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ABSTRACT

Randomized online experimentation is a key cornerstone of the online world. The
infrastructure enabling such methodologies is critically dependent on user identifi-
cation. However, nowadays consumers routinely interact with online businesses
across multiple devices which are often recorded with different identifiers for the
same consumer. The inability to match different device identities across consumers
leads to an incorrect estimation of various causal effects. Moreover, without strong
assumptions about the device-user graph, the causal effects are not identifiable.
In this paper, we consider the task of estimating global treatment effects (GATE)
from a fragmented view of exposures and outcomes. Our experiments validate our
theoretical analysis, and estimators obtained through our procedure are shown be
superior to standard estimators, with a lower bias and increased robustness.

1 INTRODUCTION

A/B testing has become indispensable to online businesses for improving user experience and driving
up revenue. The infrastructure which enables this is critically dependent on identifiers, such as cookies
or mobile device IDs, traditionally used by websites and apps to track users’ browsing behavior and
provide personalized content and ads. However, the assumption about the availability of identifiers
has become more and more tenuous as users increasingly rely on multiple devices. This means that a
customer’s effective persona as seen by the advertiser is broken into multiple units – a phenomenon
known as ‘identity fragmentation’(Coey & Bailey, 2016; Lin & Misra, 2021). Further, the use of
third-party identifiers is increasingly being curbed, due to privacy concerns, by both governmental
and non-governmental entities, through legislation such as the GDPR 1 and through the deprecation
of third-party cookies and advertising identifiers such as the Android Advertising ID (AAID) and the
Identifier for Advertisers (IDFA).

Lack of identifiable information across devices creates a fundamental issue in A/B testing, as the
users’ exposure to treatment is not fully known in this setting. Consider the case of a business
exploring whether a certain advertisement produces a higher click-through rate. Under the standard
A/B testing protocol, a random subset of users will be shown the new ad (B), and the outcome
recorded. By comparing the outcomes for these users against the set of users who received ad A, one
can estimate the relative change caused in the click-through rate by ad B. For a user who visits using
different devices, for instance a smartphone and a tablet, the unique identifier (say IDFA), allows the
server to consistently show the user only ad B. However, without identifiers, one cannot be certain
of whether the current device should be in the treatment group or the control group. This happens
because, while the treatment is administered at device level, the outcomes are dependent on user-level
treatments. Thus, the outcome as observed for a device can potentially be affected by the treatment
on other devices. This constitutes a violation of the stable unit treatment – SUTVA assumption (Rubin,
1980) – which standard A/B testing relies upon.

This phenomenon of treatments to a unit affecting outcomes for other units has been studied in causal
literature (Hudgens & Halloran, 2008; LeSage & Pace, 2009) under the name of interference. It is
also known as spillover, due to treatment exposure ‘spilling over’ from one unit to another. However,
most methods involving spillover, assume strong restrictions on the structure of spillover (Ogburn
et al., 2017; Leung, 2020). The deprecation of identifiers introduces a new scenario, requiring the
estimation of treatment effects from an uncertain interference structure. This problem setting involves
new assumptions compared to prior work. Notably, in addition to the assumption that unit/device

1https://gdpr-info.eu/
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Figure 1: The user device graph presents the connections between the set of users and devices (Left).
Treatments Zi ∈ {−1, 1} applied on a device, exposes the user of the device to the corresponding
experience or ad. The outcomes depend on the total exposure a user has had to the treatment. As
such the outcome at a device unit i now depends on the assignment of other devices j, which
induces an interference graph between the devices (Middle). Under uncertain information the induced
interference graph has potentially extra (dashed) or fewer edges (Right).

level outcomes are affected by treatments at other units/devices with the same user and not by those
of other users, an assumption can reasonably be made concerning the partial information about the
device-user pairings, represented by a structure called ‘the device graph’. Partial information about
the device graph be obtained, for instance, from devices with enabled cookies, from geolocation
based on IP addresses or from an identity linking model (Sinha et al., 2014; Saha Roy et al., 2015).

In this work, we explore the problem of estimating the global average treatment effect (GATE) in the
identify fragmentation setting, under the assumption that interference comes only from devices that
share the same user and that, for each user, a superset of their devices is known. We formalize this
problem as treatment effect estimation with interference, where the interference structure is based
on the ‘device neighborhood’ i.e. the set of devices which share a user. We argue that the GATE
is identifiable under reasonable assumptions. Finally, we propose a new VAE-based procedure that
results in estimators that are superior to existing ones, as demonstrated through extensive experiments
on both simulated and real data.

