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Abstract

Table foundation models bring high hopes to data science: pre-trained on tabular data to
embark knowledge or priors, they should facilitate downstream tasks on tables. One specific
challenge is that of data semantics: numerical entries take their meaning from context,
e.g., column name. Pre-trained neural networks that jointly model column names and
table entries have recently boosted prediction accuracy. While these models outline the
promises of world knowledge to interpret table values, they lack the convenience of popular
foundation models in text or vision. Indeed, they must be fine-tuned to bring benefits,
come with sizeable computation costs, and cannot easily be reused or combined with other
architectures. Here we introduce TARTE, a foundation model that transforms tables to
knowledge-enhanced vector representations using the string to capture semantics. Pre-
trained on large relational data, TARTE yields representations that facilitate subsequent
learning with little additional cost. These representations can be fine-tuned or combined
with other learners, giving models that push the state-of-the-art prediction performance
and improve the prediction/computation performance trade-off. Specialized to a task or a
domain, TARTE gives domain-specific representations that facilitate further learning. Our
study demonstrates an effective approach to knowledge pre-training for tabular learning.

1 Introduction: promising, but limited, foundation models for tabular learning

Tables, that often contain an organization’s precious data, come with specific challenges to machine learning,
as they contain columns of different types and nature. Until recently, deep learning brought little benefits
over tree-based models for typical tables (Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022; McElfresh
et al., 2024). This is in contrast with images, signals, or text, where the latest advances are driven by
foundation models: neural networks pre-trained on a large amount of background data that can be adapted
and reused for a great variety of tasks (Bommasani et al., 2021). Pivotal to this vision was BERT (Devlin
et al., 2019), showing that repurposing transformer-based backbones (Vaswani et al., 2017) could boost many
natural language tasks. Early signs of similar breakthroughs are visible for tabular data. Using pre-trained
transformers on synthetic numerical tables, TabPFN outperforms traditional approaches for classification
and regression, and can perform data generation and density estimation (Hollmann et al., 2023; 2025).

Beyond modeling numbers, another important challenge of tabular learning is data semantics. Human beings
use string in table entries or column names to understand the table. Progress in table understanding models
leverages these strings (Zhang et al., 2024). But for most tabular learning models, including the TabPFN
family, the strings are challenging. Such models operate on numbers and they demand that the data scientist
convert all columns to numerical representations, a crucial and often tedious operation. Rather, strings can
be an opportunity to bring world knowledge in pre-trained models for tables (Kim et al., 2024; Yang et al.,
2024). But such existing pre-trained models cannot easily be reused and come with large operational costs,
as they require costly fine-tuning to outperform tree-based models.

Indeed, applications must navigate trade-offs between prediction accuracy and operational costs (Bernardi
et al., 2019; Paleyes et al., 2022). One benefit of deep learning in vision or text has been to reduce operational
complexity via model reuse across tasks (Zhai et al., 2019). Mature foundation models have pushed much
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further this reuse and operational convenience, as they can easily be specialized with little downstream data
(Bommasani et al., 2021). However, their computational cost –for pre-training but also inference– is a real
concern (Varoquaux et al., 2024), as illustrated by the stock-market turmoil (Saul, 2025) created by the
announcement of the efficient DeepSeek-R1 model (Guo et al., 2025). Table foundation models hold the
same promise and face the same peril. Capturing strings and column names enables them to model multiple
tables without matching columns (Kim et al., 2024; Yang et al., 2024). This potential is compromised by
their compute cost: Kim et al. (2024) report times 200× slower than XGBoost, a very strong baseline.
Ideally, repurposing a foundation model should be less, not more, costly than starting from scratch.

Here we introduce TARTE (Transformer Augmented Representation of Table Entries), a pre-trained tabular
model. TARTE uses knowledge pre-training to capture associations between strings and numbers. Corre-
sponding representations facilitate downstream learning, fine-tuned or reused as such in combination with
other models. In both settings, it gives predictors that outperform the best baselines, based on trees or
neural networks. Like recent tabular models, TARTE builds on the playbook of foundation models: broad
pre-training to bake in implicit priors that help for a wide variety of tasks. But TARTE takes it much
further: we show that its knowledge pre-training does capture information easy to reuse, unlike prior models
of strings and numbers where the benefits come from fine-tuning rather than pre-training.

In section 2, we analyze the challenges that tabular data pose to foundation models, and the progress
overcoming them across time. We present the TARTE model in section 3: the architecture, a transformer
that models string or numerical entries, enriched by column names; the pre-training, on a large knowledge
base enriched with numerical attributes from Wikidata; different post-training options, fine-tuned or frozen,
combined with another models. Section 4 gives an extensive empirical study. We first show how, given a
downstream table, various post-training strategies of TARTE improve the state of the art in tabular learning
for different trade-offs between prediction accuracy and computational cost. We study both a small-sample
regime, from n = 32 to 1 024, and mid-sized tables, n = 10 000. We then study the factors of success of
knowledge pre-training, showing that it needs diverse and rich pre-training data and works best on complex
tables with strings similar to the pre-training data. Finally, we show that TARTE can also be specialized to
a domain, enabling a form of transfer learning. Section 5 ends with a discussion and conclusion.

2 The unfolding of tabular foundation models

Compared to neural networks, tree-based models have a lead start for tabular learning: their inductive biases
match well the properties of tabular data (Grinsztajn et al., 2022). Progress in dedicated neural architectures
has recently been closing the gap for large-enough datasets (Borisov et al., 2022; Ye et al., 2024). But tabular
foundation models bring the promise of benefits for data of small to moderate size. van Breugel & van der
Schaar (2024) argue they should be a research priority, calling for developing properties important to tabular
applications such as cross-dataset modeling as well as handling tables with different types, e.g., numbers
and strings. Recent progress on this agenda has required overcoming many table-specific challenges.

PFNs: learning priors for numerical tables TabPFN (Hollmann et al., 2023) brings to tabular learning
key ingredients of the success of foundation models: modeling context with transformers. The PFN (prior
fitted network) is pre-trained over many datasets chosen to match the domain of interest, here tabular
learning. The prediction is “in context”: the training set is given as context in the transformer, which uses it
to complete the query in a forward pass. As pre-training requires a huge amount of datasets, these must be
synthetic, computed with sophisticated random processes. Improving architecture and data generation, the
followup TabPFNv2 (Hollmann et al., 2025), and related works (Qu et al., 2025; Liu & Ye, 2025; den Breejen
& Yun, 2024), leads to reliably outperforming tree-based models on purely numerical tables. Much ongoing
work improves this type of approach, e.g., with better post-training to specialize a model on downstream
data (Thomas et al., 2024; Feuer et al., 2024; Koshil et al., 2024; den Breejen et al., 2024, etc).

