
On the Benefits of Learning to Route in Mixture-of-Experts Models

Nishanth Dikkala
Google Research

Nikhil Ghosh
UC Berkeley ∗

Raghu Meka
UCLA ∗

Rina Panigrahy
Google Research

Nikhil Vyas
Harvard University ∗

Xin Wang
Google Research

Abstract

Mixture-of-Expert (MoE) models, such as the
Switch Transformer, allow us to scale model
sizes while keeping the amount of compute
time fixed. Prior work has established the com-
putational benefits of MoE models. We inves-
tigate whether they offer benefits other than
scaling up. A core component of these models
is a router that routes input tokens to differ-
ent experts in a layer. We show theoretical
and empirical evidence that the router’s ability
to route intelligently confers a significant ad-
vantage to MoE models. We study synthetic
settings where the input data is distributed in
clusters and show theoretically and empirically
that the router learns the cluster structure. Then
we perform experiments on real data using the
T5X library, where we observe that a trainable
router confers a non-trivial benefit instead of a
non-trainable router.

1 Introduction
With the advent of large Transformer based models
(Vaswani et al., 2017; Kaplan et al., 2020; Brown
et al., 2020), model size has increasingly become
an issue with neural networks. Larger models con-
tinue to improve quality; however, this has started
to become very expensive. A promising idea to
scale up model size without increasing compute
time is that of conditional compute architectures
which activate only a part of the network on any
example. Conditional compute architectures hold
significant potential for saving compute as not all
model parameters are used in every example. One
of the most successful realizations of this idea
is the Switch Transformer (Fedus et al., 2022b)
which uses a Mixture-of-Experts (MoE) architec-
ture. Mixture-of-Expert models (Figure 1) in the
simplest and most-often used setting are described
by a set of experts E1, . . . , EN and a routing func-
tion (aka gating mechanism). Each expert is itself

∗Work done while at Google Research

Input Router

Expert 1

Expert 2

Expert 3

Output

Figure 1: A schematic diagram showing the abstract
Mixture-of-Experts architecture for Neural Networks.

a small neural network (a popular choice for the ex-
pert architecture is 2 fully connected layers with a
non-linearity in between). The routing mechanism
is described by a trainable weight matrix W and
routes each input x to an expert (or a few experts)
based on the soft-max function applied to W · x.
The core principle behind using MoE models is that
only one (or a few) of the Ei’s is invoked per ex-
ample. Thus, when normalizing for compute time,
the learned model can draw from the benefits of
having many more parameters than a dense model
(which can be viewed as having a single expert).

In this work, we look closely at a core com-
ponent of MoE models: the router, which routes
different inputs to different experts. By design,
MoE models confer computational advantages, and
several works (Fedus et al., 2022b; Riquelme et al.,
2021; Fedus et al., 2022a) have demonstrated that
this speed-up is achieved without any loss in accu-
racy. We outline two major reasons for this advan-
tage:

• First, an MoE model using the same compute
as a dense model has a larger number of effec-
tive parameters, and hence can use different
sets of parameters for different regions in the

input space. Such an advantage would also
hold, for example, in a neural network that
uses a fixed hash function to assign the input
to an expert. Note here that the assignment of
inputs to experts need not be learned.

• The second and more interesting reason is
that the router is learning an intelligent rout-
ing function that cleverly partitions the input
space amongst the experts. An example would
be a router that routes to experts based on the
clusters in the input i.e., all examples in a
cluster are routed to a single expert.

We seek to theoretically and empirically under-
stand what role the router plays in delivering the
advantages that MoE models enjoy over dense mod-
els. Specifically, we study the following questions
about the routing mechanisms in MoE models:

• Can the router learn intelligent and inter-
pretable routing functions? For instance, can
the router identify any latent clusters in the
data?

• How important is the learnability of the rout-
ing mechanism as opposed to routing based on
a fixed data-independent router (for instance,
using a random locally-sensitive hash func-
tion)?

• Can we prove that MoE models achieve good
accuracy in well-studied clusterable settings
such as mixtures of Gaussians?

Zoph et al. (2022a) and others have tried to iden-
tify patterns in what the router is learning and have
uncovered some insights. However, they are hard
to interpret due to the complexity of real data. Here,
we study MoE models on various synthetic tasks,
which sheds clearer light on the role of the router.
To begin with, we look at tasks where the input has
a clusterable structure, such as a mixture distribu-
tion over separated Gaussians, and study whether
the router can learn to route inputs according to the
cluster identity. We show theoretical and empiri-
cal results in the affirmative for the router learning
the underlying cluster structure of the data. We
also perform experiments comparing MoE models
with a trainable vs. a non-trainable router on the
Common Crawl (mC4) dataset and observe that
a learned routing function performs significantly
better than a routing function decided in a data-
independent manner.

1.1 Our Empirical Results

Several works (see Section 1.3 and references
therein) have empirically demonstrated that MoE
models exhibit significant advantages over dense
models for very large models. We aim to under-
stand this phenomenon further, identify the benefits
(if any) of learned routing vs. fixed routing, and
determine whether routers trained with gradient
descent identify latent structures in data. An im-
portant design choice for MoE models is the router
architecture. We use a Softmax-layer router which
is the most popular choice for MoE models (Fedus
et al., 2021). The routing mechanism is described
by a trainable weight matrix W and routes each
input x to an expert (or a few experts) based on
the soft-max function applied to W · x. There are
more recent variants such as Zoph et al. (2022b);
Zhou et al. (2022); Puigcerver et al. (2023) which
perform better than Switch Transformer but all of
these works use the same Softmax-layer router as
a backbone. We do note that other routing mecha-
nisms which do not use a Softmax-layer have been
studied (See Section 1.3) but we do not study those
in our work. For interpretability and to identify the
more fine points we seek, we introduce the study of
the performance of MoE models under various syn-
thetic problems. Most of these problems are quite
well-studied in clustering and unsupervised learn-
ing and are independently interesting. We describe
these settings first:

1. Mixtures of Gaussians: One of the most stud-
ied models for clusterable data is mixtures of
Gaussians. We study the performance of MoE
models when the input examples come from
a mixture of Gaussians and the labels are spe-
cific to each cluster (either constant or linear
functions).

2. Mixtures of Subspaces: We move from Mix-
tures of Gaussians to Mixtures of subspaces,
this is a setup in which the input clusters are
not necessarily separable in Euclidean dis-
tance.

3. Tokenized mixtures of Gaussians: The
Transformer architecture which MoE models
try to improve on is a sequence prediction
model. Consequently, an important design
feature of many MoE architectures is that one
routes each token in the sequence indepen-
dently of the other tokens.
To capture this sequence setting, we consider
a setup where we have a sequence of tokens

with each token being sampled from a mixture
of Gaussians.

4. Dictionary Learning: This is a more compli-
cated set up where each input is created using
combined information from 2 or more clus-
ters. This helps us model practical data more
accurately as there is some amount of struc-
tured overlap between concepts here. Here,
although we perform better than dense models
in certain settings, we do not observe intelli-
gent routing as a frozen router performs just
as well as learnable router.

5. CIFAR-100 class clusters: In this setting
we consider clusters defined by CIFAR-100
classes. The output is a linear function per
cluster.

Finally, we perform some experiments on real
data. We pre-train T5 transformer architectures
(Raffel et al., 2020) and measure the pre-training
accuracy. We compare three different models: (i)
a dense 12-layer T5 model, (ii) a 12-layer MoE
model with three sparse layers and top-2 routing
and a trainable router, (iii) a 12-layer MoE model
with three sparse layers and top-2 routing and a
fixed non-trainable router.

In the above settings, we have two main results
corresponding to our questions on understanding
the routing behavior. For details on the results and
the experimental methodology in Section 3.

Routers learn to route intelligently based on
input structure: In our empirical experiments,
we find that routers of MoE models can adapt to
the input structure. Specifically,

• In Mixtures of Gaussians experiments, with
constant or linear outputs per Gaussian clus-
ter, we find that routers learn to map clusters
to experts. That is, nearly all examples from
a cluster are routed to the same expert (Fig-
ures 2(c), 3(b)).

