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Abstract
We study the theoretical foundations of composi-
tion in diffusion models, with a particular focus
on out-of-distribution extrapolation and length-
generalization. Prior work has shown that com-
posing distributions via linear score combination
can achieve promising results, including length-
generalization in some cases (Du et al., 2023;
Liu et al., 2022). However, our theoretical un-
derstanding of how and why such compositions
work remains incomplete. In fact, it is not even
entirely clear what it means for composition to
“work”. This paper starts to address these fun-
damental gaps. We begin by precisely defining
one possible desired result of composition, which
we call projective composition. Then, we inves-
tigate: (1) when linear score combinations prov-
ably achieve projective composition, (2) whether
reverse-diffusion sampling can generate the de-
sired composition, and (3) the conditions under
which composition fails. We connect our theo-
retical analysis to prior empirical observations
where composition has either worked or failed,
for reasons that were unclear at the time. Finally,
we propose a simple heuristic to help predict the
success or failure of new compositions.

1. Introduction
The possibility of composing different concepts represented
by pretrained models has been of both theoretical and practi-
cal interest for some time (Jacobs et al., 1991; Hinton, 2002;
Du & Kaelbling, 2024), with diverse applications including
image and video synthesis (Du et al., 2023; 2020; Liu et al.,
2022; 2021; Nie et al., 2021; Yang et al., 2023a; Wang et al.,
2024), planning (Ajay et al., 2024; Janner et al., 2022), con-
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Figure 1: Composing diffusion models via score combina-
tion. Given two diffusion models, it is sometimes possible to
sample in a way that composes content from one model (e.g.
your dog) with style of another model (e.g. oil paintings).
We aim to theoretically understand this empirical behavior.
Figure generated via score composition with SDXL fine-
tuned on the author’s dog; details in Appendix C.

Figure 2: Length-generalization, another capability of com-
position enabled by our framework. Diffusion models
trained to generate a single object conditioned on location
(left) can be composed at inference-time to generate images
of multiple objects at specified locations (right). Notably,
such images are strictly out-of-distribution for the individual
models being composed. (Additional samples in Figure 9.)

straint satisfaction (Yang et al., 2023c), parameter-efficient
training (Hu et al., 2022; Ilharco et al., 2022), and many
others (Wu et al., 2024; Su et al., 2024; Urain et al., 2023;
Zhang et al., 2025). One central goal in this field is to build
novel compositions at inference time using only the outputs
of pretrained models (either entirely separate models, or
different conditionings of a single model), to create gener-
ations that are potentially more complex than any model
could produce individually. As a concrete example to keep
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in mind, suppose we have two diffusion models, one trained
on your personal photos of your dog and another trained on
a collection of oil paintings, and we want to somehow com-
bine these to generate oil paintings of your dog. Note that in
order to achieve this goal, compositions must be able to gen-
erate images that are out-of-distribution (OOD) with respect
to each of the individual models, since for example, there
was no oil painting of your dog in either model’s training set.
Prior empirical work has shown that this ambitious vision
is at least partially achievable in practice. However, the
theoretical foundations of how and why composition works
in practice, as well as its limitations, are still incomplete.

The goal of this work is to advance our theoretical under-
standing of composition— we will take a specific family
of methods used for composing diffusion models, and we
will analyze conditions under which this method provably
generates the “correct” composition. Specifically, are there
sufficient properties of the distributions we are composing
that can guarantee that composition will work “correctly”?
And what does correctness even mean, formally?

We focus our study on composing diffusion models by lin-
early combining their scores, a method introduced by Du
et al. (2023); Liu et al. (2022) (though many other interest-
ing constructions are possible, see Section 2). Concretely,
suppose we have three separate diffusion models, one for
the distribution of dog images pdog , another for oil-paintings
poil, and another unconditional model for generic images pu.
Then, we can use the individual score estimates ∇x log p(x)
given by the models to construct a composite score:

∇x log p̂(x) := (1)
∇x log pdog(x) +∇x log poil(x)−∇x log pu(x).

This implicitly defines a distribution which we will call a
“product composition”: p̂(x) ∝ pdog(x)poil(x)/pu(x). Fi-
nally, we can try to sample from p̂ by using these scores with
a generic score-based sampler, or even reverse-diffusion.
This method of composition often achieves good results in
practice, yielding e.g. oil paintings of dogs, but it is unclear
why it works theoretically.

We are particularly interested in the OOD generalization
capabilities of this style of composition. By this we mean
the compositional method’s ability to generate OOD with
respect to each of the individual models being composed –
which may be possible even if none of the individual mod-
els are themselves capable of OOD generation. A specific
desiderata is length-generalization, understood as the ability
compose arbitrarily many concepts. For example, consider
the CLEVR (Johnson et al., 2017) setting shown in Figure 2.
Given conditional models trained on images each containing
a single object and conditioned on its location, we want to
generate images containing k > 1 objects composed in the
same scene. How could such length-generalizing compo-

sition be possible? Here is one illustrative toy example—
consider the following construction, inspired by but slightly
different from Du et al. (2023); Liu et al. (2022). Suppose pb
is a distribution of empty background images, and each pi a
distribution of images with a single object at location i, on an
otherwise empty background. Assume all locations we wish
to compose are non-overlapping. Then, performing reverse-
diffusion sampling using the following score-composition
will work — meaning will produce images with k objects at
appropriate locations:

∇x log p
t
b(x) +

k∑
i=1

(
∇x log p

t
i(x)−∇x log p

t
b(x)

)︸ ︷︷ ︸
score delta δi ∈ Rn

. (2)

Above, the notation pti denotes the distribution pi after time
t in the forward diffusion process (see Appendix E). In-
tuitively this works because during the reverse-diffusion
process, the update performed by model i modifies only
pixels in the vicinity of location i, and otherwise leaves
them identical to the background. Thus the different mod-
els do not interact, and the sampler acts as if each model
individually “pastes” an object onto an empty background.
Formally, sampling works because the score delta vectors
δi are mutually orthogonal, and in fact have disjoint sup-
ports. Notably, we can sample from this composition with a
standard diffusion sampler, in contrast to Du et al. (2023)’s
observations that more sophisticated samplers are necessary.
This construction would not be guaranteed to work, however,
if the “background” pb was chosen to be the unconditional
distribution pu (as in Equation 1), a common choice in many
prior works (Du et al., 2023; Liu et al., 2022).

The remainder of this paper is devoted to trying to generalize
this example as far as possible, and understand both its
explanatory power and its limitations. It turns out the core
mechanism can be generalized surprisingly far, and does not
depend on “orthogonality” as strongly as the above example
may suggest. We will encounter some subtle aspects along
the way, starting from formal definitions of what it means
for composition to succeed — a definition that can capture
both composing objects (as in Figure 2), and composing
other attributes (such as style + content, in Figure 1).

1.1. Contributions and Organization

In this work we introduce a theoretical framework to help
understand the empirical success of certain methods of com-
posing diffusion models, with emphasis on understanding
how compositions can sometimes length-generalize. We
start by discussing the limitations of several prior defini-
tions of composition in Section 3. In Section 4 we offer
a formal definition of “what we want composition to do”,
given precise information about which aspects we want to
compose, which we call Projective Composition (Defini-
tion 4.1). (Note that there are many other valid notions
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of composition; we are merely formalizing one particular
goal.) Then, we study how projective composition can be
achieved. In Section 5 we introduce formal criteria called
Factorized Conditionals (Definition 5.2), which is a type
of independence criteria along both distributions and coor-
dinates. We prove that when this criteria holds, projective
composition can be achieved by linearly combining scores
(as in Equation 2), and can be sampled via standard reverse-
diffusion samplers. In Section 6 we show that parts of this
result can be extended much further to apply even in nonlin-
ear feature spaces; but interestingly, even when projective
composition is achievable, it may be difficult to sample.
We find that in many important cases existing constructions
approximately satisfy our conditions, but the theory also
helps characterize and explain certain limitations. Finally in
Section 7 we discuss how our results can help explain exist-
ing experimental results in the literature where composition
worked or failed, for reasons that were unclear at the time.
We also suggest a simple practical heuristic to help predict
whether new sets of concepts will compose correctly.

2. Related Work
Single vs. Multiple Model Composition. First, we distin-
guish the kind of composition we study in this paper from
approaches that rely a single model but with OOD condition-
ers; for example, passing OOD text prompts to text-to-image
models (Nichol et al., 2021; Podell et al., 2023), or works
like Okawa et al. (2024); Park et al. (2024). In contrast, we
study compositions which recombine the outputs of multiple
separate models at inference time, where each model only
sees in-distribution conditionings. Among compositions
involving multiple models, many different variants have
been explored. Some are inspired by logical operators like
AND and OR, which are typically implemented as product
p0(x)p1(x) and sum p0(x) + p1(x) (Du et al., 2023; Du &
Kaelbling, 2024; Liu et al., 2022). Some composition meth-
ods are based on diffusion models, while others use energy
/ density approximations (Du et al., 2020; 2023; Liu et al.,
2021; Thornton et al., 2025; Skreta et al., 2024). In this
work, we focus specifically on product-style compositions
implemented with diffusion models via a linear combina-
tions of scores as in Du et al. (2023); Liu et al. (2022). Our
goal is not to propose a new method of composition but to
improve theoretical understanding of existing methods.

Learning and Generalization. In this work we focus only
on mathematical aspects of composition, and we do not
consider any learning-theoretic aspects such as inductive
bias or sample complexity. Our work is thus complementary
to Kamb & Ganguli (2024), which studies how a type of
compositional generalization can arise from inductive bias
in the learning procedure. Additional related works are
discussed in Appendix A.

3. Prior Definitions of Composition
In this section we will describe why two popular mathe-
matical definitions of composition are insufficient for our
purposes: the “simple product” definition, and the Bayes
composition. Specifically, neither of these notions can de-
scribe the outcome of the CLEVR length-generalization
experiment from Figure 2. Our observations here will thus
motivate us to propose a new definition of composition,
in the following section. As a running example, we will
consider a subset of the CLEVR experiment from Figure 2.
Suppose we are trying to compose two distributions p1, p2
of images each containing a single object in an otherwise
empty scene, where the object is in the lower-left corner
under p1, and the upper-right corner under p2. We would
like the composed distribution p̂ to place objects in at least
the lower-left and upper-right, simultaneously.

3.1. The Simple Product

The simple product is perhaps the most familiar type of com-
position: Given two distributions p1 and p2 over Rn, the
simple product is defined1 as p̂(x) ∝ p1(x)p2(x). The sim-
ple product can represent some interesting types of compo-
sition, but it has a key limitation: the composed distribution
can never be truly “out-of-distribution” w.r.t. p1 or p2, since
p̂(x) = 0 whenever p1(x) = 0 or p2(x) = 0. This presents
a problem for our CLEVR experiment. Using the simple
product definition, we must have p̂(x) = 0 for any image
x with two objects, since neither p1 nor p2 was supported
on images with two objects. Therefore, the simple product
definition cannot represent our desired composition.

3.2. The Bayes Composition

Another candidate definition for composition, which we will
call the “Bayes composition”, was introduced and studied by
Du et al. (2023); Liu et al. (2022). The Bayes composition
is theoretically justified when the desired composed distri-
bution is formally a conditional distribution of the model’s
training distribution. However, it is not formally capable of
generating truly out-of-distribution samples, as our example
below will illustrate.

Let us attempt to apply the Bayes composition methodology
to our CLEVR example. We interpret our two distributions
p1, p2 as conditional distributions, conditioned on an ob-
ject appearing in the lower-left or upper-right, respectively.
Thus we write p(x|c1) ≡ p1(x), where c1 is the event that
an object appears in the lower-left of image x, and c2 the
event an object appears in the upper-right. Now, since we
want both objects simultaneously, we define the composi-
tion as p̂(x) := p(x|c1, c2). Because the two events c1 and
c2 are conditionally independent given x (since they are

1The geometric mean
√

p1(x)p2(x) is also often used; our
discussion applies equally to this as well.
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Figure 3: Attempted composition of 3 objects. (a) Compo-
sition succeeds for single-object distributions using empty
background (as in Figure 2). (b) Bayes composition fails for
single-object distributions. (c) Bayes composition succeeds
for 1-5 object distributions. (Additional samples in Fig-
ure 10; further length-generalization explored in Figure 11;
quantitative analysis in Table 1.

deterministic functions of x), we can compute p̂ in terms of
the individual conditionals:

p̂(x) := p(x|c1, c2) ∝ p(x|c1)p(x|c2)/p(x). (3)

Equivalently in terms of scores: ∇x log p̂t(x) :=
∇x log p(x|c1) + ∇x log p(x|c2) − ∇x log p(x). Line (3)
thus serves as our definition of the Bayes composition p̂, in
terms of the conditional distributions p(x|c1) and p(x|c2),
and the unconditional p(x).

