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ABSTRACT

Map generation tasks, featured by extensive non-structural vectorized data (e.g.,
points, polylines, and polygons), pose significant challenges to common pixel-
wise generative models. Past works, by segmenting and then performing various
vectorized post-processing, usually sacrifice accuracy. Motivated by the recent
huge success of auto-regressive language modeling, we propose the first map
foundational model: Map Auto-Regressor (MARS), that is capable of generat-
ing both multi-polyline road networks and polygon buildings in a unified manner.
We collected by far the largest multi-class map dataset, MAP-3M, to support the
robust training. Extensive benchmarks highlight the performance superiority of
MARS against literature works. Meanwhile, benefited from the auto-regressive
teaching-forcing based training, we develop the “Chat with MARS” capability that
enables interactive human-in-the-loop map generation and correction. The MAP-
3M dataset and our project demo page have been released at the following links
(1) https://huggingface.co/datasets/bag-lab/MAP-3M and (2)
https://huggingface.co/spaces/bag-lab/MARS respectively.

.

1 INTRODUCTION

Maps serve as the foundation of geographic information systems (GIS), which are central to real-
world applications such as urban planning, daily navigation, disaster response, and more. Automat-
ically generating maps from overhead or remote-sensing imagery has a long history. This involves
converting rasterized pixels into vectorized geometric primitives including points, polylines, and
polygons, which represent diverse map elements such as roads, buildings, and water bodies.

A key challenge for map generative modeling lies in the vectorized representation of maps (Con-
galton, 1997; Jiang et al., 2024). Most current visual generative tasks are rasterized, i.e., producing
pixel grids, which align with off-the-shelf tensor-based generative architectures such as Segment-
Anything (SAM) (Kirillov et al., 2023) and Diffusion (Rombach et al., 2022). In contrast, map
labels are geometric, often consisting of a variable, unstructured set of points, polylines, and poly-
gons in Fig. 1 (c). This structural mismatch has posed unique difficulties for generic map generative
architectures.

As a workaround, many works tackle map generation by rasterized segmentation + vectorized post-
processing (Xu et al., 2023). For example, SAM plus post-processing methods have been explored
for road network graph extraction (Kirillov et al., 2023; Hetang et al., 2024). Similarly, (Wang et al.,
2024) used SAM and designed different post-processing logic for building delineation.

Such methods suffer from two major drawbacks that prevent them from serving as a foundation
for map generation: (1) Limited generality across map classes. Post-processing (e.g., key-point
and edge extraction) is typically heuristic-based, and the heuristics differ substantially between fea-
ture classes, e.g., road networks (multi-polylines with complex intersections) v.s. buildings (non-
overlapping polygons). As a result, these methods generally support only a single map-feature type;
(2) Suboptimal performance. Because the generation is not end-to-end learned within a unified ar-
chitecture, performance is often constrained. Meanwhile, it leads to more hyperparameters, such as
NMS IoU thresholds for key-point de-duplication or confidence thresholds for edge connections.

In this work, we address map generation tasks by treating vectorized map primitives as a foreign lan-
guage. Our approach is inspired by sequence-to-sequence learning (Radford et al., 2018), where au-
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toregressive architectures have shown remarkable effectiveness in producing complex non-structural
outputs. Specifically, we propose a unified map-to-sequence framework to convert all vectorized
map primitives (roads and buildings) into a sequential language-alike representation. Then an end-
to-end map auto-regressor (MARS) architecture is proposed to conduct sequence-to-sequence map
primitive learning. To ensure the generalization and scalability, we keep the MARS architecture
to be as vanilla as possible, which contains only a generic vision backbone and an auto-regressive
transformer, without any intermediate nor post-processing being applied.

Without bells and whistles, MARS learns to generate all types of map elements auto-regressively and
scalably. To the best of our knowledge, this is the first map foundation model capable of generating
both vectorized roads and buildings within a single end-to-end model without any post-processing,
which marks an important step toward scalable and generalizable map generation.

Benefited from the auto-regressive and teacher-forcing based training, similar to GPT (Radford et al.,
2018), we identified the emerging prompt following capability of MARS. We then developed the
“Chat with MARS” feature: human users can prompt the MARS model by giving a starting point
of a missing street or a building, and MARS will then help users further complete the sequence of
the target object, which enables another brand-new interactive map generation capability: human-
in-the-loop map generation and correction.

