale transformation in this context. Some implementation
details/citation would be helpful too.

Response 6: Thanks for your advice. The expression of “scale transformation” is not
correct. We have revised this sentence in Line 226-227.

Line 226-227:
The segmentation results are shown in Table 1, in which the ‘Baseline’ directly use original

source-domain image and ‘Scaling’ is a common scaling(scaling factor = 0.9) on them.

Q7: Table 1: It would be helpful and informative to report the standard deviation for these
values to give readers a sense of variance in the results. (Same comment for Table 2 in the
Appendix.)

Response 7: We have repeated all experiments three times to calculate the standard devi-
ation for the values in our experiments in Table 1 and Table 2.

Q8: Figure 3: This figure is never referenced in the text. Are these images from two different
subjects or from two different slices of the same subject? Also, a legend for the colormaps would
be useful for readers.

Response 8: Thanks for your advice. Figure 3 have been referenced in Line 238-239 and
we have added description to each figure to illustrate these images in Figure 3 and Figure 4. For
a better understanding of segmentation region, we have supplemented colormaps in Figure 3.
Figure 4 contains more images and mainly shows the synthesized images, thus we do not add
the colormaps in Figure 4.
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Q9: Sec. 5: How are the ground-truth brain segmentations created? Details would be
helpful.

Response 9: Thanks for your advice. The ground truth of NeobrainS12 datatset is provided
directly. To obtain the ground truth of dHCP, a expert physician in our team make manual
segmentations slice by slice for a week on a ROI Editor software. We have add this in Line
206-207.

Q10: Grammar/typographical: Sec. 1, p2: wildly used → widely used Sec. 5, p8: slice
thickness → I think you mean number of slices in each 3D volume here

Response 10: Thanks for your advice. There are many Grammar errors and improper
expressions in our manuscript. We have revised them carefully for every sentence in each
paragraph and Figure.

Questions To Address In The Rebuttal:Please see comments regarding TL methodology
details above. In the manuscripts current format, I have a hard time understanding how the
TL works according to equation 2. Also, details about how training utilizes the two MSE loss
functions would be helpful.

Response: Thanks for your advice. We have revised the whole paper and correct many
Grammar errors carefully for a better understanding. Especially we rewrite the part of TL
methodology.

Response to Reviewer2(DNgR)
Summary: The authors present a deep learning image segmentation approach to segment

neonatal brain MRI images that jointly uses image registration. Segmentation and image regis-
tration of neonatal brain MRI images is a challenging task since the MRI intensity of the brains
depends on the amount of myelination in the brain. The amount of myelination changes rapidly
during the first two years of life. Thus, images of the same brain taken at different time may
have very different MRI intensity profiles as well as shape differences.

Strengths: The novelty of this paper is the application to neonatal brain MRI images. This
paper does a good job of explaining the challenges associated with segmenting and registering
neonatal brain MRI images. The authors explain why 3D CNNs trained on one data set do not
transfer to other clinical environments.

Weaknesses: This paper has poor grammar and is therefore difficult to read. There is little
novelty in the method presented in this paper. The paper does cite the previous work Unsu-
pervised Deformable Registration for Multi-Modal Images via Disentangled Representations by
Chen Qin, Bibo Shi, Rui Liao, Tommaso Mansi, Daniel Rueckert, Ali Kamen which was present-
ed at IPMI 2019. A preprint of this paper can be found at https://arxiv.org/abs/1903.09331
The method in Qin et al. is more advanced than what is presented in the current paper.

Questions To Address In The Rebuttal:The authors need to cite the 2019 IPMI paper
by Qin et al. and explain how their method is different or works better. The authors need to
improve the readability of their paper by improving the grammar throughout the paper.

Response: Thanks for your advice. I am sorry that due to our inappropriate writing the re-
viewer do not understand our novelty. There are many Grammar errors and improper expressions
in our manuscript. We have revised them carefully for every sentence in each paragraph and
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Figure. Especially we have rewritten the “Method” section and supplemented a lot of innovative
content that we had previously omitted.

In addition, we have cited the work of Qin et al. (Qin et al., 2019) in Line 118-120.
Although this paper(RS-NET) and current registration network both perform deep network to
make registration, they are quite different in many aspects:

(1) Different objectives between them. The proposed RS-NET aims to make the unsuper-
vised domain adaptation(UDA) in the cross-domain neonatal brain segmentation. Thus, we
design that the RS-NET model can transfer both the shape and appearance across the domains.
This is to make the segmentation network better adapt to the target domain in the case of
great cross-domain difference. While current registration networks are to change the shape to
the fixed image and maintain the appearance of moving image. For example, UMDIR(the work
of Qin et al.) suggests a MUNIT-based method to decompose images into a shape represen-
tation and a appearance code for multi-modal image registration. It disentangles images into
a shared shape space and different appearance spaces to align the moving image and maintain
the invariant appearance without transferring.