2 RELATED WORK

2.1 NETWORK INTERFERENCE

Network interference is a well studied topic in causal inference literature, with a variety of methods
proposed for the problem. Existing works in in this area incorporate various sets of assumptions to
provide an estimate of treatment effects. A common approach is the exposure mapping framework
which allows defines a degree of ”belonging” of a unit to either the treatment or control group
(Aronow et al., 2017; Auerbach & Tabord-Meehan, 2021; Li et al., 2021; Viviano, 2020). A common
assumption is that the network effect is linear with respect to a known functional of the neighbour
treatments(Basse & Airoldi, 2018; Cai et al., 2015; Chin, 2019; Gui et al., 2015; Toulis & Kao, 2013;
Eckles et al., 2017; Sussman & Airoldi, 2017). A limitation of these approaches is that they require
complete knowledge of the network structure. Similar to these proposals, our approach also relies
on imposing an exposure-based structure to the form of interference, however we can also handle
GLM-like outcomes as well an incomplete knowledge of the network.

Treatment effect estimation with unknown network interference has also been studied with the
seminal work of Hudgens & Halloran (2008). The key insight behind these works is that if the
network can be broken into clusters, then one can perform treatment effect estimation without the
full knowledge of the interference structure withing the clusters. Other works such as Auerbach &
Tabord-Meehan (2021); Bhattacharya et al. (2020); Liu & Hudgens (2014); Tchetgen & VanderWeele
(2012); VanderWeele et al. (2014) have extended this idea further. Often the bias of these estimators
depends on the the number of edges between the clusters, which has led to optimization-based
methods for constructing clusters (Eckles et al., 2017; Gui et al., 2015). However, this still requires
information about the clusters, and is not applicable if multiple clusters of the required type do not
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exist. Finally, there are methods, which under restrictive assumptions, use SUTVA based estimates
for one-sided hypothesis tests for treatment effect under interference (Choi, 2014; Athey & Wager,
2019; Lazzati, 2015).

Estimation without any side information: Recently, some methods have been proposed based on
multiple measurements which can address the issue of interference(Shankar et al., 2023b; Cortez et al.,
2022; Yu et al., 2022) without any further knowledge. However, such methods assume stationarity i.e.
the outcomes do not vary between the trials. This simplifies GATE estimation by providing access to
both the factual and counterfactual outcome. However, such a model is unrealistic for our motivating
use case of continuous optimization. Furthermore, in the more general settings, conducting multiple
trials can be difficult, if not impossible, in itself (Shankar et al., 2023a). As such, we aim to develop a
method which can work with only a single trial and/or observational data from an existing test.

2.2 ESTIMATION WITH NOISY DATA

Parameter estimation with measurement noise is a well studied problem in causal inference (Wickens,
1972; Frost, 1979). Many methods and heuristics have been proposed for estimation of treatment
effect (Carroll et al., 2006; Schennach, 2016; Ogburn & Vanderweele, 2013; Lockwood & McCaffrey,
2016). Yi et al. (2021) provides an overview of recent literature on the bias introduced by measure-
ment error on causal estimation. Earlier works have focused on qualitative analysis by encoding
assumptions of the error mechanism into a causal graph Hernán & Robins (2021), outcome Shu & Yi
(2019), confounders Pearl (2012); Miles et al. (2018) and mediators Valeri & Vanderweele (2014).

Noisy covariates or proxy variables are not generally sufficient to identify causal effects (Kuroki &
Pearl, 2014). As such works such as Kuroki & Pearl (2014); Miao et al. (2018); Shpitser et al. (2021);
Dukes et al. (2021); Ying et al. (2021); Guo et al. (2022) have focused on identifying criteria for
treatment effect estimation with noisy measurements with confounding variables.