The definition of composition above seems natural: we
want both objects to appear simultaneously, so let us simply
condition on both these events. However, there is an obvious
error in the conclusion: p̂(x) must be 0 whenever p(x|c1)
or p(x|c2) is zero (by Line 3). Since neither conditional
distribution have support on images with two objects, the
composition p̂ cannot contain images of two objects either.

Where did this go wrong? The issue is: p(x|c1, c2) is not
well-defined in our case. We intuitively imagine some un-
conditional distribution p(x) which allows both objects si-
multaneously, but no such distribution has been defined, or
encountered by the models during training. Thus, the defi-
nition of p̂ in Line (3) does not actually correspond to our
intuitive notion of “conditioning on both objects at once.”
More generally, this example illustrates how the Bayes com-
position cannot produce truly out-of-distribution samples,
with respect to the distributions being composed.2 Fig-
ure 3(b) shows that the Bayes composition does not always
work experimentally either: for diffusion models trained in
our CLEVR setting of Figure 2, the Bayes composition of
three locations typically fails to produce three objects. The
difficulties discussed lead us to propose a precise definition
of what we actually “want” composition to do in this case.

2Although Du et al. (2023) use the Bayes composition to
achieve a kind of length-generalization, our discussion shows that
the Bayes justification does not explain the experimental results.

Figure 4: Distribution p̂ is a projective composition of p1
and p2 w.r.t. projection functions (Π1,Π2), because p̂ has
the same marginals as p1 when both are post-processed by
Π1, and analogously for p2.

4. Our Proposal: Projective-Composition
We now present our formal definition of what it means to
“correctly compose” distributions. Our main insight here is,
a realistic definition of composition should not purely be a
function of distributions {p1, p2, . . . }, in the way the simple
product p̂(x) = p1(x)p2(x) is purely a function of p1, p2.
We must also somehow specify which aspects of each dis-
tribution we care about preserving in the composition. For
example, informally, we may want a composition that mim-
ics the style of p1 and the content of p2. Our definition
below of projective composition allows us this flexibility.

Roughly speaking, our definition requires specifying a “fea-
ture extractor” Πi : Rn → Rk associated with every distri-
bution pi. These functions can be arbitrary, but we usually
imagine them as projections3 in some feature-space, e.g,
Π1(x) may be a transform of x which extracts only its style,
and Π2(x) a transform which extracts only its content. Then,
a projective composition is any distribution p̂ which “looks
like” distribution pi when both are viewed through Πi (see
Figure 4). Formally:

Definition 4.1 (Projective Composition). Given a collec-
tion of distributions {pi} along with associated “projection”
functions {Πi : Rn → Rk}, we call a distribution p̂ a
projective composition if4

∀i : Πi♯p̂ = Πi♯pi. (4)

That is, when p̂ is projected by each Πi, it yields marginals
identical to those of pi.

There are a few aspects of this definition worth empha-
sizing, which are conceptually different from many prior
notions of composition. First, our definition above does
not construct a composed distribution; it merely specifies
what properties the composition must have. For a given

3We use the term “projection” informally here, to convey intu-
ition; these functions Πi are not necessarily coordinate projections,
although this is an important special case (Section 5).

4The notation ♯ refers to push-forward of a probability measure.
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Figure 5: Composing yellow objects with objects of other
colors. Yellow objects successfully compose with blue,
cyan and magenta objects but not with brown, gray, green,
or red objects. Per the histograms (left), in RGB-colorspace
yellow has R, G distributed like the background (gray) while
B has a distinct distribution peaked closer to zero. Taking
Myellow ≈ {B}, Theorem 5.3 predicts that standard dif-
fusion can sample from compositions of yellow with any
color where the B channel is distributed like the background:
namely, blue, cyan, magenta per the histograms. (Other col-
ors may theoretically compose per Theorem 6.1, but be
difficult to sample.) (Additional samples in Figure 12.)

set of {(pi,Πi)}, there may be many possible distributions
p̂ which are projective compositions; or in other cases, a
projective composition may not even exist. Separately, the
definition of projective composition does not posit any sort
of “true” underlying distribution, nor does it require that
the distributions pi are conditionals of an underlying joint
distribution. In particular, projective compositions can be
truly “out of distribution” with respect to the pi: p̂ can be
supported on samples x where none of the pi are supported.

Examples. We have already discussed the style+content
composition of Figure 1 as an instance of projective com-
position. Another even simpler example to keep in mind
is the following coordinate-projection case. Suppose we
take Πi : Rn → R to be the projection onto the i-th coordi-
nate. Then, a projective composition of distributions {pi}
with these associated functions {Πi} means: a distribution
where the first coordinate is marginally distributed identi-
cally to the first coordinate of p1, the second coordinate
is marginally distributed as p2, and so on. (Note, we do
not require any independence between coordinates). This
notion of composition would be meaningful if, for example,
we are already working in some disentangled feature space,
where the first coordinate controls the style of the image
the second coordinate controls the texture, and so on. The
CLEVR length-generalization example from Figure 2 can

also be described as a projective composition in almost an
identical way, by letting Πi : Rn → Rk be a restriction onto
the set of pixels neighboring location i. We describe this
explicitly later in Section 5.3.

5. Simple Construction of Projective
Compositions

It is not clear apriori that projective compositional distri-
butions satisfying Definition 4.1 ever exist, much less that
there is any straightforward way to sample from them. To
explore this, we first restrict attention to perhaps the sim-
plest setting, where the projection functions {Πi} are just
coordinate restrictions. This setting is meant to generalize
the intuition we had in the CLEVR example of Figure 2,
where different objects were composed in disjoint regions of
the image. We first define the construction of the composed
distribution, and then establish its theoretical properties.

5.1. Defining the Construction

Formally, suppose we have a set of distributions
(p1, p2, . . . , pk) that we wish to compose; in our running
CLEVR example, each pi is the distribution of images with
a single object at position i. Suppose also we have some
reference distribution pb, which can be arbitrary, but should
be thought of as a “common background” to the pis. Then,
one popular way to construct a composed distribution is via
the compositional operator defined below. (A special case
of this construction is used in Du et al. (2023), for example).

Definition 5.1 (Composition Operator). Define the compo-
sition operator C acting on an arbitrary set of distributions
(pb, p1, p2, . . .) by

C[p⃗] := C[pb, p1, p2, . . . ](x) :=
1

Z
pb(x)

∏
i

pi(x)

pb(x)
, (5)

where Z is the appropriate normalization constant. We
name C[p⃗] the composed distribution, and the score of C[p⃗]
the compositional score:

∇x log C[p⃗](x) (6)

= ∇x log pb(x) +
∑
i

(∇x log pi(x)−∇x log pb(x)) .

Notice that if pb is taken to be the unconditional distribution
then this is exactly the Bayes-composition.

5.2. When does the Composition Operator Work?

We can always apply the composition operator to any set of
distributions, but when does this actually yield a “correct”
composition (according to Definition 4.1)? One special case
is when each distribution pi is “active” on a different, non-
overlapping set of coordinates. We formalize this property
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below as Factorized Conditionals (Definition 5.2). The idea
is, each distribution pi must have a particular set of “mask”
coordinates Mi ⊆ [n] which it samples in a characteristic
way, while independently sampling all other coordinates
from a common background distribution. If a set of dis-
tributions (pb, p1, p2, . . .) has this Factorized Conditional
structure, then the composition operator will produce a pro-
jective composition (as we will prove below).
Definition 5.2 (Factorized-Conditionals). We say a set
of distributions (pb, p1, p2, . . . pk) over Rn are Factorized
Conditionals if there exists a partition of coordinates [n]
into disjoint subsets Mb,M1, . . .Mk such that:

1. (x|Mi
, x|Mc

i
) are independent under pi.

2. (x|Mb
, x|M1 , x|M2 , . . . , x|Mk

) are mutually indepen-
dent under pb.

3. pi(x|Mc
i
) = pb(x|Mc

i
).

Equivalently, if we have:

pi(x) = pi(x|Mi)pb(x|Mc
i
), and (7)

pb(x) = pb(x|Mb
)
∏
i∈[k]

pb(x|Mi).

Equation (7) means that each pi can be sampled by first sam-
pling x ∼ pb, and then overwriting the coordinates of Mi

according to some other distribution (which can be specific
to distribution i). For instance, the experiment of Figure 2
intuitively satisfies this property, since each of the condi-
tional distributions could essentially be sampled by first
sampling an empty background image (pb), then “pasting”
a random object in the appropriate location (corresponding
to pixels Mi). If a set of distributions obey this Factorized
Conditional structure, then we can prove that the composi-
tion operator C yields a correct projective composition, and
reverse-diffusion correctly samples from it. Below, let Nt

denote the noise operator of the diffusion process5 at time t.
Theorem 5.3 (Correctness of Composition). Suppose a
set of distributions (pb, p1, p2, . . . pk) satisfy Definition 5.2,
with corresponding masks {Mi}i. Consider running the
reverse-diffusion SDE using the following compositional
scores at each time t:

st(xt) := ∇x log C[ptb, pt1, pt2, . . .](xt), (8)

where pti := Nt[pi] are the noisy distributions. Then, the
distribution of the generated sample x0 at time t = 0 is:

p̂(x) := pb(x|Mb
)
∏
i

pi(x|Mi
). (9)

In particular, p̂(x|Mi
) = pi(x|Mi

) for all i, and so p̂
is a projective composition with respect to projections
{Πi(x) := x|Mi

}i, per Definition 4.1.

5Our results are agnostic to the specific diffusion noise-
schedule and scaling used.

Unpacking this, Line 9 says that the final generated distribu-
tion p̂(x) can be sampled by first sampling the coordinates
Mb according to pb (marginally), then independently sam-
pling coordinates Mi according to pi (marginally) for each
i. Similarly, by assumption, pi(x) can be sampled by first
sampling the coordinates Mi in some specific way, and then
independently sampling the remaining coordinates accord-
ing to pb. Therefore Theorem 5.3 says that p̂(x) samples
the coordinates Mi exactly as they would be sampled by pi,
for each i we wish to compose.

Proof. (Sketch) Since p⃗ satisfies Definition 5.2, we have

C[p⃗](x) := pb(x)
∏
i

pi(x)

pb(x)
= pb(x)

∏
i

pb(xt|Mc
i
)pi(x|Mi)

pb(x|Mc
i
)pb(x|Mi)

= pb(x)
∏
i

pi(x|Mi)

pb(x|Mi)
= pb(x|Mb)

∏
i

pi(xt|Mi) := p̂(x).

The sampling guarantee follows from the commutativity of com-
position with the diffusion noising process, i.e. C[p⃗t] = Nt[C[p⃗]].
The complete proof is in Appendix H.

Remark 5.4. In fact, Theorem 5.3 still holds under any
orthogonal transformation of the variables, because the dif-
fusion noise process commutes with orthogonal transforms.
We formalize this as Lemma J.1.
Remark 5.5. Compositionality is often thought of in terms
of orthogonality between scores. Definition 5.2 implies
orthogonality between the score differences that appear in
the composed score (6): ∇x log p

t
i(xt)−∇x log p

t
b(xt), but

the former condition is strictly stronger (c.f. Appendix F).
Remark 5.6. Notice that the composition operator C can be
applied to a set of Factorized Conditional distributions with-
out knowing the coordinate partition {Mi}. That is, we can
compose distributions and compute scores without knowing
apriori exactly “how” these distributions are supposed to
compose (i.e. which coordinates pi is active on).

5.3. Example: Factorized Conditionals in CLEVR.

Let us explicitly describe how our definition of Factorized
Conditionals captures the CLEVR setting of Figure 2. Re-
call, the background distribution pb over n pixels is images
of an empty scene with no objects. For each i ∈ {1, 2, 3, 4},
define the set Mi ⊂ [n] as the set of pixel indices surround-
ing location i. (Mi should be thought of as a “mask” that
that masks out objects at location i). Let Mb := (∪iMi)

c be
the remaining pixels in the image. Then, we claim the distri-
butions (pb, p1, p2, p3, p4) form approximately6 Factorized
Conditionals, with corresponding coordinate partition {Mi}.

6Note, the conditions of Definition 5.2 do not exactly hold in
the experiment of Figure 2— e.g., there is still some dependence
between the masks Mi, since objects can cast shadows or even
occlude each other. Empirically, these deviations have greater
impact when composing many objects, as seen in Figure 11(a).
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This is essentially because each distribution pi matches the
background pb on all pixels except those surrounding loca-
tion i. See Appendix B.2 for more details.