Modeling varying schemas and data semantics The agenda of table foundation models implies learn-
ing across tables and model reuse, and as a consequence modeling tables with different “schemas”, different
columns with different information. Such setting breaks traditional machine-learning models used on tables,
which need correspondence in columns to form features. Given tables with varying number of columns,
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pre-trained transformers are useful again (even without the in-context learning of PFNs) to construct joint
representations from a varying number of inputs (Zhu et al., 2023; Chen et al., 2024). Going further, models
should ideally use the data semantics of columns. For instance, two columns may contain numbers, but one
being age and the other weight. Capturing these semantics is important, if only to bridge related information
across tables. Column names help. A variety of transformer-based models have tackled learning across tables
with different columns by adding the columns names to the data used as input: Wang & Sun (2022) learn
and transfer across various clinical-trial datasets (and followups, Yang et al., 2024; Spinaci et al., 2024). But,
without broad pre-training, transformer-based models do not outperform tree-based models in general.

Language models as tabular learners Large language models (LLMs) are the epitome of models cap-
turing much via broad pre-training, including world knowledge. They work with free-flowing text, not
constrained by a schema, and understand the corresponding semantics. They can be adapted to tables e.g.,
by turning rows into sentences (Dinh et al., 2022; Hegselmann et al., 2023). Dedicated fine-tuning turns
LLMs to tabular learners, best performers in very few shot settings (Wang et al., 2023; Gardner et al., 2024).
LLMs-based approaches on tables have met more success for tasks beyond tabular learning, such as table
understanding, question answering, recognizing columns or entries (Herzig et al., 2021; Zhang et al., 2024).

Pre-trained models of text and numbers The road to build foundation models for tabular learning has
stretched between focusing on numbers, as the TabPFN literature, and adapting language models, that deal
naturally with the strings in the tables. A body of work shows that tabular learning needs modeling strings
but also numbers as such, rather than relying on the tokenization of LLMs. Yan et al. (2024) integrates an
LLM but retrain on tables with discretized numerical features. Further from LLMs, Yang et al. (2024) use
the column name, cell value, and data type as inputs to a transformer, pre-trained over many tables. CARTE
(Kim et al., 2024) reliably outperforms tree-based models on small datasets by pre-training on relational data
a graph transformer with an attention mechanism that combines the column name with string encodings or
numbers. These models, however, rely on fine-tuning and incur large computational costs.

Reusing table foundation models Language or vision models such as BERT (Devlin et al., 2019), CLIP
(Radford et al., 2021), or the many followups ended up being called “foundation model” because their ease
of reuse and specialization to many application-specific models. The huge popularity of specializing models
is visible for instance on the huggingface hub, that hosts more than a million models, many of which are
derived by reusing already pre-trained models, to offset pre-training costs. LLMs can even give backbones
for table predictors, as mentioned above. Reuse and transfer is also high stakes for tabular data (Levin et al.,
2023), and here modeling across tables with unmatched columns is particularly useful, to bring in data with
different schema. This ease of specialization and reuse has not really been demonstrated for tabular data.
Maybe the closest result comes from CARTE (Kim et al., 2024) which demonstrates benefits of specializing to
a domain defined by a topic, but tables from different sources. However, it uses a computationally expensive
joint learning, where the model must be fine-tuned on the various datasets. To achieve full benefits of table
foundation models, designing models that can be easily specialized to given domains or tasks is a priority.

3 TARTE: A backbone for knowledge pre-training

TARTE is an easily-reusable pre-trained model that encodes data semantics across heterogeneous tables
by pre-training from large knowledge bases. This section details the main components of TARTE: (1) a
transformer-based architecture that models the data semantics of table entries via the dependencies between
columns and cells; (2) knowledge pre-training from rich background information stored in large knowledge
bases; (3) effective post-training to reuse knowledge pre-training in diverse downstream tabular tasks.

3.1 A transformer-based architecture

As with the success in LLMs (Devlin et al., 2019; Achiam et al., 2023, ...) and pre-trained models for
tabular data (e.g., Hollmann et al., 2025; Kim et al., 2024), TARTE builds upon a variant of the transformer
architecture (Vaswani et al., 2017). Designing such a variant entails 1) a suitable transformation of input
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Title Release Production Country Language Popularity Revenue Runtime

Jumanji 1995.12.15 Tristar Pictures United States English 21.94694 262,797,249 104

A.I. 2001.06.29 Dream Works United States English 13.24936 235,926,552 146
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Figure 1: Transformer-based architecture of TARTE. TARTE models a row in a table as a set of
column(E)–cell(X) pairs. Given a tabular data with multiple data types, TARTE maps the representation
of column and cell values to the same dimension using a language model (LM). From the mapped input, the
transformer takes in a combination of both column and cell information to contextualize the cell content.

data to vector representations, for instance word tokenization and positional encoding in LLMs, 2) a neural
architecture based on the self-attention mechanism to capture the complex dependencies across inputs.

To learn across tables, a central challenge is to find a common representation of tables across heterogeneous
datasets. Tables store diverse and incongruous information, despite the structured layout of rows and
columns. To name a few challenges, tables represent information with different number of columns, data types
(e.g., numerical or discrete), and naming conventions (e.g., France or FR). Combining column name with
cell values enables representing diverse columns (see appendix A.1). Diverse data types call for tokenization
of strings (Wang & Sun, 2022) or using a language model (Yan et al., 2024, discretizing numerical values).
Additionally, Kim et al. (2024) represents each row in a table with a graph, where each cells and columns are
represented with nodes and edges, respectively, with embeddings of strings (FastText, Mikolov et al., 2017).

TARTE borrows from Kim et al. (2024) the modeling of column(E)–cell(X) pairs but loosens the graph
structure. Figure 1 shows the modeling process of a table entry to a suitable input for the transformer.
Given a table of k columns with multiple data types, the i-th row is a set {(Ej , Xi

j)}k
j=1, in which all the

components are mapped to the same dimension d using a language model. More specifically, with column
names {ej}k

j=1, a datetime converter, D(·), and a language model, LM(·), we have

Ej = LM(ej) ∈ Rd, Xi
j = LM(xi

j) ∈ Rd if xi
j is categorical/string,

Xi
j = xi

j · Ej ∈ Rd if xi
j is numerical, Xi

j = D(xi
j) · Ej ∈ Rd if xi

j is datetime.

The language model enables TARTE to work with an open set of vocabulary, without requiring any inter-
vention on string entries, hence bypassing the complex column or entity matching problems. It paves the
way for TARTE to bring data semantics across tables (see subsection 4.3).