(2) Different in methods between them. The proposed RS-NET designs a Transfer layer
to make intra-class intensity transfer cross the domains at the same time as 3D registration.
We have revised the explanation of the Transfer Layer and provided a detailed description for
calculation of the mean and variance images in Line 168-175. This makes RS-NET accomplish
the task of UDA for segmentation. While current registration networks focus on designing dif-
ferent model to transform image for a shape similarity to the fixed image. For example, UMDIR
actually apply an image-to-image translation network for more accurate and fast alignment with-
out a deformable field. But the proposed RS-NET is to train a designed network to output a
deformable field for shape transformation and a TL for intensity transfer.

(3) Different GPU cost between them. Different from our previous 2D work(IAS-NET)
(Li et al., 2021), the proposed RS-NET is designed to accomplish a end-to-end cross-domain
3D segmentation task without complex preprocessing of registration. This makes it easier to
apply to the clinical practice. To ensure segmentation results, we implement a deeper network
for segmentation and it is allocated most of the GPU resources. We design a small-structure
registration model in RS-NET which is only 1/4 of that of the 3D segmentation model. Most
of the current GAN-based models, if expanded to 3D ones, can not fulfill the end-to-end cross-
domain 3D segmentation task.

Response to Reviewer3(5iXW)
Summary: The paper introduces a 3D image registration method for MRI images of infants.

It deals with the challenge of registering T2-weighted MRI images that have been acquired
with different scanners/settings. The network has two objectives: transforming the image and
adapting the intensities (to the target domain). The idea of the paper is to use a combination
of a registration and segmentation network. The objective of the segmentation network is to
assign categorical labels to the data (white/gray matter etc.) so that it is easier to assign new
intensities to the different tissue types. An experiment based on two different datasets used as
source and target domain is performed showing superior performance. The paper addresses an
important and difficult problem, but the technical presentation and the overall writing needs a
major revision. It is difficult to understand and hard to evaluate in its current state.
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Strengths: The paper addresses the difficult problem of cross-domain image registration and
segmentation. I also highly appreciate the availability of source code. The abstract and first
half of the introduction is well written.

Weaknesses: First, when reading the introduction and related work section, I had the im-
pression the paper sells simultaneous segmentation and registration as a novelty. In my opinion,
this is not true. Those two topics are strongly related, and I could find many related works such
as A Cross-Stitch Architecture for Joint Registration and Segmentation in Adaptive Radiother-
apy (MIDL 2020) or Training data-independent image registration using generative adversarial
networks and domain adaptation (Pattern Recognition 2020).

I am not a native English speaker, and it is difficult for me to make detailed suggestions.
But the writing needs to be improved. I found it difficult to understand the method in detail
because of the writing style, the sudden deterioration of English, and the inconsistent names (R
module, Register”, register etc). Figure 1 - which is important - is confusing and difficult to
understand. I feel that I cannot objectively and fairly evaluate their method as it stands.

Third, in my understanding, the algorithm needs categorial labels to work. Hits make sense
for MRI images, where, for instance, Brain WM or GM needs to be aligned. I miss a discussion
about the limitations of the algorithm in this regard.

In their experiments, they only applied a bias correction. In my opinion, the comparison is
unfair then, since proper normalization of the inputs is crucial for the reference approaches (at
least in terms of mean and standard deviation). It would also be nice to see a comparison with
a ”classical” registration approach like ”ANTS” image registration with mutual information.

Q1: First, when reading the introduction and related work section, I had the impression the
paper sells simultaneous segmentation and registration as a novelty. In my opinion, this is not
true. Those two topics are strongly related, and I could find many related works such as A Cross-
Stitch Architecture for Joint Registration and Segmentation in Adaptive Radiotherapy (MIDL
2020) or Training data-independent image registration using generative adversarial networks and
domain adaptation (Pattern Recognition 2020).

Response 1: Thanks for your advice. Our improper expression causes this misunderstanding
about our model, in which the segmentation and registration is not trained simultaneously.
In fact, the two network are alternatively trained in our work. We have revised the whole
“Introduction” and “Method” section for a better understanding for readers.

In addition, we have cited the works of Beljaards et al. (Beljaards et al., 2020)(MIDL 2020)
and Mahapatra et al. (D.Mahapatra and Ge, 2020)(PR 2020) in Line 112-118. Although this
paper(RS-NET) and current Joint Registration and Segmentation networks both perform deep
network to make registration, they are quite different in many aspects:

(1) Different objectives. The proposed RS-NET aims to make the unsupervised domain
adaptation(UDA) for cross-domain segmentation. Thus, we design the RS-NET to transfer
both the shape and appearance across the domains for a better adaptation of the segmentation
network to the target domain. While current joint registration and segmentation networks are
to change the shape to the fixed image and maintain the appearance of moving image. For
example, Beljaards et al. (Beljaards et al., 2020) aims to proposed a cross-stitch unit to exchange
the information between a joint segmentation and registration network for better performance.
Mahapatra et al. (D.Mahapatra and Ge, 2020) aims not to make segmentation but to make the
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registration model adapt to another dataset. Thus, both of them cannot transfer the appearance
of images to accomplish our UDA task for cross-domain segmentation.