Methods based on assuming knowledge of the error model are also common (Gustafson, 2003;
Shpitser et al., 2021; Fang et al., 2023). Consequently, other methods for estimating causal effects
also exist relying upon additional information such as repeated measurements (Shankar et al., 2023b;
Cortez et al., 2022), instrumental variables (Zhu et al., 2022; Tchetgen et al., 2020) or a gold standard
sample of measurements (Shankar et al., 2023a). A few works have also tried to study causal inference
with measurement errors and no side information Miles et al. (2018); Pöllänen & Marttinen (2023).
Other works have focused on partial identification of treatment effects (Zhao et al., 2017; Yadlowsky
et al., 2018; Zhang & Bareinboim, 2021; Yin et al., 2021; Guo et al., 2022), sensitivity analysis
(Imbens, 2003; Veitch & Zaveri, 2020; Dorie et al., 2016). Our work differs from these lines of work,
as they usually focus on noisy measurements of unknown confounders or covariates, whereas our
focus is on unknown network interference.

3 NOTATION

We are given a population of n devices. Let Z be the treatment assignment vector of the entire
population and let Z denote the treatments’ space, e.g., for binary treatments Z = {−1, 1}n. We
use the Neyman potential outcome framework (Neyman, 1923; Rubin, 1974), and denote by Yi(z)
the potential outcome for each z ∈ Z . We can make observations at only the device level, these
observations are denoted as Yi for device i. Note that the devices might have a common user, as
presented in Figure 1. We assume that the outcome is determined by the user action, and hence the
potential outcome at a device i need not depend only on its own treatment assignment but also other
treatments allocated to the user’s devices. This is a violation of the SUTVA assumption (Cox, 1958;
Hudgens & Halloran, 2008); and is commonly called interference or spillover.

The user-device graph induces a dependence between device level outcomes. This dependence can
also be represented as a device-level graph (Figure 1(Middle)), where each node represents a device
and the presence of an edge indicates a common user between the device pair. The underlying graph
is given by its adjacency matrix A ∈ Rn×n, with Aij = 1 only if an edge exists between devices i
and j, and by convention Aii = 1. Let Ni(A) = {j : Aij = 1} be the set of neighbors of device
i. Since we assume the underlying graph is fixed, we will use Ni(A) and Ni interchangeably. We
assume that the outcomes depend on the treatments received by a user (i.e. SUTVA holds at the user
level). This implies that the interference at a device is limited to its neighbours in the graph.
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User Level SUTVA: ∀ z, z′ ∈ Z s.t. zi = z′i and zj = z′j ∀j ∈ Ni : Yi(z) = Yi(z
′). (A1)

We will assume that the experimental design is a randomized Bernoulli design i.e. each device i
gets allotted the treatment zi = 1 independently with probability p ∈ (0, 1). This is analogous to
the standard randomization and positivity assumption in causal inference, and is equivalent if one
assumes the exposure map Yi(z) only depends on zi.

The desired causal effect is the mean difference between the outcomes when z = 1⃗ i.e. zi = 1 ∀i and
when z = 0⃗ i.e. zi = −1 ∀i. Under the aforementioned notations, this causal effect is given by:

τ (⃗1, 0⃗) =
1

n

nX

i=1

Yi(⃗1)−
1

n

nX

i=1

Yi(⃗0) (1)

If the true graph A is known, under certain assumptions one can estimate the above treatment
effect (Hudgens & Halloran, 2008; Halloran & Hudgens, 2016). However, in our problem setting,
knowledge of the true graph would imply knowing which devices belong to the same user. As such
we cannot assume, that A is known. However, we have access to some information about A. In our
use case of online experimentation, this information can come from those devices where the user
has given cookie permissions, or from covariate information like geography or IP addresses, or from
some existing model user for identity linking (Sinha et al., 2014).

Finally, we assume access to a model M which provides information on A. Specifically, we assume
that the M can be queried for any device i to get a predicted (or assumed) neighbours of a device
(see Figure 1 (Right)). We will denote this neighbourhood by M(i).

Our primary focus revolves around estimating the Generalized Average Treatment Effect (GATE)
under the previously outlined scenario, where there exists a degree of uncertainty concerning the
network structure. Before we delve further into the method we provide a brief explanation of
commonly used estimators and their problems for our problem setting.