5.4. Discussion

Importance of Background. Our derivations highlight
the crucial role of the background distribution pb for the
composition operator (Definition 5.1). While prior works
have taken pb to be an unconditional distribution and the
pis its associated conditionals, our results suggest this may
not be the optimal choice – in particular, it may not satisfy
a Factorized Conditional structure (Definition 5.2). Fig-
ure 3(a,b) shows a CLEVR experiment where we attempt
to compose three diffusion models, each trained to generate
a single object conditioned on location (as in Figure 2), us-
ing two different backgrounds. In (a) we choose an empty
background, which (together with the conditionals) approxi-
mately satisfies Definition 5.2 and thus yields a projective
composition. In (b), we form a standard Bayes composi-
tion by using the unconditional distribution (i.e., a single
object in an arbitrary location) as background, which does
not satisfy Definition 5.2 in this case. The former succeeds
experimentally while the latter fails.

Bayes composition may be approximately projective.
However, Bayes composition can also often succeed. For
example, the CLEVR dataset Du et al. (2023); Liu et al.
(2022) contains images with multiple objects and the lo-
cation of one randomly-chosen object. We replicate this
experiment in Figure 3(c) and verify that the Bayes compo-
sition succeeds (and may even work better for composing
many objects than single-object-empty-background, as in
Figure 11). The unconditional together with the conditionals
can approximately act as Factorized Conditionals in “clut-
tered” settings like this one. The intuition is that if the
conditional distributions each contain one specific object
plus many independently sampled random objects (“clut-
ter”), then the unconditional distribution almost looks like
independently sampled random objects, which together with
the conditionals would satisfy Definition 5.2 (further dis-
cussion in Appendix B.2 and G). This helps to explain the
length-generalization observed in Liu et al. (2022).

6. Projective Composition in Feature Space
So far we have focused on the setting where the projection
functions Πi are simply projections onto coordinate subsets
Mi in the native space (e.g. pixel space). This covers
simple examples like Figure 2 but does not include more
realistic situations such as Figure 1, where the properties
to be composed are more abstract. For example a property
like “oil painting” does not correspond to projection onto a
specific subset of pixels in an image. However, we may hope
that there exists some conceptual feature space in which “oil

painting” does correspond to a particular subset of variables.
In this section, we extend our results to the case where
the composition occurs in some conceptual feature space,
and each distribution to be composed corresponds to some
particular subset of features.

Our main result is a featurized analogue of Theorem 5.3: if
there exists any invertible transform A mapping into a fea-
ture space where Definition 5.2 holds, then the composition
operator (Definition 5.1) yields a projective composition in
this feature space. See Figure 14 in Appendix I.

Theorem 6.1 (Feature-space Composition). Given distri-
butions p⃗ := (pb, p1, p2, . . . pk), suppose there exists a C1

diffeomorphism A : Rn → Rn (that is, A and A−1 should
be differentiable) such that (A♯pb,A♯p1, . . .A♯pk) satisfy
Definition 5.2, with corresponding partition Mi ⊆ [n]. Then,
the composition p̂ := C[p⃗] satisfies:

A♯p̂(z) ≡ (A♯pb(z))|Mb

k∏
i=1

(A♯pi(z))|Mi
. (10)

Therefore, p̂ is a projective composition of p⃗ w.r.t. projection
functions {Πi(x) := A(x)|Mi

}.

This theorem is remarkable because it means we can com-
pose distributions (pb, p1, p2, . . . ) in the base space, and
this composition will “work correctly” in the feature space
automatically (Equation 10), without us ever needing to
compute or even know the feature transform A explicitly.

Theorem 6.1 may apriori seem too strong to be true, since it
somehow holds for all feature spaces A simultaneously. The
key observation underlying Theorem 6.1 is that the compo-
sition operator C behaves well under reparameterization.

Lemma 6.2 (Reparameterization Equivariance). The com-
position operator of Definition 5.1 is reparameterization-
equivariant. That is, for all diffeomorphisms A : Rn → Rn

and all tuples of distributions p⃗ = (pb, p1, p2, . . . , pk),

C[A♯p⃗] = A♯C[p⃗]. (11)

This lemma is potentially of independent interest: equiv-
ariance distinguishes the composition operator from many
other common operators (e.g. the simple product). Lemma
6.2 and Theorem 6.1 are proved in Appendix I.

6.1. Sampling from Compositions.

The feature-space Theorem 6.1 is weaker than Theorem 5.3
in one important way: it does not provide a sampling algo-
rithm. That is, Theorem 6.1 guarantees that p̂ := C[p⃗] is a
projective composition, but does not guarantee that reverse-
diffusion is a valid sampling method. Part of this is inherent:
in the feature-space setting, the diffusion noise operator Nt

no longer commutes with the composition operator C, so
scores of the noisy composed distribution Nt[C[p⃗]] cannot be
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computed from scores of the noisy base distributions Nt[p⃗].
Nevertheless, one may hope to sample from the distribution
p̂ using other samplers besides diffusion, such as annealed
Langevin Dynamics, Sequential Monte Carlo (Thornton
et al., 2025), or Predictor-Corrector methods (Song et al.,
2020). We find that the situation is surprisingly subtle: com-
position C produces distributions which are in some cases
easy to sample (e.g. with diffusion), yet in other cases ap-
parently hard to sample. For example, in the setting of
Figure 5, our Theorem 6.1 implies that all pairs of colors
should compose equally well at time t = 0, since there
exist diffeomorphisms (indeed, linear transforms) between
different colors. However, as we saw, the diffusion sam-
pler fails to sample from compositions of non-orthogonal
colors— and empirically, even more sophisticated samplers
such as Predictor-Correctors also fail in this setting. At
first glance, it may seem odd that composed distributions
are so hard to sample, when their constituent distributions
are relatively easy to sample. One possible reason for this
below is that the composition operator has extremely poor
Lipchitz constant, so it is possible for a set of distributions
p⃗ to “vary smoothly” (e.g. diffusing over time) while their
composition C[p⃗] changes abruptly. We formalize this in
Lemma 6.3 (further discussion and proof in Appendix K).

Lemma 6.3 (Composition Non-Smoothness). For any set
of distributions {pb, p1, p2, . . . , pk}, and any noise scale
t := σ, define the noisy distributions pti := Nt[pi], and let
qt denote the composed distribution at time t: qt := C[p⃗t].
Then, for any choice of τ > 0, there exist distributions
{pb, p1, . . . pk} over Rn such that

1. For all i, the annealing path of pi is O(1)-Lipshitz:
∀t, t′ : W2(p

t
i, p

t′

i ) ≤ O(1)|t− t′|.
2. The annealing path of q has Lipshitz constant at least

Ω(τ−1): ∃t, t′ : W2(q
t, qt

′
) ≥ |t−t′|

2τ .

Intuitively, this means that, even if projective composition is
possible at t = 0, reverse diffusion (or indeed any annealing
method) may not be able to correctly sample from it.

7. Practical implications
We have presented a mathematical theory of composition.
Although this theoretical model is a simplification of reality
(we do not claim its assumptions hold exactly in practice) we
believe the spirit of our results carries over to practical set-
tings, and can help both understand empirical observations
from prior work, and make predictions about the success or
failure of new compositions.

7.1. Connections with prior work

Independence Assumptions and Disentangled Features.
Our theory relies on a type of independence between dis-
tributions, related to orthogonality between scores, which

we formalize as Factorized Conditionals. While such con-
ditional structure typically does not exist in pixel-space, it
is plausible that a factorized structure exists in an appropri-
ate feature space, permitted by our theory (Section 6). In
particular, a feature space and distribution with perfectly
“disentangled” features (Chen et al., 2018; Kim & Mnih,
2018; Yang et al., 2023b; Locatello et al., 2019) would sat-
isfy our assumptions. Conversely, if distributions are not
appropriately disentangled, our theory predicts that linear
score combinations will fail to compose correctly. This ef-
fect is well-known; see Figure 6 for an example; similar
failure cases are highlighted in Liu et al. (2022) as well
(such as “A bird” failing to compose with “A flower”). Re-
garding successful cases, style and content compositions
consistently work well in practice, and are often taken to be
disentangled features (e.g. Karras et al. (2019); Kotovenko
et al. (2019); Gatys et al. (2016); Zhu et al. (2017)).

Text conditioning with location information. Condition-
ing on location is a straightforward way to achieve factorized
conditionals (provided the objects in different locations are
approximately independent) since the required disjointness
already holds in pixel-space. Many successful text-to-image
compositions in Liu et al. (2022) use location information
in the prompts, either explicitly (e.g. “A blue bird on a tree”
+ “A red car behind the tree”) or implicitly (“A horse” +
“A yellow flower field”; since horses are typically in the
foreground and fields in the background).

Unconditional Backgrounds. Most prior works on diffu-
sion composition use the Bayes composition, with substan-
tial practical success. As discussed in Section 5.4, Bayes
composition may be approximately projective in “cluttered”
settings, helping to explain its practical success in text-to-
image settings, where images often contain many different
possible objects and concepts.

7.2. A practical heuristic

We now discuss a simple heuristic to help predict whether
Factorized Conditionals (FC) holds for a particular set of
concepts. Although it is not sufficient to guarantee Projec-
tive Composition, it is easy-to-apply in practice to get an
initial “hint” about whether composition is likely to work.

We start with a lemma showing that FC concepts satisfy a
simple (necessary, but not sufficient) orthogonality condi-
tion. The short proof is in Appendix F.
Lemma 7.1. Let (pb, p1, . . . , pk) be Factorized Condition-
als. Let µi = Epi

[x] for i = 1, . . . , k and µb = Epb
[x]

denote the mean vectors. Then, for any i ̸= j:

(µi − µb)
T (µj − µb) = 0. (12)

Thus, orthogonality between the mean difference vectors
{µi − µb} is a necessary (but not sufficient) condition for
Factorized Conditionals.

8
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Figure 6: Composing Entangled Concepts. The left image
composes the text-conditions “photo of a dog” with “photo
of a horse”, which both control the subject of the image,
and produces unexpected results. In contrast, the right im-
age composes “photo of a dog” with “photo, with red hat,”
which intuitively correspond to disentangled features. Both
samples from SDXL using score-composition with an un-
conditional background; details in Appendix C.

This lemma makes precise the common intuition that some
type of approximate “concept-space orthogonality” is re-
quired for successful composition in practice, such as LoRA
task arithmetic (Zhang et al., 2023a; Ilharco et al., 2022).

We can apply the lemma to help predict whether a new com-
position may be successful. Importantly, since we often
do not expect FC to hold in pixel-space, we need to pro-
pose some feature-space in which FC might hold, and verify
Lemma 7.1 there. We choose the CLIP (Radford et al.,
2021) feature-space as the proposal since it is simple-to-use
and is known to provide a reasonably disentangled represen-
tation (though other feature spaces could also be used). In
order to test Lemma 7.1 in CLIP-space, the procedure is: for
each concept distribution pi, collect several representative
images, compute their CLIP embeddings, and average them
to obtain the mean µi. Similarly, estimate the background
mean µb using arbitrary images (representing the uncon-
ditional distribution). Then check whether Equation (12)
approximately holds.

CLIP’s goal of text-image-alignment suggest an even easier
heuristic-for-the-heuristic: simply using the text-embedding
for each concept. That is, we could approximate µi as the
CLIP text-embedding of a text description of concept pi.
Although CLIP has been shown to suffer from a “modality
gap” (text and image embeddings are not perfectly aligned)
(Liang et al., 2022), the orthogonality structure we care
about – related to angles between centered-concepts – may
still be fairly well-preserved. In Figure 7 we show a prelim-
inary experiment with both the image and text heuristics.

Figure 7: Cosine similarity ( utv
∥u∥∥v∥ ) between mean dif-

ferent vectors µi − µb and µj − µb, for each pair of con-
cepts i, j, with µi estimated as either the average CLIP
image embedding over several images representative of con-
cept i (left) or the CLIP text embedding for a single text
description of concept i (right). Details in Appendix D.
Note that the groups of concepts {“dog”, “horse”, “cat”},
{“watercolor”, “oil-painting”}, {“hat”, “sunglasses”} have
high intra- and low inter-group similarity. This suggests that
concepts from different groups may successfully compose
(such as “dog”+“hat” or “dog”+“oil-painting”), while con-
cepts from the same group may not (such as “dog”+“horse”),
consistent with the examples in Figures 1 and 6.

8. Conclusion
In this work, we have developed a theory of one possible
mechanism of composition in diffusion models. We study
how composition can be defined, and sufficient conditions
for it to be achieved. Our theory can help understand a range
of diverse compositional phenomena in both synthetic and
practical settings, and we hope it will inspire further work
on foundations of composition.
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A. Additional Related Works
Structured compositional generative models. Structured generative models leverage architectural inductive biases in an
encoder-decoder framework, such as recurrent attention mechanisms (Gregor et al., 2015) or slot-attention (Wang et al.,
2023). These models decompose scenes into background and parts-based representations in an unsupervised manner guided
by modeling priors. While these approaches can flexibly generate scenes with single or multiple objects, they are not
explicitly controllable, and require specific model pre-training on datasets containing compositions of interest.