(2) Different in methods. The proposed RS-NET designs a Transfer layer to make intra-class
intensity transfer cross the domains at the same time as 3D registration, but the segmentation
module is not trained simultaneously. We have revised the explanation of the Transfer Layer
and provided a detailed description for calculation of the mean and variance images in Line
168-174. RS-NET is a generative-based model that the registration and segmentation models
are trained alternatively. The segmentation model is trained by the images generated by the
registration model for the adaptation to the target domain. While current Joint Registration
and Segmentation networks are trained simultaneously to integrate information between the
two networks for a better performance of both. They do not perform intensity transfer to make
domain adaptation for segmentation.

(3) Different GPU cost. Different from our previous 2D work(IAS-NET) (Li et al., 2021), the
proposed RS-NET is designed to accomplish a end-to-end cross-domain 3D segmentation task
without complex preprocessing of registration. Thus it is easier to apply to the clinical practice.
To ensure segmentation results, we design a small-structure registration model in RS-NET which
is only 1/4 of that of the 3D segmentation model. Most of the current GAN-based models, if
expanded to 3D ones, can not fulfill the end-to-end cross-domain 3D segmentation task.

Q2: I am not a native English speaker, and it is difficult for me to make detailed suggestions.
But the writing needs to be improved. I found it difficult to understand the method in detail
because of the writing style, the sudden deterioration of English, and the inconsistent names (R
module, Register”, register etc). Figure 1 - which is important - is confusing and difficult to
understand. I feel that I cannot objectively and fairly evaluate their method as it stands.

Response 2: Thanks for your advice. There are many Grammar errors and improper
expressions in our manuscript. We have revised them carefully for every sentence in each
paragraph and Figure. In addition, the “Registration” in Figure 1 is the “R module” which
denote the registration network with TL. And register represents the registration network without
TL. We have revised “Registration” into “Registration module” to avoid this confusing.

Q3: Third, in my understanding, the algorithm needs categorial labels to work. Hits make
sense for MRI images, where, for instance, Brain WM or GM needs to be aligned. I miss a
discussion about the limitations of the algorithm in this regard.

Response 3: As mentioned above, our model with a small-structure registration network is
to make UDA for segmentation. It is unreasonable to evaluate the region Hits and alignment
of it. Thus, we analyzed its generated images in Figure 4 and the Mean Squared Error(MSE)
and Structural Similarity(SSIM) is introduced to evaluate the similarity between the synthesized
images and the target-domain images in Table 2.

Q4: In their experiments, they only applied a bias correction. In my opinion, the comparison
is unfair then, since proper normalization of the inputs is crucial for the reference approaches (at
least in terms of mean and standard deviation). It would also be nice to see a comparison with
a ”classical” registration approach like ”ANTS” image registration with mutual information.

Response 4: Our improper expression causes this misunderstanding. The data preprocess-
ing for all experiments is the same N4 correction and Sigmoid normalization. We have revised it
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in Line 134-135. In addition, our model is to make UDA for segmentation and it is designed for
obtaining a intra-class similarity to the target-domain image. We mainly evaluate its segmenta-
tion performance and the similarity of the synthesized images to the target domain. Therefore,
instead of comparing to the current registration methods, we are more interested in comparing
with the state-of-art UDA methods.

Q5: Equation (2): TL(xst) looks like xst is a parameter, and not the output.
Response: We have revised this mistake in equation 2 and the text mentioned it in the

manuscript.

Q6: The paper claims that ... the above generative-based approaches also cannot work
directly for the UDA task of neonatal brain segmentation. Firstly, the large shape differences
between domains cannot be directly bridged by UDA methods. . Why the large shape differences
can be addressed with the proposed approach but not with existing approaches? Existing
registration approaches (like ANTS) are performing a multi-scale coarse-to-fine registration to
deal with large displacements. The proposed method seems to not make use of any multi-scale
analysis. Then how does it work so well?

Response: Thanks for your advice. In fact, we have considered the impact of image scale
differences between domains on cross-domain segmentation. But in our case, the segmentation
model achieve limited gain from the scaling. Because the scale difference between domains is
small. To illustrate this, we add a comparison to Table 1 in which ‘Scaling’ is the best scaling
results(factor = 0.9) and does not improve much compared to the ‘baseline’. Thus, the main
factor affecting the UDA effect in our case is the difference in the shape and intensity distribution
between domains, rather than scaling.

Q7: Another claim is that ... registration network is always negatively affected by different
intensity distribution between domains. Because the MSE loss tend to align the similar intensity
to the same place, but these similar intensity voxels cross domains sometimes belong to different
classes.. Then why not use mutual information?

Response: This is an improper expression. Here we want to state is that the registration
loss tends to align the voxels with similar intensity distribution to the same place regardless of
their classes. We have revised this sentence in Line 70-71.

Q8: It is also said that ..generative-based methods tend to synthesize the images similar to
target as a whole but ignore the intra-class similarity. Can you elaborate more on this, please?