• When trained on Mixtures of Gaussians with
spurious dimensions, i.e., dimensions along
which the marginal of all Gaussian clusters
is the same, we find that the router learns to
ignore these directions (See the last paragraph
of Section 3.1.

Learning to route offers an advantage to MoE
models: In all of our settings described above, we
universally find that learned routers significantly
outperform MoE models with random routers. We
study these effects by plotting the data scaling

curves (Figures 2(a), 3(a) 4 for Mixtures of Gaus-
sians and Figure 6 for Mixtures of Subspaces) as
well as pointwise comparisons for the CIFAR-100
based task and the T5X task.

1.2 Our Theoretical Results
We seek to show that MoE models provably

achieve good performance (and intelligent routing)
in classically well-studied instances of clusterable
distributions. To our knowledge, such results are
not known1. As a first step, in this direction, we
study simple models with a single router that routes
inputs to experts, and each expert either applies a
linear function on the input routed to it or outputs
a fixed vector. We also analyze convergence un-
der gradient descent with population gradients to
minimize technical machinery and highlight the
important points. The arguments would extend
naturally to sample gradients as long as we have
enough samples by standard concentration inequal-
ities.

In our first theoretical result, Theorem 1, we
show that the router can identify relevant directions
and remove spurious directions. Concretely, we
show that if we have d-dimensional inputs that are
clusterable in a subspace of dimension d′ ≪ d (un-
known to us) and has independent spherical Gaus-
sian noise along the other d − d′ directions, the
router aligns itself with the hidden d′-dimensional
subspace. This tells us that the router can perform
intelligent projection operations. We prove this
result more generally for any neural network archi-
tectures with a regularization term for the bottom-
layer weights, which could be of interest indepen-
dently. The proof exploits rotational symmetry and
self-decomposability of the Gaussian distribution.

Next, we study the setting of a mixture of k Gaus-
sians. We assume that the k Gaussians are spherical
and live in a well-separated high-dimensional space
where the notion of well-separability is analogous
to the classical notion in Dasgupta and Schulman
(2007). The second assumption we make is in the
initialization of the weights of the router matrix.
Rather than randomly initializing them in a data-
independent manner, we set each row of the router
as a randomly sampled training example. This is
similar in spirit to Dasgupta and Schulman (2007).

Under these assumptions, we show that each

1As described in Section 1.3, Chen et al. (2022) recently
showed an elegant provable guarantees for MoE models. How-
ever, their result applies to a data distribution they define with
a specific purpose and perhaps does not correspond to an
independently interesting clusterable instance

expert specializes to a specific cluster center. By
using Θ(k log k) experts, we can ensure that every
cluster has at least one expert specializing in that
cluster. By choosing the router learning rate appro-
priately, we can also argue that while training the
router, weights do not change too much, while the
experts specialize in their clusters. Our result is
given in Theorem 2.

We also show a result similar to the above for
mixture of two Gaussians with no assumption on
the initialization in Appendix F.
1.3 Prior work

Mixture-of-Expert models (Jacobs et al., 1991;
Shazeer et al., 2017; Fedus et al., 2022b; Riquelme
et al., 2021) have been used in various forms in
machine learning over the last three decades. We
refer to the excellent survey of Fedus et al. (2022a)
for their history. In our work, we focus specifically
on their use in neural networks. We describe the
most relevant works to ours below.

Roller et al. (2021) studied routing based on
Hashing the input tokens. This is an example of
a routing scheme where the assignment of inputs
to experts is not learned but is not necessarily the
strongest such routing. Clark et al. (2022) showed
that such a routing scheme does not scale as well
as architectures with trainable routers. We consider
a more general setup where the routing is not fixed
at initialization, but the ability to learn to route is
limited. We show that even in this setting, learning
to route is essential.

Recent works of Chen et al. (2022) and Baykal
et al. (2022) study the theoretical benefits of MoE
models over dense models. Similar to us, Chen
et al. (2022) focus on problems where the input
structure has clusters. We differ from this work
in our focus on more elaborate synthetic and real-
world examples. We give a more in depth compari-
son of our results with those of Chen et al. (2022)
along with a discussion of additional related work
in Appendix B.

Remark 1. In trying to compare the performance
of MoE models with dense models, it is impor-
tant to understand the difference between over-
parameterized and under-parameterized settings2.
In under-parameterized settings, irrespective of
the router learning intelligent routing, MoE mod-
els have a clear advantage over dense models as
they simply have more parameters. In an over-

2We define these settings based on whether train loss can
reach near 0 or not respectively

parameterized model, the benefit of MoE models
having more parameters goes away. Still, one
could hope that MoE models outperform dense
models, particularly when inputs are clustered, as
they might have a better implicit bias for such in-
puts. We don’t observe this in our experiments
in Figure 2(a) where the largest dense model out-
performs the MoE model even though both are
over-parameterized.

2 Preliminaries
We use [n] to denote the list of integers from
[1, 2, . . . , n]. We denote the probability distri-
bution of a d-dimensional Gaussian with mean
vector µ and covariance Σ by N (µ,Σ). In
our work, we will deal with spherical Gaus-
sians where the covariance matrix Σ = σId.
Given two d-dimensional spherical Gaussians
N (µ1, σ1Id),N (µ2, σ2Id), we say they are c-
separated if ∥µ1−µ2∥2 ≥ cmax{σ1, σ2}

√
d (from

Dasgupta and Schulman (2007)).
The neural networks we use in our synthetic

experiments have the following form: Every input
is first processed by the router and assigned to a
single expert, and the output of this specific expert
is the neural network’s output. We describe MoE
models by specifying the router and the experts.
For example, a linear router with constant experts
refers to a trained model which

1. On input x, computes Wx where W denotes
the router weights. The input is assigned the
expert j where j = argmaxi(Wx)i i.e. jth

entry of Wx is the largest entry.

2. The expert j outputs a learned vector wj and
hence wj is the output3 of the neural network.

We note that this description applies to trained
models. While training, we do a weighted com-
bination of experts instead of routing to the top
expert. All our results are for a trained network for
which we do top-1 routing. See Appendix C for
more details.
2.1 Metrics

We will use various metrics in our synthetic
experiments to understand the behaviour of MoE
models. Here we list these metrics:

3The output of the expert in this case does not depend on
the input as the expert is a “constant” expert. By “constant”
we mean independent of input, not that it is fixed throughout
training, i.e., wj is still learned. If we had a linear expert with
weight wj , the output would be wT

j x.

• Test Loss: The loss of the MoE model on the
underlying distribution. If test loss tends to 0
we are able to argue that gradient descent can
find a network which can represent the true
labelling function.

• Average Sparsity per Cluster: MoE routers
typically output a probability distribution over
the experts indicating which experts’ to rely
on for the output. Our input data will usually
be a uniform mixture of k underlying (clus-
tered) distributions C1, C2, . . . , Ck. We want
to understand how well the router is able to
“discover” these clusters. To do this, we de-
fine a notion of ‘sparsity’ which is a contin-
uous quantity which captures how sparse the
probability vector output by the router is. We
consider the following quantity:

Ei∈[k]H(Ex∈CiR(x))

where H is the entropy function and R(x) is
the vector of assigned probabilities to each
expert by the router R on input x. Intuitively,
we take the average (over a cluster) of the as-
signment to experts and calculate the entropy
and then we also average over all the clusters.
A smaller average sparsity metric across in-
puts from a cluster indicates that all the inputs
from a cluster are being routed to a small set
of experts. A similar metric is used in Chen
et al. (2022) as well.

• Average Sparsity per Cluster (Shuffled
Router): Suppose R is a linear router
i.e. R(x) := softmax(Wx) where W ∈
R#experts×input dimension. Let W ′ be a random
shuffling of the columns of W . Let R′ de-
note the router obtained by using W ′ in-
stead of W . This metric is the quantity
Ei∈[k]H(Ex∈CiR

′(x)). This is the exact same
quantity as the previous metric except that
we use the shuffled router R′ instead of R.
We use this metric as a baseline for the previ-
ous metric. This serves as a good baseline as
various statistics such as average Lp norm of
entries are shared between W and W ′.