Controllable generation. Composition at inference-time is one potential mechanism for exerting control over the generation
process. Another way to modify compositions of style and/or content attributes is through spatial conditioning a pre-trained
diffusion model on a structural attribute (e.g., pose or depth) as in Zhang et al. (2023b), or on multiple attributes of style
and/or content as in Stracke et al. (2024). Another option is control through resampling, as in Liu et al. (2024). These
methods are complementary to single or multiple model conditioning mechanisms based on score composition that we study
in the current work.

Single model conditioning. We distinguish the kind of composition we study in this paper from approaches that rely on a
single model but use OOD conditioners to achieve novel combinations of concepts never seen together during training; for
example, passing OOD text prompts to text-to-image models (Nichol et al., 2021; Podell et al., 2023), or works like Okawa
et al. (2024); Park et al. (2024) where a single model conditions simultaneously on multiple attributes like shape and color,
with some combinations held out during training. In contrast, the compositions we study recombine the outputs of multiple
separate models at inference time. Though less powerful, this can still be surprisingly effective, and is more amenable to
theoretical study since it disentangles the potential role of conditional embeddings.

Multiple model composition. Among compositions involving multiple separate models, many different variants have been
explored with different goals and applications. Some definitions of composition are inspired by logical operators like AND
and OR, usually taken to mean that the composed distribution should have high probability under all of the conditional
distributions to be composed, or at least one of them, respectively. Given two conditional probabilities p0(x), p1(x), AND
is typically implemented as the product p0(x)p1(x) and OR as sum p0(x) + p1(x) (though these only loosely correspond
to the logical operators and other implementations are also possible). Some composition methods are based on diffusion
models and use the learned scores (mainly for product compositions), others use energy-based models (which allows for
OR-inspired sum compositions, as well as more sophisticated samplers, in particular sampling at t = 0 (Du et al., 2020;
2023; Liu et al., 2021), and still others work directly with the densities (Skreta et al., 2024) (enabling an even greater variety
of compositions, including a different style of AND, taken to mean p0(x) = p1(x)). McAllister et al. (2025) explore another
type of OR composition. (Wiedemer et al., 2024) take a different approach of taking the final rendered images generated
by separate diffusion models and “adding them up” in pixel-space, as part of a study on generalization of data-generating
processes. Task-arithmetic (Zhang et al., 2023a; Ilharco et al., 2022), often using LoRAs (Hu et al., 2022), is a kind of
composition in weight-space that has had significant practical impact.

Product compositions. In this work, we focus specifically on product compositions (broadly defined to allow for a
“background” distribution, i.e. compositions of the form p̂(x) = pb(x)

∏
i
pi(x)
pb(x)

) implemented with diffusion models, which
allows the composition to be implemented via a linear combinations of scores as in Du et al. (2023); Liu et al. (2022). Our
goal is not to propose a wholly new method of composition but rather to improve theoretical understanding of existing
methods.

Learning and Generalization. Recently, Kamb & Ganguli (2024) demonstrated how a type of compositional generalization
arises from inductive bias in the learning procedure (equivariance and locality). Their findings are relevant to our broader
motivation, but complementary to the focus of this work. Specifically, we focus only on mathematical aspects of defining
and sampling from compositional distributions, and we do not consider any learning-theoretic aspects such as inductive
bias or sample complexity. This allows us to study the behavior of compositional sampling methods even assuming perfect
knowledge of the underlying distributions.
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B. CLEVR Experimental Details
All of our CLEVR experiments use raw conditional diffusion scores, without applying any guidance/CFG (Ho & Salimans,
2022). Details below.

B.1. Dataset, models, and training details

B.1.1. CLEVR DATASET

We used the CLEVR (Johnson et al., 2017) dataset generation procedure7 to generate datasets customized to the needs of
the present work. All default objects, shapes, sizes, colors were kept unchanged. Images were generated in their original
resolution of 320× 240 and down-sampled to a lower resolution of 128× 128 to facilitate experimentation and to be more
GPU resources friendly. The various datasets we generated from this procedure include:

• A background dataset (0 objects) with 50,000 samples

• Single object dataset with 1,550,000 samples

• A dataset having 1 to 5 objects, with 500,000 samples for each object count, for a total of 2,500,000 samples.

Our experiments cover two different conditioning setups. In Figures 2, 9, 11, we condition on the 2D location of the object
(or the location of one randomly-chosen object, for multi-object distributions). In Figures 5, 12, we condition on the color of
the object. In all experiments we condition only a single attribute (either location or color) at a time, with all other attributes
sampled randomly and not conditioned on.

B.1.2. MODEL ARCHITECTURE

We used our own PyTorch re-implementation of the EDM2 (Karras et al., 2024) U-net architecture. Our re-implementation
is functionally equivalent, and only differs in optimizations introduced to save memory and GPU cycles. We used the
smallest model architecture, e.g. edm2-img64-xs from https://github.com/NVlabs/edm2. This model has a
base channel width of 128, resulting in a total of 124M trainable weights. Two versions of this model were used:

• An unmodified version for background and class-conditioned experiments.

• A modified version for (x, y) conditioning in which we simply replaced Fourier embeddings for the class with
concatenated Fourier embeddings for x and y.

B.1.3. TRAINING AND INFERENCE

In all experiments, the model is trained with a batch size of 2048 over 128×220 samples by looping over the dataset as often
as needed to reach that number. In practice, training takes around 16 hours to complete on 32 A100 GPUs. We used almost
the same training procedure as in EDM2 (Karras et al., 2024), which is basically a standard training loop with gradient
accumulation. The only difference is that we do weight renormalization after the weights are updated rather than before as
the authors originally did.

For simplicity, we did not use posthoc-EMA to obtain the final weights used in inference. Instead we took the average of
weights over the last 4096 training updates. The denoising procedure for inference is exactly the same as in EDM2 (Karras
et al., 2024), e.g. 65 model calls using a 32-step Heun sampler.

B.2. Factorized Conditionals in CLEVR.

B.2.1. SINGLE OBJECT DISTRIBUTIONS WITH EMPTY BACKGROUND

Let us explicitly describe how our definition of Factorized Conditionals captures the CLEVR setting of Figure 2. Recall, the
background distribution pb over n pixels is images of an empty scene with no objects. For each i ∈ {1, 2, 3, 4}, define the
set Mi ∈ [n] as the set of pixel indices surrounding location i. Each Mi should be thought of as a “mask” that that masks

7https://github.com/facebookresearch/clevr-dataset-gen
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out objects at location i. Then, let Mb := (∪iMi)
c be the remaining pixels in the image, excluding all the masks. Now

we claim the distributions (pb, p1, p2, p3, p4) are approximately Factorized Conditionals, with corresponding coordinate
partition (Mb,M1,M2,M3,M4). We can confirm each criterion in Definition 5.2 individually:

1. In each distribution pi, the pixels inside the mask Mi are approximately independent from the pixels outside the mask,
since the outside pixels always describe an empty scene.

2. In the background pb, the set of masks {Mi} specify approximately mutually-independent sets of pixels, since all
pixels are roughly constant.

3. The distribution of pi and pb approximately agree along all pixels outside mask Mi, since they both describe an empty
scene outside this mask.

Thus, the set of distributions approximately form Factorized Conditionals. However the conditions of Definition 5.2 do
not exactly hold, since objects can cast shadows on each other and may even occlude each other. Empirically, this can
significantly affect the results when composing many objects, as explored in Figure 11(a).

B.2.2. CLUTTERED DISTRIBUTED WITH UNCONDITIONAL BACKGROUND

Figure 8: Samples from unconditional model trained on images containing 1-5 objects. The sampled images sometimes
contain 6 objects (circled in orange).

Next, we discuss the setting of Figure 3(c), which is a Bayes composition based on an unconditional distribution where each
scene contains 1-5 objects (with the number of objects sampled uniformly). The locations and all other attributes of the objects
are sampled independently. The conditions label the location of one randomly-chosen object. Just as in the previous case, for
each i ∈ {1, 2, 3, 4}, we define the set Mi ∈ [n] as the set of pixel indices surrounding location i, and let Mb := (∪iMi)

c

be the remaining pixels in the image, excluding all the masks. Again, we claim that the distributions (pb, p1, p2, p3, p4) are
approximately Factorized Conditionals, with corresponding coordinate partition (Mb,M1,M2,M3,M4). We examine the
criteria in Definition 5.2:

1. In each distribution pi, the pixels inside the mask Mi are approximately independent from the pixels outside the mask,
since the outside pixels approximately describe a distribution containing 0-4 objects, and the locations and other
attributes of all objects are independent.

2. In the unconditional background distribution pb, we argue that in practice, the set of masks {Mi} are approximately
mutually-independent. By assumption, the locations and other attributes of all shapes are all independent, and the
masks Mi are chosen in these experiment to minimize interaction/overlap. The main difficulty is the restriction to 1-5
total objects, which we discuss below.

3. The distribution of pi and pb approximately agree along all pixels outside mask Mi, since pi|Mc
i

contains 0-4 objects,
while pb|Mc

i
contains 0-5 objects (since one object could be ‘hidden’ in M c

i ).

There are, however, two important caveats to the points above. First, overlap or other interaction (shadows, etc.) between
objects can clearly violate all three criteria. In our experiment, this is mitigated by the fact that the masks Mi are chosen
to minimize interaction/overlap (though interactions start to occur as we compose more objects, leading to some image
degradation). Second, since the number of objects is sampled uniformly from 1-5, the presence of one object affects
the probability that another will be present. Thus, the masks {Mi} are not perfectly independent under the background
distribution, nor do pi and pb perfectly agree on M c

i . Ideally, each pi would place an object in mask Mi and independently
follow pb on M c

i , and pb would be such that the probability that an object appears in mask Mi is independently Bernoulli
(c.f. Appendix G.2). In particular, this would imply that the distribution of the total number of objects is Binomial (which
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allows the total object-count to range from zero to the total-number-of-locations, as well as placing specific probabilities on
each object-count), which clearly differs from the uniform distribution over 1-5 objects. However, a few factors mitigate this
discrepancy:

• A Binomial with sufficiently small probability-of-success places very little probability on large k. For example, under
Binomial(9, 0.3), P(k = 0 : 5) = 0.04, 0.156, 0.27, 0.27, 0.17, 0.07 and P(k > 5) = 0.026.

• Empirically, the learned unconditional distribution does not actually enforce k < 5; we sometimes see samples with
k = 6 for example, as seen in Figure 8.

Intuitively, the train distribution is “close to Bernoulli” and the learned distribution seems to be even closer.

With these considerations in mind, we see that the set of distributions approximately – though imperfectly – form Factorized
Conditionals. One advantage of this setting compared to the single-object setting is that the models can learn how multiple
objects should interact and even overlap correctly, potentially making it easier compose nearby locations. We explore the
length-generalization of this composition empirically in Figure 11c (note, however, that only compositions of more than 5
objects are actually OOD w.r.t. the distributions pi in this case).

B.3. Additional CLEVR samples

In this section we provide additional non-cherrypicked samples of the experiments shown in the main text.

Table 1: Quantitative analysis of different methods of composition of location-conditioned CLEVR distributions. We
generated 100 samples using each composition method, and manually counted (to avoid any potential error in using
a classifier) the objects in correct locations (i.e. locations corresponding to the conditioners of the distributions being
composed) in each generated image. The table shows the histogram of these manual counts, that is, each column lists the
number of images that contained the given number of objects in correct locations. N denotes number of distributions being
composed (hence the expected number of objects) – we test N = 1 through N = 6. Single-object empty composes single-
object object distributions with an empty background. Single-object Bayes composes single-object object distributions with
an unconditional background. Bayes-cluttered composes 1-5 object distributions (with location label assigned to a single
randomly-chosen object) with an unconditional background.

Style N 0 1 2 3 4 5 6
Single-object empty 1 100

2 100
3 1 99
4 2 98
5 2 98
6 3 97

Single-object Bayes 1 100
2 10 67 32
3 36 62 2
4 77 23
5 66 32 2
6 34 6 3

Bayes-cluttered 1 100
2 100
3 100
4 100
5 2 98
6 2 98
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Figure 9: Additional non-cherrypicked samples for CLEVR experiment of Figure 2.

Figure 10: Additional non-cherrypicked samples for CLEVR experiment of Figure 3.
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Figure 11: Attempted compositional length-generalization up to 9 objects, in the setting of Figure 3 (but with more-closely
spaced objects). We attempt to compose via linear score combination the distributions p1 through p9 shown on the far left,
where each pi is conditioned on a specific object location as described below. Settings (A) and (C) approximately satisfy the
conditions of our theory of projective composition, and thus are expected to length-generalize at least somewhat; while
setting (B) does not even approximately satisfy our conditions and indeed fails to length-generalize. Experiment (A): In this
experiment, the distributions pi each contain a single object at a fixed location, and the background pb is empty. In this case
any successful composition of more than one object represents length-generalization. We find that composition succeeds up
to several objects, but then degrades as number of objects increases (see Section 5.3 for details). Experiment (B): Here the
distributions pi are identical to (A), but the background pb is chosen as the unconditional distribution (i.e. a single object
at a random location)— this the “Bayes composition” (Section 3). This composition entirely fails— remarkably, trying
to compose many objects often produces no objects! Experiment (C): Here each distribution pi contains an object at a
fixed location i, and 0− 4 other objects (sampled uniformly) in random locations; see samples at far left. The background
distribution pb is a distribution of 1− 5 objects (sampled uniformly) in random locations. In this case length-generalization
means composition of more than 5 objects. This composition can length-generalize, but artifacts appear for large numbers
of objects. See Appendix B.2 for a full discussion.