To obtain the transformer input Zi ∈ R(k+1)×d for the i-th row, we simply add embeddings of linearly
mapped column and cell information, ρE(E) and ρX(X), and stack to a learnable vector T ∈ Rd:

Zi = stack[T ; ρE(Ej) + ρX(Xi
j)] for column j = 1, . . . , k

where ρ(·) = Linear(ReLU(LayerNorm(·))) and T ∈ Rd works as the readout element (similar to the [CLS]
token in Devlin et al. (2019)). The processed input Z is then fed to an encoder-based transformer with the
typical multi-head self-attention and feed-forward module (Vaswani et al., 2017).

3.2 Knowledge pre-training from large knowledge bases

Figure 2 summarizes the overall pre-training process of TARTE. TARTE learns data semantics of heteroge-
neous tables by pre-training on large knowledge bases, containing millions of real-world facts.
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Figure 2: TARTE Pre-training. We extract facts from knowledge bases and replicate the input structure
in Figure 1. Then, batches are constructed with positive samples by replacing parts of information (e.g.,
Paris to London). TARTE is trained with contrastive learning using in-batch negatives (Chen et al., 2020b).

Pre-train data Capturing tabular knowledge requires pre-training from diverse tabular data. While the
best models for numerical data use synthetic data generation (Hollmann et al., 2023; 2025), Kim et al.
(2024) have pushed the idea of pre-training from knowledge bases, due to their resemblance to tabular data.
However, the high level of curation (particularly for YAGO3, Mahdisoltani et al., 2013) leads to datasets
that lacks the diversity of relational (column) information found in real-world tables (see appendix A.3).

Going beyond Kim et al. (2024), TARTE expands the coverage of pre-train data by combining two large
knowledge bases, YAGO4.5 (Suchanek et al., 2024) and Wikidata (Vrandečić & Krötzsch, 2014). In essence,
YAGO4.5 is a cleaned version of Wikidata with a simplified taxonomy and much fewer properties to facilitate
automated reasoning. To build our dataset, we restrict YAGO4.5 to entities with a Wikipedia page as these
come with abundant information, valuable for pre-training. YAGO4.5 includes relatively little numerical
information compared to downstream tables, and lacks diversity in relational information, especially for
numerical triples. To address these shortcomings, we enrich with numerical facts (numbers and dates) from
the more comprehensive but noisier Wikidata. The resulting knowledge base describes over 5.5 million
entities and includes 30 million facts with 687 distinct relations (see appendix A.3).

Preprocessing the pre-training data The curated dataset is a set of triples with ‘head’, ‘relation’, and
‘tail’, (h, r, t), in which r and t describe h. For example, a fact ‘Louvre is located in Paris’ is represented as
(h, r, t) where the elements are ‘Louvre’, ‘is located in’, and ‘Paris’, respectively (Figure 2). To enable pre-
training, it requires additional steps of preprocessing for each data type of strings, numbers, and datetimes.
For strings, we build a look-up table of embeddings built from a language model. In particular, we choose
FastText (Mikolov et al., 2017): text entries in tables mostly contain one or a few words, too short for LLMs.
For numerical values, including datetimes converted into fractional years, we perform relation-wise power
transformation (Yeo & Johnson, 2000). Power transform has shown to be effective in numerous tabular
learning studies, including pre-trained models (Hollmann et al., 2023; 2025; Kim et al., 2024).

Batch sampling and contrastive loss To construct a batch for TARTE pre-training, we first select Nb

entities and extract related facts for each. For example, if “Louvre” is selected, we extract its corresponding
information, such as location, website, and its well-known art Mona Lisa (see Figure 2). In most cases, each
entity would have different number of associated facts. However, there is only a fixed number of columns
within a given table. Thus, we trim the number of related information for each entity to have a fixed
number of facts across the batch. To enable contrastive learning, we also include positive samples, which are
generated by replacing one or two of the facts with different information for each entity (see appendix A.4).

The embedding of a given table row is assembled with a linear readout T from the output of the transformer.
We then apply the contrastive learning framework of Chen et al. (2020b), in which other entities inside the
batch are considered as negatives. In contrast to the widely-used cosine similarity, we take the Gaussian
kernel with median distance as the bandwidth. We then use the InfoNCE contrastive loss (Oord et al., 2018).
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Model specifications The transformer architecture of TARTE is specified as follows: We set three self-
attention layers with 24 multi-head attentions, 768 hidden dimension, and 2 048 feed-forward dimension per
layer. For the projection layers for contrastive learning, we set two linear layers with hidden and output
dimensions of 2 048 and 768, respectively. The resulting model contains over 25 million trainable parameters.

3.3 Learning with the backbone: fine-tuned, or frozen, combined with another model

Given downstream tables1, the knowledge backbone of TARTE facilitates learning through various post-
training paradigms: fine-tuning, reused as a frozen featurizers, combined with other models.

Fine-tuning a specific task To fine-tune TARTE, we replace the projection layers for contrastive learning
with three layers of ρ(·) = Linear(ReLU(LayerNorm(·))), that focuses on task-specific settings. The model is
trained end-to-end with parameters of the transformer layers kept frozen. Additionally, we adopt bagging
(Breiman, 1996), which has been shown to be useful in several works for neural networks (e.g., Kim et al.,
2024; Holzmüller et al., 2024). For this, we train multiple models on different train-validation splits used for
early-stopping, and average the outputs from each model to form predictions.

TARTE as a table featurizer with frozen backbone Similar to the sentence-transformers (Reimers
& Gurevych, 2019) on LLMs, TARTE can be used to generate meaningful embeddings for table entries.
The preprocessed input of a downstream table is passed through the frozen backbone of TARTE, and the
embedded representation of the readout element T (similar to the [CLS] token in LLMs) can be used with
any machine learning model as a pipeline to make predictions on unseen data.

Boosting a complementary model 2 As TARTE is pre-trained from large knowledge bases, the em-
beddings of the TARTE featurizer potentially hold implicit background information. Such prior knowledge
can be useful, especially in few-shot settings; but when the original table provides sufficient information for
learning, the background information, on its own, becomes less useful for inference (see Figure 3). Yet, we
argue that the implicit prior information continues to be useful when combined appropriately with a com-
plementary tabular model. To accompany the prior to tabular models, we formulate a boosting strategy:
the base tabular model with the original table is ensembled with a model that fits the (train) residuals of
the base model with TARTE embedded features. For efficiency, we use TARTE with a Ridge regression.

Specializing to a domain A paramount aspect of foundation models is to enable repurposing and spe-
cializing to a domain. For table foundation models, the requirement goes alongside with cross-table modeling
van Breugel & van der Schaar (2024), to be able to draw from different tables. Fine-tuning across different
tables within the same domain can work, but with a hefty cost (Kim et al., 2024). Rather, a specialized
model that is easy to re-adjust would be ideal, e.g., to compensate data drifts.