Inverse Propensity/Horvitz-Thompson Estimate If the graph is known and when all treatment
decisions are iid Bernoulli variables with probability p: one can use the classic Horvitz Thompson
estimator as follows:

1
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

This inverse propensity estimators (and its derivatives) do not require any further assumption other
than randomization and positivity to be unbiased. However, on inspection, one can see that this
estimator ignores any units for which all neighbours are not in control or treatment groups. This
results in extremely high variance, as most data samples are ignored. Moreover, if the number of
neighbours is large, then this estimate may not even have a meaning, as there may not exist units for
which all the neighbours are in control or treatment groups. This is particularly troublesome for our
application as uncertainty in the graph means accounting for more possible units which interfere with
a given unit, and including such units adds to the estimation issue of HT-estimators.

SUTVA Estimate The SUTVA estimate is given by

τ̂SUTV A = Ȳ 1 − Ȳ −1 =

P
YiI[Zi = 1]P
I[Zi = 1]

−
P

YiI[Zi = −1]P
I[Zi = −1]

where Ȳ −1/1 are the average of observed outcomes for units where Zi = −1/1 respectively. Since it
is the difference in means of control and treatment groups, it is also called the difference in mean/
DM estimator. This estimator while quite efficient and practical, requires the SUTVA assumption to
be unbiased. As such these estimators can be misleading when it comes to our scenario.
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4 METHOD

4.1 MODEL AND ASSUMPTIONS

Randomized experiments with interference (even with neighbourhood interference) can be difficult to
analyze since the number of potential outcome functions grows exponentially: 2N⟩ for unit i; unlike
the SUTVA case where one has only two outcomes. As such the literature around network interference
restricts the space of potential outcome functions in order to do meaningful inference. One common
approach is the exposure function (or exposure mapping) approach. Under this model one uses
exposure variables which are functions from the discrete combinatorial space {−1, 1}Ni → Rd. One
posits that the outcome Yi depends on the treatment z only via the exposure variable ei (Hudgens
& Halloran, 2008; Aral & Walker, 2011; Aronow et al., 2017; Brennan et al., 2022). We will abuse
notation, and often use ei instead of the functional notation ei(z).

We too consider an exposure model; specifically we assume an outcome model of the form

Yi(z, xi) = µY (z, xi)| {z }
E[Y |Z=z,Xi=xi]

+ ϵ = c0(xi) + c1(xi)zi + g(w(xi)
T ei(z, xi)) + ϵ (A2)

where ϵ is mean zero noise, and xi are the covariates at unit i. Assumption A2 as stated is very
generic, since the exposure function itself can be arbitrary. For meaningful inference, one often
invokes a specific parametric form for the exposure function. A common example is an exposure
represented as the (weighted) proportion of neighboring units that have received treatment (Eckles
et al., 2017; Toulis & Kao, 2013). Alternatively, it could involve the count of neighboring units
that have undergone treatment (Ugander et al., 2013). We will assume an additive vector exposure
function along with some other standard assumptions (stated below) from treatment effect literature
(Pearl, 2009).

Additive Exposure: ei =
X

j∈Ni

ϕ(zj , Xi) (A3)

Network Ignorability: Y (z) ⊥⊥ Z ∀z (A4)
Positivity: P (z|X) > 0 ∀z (A5)
Consistency: Yi = Yi(z) if Z = z (A6)

Neighbourhood Superset: M(i) ⊇ Ni (A7)

Since ϕ in Assumption (A3) depends on
the individual covariates, this assump-
tion supports unit-level observed hetero-
geneity. We can also include the covari-
ates xj of the neighbouring units as well
in ϕ but ignore this for simplicity. Fur-
ther ϕ can be a vector function instead of
scalar, and so A3 can support all set func-
tion of neighbourhood treatments (Braun
& Griebel, 2009). Moreover it also sup-
ports other common assumptions such
as those in (Toulis & Kao, 2013; Eckles
et al., 2017; Pouget-Abadie et al., 2019)

Remark 1. A7 can seem to be a strong assumption. However, in many applications, it is not difficult
to satisfy this assumption. As a simple example, consider all devices which share a geographic
location, with a given device i. This is very likely to be a superset of all devices that share a user
with i. Furthermore, in practice, device-linking methods are used to identify neighbours based on
confidence scores. These methods can usually be adapted to obtain a superset of neighbours with
high probability ( by including even low confidence nodes as neighbours).

4.2 MODEL TRAINING

We propose using a latent variable model to infer the treatment effect. The dependence between
various variables is depicted in Figure 2. We denote by E the true exposure which is the key latent
variable of the model. Ẽ is the exposure as implied by M, which is our uncertain representation of
the underlying device graph. The key difference between this and a standard exposure based causal
model, is that in the latter the true exposure E is observed whereas in our model it is unobserved.
Instead of E we observe the noise corrupted value Ẽ.