18



Mechanisms of Projective Composition

Figure 12: Additional non-cherrypicked samples for CLEVR experiment of Figure 5. Top left grid shows conditional
samples for each color. Top right grid shows compositions of red-colored objects (p6) with objects of other colors (8 samples
of each), which only succeeds for cyan-colored objects. Bottom grid shows compositions of yellow-colored objects (p7)
with objects of other colors (16 samples of each): these are additional samples of the exact experiment shown in Figure 5.
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C. SDXL experimental details
C.1. Figure 1

The two models composed are

1. An SDXL model (Podell et al., 2023) fine-tuned on 30 personal photos of the author’s dog (Papaya).

2. SDXL-base-1.0 (Podell et al., 2023) conditioned on prompt “an oil painting in the style of van gogh.”

The background score distribution is the unconditional background (i.e. SDXL conditioned on the empty prompt). We use
the DDPM sampler (Ho et al., 2020) with 30 steps, using the composed score, and CFG guidance weight of 2 Ho et al.
(2020).

Note that using guidance weight 1 (i.e. no guidance) also performs reasonably in this case, but is lower quality.

C.2. Figure 6

Left: The two score models composed are

1. SDXL-base-1.0 (Podell et al., 2023) conditioned on prompt “photo of a dog”

2. SDXL-base-1.0 (Podell et al., 2023) conditioned on prompt “photo of a horse”

The background score distribution is the unconditional background (i.e. SDXL conditioned on the empty prompt).

For improved sample quality, we use a Predictor-Corrector method (Song et al., 2020) with the DDPM predictor and the
Langevin dynamics corrector, both operating on the composed score. We use 100 predictor denoising steps, and 3 Langevin
iterations per step. We do not use any guidance/CFG.

Right: Identical setting as above, using prompts:

1. “photo of a dog”

2. “photo, with red hat”

Note that the DDPM sampler also performed reasonably in this setting, but Predictor-Corrector methods improved quality.

D. CLIP experiment details
In the CLIP experiment of Figure 7, we used the following text prompts for each concept:

"dog": "a photograph of a dog",
"horse": "a photograph of a horse",
"cat": "a photograph of a cat",
"watercolor": "a watercolor painting",
"oil-painting": "an oil painting",
"hat": "wearing a hat",
"sunglasses": "wearing sunglasses",
"uncond": ""

We did an automated collection of 10 images for each concept initially and then manually filtered them to ensure that they
actually representative of each concept, leaving us with 10 for “dog”, 2 for “horse”, 9 for “cat”, 3 for “watercolor”, 4 for
“oil-painting”, 6 for “hat”, 5 for “sunglasses”, 10 for “uncond” (the latter were arbitrary images searched with no specific
keyword).

For each concept i, we ran the image experiment by computing the CLIP embedding of each representative image and
averaging them to estimate the mean µi. Similarly, we estimated the background mean µb by using the arbitrary images
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(representing the unconditional distribution). For the text experiment we simply estimated µi, µb as the CLIP embedding of
the single representative text prompt (or empty prompt).

In either case we then computed the cosine similarity between the mean difference vectors µi−µb)
T (µj−µb)

∥µi−µb∥∥µj−µb∥
to assess

whether the condition of Lemma 7.1, i.e. µi − µb)
T (µj − µb) ≈ 0 approximately holds.

E. Reverse Diffusion and other Samplers
E.1. Diffusion Samplers

DDPM (Ho et al., 2020) and DDIM (Song et al., 2021) are standard reverse diffusion samplers (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019) that correspond to discretizations of a reverse-SDE and reverse-ODE, respectively (so we will
sometimes refer to the reverse-SDE as DDPM and the reverse-ODE as DDIM for short). The forward process, reverse-SDE,
and equivalent reverse-ODE (Song et al., 2020) for the variance-preserving (VP) (Ho et al., 2020) conditional diffusion are

Forward SDE : dx = −1

2
βtxdt+

√
βtdw. (13)

DDPM SDE : dx = −1

2
βtx dt− βt∇x log pt(x|c)dt+

√
βtdw̄ (14)

DDIM ODE : dx = −1

2
βtx dt− 1

2
βt∇x log pt(x|c)dt. (15)

E.2. Langevin Dynamics

Langevin dynamics (LD) (Rossky et al., 1978; Parisi, 1981) an MCMC method for sampling from a desired distribution. It
is given by the following SDE (Robert et al., 1999)

dx =
ε

2
∇ log ρ(x)dt+

√
εdw, (16)

which converges (under some assumptions) to ρ(x) (Roberts & Tweedie, 1996). That is, letting ρs(x) denote the solution of
LD at time s, we have lims→∞ ρs(x) = ρ(x).

F. Factorized Conditionals vs. Orthogonality
Lemma 7.1 states that Factorized Conditionals (Definition 5.2) implies orthogonality between mean differences (providing a
necessary-but-not-sufficient condition to check for FC). The proof is straightforward:

Proof. (Lemma 7.1)

pi(x|Mc
i
) = pb(x|Mc

i
) by FC

µi = E
pi

[x], i = 1, . . . , k, µb = E
pb

[x]

=⇒ (µi)Mc
i
= (µb)Mc

i

=⇒ Support(µi − µb) ⊂ Mi

=⇒ (µi − µb)
T (µj − µb) = 0, since Mi ∩Mj = ∅

Similarly, Definition 5.2 also implies orthogonality between the score differences (recall that the score is related to the
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conditional mean as ∇ log pt(x) := 1
σ2
t
Ep[x− xt|xt], so this is closely related to Lemma 7.1). To see this:

vti(x) := ∇x log p
t
i(xt)−∇x log p

t
b(xt)

= ∇x log
pti(x)

ptb(x)
= ∇x log

pti(x|Mi
)ptb(x|Mc

i
x)

ptb(x|Mi)p
t
b(x|Mc

i
)

= ∇x log
pti(x|Mi)

ptb(x|Mi
)

=⇒ vti(x)[k] = 0, ∀k /∈ Mi

=⇒ vti(x)
T vtj(x) = 0, ∀i ̸= j, since Mi ∩Mj = ∅,

where in the second-to-last line we used the fact that the gradient of a function depending only on a subset of variables has
zero entries in the coordinates outside that subset.

In fact, the same argument implies that {vti(x) : x ∈ Rn} ⊂ Mi; in other words, {vti(x) : x ∈ Rn} and {vtj(x) : x ∈ Rn}
occupy mutually-orthogonal subspaces. But even this latter condition does not imply the stronger condition of Definition
5.2. To find an equivalent definition in terms of scores we must also capture the independence of the subsets under pb.
Specifically: 

pti(x) = pti(x|Mi
x)ptb(x|Mc

i
x)

ptb(x) = ptb(x|M̄x)
∏
i

ptb(x|Mi
)

⇐⇒


∇x log p

t
i(x) = ∇x log p

t
i(x|Mi

x) +∇x log p
t
b(x|Mc

i
x)

∇x log p
t
b(x) = ∇x log p

t
b(x|M̄x) +

∑
i

∇x log p
t
b(x|Mi

)

⇐⇒


∇x log p

t
i(x)−∇x log p

t
b(x) = ∇x log

pti(x|Mix)

ptb(x|Mi
x)

∇x log p
t
b(x) = ∇x log p

t
b(x|M̄x) +

∑
i

∇x log p
t
b(x|Mi)

So an definition equivalent to Definition 5.2 in terms of scores could be:
Definition F.1. The distributions (pb, p1, p2, . . .) form factored conditionals if the score-deltas vti := ∇x log p

t
i(x) −

∇x log p
t
b(x) satisfy {vti(x) : x ∈ Rn} ⊂ Mi, where the Mi are mutually-orthogonal subsets, and furthermore the

score of the background distribution decomposes over these subsets as follows: ∇x log p
t
b(x) = ∇x log p

t
b(x|M̄x) +∑

i ∇x log p
t
b(x|Mi).

(Note: this is actually equivalent to a slightly more general version of Definition 5.2 that allows for orthogonal transformations,
which is the most general assumption under diffusion sampling generates a projective composition, per Lemmas 6.1 and J.1.)

G. Connections with the Bayes composition
G.1. The Bayes composition and length-generalization

We give a counterexample for which the Bayes composition fails to length-generalize, while composition using an “empty
background” succeeds. The example corresponds to the experiment shown in Figure 13 (left). Suppose we have conditional
distributions pi that set a single index i to one and all other indices to zero, a zero-background distribution pb, and an
unconditional distribution formed from the conditionals by assuming p(c = i) is uniform. That is:

pti(xt) = N (xt; ei, σ
2
t ) ∝ exp

(
−∥xt − ei∥2

2σ2
t

)
ptb(xt) = N (xt; 0, σ

2
t ) ∝ exp

(
−∥xt∥2

2σ2
t

)
ptu(xt) =

1

n

n∑
i=1

pi(xt) (17)

22



Mechanisms of Projective Composition

Figure 13: Bayes composition vs. projective composition. All experiments use exact scores, which is possible since the
diffusion-noised distributions are Gaussian mixtures. (Left) Distributions follow (17): each conditional pi activates index
i only, unconditional pu averages over the pi, and background pb is all-zeros. We attempt to compose the conditions
p0, p2, p4, p6 and hope to obtain the result [1, 0, 1, 0, 1, 0]. This requires length-generalization, since each of the condi-
tionals pi contains only a single 1. The composition using the empty background pb (top) achieves this goal, while the
Bayes composition using the unconditional pu (bottom) does not. Note that [pb, p1, p2, . . .] satisfy Definition 5.2 while
[pu, p1, p2, . . .] does not. (Right) Distributions follow (18), where each conditional pi activates index i on an independently
‘cluttered’ background. In this case the unconditional is similar to the cluttered background. Again we attempt to compose
p0, p2, p4, p6, and in this case we find that the composition using pu works similarly well to pb.

Suppose we want to compose all n distributions pi, that is, we want to activate all indices. It is enough to consider xt of the
special form xt = (α, . . . , α) since there is no reason to favor any condition over any another. Making this restriction,

xt = (α, . . . , α) =⇒ pti(xt) ∝ exp

(
− (n− 1)α2 + (1− α)2

2σ2
t

)
= exp

(
−nα2 − 2α+ 1

2σ2
t

)
, ∀i

ptu(xt) = exp

(
−nα2 − 2α+ 1

2σ2
t

)
ptb(xt) ∝ exp

(
−nα2

2σ2
t

)

Let us find the value of α that maximizes the probability under the Bayes composition of all condition:

xt = (α, . . . , α) =⇒ pti(xt)

ptu(xt)
= 1

=⇒ ptu(xt)

n∏
i=1

pti(xt)

ptu(xt)
∝ ptu(xt) ∝ exp

(
−nα2 − 2α+ 1

2σ2
t

)
= exp

(
−
n(α− 1

n )
2 + const

2σ2
t

)
=⇒ α⋆ =

1

n
,

so the optimum is α⋆ = 1
n . That is, under the Bayes composition the most likely configuration places value 1

n at each index
we wished to activate, rather than the desired value 1.
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On the other hand, if we instead use pb in the linear score combination and optimize, we find that:

xt = (α, . . . , α) =⇒ =⇒ pti(xt)

ptb(xt)
∝ exp

(
−1− 2α

2σ2
t

)
=⇒ ptb(xt)

n∏
i=1

pti(xt)

ptb(xt)
∝ exp

(
−nα2

2σ2
t

)
exp

(
−n(1− 2α)

2σ2
t

)
∝ exp

(
−n(α2 − 2α+ 1)

2σ2
t

)
∝ exp

(
−n(α− 1)2

2σ2
t

)
=⇒ α⋆ = 1

so the optimum is α⋆ = 1. That is, the most likely configuration places the desired value 1 at each index we wished to
activate, achieving projective composition, and in particular, length-generalizing correctly.