Training scalable foundation models relies on huge volume of data, while all current map datasets
are limited to single-class annotations and have limited quantity. We thus curated MAP-3M, the
largest dataset for map generation to date. This collection contains three million images with
high-quality annotations for both roads and buildings, 10× larger in number of images and 100×
broader in geographic coverage than common benchmarks such as Cityscale (He et al., 2020a),
SpaceNet3 (SpaceNet, 2018) and AiCrowd (AICrowd, 2020).

Overall, we have the following major contributions:

• We proposed a foundational map auto-regressive model architecture: MARS, that can end-
to-end generate various vectorized map elements without any post-processing.

• We identified and developed “Chat with MARS” that enables brand-new interactive human-
in-the-loop map generation and correction capability.

• We curated by-far the largest multi-class map generation dataset to facilitate the founda-
tional MARS training. Dataset has been released.

We conduct extensive benchmarks on MAP-3M and various downstream applications. Experimental
results demonstrate the superior performance of our unified architecture compared to previous state-
of-the-art models, showing great potential for future advancements of map generation.

2 THE MARS FRAMEWORK

Our MARS framework consists of two main parts: a map-to-sequence algorithm that transforms vec-
tor data into a sequential format, and an end-to-end map auto-regressor architecture, which includes
a vision backbone and an auto-regressive transformer connected with cross-attention.

(a) Input Image (b) Rasterized Output (c) Vectorized Output

Figure 1: Rasterized / Vectorized Map Generation. Source: MARS.
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2.1 MAP-TO-SEQUENCE CONVERSION

To start with, all map objects (building, roads, water bodies, etc.) can be categorized into three basic
types: Point, Polyline, and Polygon. For each object, they can be represented by a series of vertices
and/or edges. For example, a point can be represented as a tuple of its coordinates: [x, y]. A polyline
can be then represented as a sequence of points: [x1, y1, x2, y2, x3, y3, x4, y4, ...], where xi, yi is the
i-the vertex’s coordinates. A polygon is a closed-loop polyline, in which the sequence ends with the
starting vertex, i.e.: [x1, y1, x2, y2, x3, y3, x4, y4, ..., x1, y1].

With above sequential representation for single object, representing multiple Polygons without in-
tersections such as multiple buildings can be easily formulated as below:

[ B, x1
1, y

1
1 , x

1
2, y

1
2 ,x

1
3, y

1
3 , ..., x

1
1, y

1
1 , B, ..., B, xi

1, y
i
1, x

i
2, y

i
2, x

i
3, y

i
3, ..., x

i
1, y

i
1, ...

B, xN
1 , yN1 , xN

2 , yN2 , xN
3 , yN3 , ..., xN

1 , yN1 ]
(1)

where B is a class token for building objects, i denotes the i-th building, and xi
j , y

i
j is the j-th

vertex’s coordinates in the i-th building, and N is the number of buildings.

(a) Original Image (b) Vanilla Road Networks

(Non-Sequential)

(c) Stroke-Decomposed Road Networks 

(Sequential) 

Figure 2: Our stroke-based algorithm can decompose a non-sequential
flat road networks to multiple single polylines, which can then be se-
quentialized for auto-regressive learning. Source: MARS.

Representing intersectional
Multi-Polyline road net-
works as a sequence poses
the greatest challenge, as
they form highly complex
graphs, with intersections,
merges and roundabouts,
as shown in Fig. 2 (b). This
poses many challenges for
standard graph traversal
methods (Christofides,
1973) to account for the
semantic continuity and/or
separability of those roads.

To sequentialize such road
graphs, we adopt a stroke-based algorithm (Yan et al., 2024). This algorithm essentially decom-
poses all road segments by intersection points (which have an edge degree >3), and then merge
consecutive segments within certain angle tolerance (e.g., < 30°) to be a single road. This simpli-
fies complex multi-polyline networks into multiple single-polyline roads that align with real-world
road definitions, as shown by different colored single polylines in Fig. 2 (c). The multiple single-
polylines can be then represented using the same formulation as Eq. 1, with the specialized token
replaced by R to denote roads.

With this map-to-sequence framework, we thus enable converting all map elements as sequences
(points, polygons, multi-polylines). With multiple object types on the map, we just need to construct
different class tokens, and then combine them into the final sequence:

[ P, x0
1, y

0
1 , ..., B, x1

1, y
1
1 , x

1
2, y

1
2 , x

1
3, y

1
3 , ..., x

1
1, y

1
1 , ...,

R, xi
1, y

i
1, x

i
2, y

i
2, x

i
3, y

i
3, ..., W, xN

1 , yN1 , xN
2 , yN2 , xN

3 , yN3 , ..., xN
1 , yN1 ]

(2)

where P,B,R,W are the specialized token for Points, Buildings, Roads, Waterbodies, etc., and i
denotes the i-th object, and xi

j , y
i
j is the j-th vertex’s coordinates in the i-th object. By our map-

to-sequence framework, we can convert a vectorized map tile as a sequence, which enables auto-
regressive end-to-end map learning without any manual designed vectorized post-processing.