3 Experimental Results
We present our experiments on synthetic (Sec-
tions 3.1-3.6) and real datasets (Section 3.7) in
this section. Full details of our experimental setup
are in Appendix C.

3.1 Mixture-of-Gaussians inputs and constant
vector output per Gaussian

This is the simplest setting we consider. The
input is a mixture of well-separated Gaussians, and
the output is a random constant vector per Gaussian.
Note that an MoE model can represent this label
function with a linear router and “constant” experts,
i.e., each expert outputs a fixed albeit learned vector
independent of the input.

Can gradient descent discover underlying
clusters? In our first experiment (Figure 2), we
set the dimension of the input to be 24 and take
the input distribution to be a uniform mixture of
64 well-separated spherical Gaussians. The output
is a randomly sampled 10-dimensional vector per
Gaussian cluster. We use an MoE model with a lin-
ear router and “constant” experts. See Appendix C
for more details. In Figure 2(a), we see that as
the number of samples increases, the loss tends to
0. A similar effect is seen in Figure 2(b) where
we run the same experiment but vary the number
of experts (the number of samples is set to a very
large value). When the number of experts is less
than the number of clusters (64) we see that the
performance cannot achieve 0 test loss. This is
expected as the architecture is unable to represent
the actual function. We see that when the number
of experts equals the number of clusters (64), the
loss is near 0. This is surprising in comparison to
our theoretical result (Theorem 2), where we need
an additional log(#clusters) factor to prove con-
vergence to a good solution. A similar logarithmic
factor is incurred in the analyses of Dasgupta and
Schulman (2007), Chen et al. (2022).

Next, we explore the behavior of the router. In
Figure 2(c) we see how sparsity (average sparsity
per cluster, see Section 2.1) changes with increase
in training data size. We find that sparsity tends to
1 with increasing dataset size. Hence each cluster
gets mapped to a single expert. Comparison with
the shuffled router, which has much higher sparsity,
shows this is not due to spurious factors such as
large norm router weights.

Benefits of learning to route Our next question
is whether a trainable router helps the performance
of MoE models. To do this, we can compare the
performance of an MoE model with a frozen router.
But with a frozen router, an MoE model with a
linear router and “constant” experts will not be able
to reach a train loss of 0. To rectify this, we move to
an MoE model with depth-3 experts and compare

(a) (b) (c)

Figure 2: Mixture-of-Gaussians inputs and constant vector output per Gaussian. We use a neural network with
a linear router, and experts that output a constant (learned) vector. In Figure 2(a), we take the number of experts
equal to the number of clusters and see that as the number of samples increases, the loss tends to 0. In Figure 2(b),
we set the number of samples to be very large and see that as soon the number of experts matches the number of
clusters (64), the loss drops to near 0. Finally, in Figure 2(c), we examine the learned router and find that the router
learns to map each cluster to a unique expert while a shuffled router does not.

(a) (b)

Figure 3: Mixture-of-Gaussians inputs and constant vector output per Gaussian We use a neural network with
a single layer router i.e. a linear router and depth-3 MLPs as experts. In Figure 3(a) we take number of experts to be
equal to the number of Gaussian cluster and we see that the as the number of samples increases the loss tends to 0
while the performance of the model with frozen router is much worse. In Figure 3(b) we examine the learned router
and find that the router learns to map Gaussian clusters to unique experts while shuffled router is not able to do so.

with the same MoE model with depth-3 experts
but with a frozen router. Figure 3(a) shows that
the MoE model with a learned router outperforms
the MoE model with a frozen router. Note that the
training loss of all models is near zero; thus, this
is a gap in generalization than in training error. In
Figure 3(b), we again see similar behavior to what
we saw in Figure 2(c). See Appendix C.1 for a
related experiment.

Comparison to Dense models: Figure 3(a)
also compares MoE models with two dense MLP
networks. One matches the number of parameters
of a single expert (so compute time is similar to
MoE), and another matches the total number of
parameters of the entire MoE model (much more
expensive computationally). As MoE models have
one routing layer, for a fair comparison, we allow

MLP models to have one more depth than the MoE
models. We find that the MoE model outperforms
the smaller MLP but slightly underperforms the
larger MLP model.

Identifying non-spurious dimensions: We re-
peat the same experiment with 64 clusters, but this
time we embed these in 240 dimensions, out of
which 240 − 24 = 216 are spurious dimensions,
i.e., they are i.i.d. Gaussians for all clusters. We
again find that training with this setup leads to a
small test loss (0.01, 1 being trivial, and 0 being
perfect). This indicates that gradient descent con-
verges to a near-perfect solution. Let wi denote
the weights of the router corresponding to expert
i and w′

i denote the projection of wi on the 24
non-spurious dimensions. We find that the quan-

(a) (b)

Figure 4: Mixture-of-Gaussians inputs and linear function per Gaussian We use a neural network with a single
layer router, i.e., a linear router, and depth-3 MLPs as experts. In Figure 4(a), we see that as the number of samples
increases, the loss tends to 0, and the model’s performance with a frozen router is much worse. In Figure 4(b), we
examine the learned router and find that the router learns to map Gaussian clusters to a small set of experts while the
shuffled router does not.

tity
∑

i∥w′
i∥2∑

i∥wi∥2 which intuitively denotes how much
the router focuses on the non-spurious dimensions,
goes from .1 = 24/240 at initialization to .84 after
training without weight decay. Adding weight de-
cay increases it to .9 without loss in performance.
Hence the router learns to focus mostly on the 24
non-spurious dimensions out of the 240 dimensions.
This connects with our Theorem 1, which predicts
this behavior.

3.2 Mixture-of-Gaussians inputs and linear
function per cluster

We next generalize the previous setting. The in-
put distribution remains the same but has a separate
linear function for each cluster. For each Gaussian
N(µ, Id), we now sample a random vector w linear
function w, and on input x from this Gaussian, the
output is wT (x − µ) 4. We train an MoE model
with a linear router and depth-3 MLP experts on
this task. In Figure 4(a), we observe that the loss
goes down as we increase the number of samples
per cluster so that the network can learn this func-
tion. In Figure 4(b), we analyze what the router
learns. To do this, we plot the average sparsity
per cluster as we increase the number of samples.
We see that the sparsity decreases as the number
of samples increases. As a baseline, we plot the
same quantity after shuffling the router weights and
observe no improvement in sparsity in this setting.
This demonstrates that the router routes according
to the latent clusters much better than the shuffled

4We center the linear function as else, the values become
close to constant per cluster again.

router.

3.3 Non-linear clusters: Mixture-of-subspaces
In this setting, the input is a mixture of k ran-

domly chosen rank-t subspaces with added noise
to samples. We defer more details on the setting
to Appendix C. In Figure 6, we compare the MoE
model with a learned router to one with a frozen
router. We find that learning to route is important
for the performance for a large range of dataset
sizes.

3.4 CIFAR-100 class clusters:
We consider the following regression task. We

construct a dataset where each input is a pair of
the form (CIFAR-100 image, a random vector v).
The ground truth target output is defined as wT

i v
where i is the class of the image, and wi is a class-
specific random vector. The model we use is of the
following form: we have a CNN router and depth-
3 MLP as experts. We set the number of experts
to 200 (Theorem 2 suggests that for k clusters we
need O(k log k) experts). The CNN is only given
the image as input, and experts are given the vector
v and the penultimate layer5 of the CNN. The loss
when we allow the CNN router to learn is .55, while
it is .80 when we freeze it.

3.5 Sequence Data:
One difference between real transformer models

and our experiments above is that we were not
processing sequence data where the input is split
into tokens. We also perform experiments which

5This helps the model in the case we freeze the router by
making sure that experts also get information about the image.

demonstrate that our insights can be extended to
when the input is given as a sequence of tokens.
See Appendix C.2 for more details in this setting.