G.2. Cluttered Distributions

In certain “cluttered” settings, the Bayes composition may be approximately projective. We explore this in the following
simplified setting, corresponding to the experiment in Figure 13 (right). Suppose that x is binary-valued, Mi = {i},∀i, the
xi are independently Bernoulli with parameter q under the background, and the projected conditional distribution pi(x|i)
just guarantees that xi = 1:

pb(x|ic) ∼ Bernq(x|ic), i.i.d. ∀i, pi(x|i) = 1x|i=1, (18)

The distributions (pb, p1, p2, . . .) then clearly satisfy Definition 5.2 and hence guarantee projective composition. In this
case, the unconditional distribution used in the Bayes composition is similar to the background distribution if number of
conditions is large. Intuitively, each conditional looks very similar to the Bernoulli background except for a single index
that is guaranteed to be equal to 1, and the unconditional distribution is just a weighted sum of conditionals. Therefore, we
expect the Bayes composition to be approximately projective.

More precisely, we will show that the unconditional distribution converges to the background in the limit as n → ∞, where
n is both the data dimension and number of conditions, in the following sense:

E
x∼pb

[(
pu(x)− pb(x)

pb(x)

)2
]
→ 0 as n → ∞.

We define the conditional and background distributions by:

x ∈ Rn, Mi = {i}
pb(x|i) ∼ Bernq(x|i), i.i.d. for i = 1, . . . , n

pi(x|i) = 1x|i=1, for all i = 1, . . . , n

=⇒ pb(x) = qnnz(x)(1− q)n−nnz(x)

pi(x) = 1x|i=1pb(x|ic) = 1x|i=1q
nnz(x|ic )(1− q)n−1−nnz(x|ic )

We construct the unconditional distribution with assuming uniform probabibility over all labels: pu(x) := 1
n

∑
i pi(x). The

number-of-nonzeros (nnz) in all of these distributions follow Binomial distributions:

x ∼ pb =⇒ pb(nnz(x) = k) ∼ Binom(k;n, q)

x ∼ pi =⇒ pi(nnz(x) = k) = pb(nnz(x|ic) = k − 1)

∼ Binom(k − 1;n− 1, q) if k > 0 else 0

x ∼ pu =⇒ pu(nnz(x) = k) =
1

n

∑
pi(nnz(x) = k)

∼ Binom(k − 1;n− 1, q) if k > 0 else 0
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The basic intuition is that for large k and n, pb ∼ Binom(k;n, q) and pu ∼ Binom(k − 1;n − 1, q) are similar. More
precisely, we can calculate:

E
x∼pb

[(
pu(x)− pb(x)

pb(x)

)2
]
= E

x∼pb

[(
nnz(x)

qn
− 1

)2
]
, since

B(k − 1;n− 1, q)

B(k;n, q)
=

k

qn

= E
k∼Binom(n,q)

[(
k

qn
− 1

)2
]
=

1

(nq)2
E

k∼Binom(n,q)

[
(k − nq)2

]
=

1

(nq)2
Var(k), k ∼ Binom(n, q)

=
1

(nq)2
nq(1− q) =

1− q

nq
→ 0 as n → ∞.

H. Proof of Theorem 5.3
Proof. (Theorem 5.3) For any set of distributions q⃗ = (qb, q1, q2, . . .) satisfying Definition 5.2, we have

C[q⃗](x) := qb(x)
∏
i

qi(x)

qb(x)
= qb(x)

∏
i

qb(xt|Mc
i
)qi(x|Mi

)

qb(x|Mc
i
)qb(x|Mi

)

= qb(x)
∏
i

qi(x|Mi
)

qb(x|Mi
)
= qb(x|Mb

)
∏
i

qi(xt|Mi
) (19)

(where we used (7) in the second equality). Since (pb, p1, p2, . . .) satisfy Definition 5.2 by assumption, applying (19) gives

C[p⃗](x) = pb(x|Mb
)
∏
i

pi(x|Mi
) := p̂(x),

so the composition at t = 0 is projective, as desired. Now to show that reverse-diffusion sampling with the compositional
scores generates C[p⃗], we need to show that

C[p⃗t] = Nt[C[p⃗]],

where pt := Nt[p] denotes the t-noisy version of distribution p under the forward diffusion process. First, notice that if
p⃗ satisfies Definition 5.2, then p⃗t does as well. This is because the diffusion process adds Gaussian noise independently
to each coordinate, and thus preserves independence between sets of coordinates. Therefore by (19), we have C[p⃗t](x) =
ptb(x|M̄ )

∏
i p

t
i(xt|Mi). Now we apply the same argument (that diffusion preserves independent sets of coordinates) once

again, to see that C[p⃗t] = Nt[C[p⃗]], as desired.

I. Parameterization-Independent Compositions and Proof of Lemma 6.1
The proof of Lemma 6.1 relies on certain general fact about parametrization-independence of certain operators, which we
develop here.

Suppose we have an operator that takes as input two probability distributions (p, q) over the same space X , and outputs a
distribution over X . That is, F : ∆(X ) ×∆(X ) → ∆(X ). We can think of such operators as performing some kind of
“composition” of p, q.

Certain operators are independent of parameterization, meaning for any reparameterization of the base space A : X → Y ,
we have

F (p, q) = A−1♯(F (A♯p,A♯q))

or equivalently:
F (A♯p,A♯q) = A♯F (p, q),

where ♯ is the pushforward:

(A♯p)(z) :=
1

|∇A|
p(A−1(z)).
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This means that reparameterization commutes with the operator: it does not matter if we first reparameterize, then compose,
or first compose, then reparamterize. A few examples:

1. The pointwise-geometric median, F (p, q)(x) :=
√

p(x)q(x), is independent of reparameterization:

2. Squaring a distribution, F (p, q)(x) := p(x)2, is NOT independent of reparameterization:

3. The “CFG composition” (Ho & Salimans, 2022), F (p, q)(x) := p(x)γq(x)1−γ , is independent of reparameterization:

We can analogously define parametrization-independence for operators on more than 2 distributions. Notably, given a tuple
of distributions p⃗ = (pb, p1, p2, . . . , pk), our composition operator C of Definition 5.1, C[p⃗] ∝ pb(x)

∏
i
pi(x)
pb(x)

is independent
of parameterization.

Lemma I.1 (Parametrization-independence of 1-homogeneous operators). If an operator F is 1-homogeneous, i.e.
F (tp, tq, . . .) = tF (p, q, . . .) and operates pointwise, then it is independence of parametrization.

Proof.

F (A♯p,A♯q, . . .)(z) = F (A♯p(z),A♯q(z), . . .), pointwise

= F

(
1

|∇A|
p(A−1(z)),

1

|∇A|
q(A−1(z)), . . .

)
=

1

|∇A|
F
(
p(A−1(z)), q(A−1(z)), . . .

)
, 1-homogeneous

= A♯F (p, q, . . .)(z)

Corollary I.2 (Parametrization-invariance of composition). The composition operator C given by Definition 5.1 is indepen-
dent of parametrization.

Proof. The composition operator given by Definition 5.1 is 1-homogeneous:

C(tpb, tp1, tp2, . . .)(x) = tpb(x)
∏
i

tpi(x)

tpb(x)
= tpb(x)

∏
i

pi(x)

pb(x)
= tC(pb, p1, p2, . . . )(x)

and so the result follows from Lemma I.1. Alternatively, a direct proof is:

C(pb, p1, p2, . . .)(x) := pb(x)
∏
i

pi(x)

pb(x)

C(A♯pb,A♯p1,A♯p2, . . .)(z) = (A♯pb)(z)
∏
i

(A♯pi)(z)

(A♯pb)(z)
=

1

|∇A|
pb(A−1(z))

∏
i

pi(A−1(z))

pb(A−1(z))
= A♯C(pb, p1, p2, . . .)(z).

Theorem 6.1 follows from Corollary I.2:

Proof. (Theorem 6.1) Let (qb, q1, q2, . . . , qk) := (A♯pb,A♯p1, . . .A♯pk), for which Definition 5.2 holds by assumption.
Applying an intermediate result from the proof of Theorem 5.3 gives:

C[q⃗](z) := qb(z)
∏
i

qi(z)

qb(z)
= qb(z|M̄ )

∏
i

qi(z|Mi
).

By Corollary I.2, C is independent of parametrization, hence

A♯p̂ := A♯(C[p⃗]) = C[A⃗♯p] := C(q⃗).
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Figure 14: Projective Composition in Feature Space. A commutative diagram illustrating Theorem 6.1: Performing
composition in pixel space is equivalent to encoding into some feature space (A), composing there, and decoding back to
pixel space (A−1). This holds for all feature spaces subject to smoothness conditions. Thus, if there exists some feature
space where distributions p1, p2 projectively compose (e.g. due to orthogonality as illustrated here), then we can achieve
this same composition by simply operating in pixel space, without even needing to know the feature space.

J. Composition under Orthogonal Transformation
Lemma J.1 (Orthogonal transform enables diffusion sampling). If the assumptions of Lemma 6.1 hold for A(x) = Ax,
where A is an orthogonal matrix, then running a reverse diffusion sampler with scores st = ∇x log C[p⃗t] generates the
composed distribution p̂ = C[p⃗] satisfying (10).

Figure 15 shows a synthetic experiment illustrating the sampling guarantees of Lemma J.1 in contrast to the lack-of-
guarantees in the non-orthogonal case.

The proof relies on the fact that diffusion noising commutes with orthogonal transformations, i.e. A♯Nt[q] = Nt[A♯q] if A
is orthogonal, since standard Gaussians are invariant under orthogonal transformation.

Proof. By assumption, (A♯pb,A♯p1, . . .A♯pk) satisfy Definition 5.2, where A(z) = Az with A an orthonormal matrix. By
Lemma 6.1, p̂ = C[p⃗] satisfies (10). To show that reverse-diffusion sampling with scores st = ∇x log C[p⃗t] generates the
composed distribution C[p⃗] we need to show that composition commutes with the forward diffusion process, i.e.

C[p⃗t] = Nt[C[p⃗]].

Theorem 5.3 immediately gives us
C[Nt[A♯p]] = Nt[C[A♯p]].

Now we have to be careful with commuting operators. We know that composition is independent of parametrization,
i.e. A♯C[p⃗] = C[A⃗♯p]. Diffusion noising Nt commutes with orthogonal transformation, i.e. A♯Nt[q] = Nt[A♯q] if
A is orthogonal, because a standard Gaussian multiplied by an orthonormal matrix Q remains a standard Gaussian:
η ∼ N (0, I) =⇒ Qη ∼ N (0, QQT ) = N (0, I) (this is false for non-orthogonal transforms, however). Therefore, in the
orthogonal case, we can rewrite:

A♯C[Nt[p]] = A♯Nt[C[p]],
which implies the desired result since A is invertible.

K. Proof and further discussion of Lemma 6.3
K.1. Benefits of sampling at t = 0

Interestingly, (Du et al., 2023) have observed that sophisticated samplers like Hamiltonian Monte Carlo (HMC) requiring
energy-based formulations often outperform standard diffusion sampling for compositional quality. Lemmas 6.1 and 6.3
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Figure 15: Synthetic composition experiment illustrating the sampling guarantees of Lemma J.1 in contrast to the lack-
of-guarantees in the non-orthogonal case. We compare a coordinate-aligned case (which satisfies Definition 5.2 in the
native space) (top), an orthogonal-transform case (middle) (which satisfies the assumptions of Lemma J.1), and a non-
orthogonal-transform case (bottom) (which satisfies the assumptions of Theorem 6.1 but not of Lemma J.1). In the first two
cases the correct composition can be sampled using either diffusion (DDIM) or Langevin dynamics (LD) at t = 0, while
in the final case DDIM sampling is unsuccessful although LD at t = 0 still works. The distributions are 4-dimensional
and we show 8 samples (rows) for each. We show samples from the individual conditional distributions p0, p1 using
DDIM, samples from the desired exact composition C[pb, p0, p1] at t = 0 (obtained by sampling from A♯C[p⃗] with DDIM
and transforming by A−1), samples from the composition C[pb, p0, p1] using DDIM with exact scores, and samples from
the composition C[pb, p0, p1] using Langevin dynamics (LD) with exact scores at time t = 0 in the diffusion schedule
(σmin = 0.02). The noiseless distributions p0 and p1 are each 4-dimensional 2-cluster Gaussian mixtures with means as
noted in the figure, equal weights, and standard deviation τ = 0.02. For example, in the non-orthogonal-transform case,
p0 has means [1, 0, 0, 0] and [0, 0, 1, 0], and p1 has means [1, 1, 0, 0] and [0, 0, 1, 1], (which can be transformed to satisfy
Definition 5.2 via a non-orthogonal linear transform).

help explain why this may be the case. In particular, HMC (or any variant of Langevin dynamics) can enable sampling p0

at time t = 0, even when the path pt used for annealing does not necessarily represent a valid forward diffusion process
starting from p0 (as Du et al. (2023) note, C[p⃗t]] may not be). Lemma 6.1 should gives us hope that approximately-projective
composition may often be possible at t = 0, since it allows any invertible transform A to transform into a factorized feature
space (which need not be explicitly constructed). However, that does not mean that we can actually sample from this
projection at time t = 0. As Lemma 6.3 shows, C[p⃗t]] is not necessarily a valid diffusion path unless A is orthogonal, so
standard diffusion sampling may not work. This is consistent with Du et al. (2023)’s observation that non-diffusion samplers
that allow sampling at t = 0 may be necessary. Interestingly, Lemma 6.3 further cautions that sometimes C[p⃗t]] may not
even be an effective annealing path for any kind of sampler (which is consistent with our own experiments but not reported
by other works, to our knowledge.)