Response: Thanks for your advice. “synthesize the images similar to target as a whole”
is an improper expression. We have revised it in Line 71-73. The correct expression should be
“Thirdly, current generative-based methods tend to achieve the intensity similarity to the target
as a whole but ignore the intra-class one.”
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Abstract1

In neonatal brain Magnetic Resonance Image(MRI) segmentation, the model we trained2

on dataset from medical institutions fails to adapt to the clinical data. Because the clinical3

data(target domain) is largely different from the training dataset(source domain) in terms4

of scale, shape and intensity distribution. The registration network can transform the5

shape from the source domain to the target domain, while the intensity cannot be trans-6

ferred. Current GAN-based unsupervised domain adaptation(UDA) models mainly focus7

on transferring the global intensity distribution, but cannot transform the shape and cover8

the intra-class similarity. In this case, we propose a joint Registration and Segmentation9

Network(RS-NET), both of which are trained to perform intra-class intensity and shape10

transformation and semantic segmentation. An adaptive transfer layer(TL) is designed11

to intra-classly transfer the intensity from source to target for reducing the cross-domain12

intensity difference, which can make the registration better align the multi-class regions.13

Meanwhile, the segmentation network can adapt to the target domain through the trans-14

formation of registration network. The experiment is carried out on two databases with15

big differences in shape, size and intensity distribution. The proposed method achieves16

state-of-the-art results in the compared UDA models for the 3D segmentation task. Source17

code (in TensorFlow) is available at: https://github.com/lb-whu/RS-NET/.18

Keywords: Neonatal Brain Segmentation, 3D Registration, Unsupervised Domain Adap-19

tation, MRI.20

1. Introduction21

The analysis of the neonatal brain morphological structure is crucial for assessing the brain22

development (Makropoulos et al., 2018a). Most of the brain disorders and diseases are23

reflected by the abnormalities of the morphological structure (Illavarason et al., 2018). An24

accurate and automatic segmentation of brain MRI images can help physicians better assess25

the neonatal brain and make therapeutic interventions. Among the current segmentation26

c© 2022 B. Li, X. You, Q. Peng & J. Wang.
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methods, the 3D convolutional neural network(CNN) achieves the best results (Xu et al.,27

2017; Nie et al., 2016).28

However, 3D CNNs trained on specific database from medical institutions perform poor-29

ly in clinical practice. It is caused by the large cross-domain gap. This gap results mainly30

from the following three reasons: (1) The rapid development of the brain during the peri-31

natal period leads to large shape difference between domains (Makropoulos et al., 2018a).32

(2) Different scanners, image acquisition protocols, and scanned subjects between the two33

domains result in the difference of intensity distribution (Tajbakhsh et al., 2020). (3) In34

the task of multi-class segmentation, the considerable cross-domain misalignments make the35

3D segmentation worse. In addition, labeling all the tissues in the clinic practice is time-36

consuming. Therefore, we need to deal with an Unsupervised Domain Adaptation issue for37

the segmentation task.38

Recently, many UDA methods have been used to make the cross-domain segmentation39

in some fields, such as Self-training, Adversarial Learning, and Generative-based Approach.40

Due to the large gap between the domains, most of the methods fail to apply to our case. For41

example, Self-training approach would produce the considerable misclassified pseudo-label42

which have negative effects on segmentation, even if with a suitable confidence threshold43

(Zhu et al., 2009). Adversarial-learning approach is weak in the case of the insufficient44

dataset because of its strategy of common feature refinement (Zhang et al., 2018). While, the45

dataset provided for training is always insufficient in brain MRI segmentation. Generative-46

based approach is more suitable to our case and it ,in fact, has been widely used in current47

UDA tasks for medical image segmentation (Oliver et al., 2018; Tajbakhsh et al., 2020).48

CycleGAN is the most widespread one in the generative-based methods. Huo et al.(Huo49

et al., 2009) implement CycleGAN to synthesize CT distribution from labeled MR images50

for spleen segmentation in which an additional segmentation network is trained on the syn-51

thesized images for a better generalization. Chen et al. (Chen et al., 2019) combine the52

CycleGAN and segmentation network into a common encoder, in which it can receive the53

information from another modal(MRI) for cardiac CT segmentation. But, due to the large54

gap between domains, the cycle consistency of CycleGAN cannot completely preserve the55

semantic information of source images, which would lead to shape distortion (Zhang et al.,56

2018). Many works apply semantic constraint of segmentation network to force the genera-57

tor of GAN to maintain the semantic information. For example, CyCADA (Hoffman et al.,58

2018) introduces FCN8s as a segmenter for providing semantic constraint for CycleGANs59

in cityscapes semantic segmentation. Zhang et al. (Zhang et al., 2018) apply Unet (Ron-60

neberger et al., 2015) with a semantic consistency loss to CycleGAN for preserving semantic61

information of source domain.62

However, the current generative-based approaches mentioned above cannot work directly63

for the UDA task of neonatal brain segmentation. Firstly, the large shape differences be-64

tween domains cannot be directly bridged by the approaches. Therefore, the source-domain65

training images have to be registered before performing the UDA, which is time-consuming66

(Li et al., 2021). In fact, many current UDA works regard the registration as a preprocessing67

to overcome the shape difference between domains (Ackaouy et al., 2020; Li et al., 2021).68