Here, the ability of TARTE as a table featurizer comes in handy. Avoiding a costly joint-learning (e.g., Kim
et al., 2024), TARTE can readily extract embeddings from fine-tuned models of related tables. The domain
specialized representations can then be incorporated with the boosting strategy: the residuals are sequentially
fitted with domain specialized representations. Boosting reuses the implicit information from tables within
the same domain, embarking domain specialized predictions for downstream tables. For multiple source
tables, the same process is repeated for each source table, in a multi-step boosting.

3.4 Differences to the CARTE approach

While TARTE draws from CARTE (Kim et al., 2024), we will see that its representations capture much more
knowledge from pre-training, providing value without fine-tuning. Multiple differences improve pre-training.

First, TARTE avoids the graph structure used in CARTE. This graph structure, used as a data representation
across tables, creates a bottleneck that limits the flow of information between inputs in the self-attention

1Downstream tables are preprocessed as for pre-training (subsection 3.2): FastText string embedding, power transformation
on numbers, datetime columns.

2We also experimented with various stacking approaches, but they did not bring the marked benefits of boosting.
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layers (Alon & Yahav, 2021). For example, representing the entry in Figure 1 with the graph structure of
Kim et al. (2024) masks the attention between ‘Country’ U.S. and ‘Language’ English. Indeed, in CARTE,
these inputs are connected only via the center node, a row-summary token. On contrary, TARTE keeps all
such relations in a single attention mechanism, providing context to capture data semantics.

Second, TARTE is trained as a rather shallow architecture of three layers, reflecting that the input for the
transformer works in a column-level setting. For both CARTE and TARTE, the columns work similarly
as the context-window for LLMs, in which the row-dimension of the input is determined by the number of
columns. In many cases, the number of columns in tables are relatively limited, and thus the models are more
prone to the problem of oversmoothing (Chen et al., 2020a; Nguyen et al., 2023) with deeper architectures.

Third, TARTE reflects better downstream tasks by handling different data types and better pre-training data
sources (see subsection 3.2 and appendix B.1), carefully preprocessing the batch samples, such as trimming
to match the number of columns and limiting redundant relations. In addition, TARTE carefully controls
the training procedures (see appendix A.4).

4 Empirical study: TARTE improves prediction and speed, and is reusable

4.1 Experimental set up: tabular learning

Datasets and methods We use the benchmark from Kim et al. (2024): 40 regression and 11 classifica-
tion datasets3. These tables come with informative columns and discrete entries. For comparing methods,
evaluate post-training paradigms of TARTE (subsection 3.3) and the best performers in related bench-
marks: the leading gradient-boosted tree models, XGBoost (XGB, Chen & Guestrin, 2016) and CatBoost
(Prokhorenkova et al., 2018); neural-network model, RealMLP (Holzmüller et al., 2024); pre-trained mod-
els, TabPFNv2 (Hollmann et al., 2025) and CARTE (Kim et al., 2024) with fine-tuning and boosting
(CARTE–B–); simple linear model Ridge from scikit-learn (Pedregosa et al., 2011).

In terms of data preparation, most models provide native handling of diverse data types. However, for models
that explicitly require numerical tables, we rely on heuristics provided by the TableVectorizer (TabVec)
functionality of the skrub software. While TabPFNv2 handles readily the input tables, we optionally combine
it with the TableVectorizer, for better handling of high-cardinality string and datetime columns.

For TARTE, we abbreviate the variants as follows:
• TARTE – FT : Fine-tuning TARTE on downstream tables.
• TARTE – : TARTE as table featurizer. We consider Ridge, XGB, and TabPFNv2 as prediction models.
• TARTE – B – : Boosting scheme with TARTE embedded features. We consider state-of-the-art tabular

models, TabPFNv2 and XGB, as base models where TableVectorizer is used for data preparation.
Specific details on experiment settings (e.g., hyperparameter selection) are presented in appendix B.1.

4.2 TARTE boosts learning, and can be computationally efficient

On small tables: few-shot learning Figure 3 (top) shows learning curves of normalized prediction scores
as a function of sample sizes. The scores are normalized across all train sizes per dataset, with 1 as the best
and 0 as the worst performing model. Pre-trained models (TARTE, CARTE, and TabPFNv2) generally
perform better, with variants of TARTE as the best performing models, regardless of the sample sizes.
Critical difference diagrams4 (Figure 3, middle) show that the benefits brought by TARTE are significant.

Considering computation-time trade-offs, Pareto diagrams (Figure 3, bottom) show that variants of TARTE
and TabPFNv2 form the Pareto frontier. When compute time is important, models that avoid fine-tuning
(as TARTE–B–TabPFNv2 or TabVec–TabPFNv2) gain advantage, especially with larger n (e.g., n = 1 024).

In general, boosting a base model with pre-trained embeddings (TARTE–B and CARTE–B) improves pre-
diction. However, as TARTE is better pre-trained (see subsection 4.3), its embeddings complement better

3Datasets available at https://huggingface.co/datasets/inria-soda/carte-benchmark
4Critical difference diagrams display average rank across models with crossbars depicting the two having no statistically

significant difference based on Conover post hoc test after a Friedman test for pairwise significance (Conover, 1999).

7

https://huggingface.co/datasets/inria-soda/carte-benchmark


Under review as submission to TMLR

32 64 128 256 512 1024
Number of training samples

0.2

0.4

0.6

0.8

1
No

rm
al

ize
d 

sc
or

e
Regression

TabVec: skrub's Tablevectorizer
TARTE-B: TARTE-Boost
XGB: XGBoost
FT: Finetuned

Models (ordered by value at n=1024)
TARTE-B-
TabPFNv2
TARTE-FT
CARTE-B-
TabPFNv2
CARTE-FT
TabVec-
TabPFNv2
TARTE-B-XGB
TabVec-XGB

TabVec-
RealMLP
TARTE-
TabPFNv2
TARTE-Ridge
TARTE-XGB
CatBoost
TabVec-Ridge
TabPFNv2

32 64 128 256 512 1024
Number of training samples

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d 
sc

or
e

Classification

Models (ordered by value at n=1024)
TARTE-B-
TabPFNv2
TARTE-FT
CARTE-FT
TARTE-B-XGB
CARTE-B-
TabPFNv2
TabVec-
TabPFNv2
TabVec-XGB

TabVec-
RealMLP
TARTE-Ridge
TabVec-Ridge
CatBoost
TARTE-XGB
TARTE-
TabPFNv2
TabPFNv2

Critical difference diagram n = 32
12 10 8 6 4

CatBoost 
TabVec-XGB 

TabVec-Ridge 
TARTE-XGB 
TabPFNv2 

TARTE-TabPFNv2 
CARTE-FT 

 TARTE-B-TabPFNv2
 TARTE-FT
 TARTE-B-XGB
 TabVec-RealMLP
 TabVec-TabPFNv2
 CARTE-B-TabPFNv2
 TARTE-Ridge