3.6 A Dictionary Learning Inspired Setting
We now explored whether MoE can route in a

more complex setting. Taking inspiration from dic-
tionary learning, we create an experiment where
there are k atoms {µi}ki=1 ∈ Rd. Each of these
atoms corresponds to a cluster. An input x is gen-
erated by selecting a few of these atoms (2 or 3
in our experiments), sampling Gaussian random
variables centered at each of the selected atoms,
and finally adding up the sampled variables. The
target output y is a scalar obtained by multiplying
µi with an atom-specific vector wi for the selected
atoms and adding up the results. Depending on
the problem parameters, this problem can be easy
or hard. Although we observed the MoE model
achieve a better test loss than dense models (0.19
vs 0.03) in some settings, we did not observe spar-
sity in routing similar to what we saw in previous
sections. Moreover, the test loss of 0.03 was also
achieved when the router was frozen at initializa-
tion. In addition, the test loss was not very close
to 0 indicating that this setting is more challenging
for MoE routers to learn the latent structure. See
Appendix C.3 for more details.

3.7 Language Modeling on mC4
One of our aims is the study the benefit of learn-

ing to route in MoE models on real data. We
study language modeling objective on the Com-
mon Crawl (mC4) dataset with T5 transformers. A
first approach one could consider would be to com-
pare neural networks where the router is learned
versus networks where the router is frozen. Unfor-
tunately, this cannot be directly achieved in stan-
dard Transformer-based MoE models as the router
is also used between layers. Hence even if we were
to freeze the router itself, the earlier layers could
learn to do the routing implicitly.

To get around this, we a) reduce the model di-
mension to 32 and b) freeze the router. We do
(a) to reduce previous layers’ capacity to learn to
route. Note that there could still be some learning
to route happening implicitly in the earlier layers.
Hence, the performance of this model will be an
upper bound on the performance of a model which
does not learn to route. With these changes, we
first find that an MoE model with a frozen router
significantly outperforms a dense model with sim-
ilar FLOPs. More relevant to our study, the MoE

model with a frozen router is significantly outper-
formed by an MoE model with a trainable router.
The performance of these three models is com-
pared in Figure 5. We note that our artificial con-
straint on the model dimension makes it hard to
directly draw conclusions for the setting of real-
world Transformer models. However, it is oth-
erwise challenging to disentangle implicit router
learning by the pre-router layers in a large model
from the actual role of allowing a router to train.
See Appendix C.4 for experiments at additional
scales with T5 models.

Figure 5: Pretraining Accuracy on mC4. Each run is
a 12 layer model with model dimension reduced to 32
(from 768). This has been done to better study the role
of learning to route. See Section 3.7.

4 Theoretical Results
We state and describe our theoretical results in this
section deferring full proofs to the Appendix. Our
first result proves that MoE routers can identify rele-
vant directions and remove spurious directions. We
prove this result for any MoE architecture which
passes the input through a softmax router first with
a regularization term for the router weights.
4.1 Router Learns to Ignore Spurious

Directions
We consider a setting where we are given inputs

from a mixture of k spherical Gaussians in Rd. The
Gaussians are well separated in a dimension of rank
z, but there is no clustering when projected to other
d−z dimensions. The ground truth is a fixed vector
vc corresponding to the Gaussian x is drawn from.

Theorem 1. (Informal) Given a target function
y(x) which depends on only a projection of x ∈ Rd

to d′ < d dimensional subspace V and a prediction
function f which is of the form gU (Wx + b) for
some function g (parameterized by U), any local

minimum of the regularized loss ℓ(y, f) must have
each row of W lie within V .

This shows us that routers indeed have the ca-
pacity to learn to filter out signal directions from
noise directions even when the final function being
computed is a non-linear function of the input.

Next, we show that routers can learn latent clus-
ters when inputs come from a mixture of Gaussians.
We choose mixture of Gaussians as it is known to
be a highly powerful modeling framework in prac-
tice (Khansari-Zadeh and Billard, 2011; Varadara-
jan et al., 2013) while also theoretically capable of
representing arbitrary distributions using Gaussians
as basis functions. They are also well-studied and
are known to be amenable for theoretical analysis.
4.2 Router Learning Latent Clusters for a

Mixture of k well-separated Gaussians
We consider a setting with a mixture of k Gaus-

sians. Let {gc = N (µc, σcId)}kc=1 be the k spheri-
cal component Gaussians of a mixture distribution
defined by

∑k
c=1wcgc. We assume that all the mix-

ture weights wc are uniformly = 1/k for simplicity.
MoE architecture: The neural network is

of the form: f(x) =
∑e

i=1 piui where pi =
softmax(wT

i x) and ui, wi’s are parameters. The
wi’s represent the router and the ui’s represent the
experts.

First, we note strong similarities this setting has
with the k-means problem in Lemma 1. Then we
show that if we initialize the router weights in a
specific way using the training data, each expert
specializes to a specific cluster center. By using
Θ(k log k) experts, we can ensure that every cluster
has at least one expert specializing in that cluster.

Theorem 2. (Informal) Given n = Θ(dk log k)
samples drawn from a mixture of k spherical Gaus-
sians in d-dimensions which are c-separated for
some constant c as described above, consider an
instantiation of the above MoE architecture with
O(k log k) experts. If we initialize the router
weights wi to randomly drawn examples from the
train set, the router will learn to route examples
according to the cluster they belong to.

In Theorem 2, we had to initialize our router
weights in a smart manner using the inputs to en-
sure that they identify the latent clusters. Such a
utilization of stratified subsampling of a dataset is
not uncommon in Machine Learning. It is used in
K-means algorithms, for instance. It is also a key
component of Curriculum Learning (Bengio et al.,
2009). We also have stronger theoretical results

for Mixture of 2 Gaussians which do not need to
initialize the router intelligently in Appendix F. In
all our analyses we assume a balanced mixture of
Gaussians as that simplifies the proof considerably.
However, we believe our results of Theorem 2 and
4 can be generalized to hold even when the mixture
weights are not uniform.

5 Conclusion
We studied the role of learning a router in MoE
models and identified a clear advantange in many
synthetic and real settings for learning to route. In
addition, we also saw that the MoE router is ca-
pable of learning latent cluster structure in some
scenarios and less capable in more complex scenar-
ios like the dictionary learning setting. We believe
that future designs of MoE routers could be guided
by our experiments to bolster their capabilities for
certain types of routing tasks. In addition, the fact
that MoE routers trained with gradient descent are
able to learn meaningful and interpretable clusters
is a promising sign for the field of Conditional
Compute models as it shows that not only do we
save compute but we can also hope to learn a sparse
yet interpretable solution to a complex problem.
5.1 Open Questions

An important open direction from our work is
designing new neural architectures given the in-
sights we uncover about the role of routers in MoE
models. We have seen that the standard MoE router
struggles in certain settings. This necessitates the
design of more complex and capable router mod-
ules. Another direction which we believe can help
improve our understanding of MoE models further
is to extend the theoretical results to more prac-
tical settings. For instance, the following would
be an interesting question to analyze theoretically.
In practice, we don’t have a clean separation of
concepts or tasks as we did in our theory. Rather,
concepts might be organized in a hierarchy or more
generally a graph with varying amounts of overlap
between nodes. Given such a graph, can we design
a router and prove guarantees on it being able to
uncover the latent graph structure?

Limitations
We outline the key limitations of our work here.
While we see empirical and theoretical evidence
of an MoE router being able to learn intelligent
and interpretable routing in many settings, they are
brittle in slightly more complex settings such as the
dictionary learning setting. We acknowledge that

today’s MoE routers perhaps do not learn latent
structures always. But we believe there is scope for
them to develop the ability to do so in the future.
We performed a number of our experiments on
carefully crafted synthetic data to ablate clearly the
effect of learning to route. However a downside of
this is that we lose some amount of generalization
of insights to real data settings where the picture
might be different. We would like to mention, how-
ever, that there is significant evidence in the deep
learning field for analyzes such as ours to yield use-
ful insights which generalize to real data and offer
actionable ways to improve models. Lastly, some
of our experiments were done on reasonably large
T5 models which require significant compute.

Ethics Statement
Our work helps understand one of the key aspects
of Mixture of Expert style deep learning models
better. There are no direct negative societal or dis-
criminatory impacts of our work. Rather, we hope
that the broader impact our work has positive ef-
fects for society at large.