Secondly, the registration network is always influenced by different intensity distribution be-69

tween domains. Because the registration loss tends to align the voxels with similar intensity70

distribution to the same place regardless of their classes. Thirdly, current generative-based71
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methods tend to achieve the intensity similarity to the target as a whole but ignore the72

intra-class one. Fourthly, the GPU memory consumption of current GAN-based models is73

too high, especially those 3D ones. Thus, they have to be trained independently apart from74

segmentation network which set barriers to clinical practice.75

To address these issues, we propose a joint 3D Registration and Segmentation Network(RS-76

NET) for the cross-domain brain MRI segmentation. The Registration network with an77

Intra-class Transfer Layer(TL) is designed for transforming both the intensity and shape78

from the source domain to the target domain for the UDA task. In the training of Reg-79

istration, the segmentation network provides pseudo-label for TL to calculate intra-class80

mean and variance of the target. Compared with other 3D GAN-based UDA models, the81

proposed registration network has much less GPU consumption, thus it can be trained si-82

multaneously with the segmentation network and no longer be a complex preprocessing. As83

shown in the experimental result, the proposed method achieves the state-of-the-art results84

in the compared UDA models for the 3D segmentation task.85

Our main contributions can be summarized as follows: (a) We designed a novel RS-NET86

for cross-domain neonatal brain MRI segmentation, which can transform both the intensity87

and the shape from source to target. The segmentation model can achieve better general-88

ization in the target domain. (b) The proposed TL can achieve the intra-class similarity to89

the target domain and reduce the class misalignments of the registraion network. (c) The90

designed registration network only contains 1/4 parameters of the segmentation model, thus91

the whole framework(UDA and Segmentation) can be trained only once which is beneficial92

to clinical practice.93

The rest of this paper is organized as follows. Firstly, we introduce the related work in94

Section II and our proposed work is presented in Section III. Secondly, experiment details95

and segmentation result are presented in Section IV and V. Thirdly, we summarize this96

paper in Section VI. Finally, the display of adaptive transfer result is supplemented in97

Appendix.98

2. Related Work99

Traditional registration methods align voxels between domains with enforced constraints100

by solving a pairwise optimization problem. This pairwise registration strategy requires101

intensive calculations, therefore its algorithms on CPU require hours to register only one102

pair of 3D images (Balakrishnan et al., 2019). But in most of the cases, deep learning103

networks for segmentation often require a large amount of training data, especially unlabeled104

target-domain data.105

Recent registration methods apply the deep network on GPU to solve this issue. Vox-106

elMorph (Balakrishnan et al., 2019) firstly propose a learning architecture, which uses a107

deep network to obtain the deformation field by training the network. Compared to the108

traditional pair-wised registration, this way is much time-saving. Marek Wodzinski et al.109

(Wodzinski et al., 2021) suggest a modified U-NET to make nonrigid image registration110

for real-time breast tumor bed localization, which is helpful to improve real-time radiation111

therapy after the tumor resection. Beljaards et al. (Beljaards et al., 2020) proposed a112

so-called cross-stitch unit to exchange the information between a joint segmentation and113

registration network for better performance of both in Adaptive Radiotherapy. Mahapatra114
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et al. (D.Mahapatra and Ge, 2020) propose a GAN-based(generative adversarial networks)115

framework to ensure that the features extracted by the encoders are invariant to the input116

image type. Thus, their model trained on one dataset can give better registration perfor-117

mance for other datasets. Qin et al.(Qin et al., 2019) suggest a unsupervised multi-modal118

deformable image registration method(UMDIR) to align multi-modal images without de-119

formable field by decomposing images into a shape representation and a appearance code.120

Compared to conventional registration approaches, this image-to-image translation based on121

MUNIT (Huang et al., 2018) make significant improvements in terms of both accuracy and122

speed. The current registration networks focus on designing different model to transform123

moving image for a shape similarity to the fixed image and maintain its appearance.124

However, we wish to transfer both the shape and appearance for making the segmenta-125

tion network better adapt to the target domain in the case of great cross-domain difference.126

Meanwhile, a small-structure model is expected to fulfill its UDA task in an end-to-end127

cross-domain 3D segmentation. Most of the current UDA models, if expanded to 3D to128

train with a 3D segmentation network, would exceed the memory of the GPU. Finally,129

the cross-domain intra-class intensity difference would cause many misalignments for the130

registration networks.131

3. Method132

The proposed RS-NET is composed of intra-class registration and segmentation network.133

The data preprocessing for all experiments is the same N4 correction and Sigmoid nor-134

malization. Experiments are conducted on the whole brain MR images without the Brain135

extraction(BET)(M.Smith, 2002).136

3.1. Framework of Proposed RS-NET137

Registration(R) module

Segmentation(S) module 

Transfer Layer (TL)