2.2 MAP AUTO-REGRESSOR ARCHITECTURE

Figure 3 shows the MARS architecture composed of two major parts: (1) a vision backbone to
extract the visual features, and (2) an auto-regressive transformer for vectorized map generation.

The vision backbone (e.g., Swin-L (Liu et al., 2021)) is used to process the satellite imagery and fuse
visual context feature to the autoregressive decoder. To pass the multilevel features from the encoder
to the decoder, we design a minimal convolutional feature aggregator to concatenate features from
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<W>, 𝑥1
4, 𝑦1

4, 𝑥2
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4 … 𝑥1
4, 𝑦1
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Visual 
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<SOS>, <R>, 𝑥1
1, 𝑦1

1, 𝑥2
1, 𝑦2, 

1 … , <SEP>, <R>, 𝑥1
2, 𝑦1

2, 𝑥2
2, 𝑦2, 

2 … <SEP>, 

<B>, 𝑥1
3, 𝑦1

3, 𝑥2
3, 𝑦2, 

3 … 𝑥1
3, 𝑦1

3, <SEP> 

<W>, 𝑥1
4, 𝑦1

4, 𝑥2
4, 𝑦2, 

4 … 𝑥1
4, 𝑦1

4 , <SEP>, <P>, 𝑥1
5, 𝑦1

5 <SEP>… 

T1 T2 Tn-1 Tn…

Chat w/ MARS

“Prompt a missing object 

starting at (𝒙𝟏, 𝒚𝟏)”  

Figure 3: MARS unifies vectorized map generation by end-to-end visual auto-regressive modeling.
We adopt Swin Transformer as vision encoder to extract visual context features. The auto-regressive
transformer cross-attends visual context features with map tokens, and then generates the sequences
(points, polylines, polygons) in an auto-regressive manner. Benefited from teacher-forced training,
we can also support human-in-the-loop map generation with prompts. Image Source: MARS.

four hierarchical levels of the backbone with adaptive upsampling. A feature bridge flattens the
visual features and adopts cross-attention to fuse the image context feature into the decoder.

Built on a vanilla transformer (Radford et al., 2018), the decoder generates the semantic class to-
kens and coordinate tokens of each map object auto-regressively by using the encoder’s visual con-
text features together with previously generated tokens. It uses single-directional causal attention,
ensuring that each token attends only to past tokens. In the training phase, the autoregressive de-
coder is trained by teacher forcing (Radford et al., 2018). For optimization, we apply a standard
cross-entropy loss to supervise the learning of both semantic class tokens and coordinate tokens.
Additionally, we sort all map objects by their distance to the image centroid, and when distances
are similar, we sort them by their clockwise angle. This creates a consistent spiral ordering across
the dataset and ensures reproducible decoding. By jointly supervising labels and discretized coor-
dinates under the same loss function, the model learns to generate complete map object sequences
in a consistent and unified manner. In inference phase, the decoder autoregressively predicts tokens
from a start-of-sequence token until an end-of-sequence token.

To represent both semantic categories and spatial positions in a unified manner, we construct a
shared decoding vocabulary D ∈ RBo+Bc , where Bo denotes the number of semantic classes in the
ontology and Bc denotes the number of pixel locations along the image height/width dimensions
(e.g., 224). For simplicity and consistency, we share the coordinate tokens for the width (x) and
height (y) dimensions. The shared decoding vocabulary D is further extended to include special
tokens, such as the start-of-sequence token, separator token, pad token, and end-of-sequence token.

3 Chat with MARS: HUMAN-IN-THE-LOOP MAP GENERATION

With the autoregressive teacher-forcing training, the prediction of each token is conditioned on all
preceding tokens. Prompt following capability thus emerges in MARS, which naturally allows user
interventions to be seamlessly integrated into the decoding process. We thus develop “Chat with
MARS” capability, an interactive human-in-the-loop paradigm for collaborative map generation.

Chat-with-MARS integrates user prompts through three complementary modes of interaction: start-
of-sequence chatting, mid-sequence chatting, and end-of-sequence chatting. These modes enable
diverse forms of intervention during decoding, allowing users to indicate a missing object, correct
drifting errors, and enhance performance in complex geospatial scenes.