Prediction/computation Pareto diagram

3.6s 36s 6mn
Total runtime (log-scale)

0.4

0.6

0.8

No
rm

al
ize

d 
sc

or
e

TabPFNv2

TabVec-
Ridge

TARTE-B-TabPFNv2

TabVec-XGB

CARTE-B-
TabPFNv2

TabVec-
RealMLP

TARTE-
TabPFNv2

TARTE-B-
XGB

TARTE-
Ridge

TARTE-FT

CARTE-FT

TARTE-XGB

CatBoost

TabVec-
TabPFNv2

Critical difference diagram n = 1024
12 10 8 6 4

TabPFNv2 
TabVec-Ridge 

CatBoost 
TARTE-XGB 

TARTE-Ridge 
TARTE-TabPFNv2 
TabVec-RealMLP 

 TARTE-B-TabPFNv2
 TARTE-FT
 CARTE-B-TabPFNv2
 CARTE-FT
 TabVec-TabPFNv2
 TARTE-B-XGB
 TabVec-XGB

Prediction/computation Pareto diagram

3.6s 36s 6mn 1hr
Total runtime (log-scale)

0.4

0.6

0.8

No
rm

al
ize

d 
sc

or
e

TabPFNv2
TabVec-Ridge

TARTE-TabPFNv2

TARTE-B-TabPFNv2

TARTE-
Ridge

CARTE-B-
TabPFNv2

TabVec-
RealMLP

TabVec-
XGB

TARTE-B-XGB

TARTE-FT
CARTE-FT

TARTE-XGB
CatBoost

TabVec-
TabPFNv2

Figure 3: TARTE performs best for learning on small tables – Top: Learning curve for normalized
prediction scores for regression and classification. In general, pre-trained models perform better, with variants
of TARTE surpassing all baseline models. Middle: Critical difference diagram of average rank at
n = 32 and 1 024. Bottom: Pareto diagrams normalized prediction scores with respect to total runtime
(log-scale). Efficient base models bring runtime benefits, and TARTE brings additional performance gains.

the base models, bringing prior information acquired from knowledge pre-training. The best performances
require a strong base tabular model, as with TabPFNv2 and XGB. On the other hand, TARTE–FT does not
have such requirements, but it comes with computation burdens, with extensive hyperparameter tuning5.
Finally, TARTE featurizer is a good table preparator: compared to TabVec (dashed lines), it can markedly
increase performance, bringing, for instance, ridge to a good position.

5Due to the computation costs, the search space for TARTE-FT is limited (see Table 3)
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Figure 4: Results for n = 10 000 – Left: Pareto diagram – Right: critical difference diagram of
average rank Fine-tuned TARTE and TARTE boosting continues to surpass the baselines, but fine-tuning
TARTE brings more benefits than on smaller data.

Figure 5: Comparison of baselines on
more numerical tables. For datasets with
higher fraction of numerical columns (from
Hegselmann et al. (2023)), TARTE–B contin-
ues to help base models for prediction.
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On larger tables, TARTE helps both for prediction and scalability Figure 4 summarizes prediction
accuracy and runtime costs at n = 10 000. Similar to small tables, pre-training schemes are the Pareto
frontier, with TARTE–FT and TARTE–B outperforming baselines. TARTE–B continues to blend well
with base models, TabPFNv2 and XGB. Fine-tuning TARTE brings more prediction benefits, but at a
heavy cost with a 14-fold runtime increase compared to TARTE–B–TabPFNv2. TARTE–B–TabPFNv2 gives
both performance and scalability: compared to TabVec–TabPFNv2, the prior from knowledge pre-training
improves performance at a small compute cost (1 mn).

On more numerical tables, comparing to TabLLM We evaluate TARTE–FT and TARTE–B over
nine datasets presented in TabLLM (Hegselmann et al., 2023). The datasets contain larger fraction of
numerical columns with lower cardinality in categorical columns (Kim et al., 2024). Figure 5 shows methods
comparison, as a critical difference diagram. In addition to four baselines from Hegselmann et al. (2023)
and Kim et al. (2024) (in dashed lines), we include two TabPFNv2 variants considered in this study. While
TabPFN tends to performs better, TARTE–B can help the base models, even on more numerical tables.

4.3 Good knowledge pre-training, adapted to downstream tasks, is important

Better knowledge pre-training, better performance TARTE embeddedings boost prediction. But
what drives this boost? Is it the inductive bias of the architecture, or is the pre-training on the knowledge base
actually important? To answer this question, we investigate TARTE pre-training on small tables (n = 32
to 1 024), where the effect of TARTE is most eminent. Figure 6 presents the critical difference diagram
for Ridge fitted with embeddings from different schemes. Here, CARTE with “New sampling” corresponds
to CARTE architecture with TARTE pre-training schemes, and “MinHash” replaces FastText by MinHash
encoding, that only captures morphological similarities of strings (Cerda & Varoquaux, 2020).

First, comparing MinHash to TARTE reveals the importance of FastText. A simple use of FastText with
random (non pre-trained) weights already exhibit relatively strong performances. As FastText captures
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Figure 6: Ablating architecture, pre-training, and preprocessing components. A ridge is fitted with
embeddings from different schemes: random weights (no pre-training); replacement of FastText with skrub’s
“MinHash” encoder; TARTE and CARTE pre-trained with YAGO3 and Enriched YAGO4.5; CARTE with
TARTE pre-training schemes (New sampling); TARTE without datetime detection or column information.

Table 1: Factors of success for TARTE. Coefficients
and their confidence intervals of a linear model explain-
ing the improvement of TARTE–Ridge over TabVec–Ridge
across datasets (R-squared: 0.22). Negative values mean
that greater values for the corresponding meta-feature are
associated to less benefits of TARTE. Performance decrease
for long strings suggest a limitation of the language model,
FasText. Importance of inlier probability shows the need
for pretraining to cover well downstream terminology.

Dataset feature Coef. CI[0.025, 0.975]
Avg. string length -0.35 [-0.40, -0.31]
Avg. inlier prob. 0.29 [0.26, 0.33]
# datetime cols 0.28 [0.24, 0.31]
Avg. string sim. 0.18 [0.13, 0.22]
# low card. cols -0.18 [-0.23, -0.14]
# numerical cols 0.13 [0.09, 0.16]
# high card. cols 0.06 [0.02, 0.10]
log(train-size) 0.04 [0.00, 0.08]

semantic similarities, its combination with a suitable transformer architecture (subsection 3.1 or CARTE)
forms an inductive bias of smoothness: similar tables have similar representations.