References
Cenk Baykal, Nishanth Dikkala, Rina Panigrahy, Cyrus

Rashtchian, and Xin Wang. 2022. A theoretical
view on sparsely activated networks. arXiv preprint
arXiv:2208.04461.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and
Yuanzhi Li. 2022. Towards understanding mixture of
experts in deep learning.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur
Mensch, Michela Paganini, Jordan Hoffmann, Bog-
dan Damoc, Blake Hechtman, Trevor Cai, Sebastian
Borgeaud, et al. 2022. Unified scaling laws for routed
language models. In International Conference on
Machine Learning, pages 4057–4086. PMLR.

Sanjoy Dasgupta and Leonard J Schulman. 2007. A
probabilistic analysis of em for mixtures of separated,
spherical gaussians. Journal of Machine Learning
Research, 8:203–226.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference on
Machine Learning, pages 5547–5569. PMLR.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric mul-
tilingual machine translation. J. Mach. Learn. Res.,
22(107):1–48.

William Fedus, Jeff Dean, and Barret Zoph. 2022a. A
review of sparse expert models in deep learning.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity.

William Fedus, Barret Zoph, and Noam Shazeer. 2022b.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232–
5270.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdh-
ery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul
Mazumder, Lichan Hong, and Ed Chi. 2021. Dselect-
k: Differentiable selection in the mixture of experts
with applications to multi-task learning. Advances in
Neural Information Processing Systems, 34:29335–
29347.

Hidden. 2022. Hidden for double blind.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

S Mohammad Khansari-Zadeh and Aude Billard. 2011.
Learning stable nonlinear dynamical systems with
gaussian mixture models. IEEE Transactions on
Robotics, 27(5):943–957.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:
Simplifying training of large, sparse models. In In-
ternational Conference on Machine Learning, pages
6265–6274. PMLR.

Ankur Moitra. 2018. Algorithmic aspects of machine
learning. Cambridge University Press.

https://doi.org/10.48550/ARXIV.2209.01667
https://doi.org/10.48550/ARXIV.2209.01667

Rina Panigrahy, Xin Wang, and Manzil Zaheer. 2021.
Sketch based memory for neural networks. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 3169–3177. PMLR.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and
Neil Houlsby. 2023. From sparse to soft mixtures of
experts. arXiv preprint arXiv:2308.00951.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. 2021.
Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems,
34:8583–8595.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash layers for large sparse
models. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 17555–17566.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won
Chung, William Fedus, Jinfeng Rao, Sharan Narang,
Vinh Q Tran, Dani Yogatama, and Donald Metzler.
2022. Scaling laws vs model architectures: How
does inductive bias influence scaling? arXiv preprint
arXiv:2207.10551.

Sriram Varadarajan, Paul Miller, and Huiyu Zhou. 2013.
Spatial mixture of gaussians for dynamic background
modelling. In 2013 10th IEEE international confer-
ence on advanced video and signal based surveil-
lance, pages 63–68. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong
Chen, Xiyang Dai, and Lu Yuan. 2022. Residual
mixture of experts. arXiv preprint arXiv:2204.09636.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le,
James Laudon, et al. 2022. Mixture-of-experts with
expert choice routing. Advances in Neural Informa-
tion Processing Systems, 35:7103–7114.

Barret Zoph, Irwan Bello, S ameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William
Fedus. 2022a. Designing effective sparse expert mod-
els. arXiv preprint arXiv:2202.08906.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022b. St-moe: Designing stable
and transferable sparse expert models. arXiv preprint
arXiv:2202.08906.

https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/92bf5e6240737e0326ea59846a83e076-Abstract.html

A Additional Background

B Additional Related Work
We first discuss comparison of our work with (Chen et al., 2022) in more detail. The focus in Chen
et al. (2022) is on designing a data distribution where MoE models have a provable advantage over a
non-expert model. In contrast, we are interested in the benefit of MoE models in well-studied clustering
instances (such as mixtures of Gaussians) and their variants. In such settings, we prove the first theoretical
results showing that MoE models can get very good accuracy. In addition, Chen et al. (2022) focus
on convolutional layers, whereas we focus on fully connected layers, which is closer to the standard
Transformer architecture. Further, we seek to compare MoE models with dense models and aim to
understand the advantage of learned routing vs. non-learned routing. Regarding real-world experiments,
our focus is on language data and understanding the benefit of learned routing when used within a
transformer architecture (T5X). In contrast, the experiments in Chen et al. (2022) on language data study
the benefits of routing when using the representations generated by a large-language model (such as
BERT) in a black-box manner.

We discuss some additional related works now. Clark et al. (2022); Tay et al. (2022) established
that the benefits of MoE models scale to larger sizes (although the scaling law seems to slow down at
extremely large scales). There have been a lot of efforts to study the best way to route tokens which
includes ideas from load balancing (Zoph et al., 2022a; Lewis et al., 2021), reinforcement learning (Clark
et al., 2022), and smooth tok-k expert selection (Hazimeh et al., 2021). Other choices for the routing
function include non-learnable ones such as Locality Sensitive Hashing (Panigrahy et al., 2021), which
generally maps similar inputs to the same expert, Hash Layers (Roller et al., 2021) which uses token-based
random hashing, and language-specific deterministic routing (Fan et al., 2021). Another approach of
Residual Mixture of Experts (Wu et al., 2022) separates the expert weights into input-independent and
input-dependent components. MoE ideas have made their impact on prominent large scale systems such
as GLAM (Du et al., 2022), GShard (Lepikhin et al., 2020).

Dictionary Learning and Mixture of Gaussians learning problems are well-studied by a long line of
works. For references on these problems we refer the reader to the textbook Moitra (2018) and the
references within.

C Additional Experimental Details

C.1 Mixture of Gaussians/Subspaces experiments
Details on the Mixture of Subspaces Setting In this setting, the input is a mixture of k randomly

chosen rank-t subspaces with added noise to samples. For each subspace, let x be a spherical Gaussian
restricted to the subspace, and ϵ is a spherical Gaussian in all dimensions (with a smaller norm than
x). The examples are generated as x + ϵ, and the label is wT ϵ where w is a random vector chosen for
the subspace. Note that this is no longer possible with a linear router if we want to route based on the
subspace, as the subspaces are not linearly separable. Due to this, we shift to using a depth-3 MLP as the
router. There are k experts, and each expert is also a depth-3 MLP. We set k = 64 and t = 8. The results
of our experiments are shown in Figure 6.

Is the router learning a bipartite matching between clusters and experts? In Figure 3(b) we saw
that each cluster nearly gets routed to a single expert. As each expert is overparameterized it is possible
that the router learns to focus on only few experts for all clusters. To verify that this is not the case we
compute how uniformly distributed the norms of weights feeding into different experts are (note that the
router is linear). Let Mi denote the weights feeding into expert i. We compute

E[∥Mi∥2]
E[∥Mi∥]2

.

This quantity would be 1 if all ∥Mi∥ were equal and it would be #experts if only one ∥Mi∥ was
nonzero. In the right most point for the MOE with learned router in Figure 3(a) this quantity is 1.025
while #experts is 64. Hence it is not the case that the model learns to focus on only a few experts.

Other details for Figures
In Figure 2 we trained networks with Adam and a learning rate of 3.2e-4 for the experts and 3.2e-3 for the
router.

In Figure 3 and 4 we trained networks with SGD (with .9 momentum) and a learning rate of 1e-2
for the experts and 1e-1 for the router. We choose a higher learning rate for the router as otherwise the
overparameterized experts may learn to overfit before the expert learns a good routing. The hidden layer
width is 4 · 24 = 96.

Figure 6: Mixture-of-subspaces inputs and linear function per subspace. We see that an MoE model with a
learned router outperforms an MoE model with a frozen router across various dataset sizes.

In Figure 6 we trained networks with Adam and a learning rate of 1e-3 for the experts and 3.2e-3 for
the router. We choose a higher learning rate for the router as otherwise the overparameterized experts
may learn to overfit before the expert learns a good routing. The hidden layer width is 4 · 24 = 96.
C.2 More Details on Tokenized Variant Experiments

We first describe our setup for the experiments on the tokenized variant of mixture of Gaussians in more
detail. We have an equally weighted mixture distribution over 32 Gaussians whose centers are randomly
chosen from a 32 dimensional space. The inputs we generate consist of a sequence of tokens where each
token is a randomly drawn sample from the mixture. We vary the length of the sequence s. The output is
one of two functions:

• Linear Output: Each Gaussian component in the mixture has an associated vector wi which yields
the final output y as follows

y =

s∑
i=1

w⊤
gixi,

where gi is the identity of the cluster of the ith token in the sequence. For most of our experiments in
this section, we use this output function.