3.1 START OF SEQUENCE CHATTING

Start-of-sequence (SOS) chatting aims to provide the first map element’s starting point so that
MARS generates maps with a better conditioned starting point. As shown in the highlighted part in
Eq. 3, one class token and two coordinate tokens (x, y) from one user click could be passed in as
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Table 1: MAP-3M provides 10× more images, and 100× more spatial coverages than literature
datasets. GSD: meter/pixel. ∗: Cityscale contains 2K chips, we tile to 224x224 for comparison.

Dataset # Images Image Size Coverage Area GSD Building Cls Road Cls

Cityscale (He et al., 2020a) 49220 224x224* 2470 km2 1.0 × ✓
SpaceNet3 (SpaceNet, 2018) 2541 400x400 407 km2 1.0 × ✓
AICrowd (AICrowd, 2020) 258044 300x300 2090 km2 0.3 ✓ ×
MAP-3M (Ours) ∼3M 512x512 294069 km2 0.6 ✓ ✓

prompt to better guide the following auto-regressive token generation.

[⟨SOS⟩, B , x1
1 , y11 , x1

2, y
1
2 , x

1
3, y

1
3 , ..., x

1
1, y

1
1 , ...⟨EOS⟩] (3)

This is particularly helpful when a test image is extremely blurry or out-of-domain: once the first
vertex predicted by MARS is ill-conditioned, due to error accumulation of auto-regressive nature,
the whole sequence may suffer from less detections. In such case, SOS chatting can greatly improve
the full image prediction performance. Visualizations could be found in Fig. 4 (a-d).

3.2 MID OF SEQUENCE CHATTING

Mid-of-sequence (MOS) chatting aims to intercept MARS’s prediction sequence when it drifts from
the desired trajectory, which is common in vectorized road generation. As shown in the highlighted
part in Eq. 4, two coordinate tokens (x, y) from one user click could be prompted to replace the old
drifting tokens and redirect the following road generation.

[⟨SOS⟩, R, x1
1, y

1
1 , x

1
2, y

1
2 , xold, yold, x

1
3 , y13 , ..., ...⟨EOS⟩] (4)

This is particularly helpful when certain predictions in an image needs to be adjusted. Visualizations
could be found in Fig. 4 (e-h). For minimal impact, we enforce the newly generated tokens to be
within that object (i.e., stop when hitting next object class token) without affecting other objects.

3.3 END OF SEQUENCE CHATTING

End-of-sequence (EOS) chatting aims to augment MARS’s prediction when there are objects missed
from the final predictions, which is common for various small map elements. As shown in the
highlighted part in Eq. 5, we can remove the ⟨EOS⟩ token, and then prompt with new object class
token and coordinate tokens (x, y) so as to resume the map generation.

[⟨SOS⟩, R, x1
1, y

1
1 , x

1
2, y

1
2 , x

1
3, y

1
3 , ..., ⟨EOS⟩, B , x1

1 , y11 , ..., ⟨EOS⟩] (5)

Such EOS chatting could be used to improve recall. Visualizations could be found in Fig. 4 (i-l).

Chat-with-MARS can be extended with mixed forms, easily forming multi-round conversations for
interactive editing. We believe it has strong potential for a wide range of real-world localized map
editing and maintenance tasks such as OSM Change Analyzer (OpenStreetMap, n.d.).

4 MAP-3M: A LARGE-SCALE MAP DATASET

For map generation, most widely-used benchmarks in the literature cover only single-class anno-
tations with limited image quantities, significantly restricting their utility for real-world tasks. For
example, Cityscale (He et al., 2020a) and SpaceNet3 (SpaceNet, 2018) exclusively contain road
annotations, while AI-Crowd (AICrowd, 2020) focuses solely on building annotations.

To overcome these constraints, we curated MAP-3M, the largest high-resolution aerial image +
map dataset to date, comprising approximately 3M high-resolution images (10× bigger than the
other available datasets) enriched with high-quality annotations for both buildings and roads. An
comparison between MAP-3M and other literature datasets is shown in Table 1.
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(k)

(b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(a)

(l)

Figure 4: Chat with MARS. The user interactions are provided as single clicks, shown as yellow
arrows. White dash-dotted line: Ground truth. Colored lines with asterisks: Predicted sequences.
Black circles with white numbers: Object IDs. (a–b): Start-of-sequence interaction enables recovery
of a missing building object (ID 77) in a NAIP image. (c–d): Similarly, a missing road object (ID 1)
is recovered in a Cityscale image. (e–f): Mid-sequence interaction helps correct the prediction of a
drifting road object (ID 10) in Cityscale. (g–h): Another mid-sequence example shows recovery of
a drifting road segment (ID 3) in Cityscale. (i–j): End-of-sequence interaction allows the model to
recover a missing road object (ID 6) in a NAIP image. (k–l): End-of-sequence interaction recovers
a missing building object (ID 3) in the same NAIP image. Source: MARS.