Remark 2. Note that the true exposure E depends on the actual neighbourhood Ni, while the
observed exposure Ẽ depends on the assumed neighbourhoods M(i).
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Fundamentally, this is a discrete problem as Z is a binary assignment of treatments at individual
devices. However, since training such models is computationally intensive , we use a variational
autoencoder (VAE) (Kingma & Welling, 2013; Kingma et al., 2019) based approximate training.
In the appendix we argue why this procedure is analogous to the learning method suggested in
Schennach & Hu (2013).

We posit a generative model for the joint dis-
tribution pθ(Ẽ, E, Y |X,Z) which factorizes
as pθ(Y |E,X)p(Ẽ|E)p(E|Z). For the out-
come distribution Y we posit a GLM style
model which parameterizes E[Y |Z = z,X =
x] from A2 in terms of a neural network i.e.
we use a neural network for each of the func-
tion c0, c1, g, w in A2. For the p(Ẽ|E) we
use a Gaussian model. If |M(i)| >> Ni, by
law of large numbers this is a good approxi-
mation for the error. Finally p(Z|X) is just
the allocation mechanism which is exactly
known to us as the experimenter.

E

Ẽ

Y X

Z

Figure 2: Graphical model depicting relationships
between different variables for our model. Ob-
served variables Ẽ (noisy exposure), Y (effect/out-
come), and X (covariates), Z (treatment alloca-
tion) are shaded to distinguish them from the hid-
den variable E (true treatment).

To use VAE style learning one needs to specify a posterior qϕ for the latent variable. For this we use a
Gaussian variational approximation with both mean and variance parameterized. Specifically we use
a q of the form N(e|µq(ẽ, x, y;ϕ),σq(ẽ, x, y;ϕ)). As our objective function, we use the K-sample
importance weighted ELBO LK Burda et al. (2016), which is a lower bound for the conditional
log-likelihood pθ(x, y|z):

LK =

NX

i=1

E


log 1

K

KX

j=1

wi,j


 ≤

NX

i=1

logE


 1

K

KX

j=1

wi,j


 = log pθ (2)

where wi,j = pθ(ẽ
∗
i , zi,j , xi, yi)/qϕ(ei,j |ẽi, xi, yi) are importance weights, and the expectation is

respect to qϕ. To reduce training variance we use the recent DReG estimator (Tucker et al., 2018).
Once the model pθ has been trained, one can obtain estimates of the mean outcomes µY (z, xi) using
pθ(Y |E,X). By plugging the estimated outcomes into Equation 1, we get our estimate τ̂ 2.

Remark 3. While the probability distribution can be arbitrarily parameterized with neural networks,
all the neural networks used in our experiments, are MLPs with one hidden layer and ReLU activation.

4.3 IDENTIFIABILITY

A key concern in causal inference, is the identifiability of the desired estimand, as otherwise there
is no justification for the estimated value to correspond to the ground truth. Next, we discuss the
identifiability of the treatment effect in the aforementioned scenario. The identifiability of treatment
effect in our model is related to results in Schennach & Hu (2013). We summarize the crux of the
argument below, while deferring the details to Appendix A

Proposition 1. Under Assumptions A1-7 and certain technical conditions on the function µY , the
conditional mean function E[Y |Z = z,X = x] = µY (x, z) is identifiable.

Under A2,4-6, the problem of treatment effect estimation becomes a model fitting problem. Specifi-
cally, if the exposures ei are known, one can conduct a regression of the observed outcomes Yi on the
exposures ei and covariates Xi to estimate the population-level mean potential outcomes functions,
denoted as µY . Once we estimate the mean potential outcomes, we can obtain the treatment effect τ
by plugging in these estimates into Equation 1.

When the graph A is exactly known, one can compute the exposures ei using Assumption A3.
However, since in our problem, the graph is unknown, obtaining ei is not possible. To address this
obstacle, we reframe the inference problem in our scenario as a regression with a measurement

2Refer to Appendix for more details
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error problem. Observe that the exposure ei under the assumed graph M is given by ei(M) =P
j∈M(i) ϕ(zj , Xi). Due to A7 ei(M) can be decomposed as ei(Ni) + ∆ei, where ∆ei is an

independent error term. Thus we can use ei(M) as noisy estimates of ei(Ni).