• Quadratic Output: As before, we have wis corresponding to each Gaussian. The final output is

y =

s∑
i=1

(w⊤
gixi)

2,

where gi is the identity of the cluster of the ith token in the sequence. This is a harder setting for a
model to solve without figuring out a good routing function.

We experiment with learning the above function using a soft variant of an MoE model which takes in 1
token at a time and routes it to different experts. The expert outputs are weighted using the router softmax
probabilities to give the final output. We run experiments with experts which are 1 layer linear functions
and compare the performance with a dense MLP model with 2 fully-connected layers. This additional
layer allows for a fair comparison as the router can be thought of as a layer in itself.

Results. On the linear output function, at small sequence lengths we observe a stronger performance
by MoE in comparison to the dense model. As the sequence length increases, we start to see more of
the clusters in the mixture present in the input. Since the final output is a linear function of the tokens,
a dense model can solve this approximately by learning a single linear function which represents the
expected value of the output. We start to see this behavior come out when sequence length increases
and the dense model starts to perform just as well as the MoE. We observe that the MoE model attains a
non-trivial sparsity and the sparsity is lower than what we get under a shuffled router. On the quadratic
output function, we observe that MoE with 32 experts strongly outperform a dense model with the MoE
model achieving an MSE loss of 0.0075 compared to an MSE of 0.018 by the dense model. The sparsity
measure of the MoE model is 8.8 compared to a shuffled router sparsity of 11.5 showing that the model
has learned cluster directions to a non-trivial degree and is using this learnt routing to solve the problem
more effectively than a dense model with an additional layer.

Model \Sequence Length 4 8 16
Dense model with 2 layers 0.0044 0.0021 0.0015
MoE with 32 linear experts 0.0016 0.0017 0.0015

MoE with 32 linear experts and frozen router 0.0046 0.0020 0.0027

Table 1: MSE for Tokenized Variant of Mixture of Gaussians experiments.

Model \Sequence Length 4 8 16
Sparsity 13 14.14 14.29

Sparsity with shuffled router (trained) 14.29 15.41 15.6
Sparsity with frozen router 28.52 28.51 28.53

Table 2: Sparsity for Tokenized Variant of Mixture of Gaussians experiments.

C.3 More Details on Dictionary Learning Experiments
We first describe the setup of our experiments in Section 3.6 in more detail. We sample c random

directions in a d dimensional space each corresponding to the center of a spherical Gaussian. We ensure
the Gaussians are well-separated from each other. An input x is generated by first sampling from r of the
Gaussians (without replacement) and adding them. Here r denotes the rank of the dictionary learning
problem and we use r = 2 in all our experiments. Additionally, we have a vector wi associated with each
Gaussian which are randomly sampled. For an input x which is generated from Gaussians i and j, the
output is given by

y = (wi + wj)
⊤x.

Results. We first run experiments with c = 32, d = 32. In this setting, our MoE model uses 32 linear
experts. We compare it with a dense model with 2 fully connected layers and a ReLU activation between
them. Firstly, we observe that both the dense and the MoE model perform similarly and achieve MSE
scores of 0.043 and 0.041 respectively. When we fix the dense model to also be of depth 1, we observe a
the MSE increase to 0.19 indicating a larger gap from MoE’s performance. However, we don’t observe
the router learning the cluster center directions. We see a sparsity of 4.5 but the same sparsity is observed
even under a shuffled router. This indicates that the MoE model is achieving sparsity in this setting by
blowing up the router norm rather than learning useful directions. We do, however, see some evidence that
the model is learning something cluster specific. When we measure the average sparsity across samples
from different pairs of Gaussians we observe a value of 8.1. This is a measure of how many total experts
the model is learning to use. When we fix one of the Gaussian and vary the second one, we observe the
average sparsity drop to 6.4. This indicates that on average, when one Gaussian is fixed, the router uses
6.4 experts versus when 8.1 experts used when both Gaussians are varied. To investigate whether this is
happening because the problem setting was too easy to solve, we increase c to 128 and keep the number
of experts as 32. In this setting we observe the MoE model achieve an MSE of 0.23 as opposed to 0.26

achieved by the dense model. Here, the problem is hard enough that none of the models are able to achieve
close to 0 error. Moreover, the sparsity and shuffled sparsity of the MoE model are both 3.01 making it
unclear if the MoE model is learning a useful routing. To understand this, we train an MoE model with
32 experts and a frozen router. This achieves a much worst MSE of 0.38 indicating that there is a clear
benefit to learning to route, although there is still a lot of room for the MoE model to improve as it is not
learning the optimal routing which can fully solve the problem). Overall, we conclude that this setting is a
challenging one for the simple form of MoE routing to handle. We leave it open for future work to come
up with routing schemes which work well for the dictionary learning setting we propose here.

C.4 More T5 Experiments with varying number of Experts
We describe the setup of our experiments in Section 3.7 in more detail. We adapt the T5-Base model

which is an Transformer encoder-Transformer decoder model with 12 layers each. It uses a model
dimension of 768 and hidden dimension of 2048 along with 12 attention heads each of dimension 64.
We run pre-training for this model on a language modeling task on the mC4 dataset and measure the
next-token prediction accuracy achieved. We use an implementation of the MoE idea in this model which
uses 3 sparse layers equally spaced among the 12 layers. It routes to the top-2 experts (instead of top-1)
and performs load balancing using an expert capacity factor of 1.25 during training. During evaluation the
expert capacity factor is set to 2. We train these models for 500k steps using Adam optimizer.

Results. On this model, we wish to study how important it is to learn a good routing function. Even if
one freezes the router to its randomly initialized values, due to the earlier layers being allowed to train, the
model can implicitly learn clever routing functions due to the large model dimension is has at its disposal.
Indeed, we see evidence to support this when we try to learn a Base-sized model with a frozen router, the
pre-training accuracy is not affected significantly (70.34% vs 70.27%). To prevent this implicit learning
of routing functions from happening we severely restrict the model dimension and hidden dimension of
the model. We reduce the model dimension to 32 and hidden dimension to 256 and keep everything else
the same. Now we compare training with a frozen router to training with a trainable router and observe
a consistent strong improvement in performance when the router is allowed to train (Figure 7) across
different total number of experts used.

To add to the experiments in Section 3.7, we perform similar comparisons between the pre-training
accuracy of an MoE model trained with frozen routers vs a model with trainable routers at differing total
number of experts.

D Proof of Theorem 1
We first re-state a formal variant of the theorem here.

Theorem 3. Let fb,W,U : Rd → Rk be a prediction function parametrized by weights b ∈ Rh, W ∈ Rh×d,
and U such that fb,W,U (x) = gU (Wx+ b) for some function g. Let y : Rd → Rk be a target function that
depends only on some d′ < d coordinates; i.e., y is a function of a projection of x onto a d′-dimensional
subspace V . Then any local minimum of the regularized expected loss

L(b,W,U) = Exℓ(y, fb,W,U (x)) + λ1∥W∥2 + λ2∥U∥2,
λ1, λ2 > 0

must have each row of W within the relevant subspace V . That is, for any i ∈ [h], ProjV ⊥(Wi) = 0.

Proof. We prove the theorem for the where V is axis-aligned and is in particular the span of the first d′

coordinates; the general case follows by a similar argument once you use rotational symmetry.
We write x = (x(1), x(2)) where x(1) is the first d′ < d coordinates of the input x. Note that 1) x(1) and

x(2) are independent, 2) x(2) is Gaussian.
Consider a local minimum (b,W,U) of L. Let (W1,W2) denote the column-wise split of W such that

Wx = W1x
(1) +W2x

(2). For the sake of contradiction assume that W2 is not zero.
Take some ε ∈ (0, 1) and define a corresponding W ′ = (W1,W

′
2) ∈ Rh×d such that W ′

2 = (1− ε)W2.
Let z ∈ Rh be a Gaussian random vector such that z is independent of x and W ′

2x
(2) + z equals W2x

(2)

Figure 7: Pretraining Accuracy on mC4 using different T5 models. Each run is a 12 layer model with model
dimension reduced to 32 (from 768). This has been done to better capture the role of learning to route. Each model
is allowed to train for 500k steps.

in distribution. Since x(2) is Gaussian is suffices that

E[z] = εE[W2x
(2)],

Cov(z) =
√
1− (1− ε)2Cov(W2x

(2)).