Images MAP-3M images are sourced from the National Agriculture Imagery Program (NAIP) (U.S.
Department of Agriculture, 2025). Leveraging population data (United States Cities Database,
2025), we evenly sample 5,000 cities from 50 states. More details are in Appendix. A.1.

Labels MAP-3M collects vectorized annotations that cover two fundamental map classes: buildings
and roads. Other classes such as waterbodies, parking lot, etc. can be sequentialized using the same

(a) Road Density Distribution (c) Annotation Visualization(b)  Building Density Distribution

number of roads/image number of buildings/image

Figure 5: MAP-3M features (a-b) wide map element density distribution per image, and (c) high-
quality annotations with diverse vectorized map geometry coverage. Source: MARS.
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Figure 6: MARS visualization. MARS is capable of handling diverse scenes and geometries with-
out any post-processing, demonstrating the generalization and scalability of an end-to-end learning
framework. White dash-dotted line: Ground truth. Colored lines with asterisks: Predicted se-
quences. Black circles with white numbers: Object IDs. Source: MARS.

representation methods (polygons/polylines) in Eq. 2 but are much less dominant, so we omit these
map classes for now. Fig. 5 shows the diversity and quality of the MAP-3M annotations.

In addition to the quality, MAP-3M has the largest quantity compared to literature map datasets,
as shown in Table 1. The 3M positive samples are 10× larger in number of images, and 100×
larger in spatial area coverage than the previous largest dataset, which enables us to conduct robust
foundational model pre-training and improve downstream generalization. Dataset has been released
at https://huggingface.co/datasets/bag-lab/MAP-3M.

5 EXPERIMENTAL RESULTS

Experimental Setup For all model evaluations, we pretrained MARS on our MAP-3M dataset.
For different downstream tasks, we fine-tuned pretrained MARS on these datasets and benchmarked
its performance against specialized models. Three literature single-class benchmarks are used, to-
gether with our MAP-3M VAL set:

• Cityscale (He et al., 2020a): An urban-scale benchmark for road graph extraction, con-
structed from high-resolution aerial imagery.

• SpaceNet (SpaceNet, 2018): A benchmark for road extraction from satellite imagery, with
a focus on generalization across geographies.

• AICrowd (AICrowd, 2020): A diverse dataset used in competitive challenges that covers
building detection in complex urban scenes.

• MAP3M-VAL: Our MAP-3M validation set containing two classes: building and roads.
MAP3M-VAL includes 5000 images separated from the train set.

5.1 FROM SINGLE TO MULTI-CLASS: TOWARDS UNIFIED MAP GENERATION

Figure 6 demonstrates the performance visualizations of MARS on handling multi-class geometry
predictions. From simple single-polyline road, to complex multi-polylines, and to dense mixed
buildings/roads, MARS learns to generate various map tiles in a unified end-to-end way.

To better understand the trade-offs and design choices in our modeling approach, we perform an
ablation study comparing single-class and multi-class architectures in Table 2. As shown in Table 2,
the model scales well with increasing class diversity without obvious degradation in performance.
As handling multiple map feature types within a unified framework is often more practical and
efficient than deploying separate models for each class, such ontology scalability of MARS shows
its great potential to serve as a map foundational model for future development.

5.2 DOWNSTREAM FINETUNING COMPARISON

Road We employed TOPO, a topological accuracy metric (He et al., 2020b), to assess how closely
the predicted road graphs align with the ground truth in terms of structural connectivity.

7
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As shown in Table 3, our model demonstrates superior performance compared to prior state-of-
the-art approaches. On the Cityscale dataset, MARS achieves the highest Recall and F1 scores,
outperforming RNGDet++ (Xu et al., 2023) by a notable margin, from 78.44% to 82.88% in terms
of F1. Similarly, on SpaceNet, MARS achieves a leading recall of 84.56%, and only -0.46% in F1
compared to the best priori method, RNGDet++ (Xu et al., 2023).