Register

W
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Figure 1: The overview of the proposed RS-NET.
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As shown in Figure 1, both the registration network(R module) and the segmentation138

network(S module) are 3D U-NET structure. They are trained as follows: (i) R module139

without TL is firstly pre-trained by the source images x̂s and target images xt. (ii) The140

trained R module without TL transforms x̂s and ŷs to xs and ys. Then S module can be141

trained by the registered xs and their corresponding label ys. (iii) The R module with TL142

is initialized and retrained by x̂s and xt. Here, the S module trained in step (ii) can provide143

the pseudo-labels yt of xt for TL calculation. (iv) The R module with TL transforms the144

x̂s and ŷs into the registered image xst and yst. Finally, S module can be retrained by the145

UDA result xst and yst.146

3.2. Registration Network with Intra-class Transformation147

The R module aims to spatially transform source-domain images x̂s with size L ×W ×H148

into the ones whose shape and intensity distribution are consistent with the target-domain149

image xt. But in step (i), R module without TL can only transform the shape. The150

volumetric input is a pair of x̂s and xt, in which they represents the moving and fixed151

image respectively. As mentioned above, in step (i), the TL is inactive and the R module152

is trained by MSE loss:153

LMSE =

∑N
n=1(xt(n)− τ(x̂s(n)))2

N
(1)

where N = L ×W × H is the voxel number of image, τ(x̂s(n)) = xs is the transformed154

image.

Figure 2: Structure of The Register and Segmenter.

155

In step (i), R module is trained to provide a coarse registration result for the training156

of segmentation in step (ii). The large difference of intra-class intensity and shape between157

the domains would lead to considerable misalignments. Because MSE loss tends to align158

the voxels with similar intensity regardless of their classes. Compared with directly training159

on x̂s, the S module trained on xs can provide better pseudo-labels yt for xt which are used160

for TL calculation. Admittedly, the pseudo-labels are too inaccurate to be a criterion for161

13



Li You Peng Wang

segmentation. But it is sufficiently accurate to calculate the intra-calss mean and variance162

in step (iii). In step(iii), we introduce the TL to R module and initialize its parameter for163

retraining. To obtain the intra-class intensity similarity to the target domain, as shown in164

Figure 1, Transfer Layer(TL) calculation is proposed as follow:165

TL(xs, ys, xt, yt) = x̃t

(
xs − xs
x̃s

)
+ xt (2)

where xs is the registered source-domain image by R module, xs and x̃s are respectively the166

intra-class mean and variance images of xs, xt and x̃t are respectively the intra-class mean167

and variance images of xt. They have the same size L×W ×H. As shown on the right of168

Figure 1, they can be obtained as follows:169

xs =
C∑
i=1

mi
s · yis, x̃s =

C∑
i=1

vis · yis, xt =
C∑
i=1

mi
t · yis, x̃t =

C∑
i=1

vit · yis (3)

where yis is the i-th class one-hot label image of ys with size L×W ×H. mi
s is the i-th class170

mean value of xs and can be calculate as mi
s =

∑N
n=1 xs(n)·yis∑N

n=1 y
i
s

. vis is the i-th class variance171

value of xs and can be calculate as vis =

√∑N
n=1(xs(n)−xs(n))2·yis(n)∑N

n=1 y
i
s(n)

. Similarly, for xt and172

yt, intra-class mean value can be calculated as mi
t =

∑N
n=1 xt(n)·yit∑N

n=1 y
i
t

and intra-class variance173

value can be calculated as vit =

√∑N
n=1(xt(n)−xt(n))2·yit(n)∑N

n=1 y
i
t(n)

. And thus, for training step(iii)174

the MSE loss is as follow:175

LMSE =

∑N
n=1(xt(n)− TL(τ(x̂s(n))))2

N
(4)

where TL() is the TL calculation.176

The network of the R module is shown in Figure 2. To guarantee a better segmentation177

result, we design a deeper segmentation network and reduce the number of filters of the178

R module. The encoder consists of four resolution levels and the 3D convolutions with179

a kernel size of 3 and stride of 2. The decoder is composed of the 3D convolutions, the180

upsampling and the skip connections with the features learned from encoding layers. The181

whole network starts with 16 filters in the first layer. After each layer, a ReLU layer is182

followed. At the final layer, the feature is mapped to a three-dimension displacement vector183

as the deformable matrix τ .184

3.3. Segmentation Network185

As mentioned above, we apply a 3D U-NET for segmentation. As shown in Figure 2, the186

network starts with 32 filters in the first layer and each layer of the encoder or decoder187

is composed of two 3×3×3 convolutions, one batch normalization, one ReLU layer and188

the downsampling or the upsampling. Skip connections from encoder to decoder are also189

implemented. At the final layer, the output is mapped to a feature vector with eight190

components as the predicted one-hot label.191
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In step (iii), The S module is inactive and acts as a segmenter to provide pseudo-labels192

for R module. In stage (ii) and (v), it is trained as a segmentation network on the output193

of the R module. Dice loss is implemented in both steps as follow:194

LDICE =
1

C
·

C∑
i=1

(1−
2f iseg(xst) · yis + γ

f iseg(xst)2 + (yis)
2 + γ

) (5)

where C denote the class number, f iseg is the prediction of the segmenter for the i-th class,195

yis is the registered one-hot label.196

4. Experiments197

The datasets selected for the two different domains in our experiment are NeobrainS12(Isgum198

et al., 2015) and dHCP(Makropoulos et al., 2018b), which exist large difference in the shape199

and intensity distribution between them. NeobrainS12 dataset selects 40 weeks infants for200