Since x(1) and x(2) are independent, we have in fact (x(1),W1x
(1) +W ′

2x
(2) + z) and (x(1),W1x

(1) +
W2x

(2)) are equal in distribution. We can therefore write

Exℓ(y, fb,W,U (x
(1), x(2)))

= Ex(1),x(2) ℓ(y(x), gU (Wx+ b))

= EzEx(1),x(2) ℓ(y(x(1)), gU (W1x
(1) +W ′

2x
(2) + z + b)).

Define

z⋆ = argmin
z

Ex(1),x(2) ℓ(y(x(1)), gU (W
′
1x

(1) +W ′
2x

(2) + z + b)).

and b′ = z⋆ + b. Then it is clear that

Exℓ(y, fb,W,U (x
(1), x(2)))

= EzEx(1),x(2) ℓ(y(x(1)), gU (W1x
(1) +W ′

2x
(2) + z + b))

≥ Ex(1),x(2) ℓ(y(x(1)), gU (W1x
(1) +W ′

2x
(2) + z⋆ + b))

= Ex(1),x(2) ℓ(y(x(1)), gU (W
′x+ b′))

and since ∥W∥ > ∥W ′∥ and λ1 > 0,

L(b,W,U) > L(b′,W ′, U).

Since ε was arbitrary it follows that (b,W,U) cannot be a local minimum, which is a contradiction.

E Router Learns Latent Cluster Structure in Mixture of k Gaussians

We begin by describing the problem setting we consider. Let {gc = N (µc, σcId)}kc=1 be the k spherical
component Gaussians of a mixture distribution defined by

∑k
c=1wcgc. In our work, we assume that all

the mixture weights wc are uniformly = 1/k for simplicity. Let {vc}kc=1 be k cluster specific vectors.
Given x ∼

∑k
i=1 gi/k, define the ground truth function f∗(x) = vc(x) where c(x) represents the mixture

component from which x was sampled.
First, we observe that if vc = µc for all the components, then the problem has close resemblance to the

problem of k-means clustering.
k-Means Clustering: Given input data {x}ni=1 ∈ Rd, the k-means objective tries to find k cluster

centers {uj}kj=1 ∈ Rd such that the average squared distance between each point and its closest cluster
center

n∑
i=1

∥∥∥∥∥∥xi −
k∑

j=1

1{j = argmin
l∈[k]

∥xi − ul∥2}uj

∥∥∥∥∥∥
2

2

is minimized.
We present a simplified MoE architecture with weight sharing to formalize this connection with

k-means.
MoE Architecture with Weight Sharing: The neural network is of the form: f(x) =

∑e
i=1 piui

where pi = 1 ⇐⇒ i = argmini ∥ui − x∥2 and ui’s are its parameters (experts).
We first note that if we set the ground truth output to be the input xi in our setting, then the best solution

would be uj = µj which is what would optimize the k-means objective as well. Thus k-means can be
viewed as supervised problem in this sense.

Lemma 1. Gradient Descent on square loss in the above setting with the weight sharing MoE architecture
is equivalent to optimizing the k-means objective using a step size.

Proof. This loss functions in the two settings match and hence gradient descent will make identical
steps.

Next, we generalize our architecture slightly by dropping the weight sharing assumption to get some-
thing closer to an MoE model.

A more general MoE architecture: The neural network is of the form: f(x) =
∑e

i=1 piui where
pi = softmax(wT

i x) and ui, wi’s are parameters. The wi’s represent the router and the ui’s represent the
experts. Recall that in this setting we have {gi = N (µc, σiId)}ki=1 as the k spherical component Gaussians
of a mixture distribution defined by

∑k
i=1wigi. We assume that all the mixture weights wi are uniformly

= 1/k for simplicity. We also assume that the centers µi are all randomly chosen in d-dimensional space
such that ∥µi∥2 ≤ α

√
d. {vi}kc=1 be k cluster specific vectors. Given x ∼

∑k
i=1 gi/k, the ground truth

function f∗(x) = vc(x) where c(x) represents the mixture component from which x was sampled.
MoE architecture: The neural network is of the form: f(x) =

∑e
i=1 piui where pi = softmax(wT

i x)
and ui, wi’s are trainable parameters. The wi’s represent the router and the ui’s represent the experts.
Given the above, we restate Theorem 2.

Theorem. Given n = Θ(dk log k) samples drawn from a mixture of k spherical Gaussians in d-
dimensions which are c-separated for some constant c as described above, consider an instantiation of the
above MoE architecture with O(k log k) experts. If we initialize the router weights wi to randomly drawn
examples from the train set, the router will learn to route examples according to the cluster they belong to.

Proof. Recall that {gi = N (µi, σiId)}ki=1 are the k spherical component Gaussians. Let X = {xi}ni=1

be the train samples and let W0 = {wj}O(k log(k))
j=1 be O(k log k) randomly selected samples from X .

We initialize the router weights to W0. A simple coupon collector argument would give us that with

probability ≥ 1− 1/poly(k), there exists at least one sample from each of the k component Gaussians in
W0. Moreover, due to the c-separated nature of the Gaussians, for any two components i ̸= j

Pr
xi∼gi,xj∼gj

[
∥xi − xj∥ ≤ C

√
d
]
≤ 1

d10
, (1)

for a small enough constant C. Let E denote the set of all the experts. Note that there is a one-to-one
association between an expert ej and a router weight vector wj . Partition the experts into k sets where
Ek is the set of experts whose corresponding router weights were initialized using samples from the kth

component gk. We call the set of experts Ek as cluster k’s specialists.
When an input xi ∼ gk needs to be routed, the total probability weight the router assigns to experts

not in Ek is ≤ exp(−O(d)). Hence, assuming d ≥ k, the output is going to have contributions largely
from the experts in Ek. This implies that the contribution of the gradient from the loss on input xi is
minimal on the experts not in Ek. Among the experts in Ek, there will exist at least one expert which
each gradient will push in the direction of wk. This can happen with multiple experts in Ek at the same
time as well. Moreover, using the same argument as above, the experts in Ek do not get significantly
affected by the gradients coming from examples xj which are sampled from Gaussians other than gk.
By picking a small enough learning rate for the router, this leads to the following configuration after a
logarithmic number of gradient descent steps. For every k, there will exist an expert in j ∈ Ek such
that ∥uj − wk∥2 ≤ o(1). In addition, the train loss will also be close to 0. Once this configuration
has been reached, the subsequent steps of gradient descent only serve to boost the norms of the router
weights without changing their direction by much which leads to a further cementing of the cluster based
specialization of the experts.

F Mixture of two truncated Gaussians

Task: We are given inputs drawn from a balanced mixture of two spherical truncated Gaussians in Rd

each with σId covariance and means ±z ∈ Rd where ∥z∥ = 1. The Gaussians are truncated at radius r
where r < 1. The ground truth output is a fixed ±v for the two clusters respectively.

Network architecture and optimization setup: The neural network is of the form: pu+(1−p)(−u) =
(2p− 1)u where p(x) = Sigmoid(wTx) and w, u, b are parameters. Here p corresponds to the router and
±u to the 2 experts. We will train with population gradient descent with MSE loss. We initialize the w
and u as random vectors with norms tending to 0. We will use learning rates ηu and ηw for parameters u
and w such that ηu ≫ ηw.

Theorem 4. Gradient descent on population loss in the above setting will converge to a solution in which
ŵ = ±z, ∥w∥ → ∞ and u = ±v.