Of note, all prior methods in Table 3 are road-specialized models rather than a general architec-
ture that can model additional classes. Another trend observed is the contrast between architectural
paradigms: MARS, being autoregressive, consistently achieves higher recall, while segmentation-
based models like those in SamRoad (Hetang et al., 2024) tend to yield lower recall but compar-
atively higher precision. Despite these differences, our model demonstrates superior balanced F1
scores across datasets, outperforming previous state-of-the-art approaches on average.

Building To assess model performance on the building class, we utilize standard metrics such as
Average Precision (AP), Average Recall (AR), and Intersection over Union (IoU), which are well-
suited for evaluating polygonal predictions. We use AICrowd dataset V1 (AICrowd, 2020) that has
been widely adopted in prior research. Table 4 summarizes our model’s performance on AICrowd-
V1. Similarly, MARS achieves closely on-par model performance with the previous state-of-the-arts
models despite being a completely generic map generation model without any hypar-parameters.

Such performance highlights two major promising advantages of MARS framework: (1) Simplicity:
MARS handles all diverse geometry shapes without any specific post-processing or tuned hyperpa-
rameter like previous works (Hetang et al., 2024; Wang et al., 2024), including vertex confidence
threshold tuning, non-maximum-suppression IOU, etc. (2) Scalability: As MARS demonstrates
it can learn various fundamental geometry features: polylines, multi-polylines, and polygons, the
model posses great potential to scale from current two-class to multi-class model, and finer-grained
classification, such as highway vs pedestrian way. This indicates that MARS can serve as the foun-
dational model for an expanding range of future tasks related to map generation.

5.3 IMPORTANCE OF MAP-3M PRE-TRAINING

From our experiments, we find pretraining auto-regressive MARS will lead to significant faster con-
vergence with a much higher accuracy e.g., from 70.45% to 82.05% on SpaceNet (SpaceNet, 2018)
as shown in Table 5. This challenge appears specific to training auto-regressive models: Unlike
traditional rasterized segmentation approaches, MARS relies solely on next-token prediction, mak-
ing them more sensitive to data scarcity and harder to optimize from limited datasets. By contrast,
with pre-training on MAP-3M, MARS quickly adapts and starts to pick-up target map features,
highlighting the importance of large-scale pretraining for a foundational model.

5.4 CHAT WITH MARS

Model performance in real-world deployment can have out-of-domain generalization issues regard-
less of architectural advances. Existing systems inevitably face such domain gaps that hinder the
end-to-end mapping performance. Chat-with-MARS, as outlined in Section 3, enables users to
guide and refine the model’s predictions, providing a more responsive and adaptive solution. To
assess its effectiveness, we present formal evaluations based on two following protocols:

• Chat with 1 point: In this setting, a single GT vertex corresponding to the starting point
of a missed road or building is introduced into a new SOS inference pass as defined in

Table 2: MARS architecture unifies single- or multi-classes learning by simply adding class tokens.

Classes MAP3M-VAL CITYSCALE SPACENET AICROWD
P R F1 IOU P R F1 P R F1 IOU

Road 89.8 85.6 87.7 - 85.1 78.2 81.5 79.3 83.3 81.2 -
Building - - - 64.4 - - - - - - 95.0
Both 90.1 77.1 83.1 61.0 84.3 81.5 82.9 79.7 84.6 82.1 97.3

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: TOPO-based road performance comparison on Cityscale and SpaceNet.

Model CITYSCALE SPACENET
P R F1 P R F1

Seg-UNet (Ronneberger et al., 2015) 75.34 65.99 70.36 68.96 66.32 67.61
Seg-DRM (Máttyus et al., 2017) 76.54 71.25 73.80 82.79 72.56 77.34
Seg-Improved (Batra et al., 2019) 75.83 68.90 72.20 81.56 71.38 76.13
Seg-DLA (Yu et al., 2018) 75.59 72.26 73.89 78.99 69.80 74.11
RoadTracer (Bastani et al., 2018) 78.00 57.44 66.16 78.61 62.45 69.90
Sat2Graph (He et al., 2020b) 80.70 72.28 76.26 85.93 76.55 80.97
TD-Road (He et al., 2022) 81.94 71.63 76.43 84.81 77.80 81.15
RNGDet (Xu et al., 2022) 85.97 69.78 76.87 90.91 73.25 81.13
RNGDet++ (Xu et al., 2023) 85.65 72.58 78.44 91.34 75.24 82.51
SamRoad (Hetang et al., 2024) 90.47 67.69 77.23 93.03 70.97 80.52
MARS 84.28 81.53 82.88 79.68 84.56 82.05

Table 4: Building performance comparison on Aicrowd V1.