K.2. Proof of Lemma 6.3

We will prove Lemma 6.3 using a counterexample, which is inspired by an experiment, shown in Figure 17 (left), where
non-orthogonal conditions fail to compose projectively.

The basic idea for the counterexample is that given a distribution p(x) with two conditions, c = 0, 1, such at t = 0,

p0(x) ≈
1

2
δe0(x) +

1

2
δe2(x), p1(x) ≈

1

2
δae0+e1(x) +

1

2
δae2+e3(x),

for some 0 < a ≤ 1, so the conditional distributions do not satisfy the independence assumption of Definition 5.2, However,
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Figure 16: (Left) A visualization of the intuition behind the proof of Lemma 6.3, under a 2D projection. (Right) An
experiment where the colors red, green, and blue all compose projectively, while the colors red and yellow do not. We
trained a Unet on images each containing a single square in one of 4 locations (selected randomly) and a certain color,
conditioned on the color. We then generate composed distributions by running DDIM on the composed scores. The desired
result of composing red and blue is an image containing a red and a blue square, both with randomly-chosen locations
(so we occasionally get a purple square when the locations overlap). When we try to compose red and yellow, we only
only ever obtain a single yellow square.Note that in pixel space, the colors are represented as red (1, 0, 0), green (0, 1, 0),
blue (0, 0, 1), yellow (1, 1, 0), so that red, green and blue are all orthogonal and are expected to work by Lemma 5.3, while
red and yellow are not orthogonal, and fail as allowed by Lemma 6.3. In fact this experiment is closely related to the
counterexample used to prove Lemma 6.3.

Figure 17: Composition experiments for the setting in the proof of Lemma 6.3. Left pane shows 8 samples (rows) of each
distribution in the native 4d representation; right pane shows 1000 samples under the 2D projection used in Figure 16. We
show samples from the individual conditional distributions p0, p1 using DDIM, samples from the desired exact composition
C[pb, p0, p1] at t = 0 (obtained by sampling from A♯C[p⃗] with DDIM and transforming by A−1), and samples from the
composition C[pb, p0, p1] using DDIM with exact scores. We take τ = 0.02, and set σmin = 0.02 in the diffusion schedule.
In the top row we take a = 1 (“very non-orthogonal”) as in the proof, and compare this to a = 0.3 (“mildly non-orthogonal”)
in the bottom row. With a = 1, as in the proof we see that DDIM barely samples two of the clusters. With a = 0.3, DDIM
still slightly undersamples the “hard” clusters but the effect is much less pronounced.
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there exists a (linear, but not orthogonal) A such that the distribution of z = Ax is axis-aligned

(A♯p0)(z) ≈
1

2
δe0(x) +

1

2
δe2(x), (A♯p1)(z) ≈

1

2
δe1(x) +

1

2
δe3(x),

and thus does satisfy Definition 5.2 at t = 0, which guarantees correct composition of p at t = 0 under Lemma 6.1. The
correct composition should sample uniformly from {(1+a)e0+e1, e0+ae2+e3, ae0+e2+e1, (1+a)e2+e3}. What
goes wrong is that as soon as we add Gaussian noise to the distribution p(x) at time t > 0 of the diffusion forward process,
the relationship z = Ax breaks and so we are no longer guaranteed correct composition of pt(x). In fact, the distribution is
still a GMM but places nearly all its weight on only two of the four clusters, namely: {(1 + a)e0 + e1, (1 + a)e2 + e3}.
Intuitively, let us focus on the mode ae0 + e1 of p1 and consider how it interacts with the two modes e0, e2 of p0, at some
time t > 0 when we have isotropic Gaussians centered at each mode. Since ae0 + e1 is further away from e2 (distance√
a2 + 2) than it is from e0 (distance

√
a2 − 2a+ 2), it is much less likely under N (e2, σt) than N (e0, σt), leading to a

lower weight. This intuition is shown graphically in a 2D projection in Figure 16 (left).

For the detailed proof, we actually want to ensure that p has full support even at t = 0 so we add a little bit of noise to it, but
choose the covariance such that z = Ax still holds at t = 0.

We begin by defining the distributions we will use for the counterexample.

Definition K.1. For any choice of τ > 0, define the following counterexample distributions:

p00(x) =
1

2
N (x; e0, τ

2(ATA)−1) +
1

2
N (x; e2, τ

2(ATA)−1)

p01(x) =
1

2
N (x; ae0 + e1, τ

2(ATA)−1) +
1

2
N (x; ae2 + e3, τ

2(ATA)−1)

p0b(x) = N (x; 0, τ2(ATA)−1), where A :=


1 −a 0 0
0 1 0 0
0 0 1 −a
0 0 0 1

 ,

so that in the transformed space

(A♯p)(z) := p(A−1z), z = Ax

(A♯p0b)(z) = N (z; 0, τ2)

(A♯p00)(z) =
1

2
N (z; e0, τ

2) +
1

2
N (z; e2, τ

2)

(A♯p01)(z) =
1

2
N (z; e1, τ

2) +
1

2
N (z; e3, τ

2).

The noised versions at time t > 0 are

pti(xt|x0) := N (xt;x0, σ
2
t )

pt0(x) =
1

2
N (xt; e0, σ

2
t I + τ2(ATA)−1) +

1

2
N (x; e2, σ

2
t I + τ2(ATA)−1)

pt1(x) =
1

2
N (xt; ae0 + e1, σ

2
t I + τ2(ATA)−1) +

1

2
N (x; ae2 + e3, σ

2
t I + τ2(ATA)−1).

Next, we state some intermediate results we will need for the proof.

Proposition K.2. A composition of two Gaussians with identical covariance (using a Gaussian background with zero mean
and the same covariance) is a scaled Gaussian with the following parameters

N (x;µ1; Σ)N (x;µ2,Σ)

N (x; 0; Σ)
= CN (x;µ1 + µ2,Σ), where C = exp(µT

1 Σ
−1µ2).
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Proof.

N (x;µ1; Σ)N (x;µ2,Σ)

N (x; 0; Σ)
= (2π)−

n
2 |Σ|− 1

2
e−

1
2 (x−µ1)

TΣ−1(x−µ1)e−
1
2 (x−µ2)

TΣ−1(x−µ2)

e−
1
2x

TΣ−1x

= (2π)−
n
2 |Σ|− 1

2 exp

(
−1

2
(x− µ1)

TΣ−1(x− µ1)−
1

2
(x− µ2)

TΣ−1(x− µ2) +
1

2
xTΣ−1x

)
= (2π)−

n
2 |Σ|− 1

2 exp

(
−1

2
xTΣ−1x+ xTΣ−1(µ1 + µ2)−

1

2
µT
1 Σ

−1µ1 −
1

2
µT
2 Σ

−1µ2

)
= C(2π)−

n
2 |Σ|− 1

2 exp

(
−1

2
(x− µ1 − µ2)

TΣ−1(x− µ1 − µ2)

)
= CN (x;µ1 + µ2,Σ)

C = exp

(
−1

2
µT
1 Σ

−1µ1 −
1

2
µT
2 Σ

−1µ2 +
1

2
(µ1 + µ2)

TΣ−1(µ1 + µ2)

)
= exp(µT

1 Σ
−1µ2)

Proposition K.3. With (pb, p1, p2) from Definition K.1, defining p̂t(x) := C[ptb, pt0, pt1], we have that p̂0(x), p̂t(x), and
Nt[p̂

0](x) are all Gaussian mixtures (GMs) with identical means:

µ⃗ = {(1 + a)e0 + e1, e0 + ae2 + e3, ae0 + e2 + e1, (1 + a)e2 + e3},

and the following weights and covariances:

p̂0(x) : weights: w0 :=
1

4
[1, 1, 1, 1],

covariance: Σ̃0 := τ2(ATA)−1

p̂t(x) : weights: wt := [
1

2
− ε, ε, ε,

1

2
− ε],

ε :=
1

2
S(−ξ), ξ :=

aσ2
t

(a2 + 2)σ2
t τ

2 + σ4
t + τ4

where S(z) :=
1

e−z + 1
(logistic function),

covariance: Σ̃t := σ2
t I + τ2(ATA)−1

Nt[p̂
0](x) : weights: w0 :=

1

4
[1, 1, 1, 1],

covariance: Σ̃t := σ2
t I + τ2(ATA)−1

Proof. We apply Proposition K.2 to the distributions of Definition K.1 to analyze p̂0(x), p̂t(x), and Nt[p̂
0](x). Proposi-

tion K.2 gives that all three distributions are Gaussian mixtures with identical means µ⃗, and variances Σ̃0, Σ̃t, and Σ̃t,
respectively. The weights for p̂0(x) and Nt[p̂

0](x) are uniform (w0 = 1
4 [1, 1, 1, 1]). We just need to calculate the weights

for p̂t(x).
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First we compute the covariance and inverse covariance:

Σ̃t := σ2
t I + τ2(ATA)−1 = σ2

t I + τ2


1 + a2 a 0 0

a 1 0 0
0 0 1 + a2 a
0 0 a 1



Σ̃t
−1

=
1

(a2 + 2)σ2
t τ

2 + σ4
t + τ4


σ2
t + τ2 −aτ2 0 0
−aτ2 (a2 + 1)τ2 + σ2

t 0 0
0 0 σ2

t + τ2 −aτ2

0 0 −aτ2 (a2 + 1)τ2 + σ2
t

 .

After some algebra (namely, computing C = exp(µT
1 Σ̃t

−1
µ2) for each cluster), we find that

p̂t(x) : wt ∝ [exp(ξ), 1, 1, exp(ξ)], ξ :=
aσ2

t

(a2 + 2)σ2
t τ

2 + σ4
t + τ4

= [
1

2
− ε, ε, ε,

1

2
− ε], ε :=

1

2
S(−ξ), where S(z) :=

1

e−z + 1
(logistic function).

The intuition for the proof of Lemma 6.3 will be that when ε is small, clusters (1,2) have much lower weight than clusters
(0,3) in the GM. In that case, we can lower-bound the W2 distance by noting that since wt has almost no mass on the two of
the clusters, we will need to move a little less than 1/4 probability over to those clusters. For example we need to move 1/4
probability onto cluster e0+ae2+ e3 from either (1+a)e0+ e1 (L2 distance between means is

√
2a+ 2) or (1+a)e2+ e3

(L2 distance
√
2). So overall we will have to move a bit less that 1/2 probability at least

√
2 distance.

We restate the following results from Delon & Desolneux (2020), which we will need to help bound the W2 distance.
Theorem K.4. (Mixture Wasserstein distance (Delon & Desolneux, 2020))

MW2(q0, q1) := inf
γ∈Π(q0,q1)∩GMM2d(∞)

∫
∥y0 − y1∥2dγ(y0, y1),

MW 2
2 (q0, q1) = min

c∈Π(w0,w1)

∑
k,l

ck,lW
2
2 (q

k
0 , q

l
1) (Delon Prop. 4),

W2(q0, q1) ≤ MW2(q0, q1) ≤ W2(q0, q1) + 2
∑
i=0,1

Ki∑
k=1

wk
i Tr(Σk

i ) (Delon Prop. 6),

where Π(q0, q1) denotes the set of all joint distributions with marginals q0 and q1, and GMMd(∞) := ∪K≥0GMMd(K)
denotes the set of all finite GMMs.

We will also need one more standard fact about the W2 distance between Gaussians.
Proposition K.5. (W2 distance between Gaussians; standard)

W 2
2 (N (µx,Σx),N (µy,Σy)) = ∥µx − µy∥22 + Tr(Σx +Σy − 2(Σ

1
2
xΣyΣ

1
2
x )

1
2 ) ≥ ∥µx − µy∥22.