Proof. Let w0 denote the initial value of w, we assume wlog that wT
0 z > 0. Let G and G′ denote the

distributions of the two truncated Gaussians. The loss is:

Ex∈G∥(2p(x)− 1)u− v)∥2 + Ex∈G′∥(2p(x)− 1)u+ v)∥2

We note that the probability of sampling x under G is the same as probability of sampling −x under G′.
This allows us to rewrite the above loss as

Ex∈G∥(2p(x)− 1)u− v)∥2 + ∥(2p(−x)− 1)u+ v)∥2

Using p(−x) = 1− p(x) we get that the loss functions is equivalent to

L(u,w) = 2Ex∈G∥(q(x)u− v)∥2

where q(x) = 2p(x)− 1. As ηu ≫ ηw we can assume assume that throughout the training trajectory
∂L
∂u = 0. Hence

Ex∈G2(q(x)u− v))q(x) = 0

solving for u gives us

u∗(w) = v
Ex∈Gq(x)

Ex∈Gq2(x)

Now let us consider the partial derivative of loss wrt w

∂L

∂w
= 4Ex∈G(q(x)u− v)T (uq′(x)x)

= 4Ex∈Gq
′(x)(q(x)∥u∥2 − vTu)z + q′(x)(q(x)∥u∥2 − vTu)g

By a symmetry argument the second term is of the form cw where c is a scalar. Let us focus on the
coefficient of z in first term (omitting constant factors). As ηu ≫ ηw we can assume that u = u∗(w),
hence we start by substituting that

Ex∈Gq
′(x)(q(x)∥u∥2 − vTu) = ∥v∥2Ex∈Gq

′(x)

(
q(x)

(
Ex∈Gq(x)

Ex∈Gq2(x)

)2

− Ex∈Gq(x)

Ex∈Gq2(x)

)

= ∥v∥2Ex∈Gq
′(x)

(
q(x)

(
Ex∈Gq(x)

Ex∈Gq2(x)

)2

− Ex∈Gq(x)

Ex∈Gq2(x)

)

= ∥v∥2
(

Ex∈Gq(x)

Ex∈Gq2(x)

)
Ex∈Gq

′(x)

(
q(x)

(
Ex∈Gq(x)

Ex∈Gq2(x)

)
− 1

)
= ∥v∥2

(
Ex∈Gq(x)

(Ex∈Gq2(x))2

)
(Ex∈G[q

′(x)q(x)]Ex∈Gq(x)− (Ex∈Gq
2(x))(Ex∈Gq

′(x)))

Claim 1. If wT z > 0 then
Ex∈Gq(x) > 0

.

Proof. Let w = αz + w⊥ where α > 0 and wT
⊥z = 0. For any point x = βz + x⊥ where xT⊥z = 0 it is

easy to see that the point x′ = βz − x⊥ occurs with the same probability as x in G. Hence

Ex∈Gq(x) = Ex∈G(q(x) + q(x′))/2

Let a = wTx and b = wTx′ then a + b = 2αzT z = 2α > 0. As h(t) = 1 − 2Sigmoid(t) is
anti-symmetric and monotonically increasing function, a+ b > 0 implies that h(a) + h(b) > 0. This in
turn implies that q(x) + q(x′) > 0 as q(x) = h(a) and q(x′) = h(b). This is sufficient to prove that

Ex∈Gq(x) = Ex∈G(q(x) + q(x′))/2 > 0

Claim 2.
Ex∈G[q

′(x)q(x)]Ex∈Gq(x)− (Ex∈Gq
2(x))(Ex∈Gq

′(x)) < 0

Proof. We will prove the following stronger statement:

Ex∈G[q
′(x)|q(x)|]Ex∈G|q(x)| < Ex∈G[q

2(x)]Ex∈Gq
′(x)

It is easy to show that q′(x) = (1− q2(x))/2. Let D be the distribution of |q(x)| where x ∼ G. We
can equivalently show that

Ey∈D[f(y)y]Ey∈Dy < Ey∈D[y
2]Ey∈Df(y)

.
where f(y) = (1− y2)/2. This statement directly follows by applying Lemma 2.

This shows us that our gradient update which is proportional to − ∂L
∂w is of the form αw + βz where

β > 0. This implies that GD will converge to a solution which is parallel to z. Hence we can restrict
ourselves to doing GD with w being parallel to z.

Let us rewrite the loss with the constraint that w = αz for some scalar α.

L(u,w) = 2Ex∈G∥(q(x)u− v)∥2

Denote by x1z the component of x along z where x1 is a scalar. Let G1 be the distribution of x1. As
ŵ = ±z we know that q(x) is determined by x1. Hence we can rewrite that loss as

L(u, α) = 2Ex1∈G1∥(q1(x1)u− v)∥2

where q1(x1) = q(x1z) = 1− 2Sigmoid(x1wT z) = 1− 2Sigmoid(αx1) as ∥z∥ = 1.

∂L

∂α
= 4Ex∈Gq

′
1(x1)(x1)(q1(x1)u− v)Tu

= 4Ex∈G
[
q′1(x1)(x1)q1(x1)∥u∥2 − q′1(x1)(x1)v

Tu
]

= 4∥v∥2Ex∈G

[
q′1(x1)(x1)q1(x1)

(
Ex∈Gq(x)

Ex∈Gq2(x)

)2

− q′1(x1)(x1)

(
Ex∈Gq(x)

Ex∈Gq2(x)

)]

= ∥v∥2
(

Ex1∈G1q1(x1)

(Ex1∈G1q
2
1(x1))

2

)
(Ex1∈G1 [xq

′(x)q(x)]Ex∈Gq(x)− (Ex∈Gq
2(x))(Ex∈Gxq

′(x)))

Assume w.l.o.g. that α > 0, assuming this we will prove that ∂L
∂α < 0 which will be sufficient to prove

that as we keep running gradient descent we will get ŵ = z, ∥w∥ → ∞.
As G was a truncated Gaussian we have that that α > 0 implies that q1(x1) > 0 for all x1 ∈ G1.

Hence we only need to prove that

Ex1∈G1 [xq
′(x)q(x)]Ex∈Gq(x) < (Ex∈Gq

2(x))(Ex∈Gxq
′(x))

Claim 3. If α > 0 then

Ex1∈G1 [xq
′(x)q(x)]Ex∈Gq(x) < (Ex∈Gq

2(x))(Ex∈Gxq
′(x))

Proof. We will prove the following stronger statement:

Ex1∈G1 [xq
′
1(x)|q(x)|]Ex∈G|q(x)| < Ex∈G[q

2(x)]Ex∈Gxq
′
1(x)

It is easy to show that q′(x) = (1 − q2(x))/2 and x = ln
(
1+q(x)
1−q(x)

)
/α. Let D be the distribution of

|q(x)| where x ∼ G. We can equivalently show that

Ey∈D[f(y)y]Ey∈Dy < Ey∈D[y
2]Ey∈Df(y)

.
where f(y) = ln

(
1+y
1−y

)
(1− y2)/(2α). Note that f ′(y) = (1− y ln

(
1+y
1−y

)
)/α which is a decreasing

function of y for 0 < y < 1 hence f is concave on (0, 1). Using f(0) = 0 and applying concavity on the
three points 0, a, b where 0 < a < b < 1 gives us that

f(a)

a
>

f(b)

b
.

With this property of f the required statement directly follows by applying Lemma 2 with T = 1.

Hence w will converge to satisfying ŵ = z and ∥w∥ = ∞. As we started with truncated Gaussians, we
will have q(x) → 1 for all x ∈ G1 and hence u = u∗(w) → v.

We will use the following lemma from (Hidden, 2022), which we reproduce for completeness.

Lemma 2. [(Hidden, 2022)] Let f be a function which satisfies that for all 0 < a < b < T we have

f(a)

a
>

f(b)

b
.

Then for any distribution D supported only on (0, T) we have

E[x2]E[f(x)] > E[x]E[xf(x)]

Proof. Let y be an independent copy of x. We note that

2E[x2]E[f(x)]− 2E[x]E[xf(x)] = E[y2f(y)]− E[xyf(y)]

+E[y2f(x)]− E[yxf(x)]

= E[(x− y)(xf(y)− yf(x))].

Because of our assumption the random variable (x−y)(xf(y)−yf(x) is non-negative since f(y)/y−
f(x)/x has the same sign as x− y.

The desired inequality follows.