MRI scan on Philips SENSE head 3T scanner. There are 7 T2-weighted axial MR images201

in NeobrainS12, in which resolution = 0.35×0.35×2 mm3, TR/TE = 6293/120 ms, image202

size = 512×512×50. dHCP dataset selects 37-44 weeks infants for MRI scan on Philips203

Achieva 3T scanner. 40 T2-weighted MR images are provided, resolution = 0.8×0.8×0.8204

mm3, TR/TE = 12000/156 ms, image size = 290×290×155. For a easily labeling, we205

down-sample the dHCP images to 290×290×50. Then a expert physician make manual206

segmentations slice by slice for a week on a ROI Editor software. Finally, the images of207

the both datasets are cropped to the same size 272×208×48. NeobrinS12 is selected as the208

source domain and the dHCP as the target domain in our experiment.209

The experimental detail is as follow. In step (i) and (iii), the learning rate for training210

register is initially used as 1×10−5 and is then decreased to 1×10−6 in 200 epochs. In step211

(ii) and (iv), the learning rate for training segmentation starts with 1×10−3 and decayed to212

1×10−5 in 300 epochs. Both networks are using TensorFlow and Adam optimization and213

Momentum is 0.5 with a batch size of 1. We implement a standard workstation with an Intel214

Xeon (E5-2682) CPU and a NVIDIA TITAN X GPU 12G. For the proposed method, each215

step of training takes about 2 to 4 hours, and the entire training process can be completed216

in half a day.217

5. Segmentation Result218

We compare our proposed 3D model with the state-of-art UDA methods: MUNIT(Huang219

et al., 2018) and CYCADA(Hoffman et al., 2018). Both of them are trained on 2D slices of220

the registered NeoBrainS12(source) and dHCP(target). The 2D slices synthesized by them221

are composed of 3D images and then are trained on a same 3D Unet as the proposed method222

for segmentation test. Human brain is segmented into seven different classes: cortical223

gray matter(CGM), basal ganglia and thalami(BGT), white matter(WM), brain stem(BS),224

cerebellum(CB), ventricles(VENT), and cerebrospinal fluid(CSF).225

The segmentation results are shown in Table 1, in which the ‘Baseline’ directly use226

original source-domain images and ‘Scaling’ is a common scaling(scaling factor = 0.9) on227

them. We display the average Dice Score and Sensitivity over three experiments. It can228
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Table 1: Segmentation Result

Method
CGM WM BGT BS CB VENT CSF AVG

Dice score(%)
Baseline 76.5±1.8 54.5±4.1 82.9±2.2 18.3±3.1 65.9±2.5 53.6±1.7 69.5±1.5 60.2±1.8
Scaling 78.9±1.2 60.4±5.2 85.6±1.8 20.3±2.4 72.9±2.2 52.5±3.1 72.7±1.4 63.4±2.2
VM 87.7±1.4 74.1±2.8 90.5±1.5 74.2±1.9 85.6±1.5 65.3±2.5 82.5±1.6 79.7±1.1
VM&Munit 84.2±1.5 61.6±3.8 86.2±1.4 75.6±1.4 75.4±1.6 60.1±2.8 78.3±1.3 74.5±0.7
VM&Cycada 88.2±1.2 73.2±2.5 90.5±1.2 74.9±2.6 86.8±1.4 63.3±1.8 83.7±1.3 80.1±0.9
Proposed 89.4±1.1 81.1±1.7 92.1±0.9 82.2±1.8 89.6±1.2 71.1±2.1 86.5±1.5 84.6±0.8
Methed Sensitivity(%)
Baseline 73.8±2.1 48.7±5.8 90.3±1.9 15.6±2.7 58.1±2.4 56.6±2.2 85.3±1.4 61.2±1.9
Scaling 78.5±1.5 47.9±4.7 90.6±1.6 17.5±2.8 68.8±2.7 54.3±3.5 78.1±1.2 62.2±1.8
VM 89.8±1.2 67.7±3.2 90.4±1.8 64.2±2.1 78.5±1.6 73.4±2.4 86.2±1.8 78.6±1.7
VM&Munit 85.3±1.6 53.9±3.5 88.5±1.6 81.9±1.5 73.4±1.9 65.1±2.1 84.3±1.3 76.1±1.1
VM&Cycada 90.4±0.9 63.5±3.2 91.1±1.5 71.7±2.3 86.6±1.6 75.6±1.6 85.3±1.5 80.6±1.2
Proposed 89.2±1.3 75.4±2.0 93.5±0.5 82.0±1.6 86.7±1.4 81.9±2.3 88.7±1.3 85.3±0.9

be seen that without registration the 3D segmentation network trained on the ‘Baseline’229

images completely fails in the target domain. Meanwhile, MUNIT reduces the Dice score of230

the segmentation network, which is due to the inconsistency between the synthesized images231

and its labels. And CYCADA has limited improvements to the segmentation network. This232

demonstrate that although the semantic constraints in CYCADA can maintain semantic233

consistency, it also limits the transfer effect to the target domain. The proposed RS-234