Next, we argue the identifiability of the above regression task. Schennach & Hu (2013) provide
conditions under which models of the form:

Y = µY (E) +∆Y ; Ẽ = E +∆E ∆E ⊥⊥ E

can be identified from only the joint observations of Y, Ẽ. We show that the under assumptions A1-6,
the conditions required for the identifiability results in Schennach & Hu (2013) are satisfied, thus
making our model identifiable 3. A detailed discussion is provided in the Appendix.

Remark 4. This result does not apply when M(i) ⊂ Ni because then the error term ∆ϵi = ϵi(M)−
ϵi(Ni) is no longer independent of the true exposure ϵi(Ni). In that case, the our approach becomes
equivalent to regression with endogenous covariate error, which requires additional information ().
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(c) Varying treatment budget (p)

Figure 3: Plots visualizing the performance of various GATE estimators under Bernoulli design on
Erdos-Renyi networks for both linear and quadratic potential outcomes models. The lines represent
the empirical relative bias i.e. τ̂−τ

τ of the estimators across different settings, with the shaded width
corresponding to the experimental standard error.

5 EXPERIMENTS

5.1 SYNTHETIC GRAPHS

In this section, we first experimentally demonstrate the validity of our approach by experimenting with
synthetic data obtained from a model which satisfies our assumptions exactly. For this we experiment
with synthetically generated Erdos-Renyi graphs to compare the performance of our estimator with
other estimators. We simulate 100 different random graphs and run repeated experiments on this graph
with random treatment assignments. We sample covariates X independently from a multivariate
normal distribution and consider a polynomial family of outcome models. Specifically the outcomes
are simulated from the following equation Yi(z, Xi) = c0(Xi) + g(w(Xi)

T
P

j∈Ni
ϕi,j(zj)) + ϵ

where g is a polynomial function of order β and ϵ is mean 0 error. Similar to Cortez et al. (2022), we
experiment with the linear β = 1 and quadratic β = 2 setting. For each experiment, we varied the
treatment probability p, the size of the graphs n to assess the efficacy of estimation across different
ranges of parameters and the strength of interference r. Following Cortez et al. (2022), the strength of

3The primary restriction is that g should not be of the form g(z) = a+ b ln(exp(cz) + d)
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interference is measured as the ratio of norms of the self-influence ϕi,i and average cross-influences

ϕi,j i.e. r = 1
n

P
i

P
j∈Ni\i |ϕi,j |
|ϕi,i||Ni|

Baselines In our evaluation, we gauge the effectiveness of our proposed method by benchmarking
it against commonly employed estimators such as polynomial regression (Poly), difference-in-means
(DM) estimators. Since the polynomial regression model needs exact neighbourhoods, we use them
in an oracle setting i.e. they have access to the true device graph. 4

The results are presented in Figure 3. From the figure it is clear that our model produces unbiased
estimates in this case. On the other hand, all other methods produce highly biased estimates. Note that
in Figure 3a, when r = 0, there is no interference, and hence most estimators are unbiased. However,
when interference increases these methods clearly show strong bias. Secondly, for a given interference
strength, our method shows consistency in the form of decreasing variance with increasing number of
nodes. Finally, the variance of our method reduces as the treatment probability p increases to 0.5.

5.2 AIRBNB SIMULATIONS

Next, we conduct simulation from a model designed from the AirBnB vacation rentals domain Li
et al. (2022). The original model is a simulator for rental listings and their bookings for a two-sided
marketplace. Contrary to the previous experiments, the outcomes here do not follow an explicit
exposure mapping. We adapt this simulator for our purposes, replacing customers with devices and
listings with users. The measured outcome Yi is 1 iff there is a click on device i. A user watches
ads on a randomly chosen subset of its devices, and chooses to click on the ad on only one device,
leading to interference between outcomes. This simulation works uses a type matching model where
if the device and person have the same type, the probability of watching an ad on that device is
higher. The treatment scales the probability of seeing an ad by the parameter α. This is a good testbed
for testing robustness of our model, since like in the real-world, exposure models are only our best
approximations to the unknown and complex actual interference function. We perform simulations
with protocol specified in Brennan et al. (2022) 5.