Proposition K.6. If p is a Gaussian mixture distribution of the form

p(x) :=

K∑
k=1

wiN (µk, Ck), x ∈ Rn

then p is (nK)
1
2 -Lipschitz w.r.t Wasserstein 2-distance:

W2(p
t′ , pt) ≤ (nK)

1
2 |σt − σt′ |,

(that is, O(1)-Lipschitz, where O only hides constants depending on ambient dimension and number-of-clusters).
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Proof.

p(x) :=

K∑
k=1

wiN (µk, Ck)

pt(x) :=

K∑
k=1

wiN (µk, Ck + σ2
t I)

W 2
2 (N (µx,Σx),N (µy,Σy)) := ∥µx − µy∥22 + Tr(Σx +Σy − 2(Σ

1
2
xΣyΣ

1
2
x )

1
2 )

:= ∥µx − µy∥22 + ∥Σ
1
2
x − Σ

1
2
y ∥2F if Σx,Σy commute

=⇒ W 2
2 (p

t′ [k], pt[k]) = ∥(Ck + σ2
t I)

1
2 − (Ck + σ2

t′I)
1
2 ∥2F

= ∥(Λ + σ2
t I)

1
2 − (Λ + σ2

t′I)
1
2 ∥2F , where Ck = UΛUT is eigendecomposition

≤ ∥(σt − σt′)I∥2F , (by concavity of square root and Λ ⪰ 0)

= n(σt − σt′)
2

W 2
2 (p

t′ , pt) ≤ MW 2
2 (p

t′ , pt)

:= min
c∈Π(w,w)

∑
k,l

ck,lW
2
2 (p

t′ [k], pt[l])

≤
K∑
k

W 2
2 (p

t′ [k], pt[k]), (since c = I ∈ Π(w,w))

≤ nK(σt − σt′)
2

=⇒ W2(p
t′ , pt) ≤ (nK)

1
2 |σt − σt′ |.

Thus p is (nK)
1
2 -Lipschitz w.r.t. W2 distance.

Proposition K.7. With (pb, p1, p2) from Definition K.1 and p̂t(x) := C[ptb, pt0, pt1], the W2-distance between p̂t and p̂0 is
bounded as follows

(1− 4ε)
1
2 − 4(τ2(4 + 2a2) + 2σ2

t ) ≤ W2(p̂
0, p̂t) ≤

(
(1− 4ε)(1 + a) + 2(τ2(4 + 2a2) + 2σ2

t )
) 1

2 .

Proof. Using Proposition K.5,

MW 2
2 (p̂

0, p̂t) = min
c∈Π(w0,wt)

∑
k,l

ck,lW
2
2 (p̂

0[k], p̂t[l])

= min
c∈Π(w0,wt)

∑
k,l

ck,l

(
∥µk − µl∥22 + Tr(Σ̃0 + Σ̃t − 2(Σ̃

1
2
0 Σ̃tΣ̃

1
2
t )

1
2 )
)

c(0 or 3),(1 or 2) = 1/4− ε

2 ≤ ∥µ(0 or 3) − µ(1 or 2)∥22 ≤ 2(1 + a)

0 ≤ Tr(Σ̃0 + Σ̃t − 2(Σ̃
1
2
0 Σ̃tΣ̃

1
2
t )

1
2 ) ≤ Tr(Σ̃0 + Σ̃t) = 2τ2(4 + 2a2) + 4σ2

t

=⇒ 1− 4ε ≤ MW 2
2 (Nt[p̂

0], p̂t) ≤ (1− 4ε)(1 + a) + 2τ2(4 + 2a2) + 4σ2
t

=⇒ (1− 4ε)
1
2 ≤ MW2(Nt[p̂

0], p̂t) ≤
(
(1− 4ε)(1 + a) + 2τ2(4 + 2a2) + 4σ2

t

) 1
2 .

Above, we noted that any c ∈ Π(w0, wt) has to move at least 1
4 − ε probability each away from indices 1 or 2 and onto

indices either 0 or 3, and for any of these moves we can bound the squared L2 distance the mass must move between 2 and
2(1 + a). We also used simple bounds on the trace term.
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We can use Theorem K.4 to bound the W2 distance by the MW2 distance: Using Theorem K.4 (Delon & Desolneux, 2020),

W2(p̂
0, p̂t) ≤ MW2(p̂

0, p̂t)

≤
(
(1− 4ε)(1 + a) + 2τ2(4 + 2a2) + 4σ2

t

) 1
2

W2(p̂
0, p̂t) ≥ MW2(p̂

0, p̂t)− 2
∑
k

(w0[k]Tr(Σ̃0) + wt[k]Tr(Σ̃t))

≥ MW2(p̂
0, p̂t)− 2(Tr(Σ̃0) + Tr(Σ̃t))

≥ (1− 4ε)
1
2 − 2(4σ2

t + 2τ2(4 + 2a2)).

Proposition K.8. With (pb, p1, p2) from Definition K.1 and p̂t(x) := C[ptb, pt0, pt1], the W2-distance between p̂t and Nt[p̂
0]

is bounded as follows

(1− 4ε)
1
2 − 4(τ2(4 + 2a2) + 4σ2

t ) ≤ W2(Nt[p̂
0], p̂t) ≤ (1− 4ε)

1
2 (1 + a)

1
2 .

Proof. Using Proposition K.5,

MW 2
2 (Nt[p̂

0], p̂t) = min
c∈Π(w0,wt)

∑
k,l

ck,lW
2
2 (Nt[p̂

0][k], p̂t[l])

= min
c∈Π(w0,wt)

∑
k,l

ck,l∥µk − µl∥22

c(0 or 3)→(1 or 2) = 1/4− ε

2 ≤ ∥µ(0 or 3) − µ(1 or 2)∥22 ≤ 2(1 + a)

=⇒ 1− 4ε ≤ MW 2
2 (Nt[p̂

0], p̂t) ≤ (1− 4ε)(1 + a)

=⇒ (1− 4ε)
1
2 ≤ MW2(Nt[p̂

0], p̂t) ≤ (1− 4ε)
1
2 (1 + a)

1
2 .

Using Theorem K.4 (Delon & Desolneux, 2020),

W2(Nt[p̂
0], p̂t) ≤ MW2(Nt[p̂

0], p̂t)

≤ (1− 4ε)
1
2 (1 + a)

1
2

W2(Nt[p̂
0], p̂t) ≥ MW2(Nt[p̂

0], p̂t)− 2
∑
k

(w0[k] + wt[k])Tr(Σ̃t))

≥ MW2(Nt[p̂
0], p̂t)− 4Tr(Σ̃t)

≥ (1− 4ε)
1
2 − 4(4σ2

t + τ2(4 + 2a2)).

Now we have all the pieces to prove Lemma 6.3.

Proof. (Lemma 6.3)

We will show that the distributions (pb, p1, p2) of Definition K.1 satisfy Lemma 6.3. We make the choices a = 1 and σt := t
for simplicity, and define p̂t(x) := C[ptb, pt0, pt1].

Lemma 6.1 applied to the distributions of Definition K.1 implies that at time t = 0,

p̂0(x) := Ĉ[p⃗] := p00(x)p
0
1(x)

p0b(x)
= p00(x|(0,2))p01(x|(1,3)).
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That is, we have a projective composition at time t = 0.

For Part 1 of Lemma 6.3, we note that the pi are Gaussian mixtures, therefore Proposition K.6 gives that each pi is
O(1)-Lipschitz w.r.t Wasserstein 2-distance:

∀i : W2(p
t
i, p

t′

i ) ≤
√
8|t− t′|.

For Part 2, we need to bound the Lipschitz constant of p̂t := Ĉ[p⃗t].

Proposition K.7 gives:

(1− 4ε)
1
2 − 4(τ2(4 + 2a2) + 2σ2

t ) ≤ W2(p̂
0, p̂t) ≤

(
(1− 4ε)(1 + a) + 2(τ2(4 + 2a2) + 2σ2

t )
) 1

2 .

where ε :=
1

2
S(−ξ), ξ :=

aσ2
t

(a2 + 2)σ2
t τ

2 + σ4
t + τ4

, with S(z) :=
1

e−z + 1
.

Plugging in a = 1,

(1− 4ε)
1
2 − 24τ2 − 8σ2

t ≤ W2(p̂
0, p̂t) ≤

(
2(1− 4ε) + 12τ2 + 4σ2

t

) 1
2

where ε :=
1

2
S(−ξ), ξ :=

σ2
t

3σ2
t τ

2 + σ4
t + τ4

.

We will to show that
∃t, t′ : 1

2
τ−1|t− t′| ≤ W2(q

t, qt
′
) ≤ 2τ−1|t− t′|.

After some algebra, we find that for any fixed τ , the minimum and maximum of ε are

σt → 0 =⇒ ξ → 0 =⇒ ε → 1

4
(max)

σt = τ =⇒ ξ = ξ⋆(τ) :=
1

5τ2
=⇒ ε =

1

2
S (−ξ⋆(τ)) (min)

σt = τ → 0 =⇒ ξ⋆(τ) → ∞ =⇒ ε → 0 (min)

Thus, taking σt = τ (the minimizer of ε) and choosing any τ2 < 1
66 (somewhat arbitrarily, but small enough), gives

σt = τ =⇒ (1− 4ε)
1
2 − 32τ2 ≤ W2(p̂

0, p̂t) ≤
(
2(1− 4ε) + 32τ2

) 1
2 , where ε :=

1

2
S(− 1

5τ2
)

τ2 <
1

66
=⇒ ε ≈ 10−6 ≪ 1

4
τ2 =⇒ (1− 4ε)

1
2 ≥ 1− τ2

=⇒ 0.5 ≤ 1− 33τ2 ≤ W2(p̂
0, p̂t) ≤

(
2 + 32τ2

) 1
2 < 2.

Thus, for any choice of τ2 < 1
66 , if we take σt := t = τ and t′ = 0, we have as desired that

0.5τ−1|t| ≡ 0.5 ≤ W2(p̂
0, p̂t) ≤ 2 ≡ 2τ−1|t|,

that is,
∃t, t′ : W2(p̂

t′ , p̂t) = Θ(τ−1|t− t′|).

We can also prove another lemma using the same counterexample as Lemma 6.3:

Lemma K.9. Let qt denote the composed distribution at time t: qt := C[p⃗t], and Nt be the Gaussian-noising operator.
There exist distributions {pb, p1, . . . pk} over Rn and a value of t such that Nt[q

0] (the ideal diffusion path to q0) differs
from qt (the path actually followed) by at least Ω(1):

∃t : W2(Nt[q
0], qt) ≥ 1

2
.
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Proof. We will show that the distributions of Definition K.1 satisfy Lemma K.9. We make the choices a = 1 and σt := t
for simplicity.

By Proposition K.8,

(1− 4ε)
1
2 − 4(τ2(4 + 2a2) + 4σ2

t ) ≤ W2(Nt[p̂
0], p̂t) ≤ (1− 4ε)

1
2 (1 + a)

1
2

where ε :=
1

2
S(−ξ), ξ :=

aσ2
t

(a2 + 2)σ2
t τ

2 + σ4
t + τ4

, with S(z) :=
1

e−z + 1
.

Taking a = 1:

(1− 4ε)
1
2 − 24τ2 − 16σ2

t ≤ W2(Nt[p̂
0], p̂t) ≤

√
2(1− 4ε)

1
2

where ε :=
1

2
S(−ξ), ξ :=

σ2
t

3σ2
t τ

2 + σ4
t + τ4

.

For any fixed τ , the minimum and maximum of ε are

σt → 0 =⇒ ξ → 0 =⇒ ε → 1

4
(max)

σt = τ =⇒ ξ = ξ⋆(τ) :=
1

5τ2
=⇒ ε =

1

2
S (−ξ⋆(τ)) (min)

σt = τ → 0 =⇒ ξ⋆(τ) → ∞ =⇒ ε → 0 (min)

First we want to show that
∃t : W2(Nt[q

0], qt) ≥ 1

2
.

Taking σt = τ (the minimizer of ε) and choosing any τ2 < 1
82 (somewhat arbitrarily, but small enough), gives

σt = τ =⇒ (1− 4ε)
1
2 − 40τ2 ≤ W2(Nt[p̂

0], p̂t) ≤
√
2(1− 4ε)

1
2 , where ε :=

1

2
S(− 1

5τ2
)

τ2 <
1

82
=⇒ ε ≈ 10−7 ≪ 1

4
τ2 =⇒ (1− 4ε)

1
2 ≥ 1− τ2

=⇒ 0.5 ≤ 1− 41τ2 ≤ W2(p̂
0, p̂t) ≤

√
2.

Thus, fixing a τ2 < 1
82 and taking σt := t = τ , we have as desired that

W2(Nt[p̂
0], p̂t) ≥ 0.5.

The proof is now complete, but we can make one more interesting observation. The bound above was obtained by choosing a
small value of τ , but the diffusion path (specifically, for distributions of the form of Definition K.1) is much less problematic
for larger τ :

∀t : W2(Nt[p̂
0], p̂t) ≤ O(τ−1).

That is, even for our counterexample distributions, diffusion can still approximately work to sample from the composition
p̂0, if τ is large enough. To see this, we note that

∀t : W2(Nt[p̂
0], p̂t) ≤

√
2(1− 4ε)

1
2

where ε :=
1

2
S(−ξ), ξ :=

σ2
t

3σ2
t τ

2 + σ4
t + τ4

≥ 1

2
S (−ξ⋆(τ)) , ξ⋆(τ) :=

1

5τ2
for any fixed τ

=⇒ W2(Nt[p̂
0], p̂t) ≤

√
2(1− 2S (−ξ⋆(τ)))

1
2 ≤

√
2

τ
, ∀τ.
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