Going further, a proper combination of pre-train data and procedures, the architecture, and preprocessing of
tables improves knowledge pre-training (TARTE with Enriched YAGO4.5). For CARTE representations used
without fine-tuning, pre-trained representations perform less well compared to random weights, regardless of
the pre-train data: these representations lack out-of-the-box re-usability. TARTE pre-training schemes on
CARTE (New sampling) helps but the performance does not match that of TARTE, highlighting the various
sources of improvements through TARTE (see subsection 3.2). In addition, without datetime detection or
column information, properly pre-trained weights still provide competitive representations. This suggests
that TARTE can perform well even on tables without meaningful column names.

Which downstream tables benefit from TARTE? Tables are very heterogeneous, and not all may
correspond to learning tasks that benefit from the knowledge embarked in TARTE. We explore which char-
acteristics of a downstream table leads to a performance boost with TARTE. Table 1 provides a multivariate
analysis of various factors (dataset meta-features) that affect the prediction on downstream tables (linear
model explaining the performance boost of TARTE on top of TabVec-Ridge).

We find that TARTE works less well on tables with long string entries (likely a limitation of FastText
embedings, as discussed in appendix A.2). However, it brings more benefits for tables with many strings
considered as inliers to the pre-training source (using a One-Class SVM fitted on the embeddings of the
pre-training strings to define an inlier score). TARTE also works better with fewer low-cardinality columns
(trees shine on these), with many datetime columns, with strings similar across rows, with more numerical or
high-cardinality columns, and with more data. Overall, we find that TARTE brings benefits on more complex
tables, with many complex strings, but particularly so if these look like strings seen during pre-training.

4.4 Specializing to a domain: fine-tuned TARTE gives representations that transfer

Experimental set up and baselines We investigate whether reusing TARTE representations from fine-
tuned models facilitates subsequent learning. We evaluate TARTE–Ridge and TARTE–B with TabPFNv2
and XGB. Here, TARTE–Ridge denotes a Ridge model fitted on fine-tuned TARTE embeddings and TARTE–
B sequentially fits the residuals with domain specialized representations (see subsection 3.3). As baselines,
we consider top-performing tabular models that provide native handling of missing values. Indeed, even
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Figure 7: Domain specialization from a single source – Left: Pareto diagram – Right: criti-
cal difference diagram of average rank. ‘DS’ and ‘MT’ denote Domain-Specialized and Multi-Tables
schemes, respectively. Models that blends inference from the target table with representations tuned on the
source improve (TARTE–B and CARTE). TARTE–B–TabPFNv2 gives the best predictions.

Figure 8: Domain specialization from
multiple sources: comparison between
TARTE and CARTE. Improvements from
the best performing model without any source
information, TARTE–B–TabPFNv2, with re-
spect to the total runtime across different
train sizes. While both TARTE and CARTE
improve with multiple sources, TARTE is
far more efficient. In contrast to CARTE,
TARTE can reuse the fitting on the source
tables (here, 20 mn on average).
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with differing columns across tables, these models can be fitted with a stacked table. We also include
CARTE multi-table (CARTE-MT), the only baseline, to our knowledge, that learns across tables without
correspondences (Kim et al., 2024). Note that the setup for TARTE and baseline models is slightly different.
Baselines fit all tables, sources and target, jointly; while the TARTE model does not need access to the source
tables to be reused for transfer. We consider each domain one after the other, and for each, we consider
every combination of source tables and a target table: source tables to specialize the model, and target table
to evaluate the corresponding learner. As datasets, we select from the previous set of tables group of tables
within the same domain, but acquired in different settings (Kim et al., 2024). See appendix B.3 for details.

TARTE improves with domain specialized representations Figure 7 presents the improvements and
runtime costs for a single source table. Here, the abbreviations ‘DS’ and ‘MT’ denote Domain-Specialized and
Multi-Tables, respectively. Out of top-performing tabular models, those that actually benefit are TARTE–
B, CARTE, and CatBoost. Here, most of the runtime of TARTE is driven by the training time of the
source model. The cost can be amortized if we are given a new target table: TARTE can readily reuse the
domain-specialized models, which gives an advantage over baselines that requires a new fitting of the model.

TARTE stays efficient with multiple sources We evaluate every possible source–target combinations
with TARTE–B–TabPFNv2(DS) and CARTE-MT. Figure 8 gives the improvements of respective models
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compared to the best performing model on single tables (TARTE–B–TabPFNv2), with respect to the runtime.
Both models benefit from source tables, with larger gains for TARTE–B–TabPFNv2(DS). Compared to Kim
et al. (2024), the baseline here is much more performant, and thus it is more difficult to improve. Concerning
the runtime, CARTE-MT requires pairwise fitting for each source, markedly increasing compute costs even
for small increase in train-size. TARTE, however, is more efficient: the runtime of TARTE is dominated by
the training time of source tables (20 mn). Therefore, reusing domain-specialized models imposes far less
compute cost, putting TARTE in a better position for transfer within the specific domain.

5 Discussion and conclusion: A knowledge backbone that can be reused

Foundation models have changed the landscape of machine learning because they facilitate a huge variety of
applications and can efficiently lead to specialized models. Table Foundation Models are progressing rapidly,
one line of work improving table-level tasks such as table understanding and question answering (Zhang
et al., 2024; Li et al., 2024), another geared toward tabular learning, i.e., row-level predictive analytics
(Hollmann et al., 2025; Kim et al., 2024). In the latter, the downstream task comes with strong supervision.
Here, developing foundation models requires extra work to fulfill the promises of pre-training and re-use.

Knowledge pre-training that helps tabular learning Our study shows the value of pre-training to
acquire world knowledge for tabular learning (Figure 6). Current table understanding models clearly leverage
world knowledge, but it is less visible in tabular learning ones. Table understanding models are typically
variants of LLMs, generative, pre-trained an large textual corpora, and often used via prompting and thus in
context learning. For tabular learning, however, post-training for the downstream tasks is typically further
away from the next-token prediction used to inject world knowledge in LLMs. Indeed, for tables with many
rows, a good tabular learner often needs to aggregate information across these rows, as opposed to retrieval
of a few rows which suffices for typical table-understanding tasks. But language models do not leverage long
contexts uniformly (Liu et al., 2024). By matching pre-training tasks to downstream tasks, the TabPFN
literature has managed to train suitable in-context models, valuable for tabular learning. However, this has
required synthetic datasets that do not bring world knowledge.

Powerful post-training used for tabular learning can compensate for suboptimal pre-training. In fact, models
without pre-training (such as XGBoost) are very strong baselines. Also, our results (Figure 6) show that
CARTE, a pretrained model for tabular learning, achieved its good performance thanks to post-training,
namely fine-tuning. A drawback of requiring sophisticated post-training is the compute cost. Investing in
pre-training, as with TARTE, enables to use simple downstream learners, as a Ridge, which becomes a very
strong baseline with TARTE (On small, but also mid-sized data: figures 3 and 4). Pre-training cost is then
“amortized” by making downstream learning and inference cheap.