Baselines As baselines in this experiment, we use the SUTVA/DM estimator, an exposure model
with oracle graph i.e. one where the exact graph is known (labelled Exp), and a Horvitz-Thompson
estimator with oracle graph (labelled HT). The Exp model is same as the one used in Brennan et al.
(2022), while the HT estimator is the one described in Section 3. The performance of different
estimators is shown in Figure 4.
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Figure 4: Visualization of performance of different GATE estimators on the airbnb simulator. The
lines represent a) absolute relative bias | τ̂−τ

τ | and b) relative RMSE of various algorithms as the
indirect treatment effect α increases. Bands capture the standard deviation over 500 trials.

Since the exposure model can only partly model the actual outcomes, in this case, bias is not zero.
On the other hand, the Oracle HT estimator (which makes no exposure assumptions) gives unbiased
though higher variance estimates. The model is Oracle in using the exact interference graph. A
different model is the Oracle Exposure (Exp) model which used the true graph to compute the

4Due to incorporating large neighbourhoods (with upto 100 extraneous nodes), Horwitz-Thompson type
estimators failed to yield non-meaningful results in any trial.

5Details in Appendix
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exposure. From the result it is also clear that our approach works as well as the Oracle Exposure
model. Furthermore, even on the MSE metric our model performs comparably to the Exp model.
These results suggest that our method is robust even when the true potential outcome does not obey
the assumed exposure mapping.
5.3 EFFECT OF NETWORK UNCERTAINTY
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(a) Erdos-Renyi Networks
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(b) AirBnB Simulator

Figure 5: Impact of neighbourhood sizes on the absolute relative bias i.e. | τ̂−τ
τ | GATE estimation.

Negative fraction of neighbours indicate the case when M(i) ⊂ Ni i.e. we missed pertinent
neighbours. The bias tends to be high when gives small neighbourhoods, as they miss pertinent edges.
As the neighbourhood sizes increase, the bias reduces, but the uncertainty widens.

Next we examine the impact of the neighborhood accuracy M(i) in estimation. We experiment with
Erdos-Renyi graphs as well as with the AirBnB Model. For these experiments, we fix a single graph,
and compute the treatment effect estimate from our method as we change the assumed neighbourhoods
M(i). In Figure 5a, we preset the relative ratio between the estimated and true treatment effects
as varying proportions of edges are either added or omitted by M(i). To maintain simplicity, we
maintain uniform M(i) sizes across all nodes, employing the average number of missed or added
edges as the metric along the x-axis. Figure 5b presents the same experiment within the context of the
Airbnb simulator. We observe a similar trend in both experiments: when M(i) ⊇ Ni holds true for
all nodes i, our approach can offer an lower bias estimate of the treatment effect. Nonetheless, as the
number of extraneous nodes within M(i) grows, so does the uncertainty in estimation. Conversely,
if M(i) neglects a pertinent node, it may introduce greater bias into the estimation process. This
manifests within our results, where the model predictions initially exhibit strong bias. However, as
neighborhood sizes expand, bias diminishes while variance increases.

5.4 APPLICATION: ASSESSING POWER PLANT EMISSIONS CONTROLS

We use our approach to estimate the effect of pollution reduc-
tion technologies on ambient ozone levels. As ambient pollution
is heavily influenced by spatially adjacent sources of pollution,
adjusting for interference is important. DM estimators in this
case often underestimate the impact in these scenarios. We work
with a public dataset on 473 power generation facilities in USA
used in Papadogeorgou et al. (2019). We use the DM, Poly and
Exp estimators as baselines of which the latter two need exact
neighbourhoods. For our method we will not use coordinate infor-
mation for identifying neighbourhoods and instead uses groupings
based on census divisions. The results (Figure: 6) show that our
method provides comparable estimates to other oracle estimators.
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Figure 6: GATE on ambi-
ent ozone levels of adopting
of SCR/SNCR technologies

6 CONCLUSION

Identity fragmentation is an increasingly relevant problem in online A/B testing. Our work provides a
method to estimate GATE under a relaxed assumption of having knowledge only about the super-set
of the identities that belong to the user. This relaxed assumption can be practically far more feasible
than requiring the exact network. With both theoretical and experimental analysis, we established the
efficacy of our estimator(s) under this assumption.
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