Model AICROWD-V1
AP AP50 AP75 AR AR50 AR75 bAP IoU C-IoU PoLiS N-ratio

PolyMapper 55.7 86.0 65.1 62.1 88.6 71.4 22.6 77.6 65.3 2.215 1.29
FFL* 67.0 92.1 75.6 73.2 93.5 81.1 34.4 84.3 73.8 1.945 1.13
PolyWorld 63.3 88.6 70.5 75.4 93.5 83.1 50.0 91.2 88.2 0.962 0.93
PolyBuilding 78.7 96.3 89.2 84.2 97.3 92.9 - 94.0 88.6 - 0.99
HiSup 79.4 92.7 85.3 81.5 93.1 86.7 66.5 94.3 89.6 0.726 -
Pix2Poly 79.6 91.6 85.2 87.7 - - - 95.03 89.85 0.479 1.111
GeoFormer 91.5 96.6 93.1 97.8 98.8 98.1 97.1 98.1 97.4 0.913 1.01
MARS 87.30 95.20 90.46 97.94 99.28 98.62 92.44 97.32 96.31 0.997 0.4542

Table 5: Effect of pretraining on downstream performance.

Model SpaceNet AICrowd
P R F1 IOU

W/O-Pretrain 77.62 64.48 70.45 95.09
W-Pretrain 79.68 84.56 82.05 95.24

Sec. 3.1. This mimics the “1-click” user behavior, where a new minimal user input is used
to guide the model in completing some missing map elements.

• Chat with 2 points: This configuration extends the protocol by providing two vertices
of a missing object, forming a “2-click” setup that supplies a spatial direction. For both
protocols, new predictions will be combined with old predictions for evaluation.

We quantitatively evaluate these two configurations for both road and building classes using the
Cityscale (He et al., 2020a), SpaceNet (SpaceNet, 2018), and AICrowdV1-partial (AICrowd, 2020)
datasets (the subset of VAL images with missing building elements). As reported in Table 6, incor-
porating user input consistently improves precision, recall, F1 score, and IoU across all datasets with
diverse polygonal or polyline structures, relative to the baseline model. These results demonstrate
the efficacy of interactive support in enhancing model accuracy and robustness, also highlighting
promising opportunities for further exploration of human-in-the-loop map generation.

5.5 LIMITATIONS

Computational Efficiency MARS’s auto-regressive nature brings more computational overhead
than the traditional segmentation-based one shot methods, mainly because autoregressive decoding
is inherently sequential. However, there have been many auto-regressive model acceleration tech-
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Table 6: Performance of Chat with MARS across different datasets.
Model CITYSCALE SPACENET AICROWD

P R F1 P R F1 IOU
MARS 84.28 81.53 82.88 79.68 84.56 82.31 97.32
Chat 1pt w MARS 84.95 82.66 83.79 81.40 84.65 82.95 97.35
Chat 2pts w MARS 85.15 83.14 84.13 81.74 85.12 83.17 97.40

niques that greatly speedup the model efficiency such as KV-cache acceleration, parallel decoding,
etc. We hope our first work establishes the architecture prototype for more future works in map
generation foundational research to improve both effectiveness and efficiency.

Challenging Case Visualizations There are many challenging scenarios in our curated NAIP-
3M dataset. These challenge cases can pose great difficulties for both segmentation-based post-
processing vectorization and auto-regressive vectorization methods, therefore we’d like to highlight:
(i) Complex Road Intersections: In certain cases, our MARS model can produce correct intersec-
tions; see Fig. 7. While in some cases, errors may occur when the model prioritizes the main
roadway and overlooks thinner features. Representative failure cases are shown in Fig. 9 (a–c) in
Appendix. A.3. (ii) Occluded Structures: heavy tree canopy or shadows can obscure building bound-
aries or road surfaces. Some failure cases are shown in Fig. 9 (d–f) in Appendix. A.3. While these
cases can lead to missed vertices, we also include certain successful examples demonstrating that
the model often learns to infer plausible shapes even under substantial occlusion. Examples of these
cases are shown in Fig. 8 in the same section.