A re-usable backbone improves predictions and decreases costs TARTE’s backbone is suited to
many post-training approaches. Well pre-trained, its transformer-based architecture gives a good encoder for
complex tables that can be easily re-used and specialized as a backbone. It can be plugged into any learner,
possibly cached to facilitate operations. Fine-tuning to a domain gives best prediction. But different choices
of post-training (using TARTE only as data preparation for a subsequent learning, boosting, or fine-tuning)
explore different trade-offs in prediction performance versus computational costs. Using TARTE improves
the “Pareto optimality”: more prediction performance for the same computational cost. This approach is
scalable and beneficial even for larger tables. Finally, while strings (in column names and cell entries) are
central to TARTE, the encoder also leads to state-of-the-art performance on more numerical tables.

A popular aspect of foundation models is their ability to be specialized, as visible from the number of fine-
tuned models on hugging face (e.g., 1 566 derived from Roberta, as of May 2025, huggingface). A fine-tuned
TARTE can be readily reused for multiple applications in the given domain, improving downstream prediction
and computational performance. Such fine-tuning followed by an independent reuse is to be contrasted with
most prior successes of transfer in tabular learning, built on joint learning and thus increasing operational
costs rather than decreasing them. On the contrary, reusing a domain-specialized version of TARTE uses
less computational resources than starting from scratch or fitting a cross-table model.
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The agenda of table foundation models calls for repurposable and reusable models that are as powerful and
easy to apply to new tables as possible. Our study makes a step is this direction, showing how to pretrain
to capture world knowledge and reuse it for tabular learning.
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Table 2: Comparison of pre-train datasets for TARTE and CARTE.

Data Used in # Entities # Relations # Facts

YAGO3 CARTE 4 027 996
Total: 65 Total: 18 108 790

Categorical: 38 Categorical: 14 826 655
Numerical: 27 Numerical: 3 282 135

YAGO4.5 - 5 415 689
Total: 97 Total: 23 457 263

Categorical: 72 Categorical: 16 296 953
Numerical: 25 Numerical: 7 160 310

YAGO4.5 Enriched TARTE 5 576 475
Total: 687 Total: 30 262 472

Categorical: 72 Categorical: 16 296 953
Numerical: 615 Numerical: 13 965 519

A Further details on backbone and pre-training

A.1 Modeling with column – cell pairs: context-aware for transformers

Given a table, TARTE models with a set of column – cell pairs and combine the embeddings to form the
input of the transformer. The column information is crucial to supplement context for the transformers (Kim
et al., 2024). For instance, the entry (e.g., ‘A.I’) or the content of the table (e.g., ‘movies’) would be difficult
to understand without the column information (see Figure 1). For knowledge bases of the pretrain data, this
corresponds to modeling relations, which has been pivotal to knowledge embedding models (Cvetkov-Iliev
et al., 2023). Moreover, the column embeddings serve as a medium to combine different data types for a
uniform processing of entries.

A.2 Language model used in TARTE

We use FastText embeddings (Mikolov et al., 2017), which hold some limitations for long string entries
(subsection 4.3). Yet, string (text) entries in tables mostly contain only a few words: across 51 datasets,
the median ratio of unique entries with more than 10 words is 0.025. An interesting alley to explore more
sophisticated language models, possibly using different language models depending on different structure of
strings (e.g., simple words or sentences).

A.3 Pre-train data

Table 2 gives the statistics of the pre-trained datasets used by TARTE and CARTE. They both describe
approximately the same number of entities–those that have a Wikipedia page (Suchanek et al., 2024). How-
ever, the pre-train dataset for TARTE is enriched and diversified with more numerical information: YAGO4.5
Enriched, used in TARTE, describes almost twice as many numerical facts and, most importantly, includes
far more diverse properties (615 distinct relation types against 27 for YAGO3).

A.4 Pre-training procedures

Training specifications The batch size is set as 512 in which 256 entities are randomly selected with one
additional positive for each. The total number of steps for training is 200 000, with the AdamW optimizer
and the cosine scheduler. The learning rates were set as lrmin = 10−8, lrmax = 10−6 of warm-up over the
first 2 000 steps, followed by a linear decay in learning rate schedule. The probability for all dropout layers
was set as 0.1.

Batch sampling To enable contrastive learning, we construct batch samples by generating positive sam-
ples that replace parts of information (for instance, replacing Paris with London, see Figure 2). While this
may be counterintuitive, it helps the pre-train model to embed representations that is geared for capturing
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smoothness (similar rows having similar target value) in a table. When trimming relations to have a fixed
number of related information across entities for a batch, we consider the number of unique relations for each
entity. For example, a well-known city can have many number of relations ‘has neighbor’, which dominate
the facts about the city. This creates the difficulty in resembling the input data with a table, and thus we
trim the relations such that there are not many duplicate relations for an entity.

Contrastive loss with Matryoshka embeddings For the contrastive learning, we use the Matryoshka
embedding scheme (Kusupati et al., 2022) to provide various pretrained embededdings of reduced dimen-
sions. The Matryoshka embeddings attach several linear projection layers of different dimensions in parallel,
calculate contrastive loss for each dimension, and aggregate the losses to backpropagate through the whole
network. For TARTE pre-training, the dimension set was {64, 128, 256, 512, 768}.

B Details on downstream experiments

B.1 Training procedures

Data preparation We use TARTE embeddings of dimension, d = 768 except for TabPFNv2, which we
set d = 256 since the maximum feature-size that TabPFNv2 can handle is 500. For TableVectorizer from
the skrub, categorical columns are differently encoded depending on the cardinality (number of categories):
Columns with low cardinality are one-hot encoded while those with high cardinality are encoded using the
Gamma-Poisson encoder (Cerda & Varoquaux, 2020). For models without native handling missing values,
we imputed with the mean for numerical features, and treated as another category for categorical features.

Hyperparameter optimization We perform hyperparameter selection, except for TabPFNv2. For fine-
tuned models, TARTE–FT and CARTE–FT, we use a custom grid-search hyperparameter optimization
function tailored with the bagging from different train/validation splits. It identifies the optimal hyperpa-
rameters based on mean validation loss. For Ridge regression, we use RidgeCV from scikit-learn (Pedregosa
et al., 2011), which performs an efficient Leave-One-Out Cross-Validation to select the hyperparameters.
For rest of the models, we run 5-fold cross-validation over 100 random search iterations. Table 3 shows the
hyperparameter spaces for each method. Most of the spaces were adapted from Grinsztajn et al. (2022) and
Holzmüller et al. (2024), except for the fine-tuned models, which were adapted from Kim et al. (2024).