NET increases the average dice score by 5%, which shows that it greatly improves the235

generalization of the segmentation network in the target domain. As shown in Figure 3,236

the proposed method significantly outperforms the compared ones ‘BS’, ‘CB’ and ‘VENT’237

regions. The synthesized images are shown in Figure 4 in the appendix.238

In fact, the shape difference between domains has greater impact on 3D segmentation239

network than 2D ones. Compared to the same-domain segmentation, cross-domain task240

exists considerable misclassifications between WM and CB, VENT, BS regions which have241

large gap in shape. These misclassifications are more serious in the 3D model. It is why242

the accuracy of WM is lower than that of CGM in our experiment. Meanwhile, since the243

slice number of one sample is 48, the training samples of the 3D network are 48 times244

less than those of the 2D network. Thus, the shape diversity of 3D samples is largely245

limited. Compared to our previous 2D UDA work (Li et al., 2021), although the 3D RS-246

NET achieves better segmentation results in CGM and CSF regions which have small shape247

difference between domains, the segmentation results of other regions are even worse than248

that of the 2D network. We hope that the additional training samples for 3D cross-domain249

segmentation in the future can alleviate this issue.250

6. Discussion and Conclusion251

This work aims to train a 3D segmentation model to adapt it to the target domain in252

neonatal brain MR images. Experimental results shows that the shape and intensity dis-253

tribution difference have a considerable impact on 3D cross-domain neonatal brain MRI254
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Figure 3: The display of Segmentation Results on two different slices from different subjects

segmentation. The proposed RS-NET can transform both the shape and intra-class ap-255

pearance across the domains for a better adaptation of the segmentation network to the256

target domain. The intra-class intensity transformation by the proposed R module with257

TL can effectively increase the similarity of synthesized images to the target-domain im-258

ages. Furthermore, most of the current UDA models, if expanded to 3D ones, can not259

fulfill the end-to-end cross-domain 3D segmentation task. Due to the small-structure de-260

sign of R module, the proposed RS-NET can easily accomplish this task without complex261

preprocessing of registration, which is beneficial to clinical application.262
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Appendix A. Adaptive Transfer Result333

The synthesized MR images by all compared methods and the corresponding input images334

of the two domains are shown in Figure 4. For a fair comparison of transferring, all the335

compared UDA methods use Voxelmorph as a preprocessing of registration. While the336

proposed method is to make end-to-end synthesis and segmentation. ‘Voxelmorph Label’337

and ‘Proposed Label’ in Figure 4 refer to the transformed label image by Voxelmorph and338

the proposed method respectively. For better display, we enlarge a part of the synthesized339

images.

Figure 4: Synthesized T2 MR images by the compared methods. The images in the 1st and
3rd rows are from different subjects and the images in the same row are from the
slice at the same position.

340

As shown in Figure 4, there are considerable shape and intensity difference between341

NeobrainS12 and dHCP. Thus GAN-based UDA model without a preprocessing of registra-342

tion can not work in this case. As shown in the enlarged images of Figure 4, the images343

synthesized by the proposed method are more similar to the target domain than the com-344

pared methods. In addition, the synthesized images by proposed RS-NET shows the best345

appearance similarity to ‘dHCP(target)’ and maintains a good semantic consistency with346

‘Proposed Label’. Although the images synthesized by CYCADA well preserves the seman-347

tic content of the source domain, the appearance transfer is relatively poor. Unfortunately,348

due to the missing of supervision ‘CycleGAN’ and ‘MUNIT’ cannot maintain the seman-349
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tic consistency with ‘Voxelmorph Label’. Many shape distortions can be found in their350

synthesized images.351

Table 2: The Adaptive Transfer Result

Indicator Voxelmorph CycleGAN CYCADA MUNIT Proposed
MSE(target) 0.0154±0.0005 0.0152±0.0004 0.0245±0.0006 0.0144±0.0003 0.0133±0.0004
SSIM(target) 0.6039±0.0088 0.5812±0.0125 0.5534±0.0113 0.5877±0.0088 0.6163±0.0079
SNR 0.6812±0.0032 0.7315±0.0045 0.7063±0.0078 0.7176±0.0057 0.7218±0.0038

As shown in Table 2, we introduce Mean Squared Error(MSE) and Structural Similar-352

ity(SSIM) to quantitatively evaluate the effect of transferring to the target domain. We353

calculate the MSE distance and SSIM between all the synthesized images and their cor-354

responding target-domain images. The average MSE value of each voxel and the average355

SSIM value of each sample are listed in Table 2. Table 2 shows that the images synthesized356

by the proposed method has the shortest MSE distance and the best structural similarity to357

the target domain. Finally, image SNR(Signal Noise Ratio) is used to measure the quality358

of the synthesized images. Since the SNR of the entire source-domain image is low, the SNR359

value of images registered by ‘Voxelmorph’ is much lower than other compared methods.360
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