6 CONCLUSION

In this paper, we propose MARS: a foundational auto-regressive map generation framework with
three major contributions: (1) we proposed map-to-sequence conversion algorithm to address map
generation from a language-modeling perspective rather than visual perspective, a.k.a, treating maps
as a foreign language; (2) we curated MAP-3M dataset that is 10× larger than the current biggest
map dataset to enable foundational model training; (3) finally, we present MARS that addresses map
generation in an unified and end-to-end manner without any post-processing. The emerging “Chat
with MARS” feature enables a brand new human-in-the-loop vectorized map generation capability.
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A APPENDIX

A.1 MAP-3M DATA CURATION

Data Collection Process MAP-3M images are sourced from the National Agriculture Imagery
Program (NAIP) (U.S. Department of Agriculture, 2025), known for its exceptional aerial imagery
resolution at 0.6 meter per pixel (a small ratio of images can be of 0.3 or 1.0 meter per pixel),
facilitating detailed feature extraction and accurate object delineation. Leveraging population data
from United States Cities Database (United States Cities Database, 2025), we sample a total of 5,000
cities from 50 states, proportionally distributing based on state-level populations. The geographic
distribution is shown in Figure 5 (a). From each city, we collect the most recent image chip (usually
of size 10k by 10k pixels, or 20k by 20k pixels) from time range of 2020 - 2024. We further tile
each big image chip into 512x512 subtiles without overlapping.

Label Collection Process Building annotations in MAP-3M are sourced from the Overture
Map Foundation (Overture, 2024), which currently has the most comprehensive building annota-
tion across the globe by merging multiple authoritative and community-contributed datasets, in-
cluding OpenStreetMap, Esri Community Maps, and machine-learning-derived building footprints
from Google and Microsoft to fill in annotation gaps. Road annotations are sourced from Open-
StreetMap (Map, 2017), encompassing all road subtypes such as highway, motorway, path, bridle-
way, etc., thereby ensuring comprehensive coverage and diverse structural representation. Spatial
and statistical distributions of MAP-3M are shown in Figure 5, covering a wide-range of diverse
scenes.

Labeling Format Annotations within MAP-3M adopt a unified labeling format derived from the
COCO standard (Lin et al., 2014), facilitating streamlined integration into existing machine learn-
ing frameworks. Buildings are treated as different objects, and are provided with dynamic-length
vertex sequences consistent with the COCO format. In contrast, roads undergo a conversion process
wherein each image’s road network is initially represented as a flat graph, subsequently processed
via our specialized stroke-based algorithms. The resultant separate road polylines are treated as
different objects, with a difference that their vertex sequences are open-ended. This unified repre-
sentation ensures compatibility and simplifies multi-class annotation handling in downstream tasks.
Dataset has been released.
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Table 7: Building performance on Aicrowd V2

Model AICROWD-V2
AP AP50 AP75 AR AR50 AR75 bAP IoU C-IoU PoLiS N-ratio

MARS 30.91 57.06 30.07 70.03 86.31 73.85 49.84 74.42 66.49 4.135 1.012

A.2 AICROWDV2 VAL

To assess model performance on the building class, we utilize standard metrics such as Average
Precision (AP), Average Recall (AR), and Intersection over Union (IoU), which are well-suited for
evaluating polygonal predictions. Our evaluation spans two distinct test sets from the AICrowd
dataset (AICrowd, 2020): version 1 (V1) and version 2 (V2). This dual evaluation approach is
motivated by specific characteristics of the dataset. V1 has been widely adopted in prior research,
but recent findings in Pix2Poly (Adimoolam et al., 2025) suggests potential data leakage between its
training and validation splits. V2 addresses this issue with a revised structure, including new training
and test splits. Notably, V1’s validation set contains approximately 60,000 images, whereas V2’s
test set includes around 25,000 images. Due to lack of published benchmarks on V2, we believe
our results represent the first public evaluation on this corrected version. Table 4 summarizes our
model’s performance on AICrowd-V1, while Table 7 presents results on AICrowd-V2.

A.3 ADDITIONAL RESULTS

Figure 7: MARS visualization. Robust handling of complex road intersections by MARS. White
dash-dotted line: Ground truth. Colored lines with asterisks: Predicted sequences. Black circles
with white numbers: Object IDs. Source: MARS.
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Figure 8: MARS visualization. Robust handling of occluded structures by MARS. White dash-
dotted line: Ground truth. Colored lines with asterisks: Predicted sequences. Black circles with
white numbers: Object IDs. Source: MARS.

Figure 9: MARS visualization. Difficult examples like (a–c) complex intersections and (d–f) dense
canopies occluding roads and buildings where MARS finds it difficult to preserve high accuracy.
White dash-dotted line: Ground truth. Colored lines with asterisks: Predicted sequences. Black
circles with white numbers: Object IDs. Source: MARS.
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