Additional details For evaluation on single tables, the train-size for each tables varied from 32, 64,
128, 256, 512, 1 024, and 10 000; remaining data was set as the test set. Out of 51 datasets, 27 datasets
contain sufficient data points for the train-size of 10 000. The performance was measured with R2 score for
regression and the Area Under Receiver Operating Curve (AUROC) for classification tasks. For the runtime,
it measures the total time for data preparation, hyperparameter optimization, and prediction. Overall, the
results were recorded on 10 different train/test splits for each dataset.

B.2 Details on multivariate analysis

The inlier score is obtained by fitting a One-Class SVM on the embeddings of strings present in the pre-train
data. Considering the size of the pre-train data, we train SGDOneClassSVM from scikit-learn (Pedregosa
et al., 2011), that solves linear One-Class SVM using stochastic gradient descent. In regards to the categor-
ical columns, we follow the heuristics from TableVectorizer in skrub package, with the criterion of high
cardinality set as 40.

B.3 Experimental set-up for domain specialization

We consider the few-shot settings with the train-size on the target table varied from 32, 64, 128, and 256.
The splits were set as same as that of singletables to enable comparable results. For each baseline, some
additional details were considered.
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Table 3: Hyperparameter space for models considered in the study.

Methods Parameters Grid

TARTE–FT Learning rate [1, 2.5, 5, 7.5, 10] × 1e−4

Batch size 16 for n < 10 000 else 256

CARTE–FT Learning rate [1, 2.5, 5, 7.5, 10] × 1e−4

Batch size 16 for n < 10 000 else 256

Ridge Alpha [1e−2, 1e−1, 1, 1e1, 1e2]

CatBoost

Num. estimators 1000
Max depth UniformInt [2, 6]
Learning rate LogUniform [1e−5, 1]
Bagging temperature Uniform [0, 1]
l2-leaf regularization LogUniform [1, 10]
One hot max size UniformInt [0, 25]
Random strength UniformInt [1, 20]
Leaf estimation iterations UniformInt [1, 20]
od_wait 300
od_type ‘Iter’

XGBoost

Num. estimators 1000
Max depth UniformInt [2, 10]
Learning rate LogUniform [1e−5, 1]
Min child weight LogUniform [1, 100]
Subsample Uniform [0.5, 1]
Colsample by level Uniform [0.5, 1]
Colsample by tree Uniform [0.5, 1]
Gamma LogUniform [1e−8, 7]
Lambda LogUniform [1, 4]
Alpha LogUniform [1e−8, 100]
Early stopping rounds 300

RandomForest

Num estimators UniformInt [50, 250]
Max depth [None, 2, 3, 4]
Max features [sqrt, log2, None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Min samples leaf LogUniform [1.5, 50.5]
Bootstrap [True, False]
Min impurity decrease [0, 0.01, 0.02, 0.05]

MLP

Num layers UniformInt [1, 4]
Layer size UniformInt [16, 1024]
Dropout Uniform [0, 0.5]
Learning rate LogUniform [1e−5, 1e−2]
Weight decay LogUniform [1e−8, 1e−2]
Batch size [16, 32]

• TARTE: The runtime of TARTE models include the training time of source tables. For each source
table, we fine-tuned the pre-trained TARTE with the associated task. No hyperparameter tuning was
performed, with the batch size and the learning rate set as 256 and 5e−4, respectively.

• CARTE-MT: We follow Kim et al. (2024) for the set-up. The runtime includes training without source
(including hyperparameter optimization) and joint learning of target-source pairs (Kim et al., 2024).

• Other baselines: For models that stack the target and a source table, the maximum size of the
training data (including both the target and the source table) was set as 10 000, which is the boundary
for TabPFNv2, and larger size would incur overfitting to the source (Kim et al., 2024). Moreover, the
column names are matched through manual inspection for best possible performances.
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Datasets For datasets from a similar domain, we adapt those used in multi-table learning in Kim et al.
(2024). These are tables within the same domain, but acquired in different settings (for instance from
multiple sources). We have 12 domains: Wine prices (4 tables), Wine ratings (3 tables), Beers (2 tables),
Used cars (5 tables), Films (2 tables), Dramas (2 tables), Anime (2 tables), Baby products (2 tables), Bike
sales (2 tables), Employee remunerations (3 tables), Restaurant ratings (3 tables), Journal scores (2 tables).

C Hardware specifications

The hardware specifications for pretraining and downstream tasks are as follows. For the pre-training of
TARTE, a single NVIDIA A40 (48GB) gpu was used. The downstream experiments was run on 32 cores of
CPU except for TabPFNv2 variants for all n, and TARTE–FT and CARTE–FT at n = 10 000, in which we
used gpus. The hardware was chosen based on availability.

• GPUs: NVIDIA V100 (32GB VRAM), A40 (40GB / 48GB VRAM)
• CPUs: AMD EPYC 7742 64-Core Processor, AMD EPYC 7702 64-Core Processor (512GB RAM),

Intel(R) Xeon(R) CPU E5-2660 v2, Intel(R) Xeon(R) Gold 6226R CPU (256GB RAM)

D Extended results

D.1 Results on small tables

Figure 9 presents the results for all train-sizes in few-shot setting. We include additional baselines of Ran-
dom Forest (RF), the classical Multilayer Perceptron (MLP), and TARTE–CatBoost using the default
hyperparameters. TARTE, through various post-training schemes, outperforms the baselines regardless of
train-sizes. In addition, TARTE featurizer outperforms TableVectorizer (except for TabPFNv2) for a given
learner in small training samples (n ≤ 256). For TARTE–TabPFNv2, it underperforms likely due to that
the dimension of TARTE embeddings was 256 for TabPFNv2 and the resulting data representations do not
have a distribution matching to that of synthetic tables from TabPFNv2 pre-training.

D.2 Results on single source domain specialization

Figure 9 shows improvements for using a single source table. Regardless of the train-sizes, TARTE–B provides
benefit to the base models. Compared a CARTE–MT with the joint learning scheme, TARTE shows the
benefit of having a reusable model. Once specialized models is available, TARTE can readily benefit without
requiring complex refitting of the model, placing TARTE in a better position for transfer.
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Figure 9: Results for small tables – Left: Pareto diagram – Right: critical difference diagram of
average rank TARTE surpasses the baselines, and can act as an effective table preparator, especially for
small number of training samples (n ≤ 256).
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Figure 9: Results for domain specialization with single source table Regardless of the train-sizes,
TARTE–B can provide benefits with domain specialization. Once domain specialized models are available,
TARTE can readily benefit without requiring complex refitting with the source tables.
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