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Abstract

This study presents a novel evaluation frame-001
work for Vision-Language Navigation (VLN)002
task. It aims to assess the limitations of current003
models for various instruction categories in a004
finer grained level. During dataset design, to en-005
sure a comprehensive coverage across instruc-006
tion categories, we first iteratively construct-007
ing a context-free grammar (CFG) for VLN008
instructions with the help of Large-Language009
Models (LLMs). Based on the CFG, we in-010
duct and generate data spanning five principal011
instruction categories (i.e., direction change,012
landmark recognition, region recognition, ver-013
tical movement and numerical comprehension).014
Our analysis of different models reveals notable015
performance discrepancies and recurrent issues.016
The stagnation of numerical comprehension,017
heavy selective biases over directional concepts018
and other interesting findings contribute to the019
development of future language-guided naviga-020
tion systems.021

1 Introduction022

In the Vision-Language Navigation (VLN; Ander-023

son et al. 2018) task, an agent is instructed to nav-024

igate through virtual environments by following025

detailed natural language instructions. This task026

requires an understanding of the interplay between027

natural language instructions, visual cues, and the028

sequence of actions undertaken by the agent. This029

capability is crucial for a wide range of robotic030

applications, extending from healthcare support to031

everyday household assistance.032

Despite significant advancements in latest re-033

searches, we argue that the performance of VLN034

models may be over-estimated. The current stan-035

dard for evaluating vision-language navigation, as036

exemplified by the Room-to-Room (R2R; Ander-037

son et al. 2018) and Room-across-Room (RxR; Ku038

et al. 2020) datasets, predominantly hinges on039

endpoint success rates and broad path alignment040

Figure 1: Examples of constructed interventions for
VLN instructions. Example 1 demonstrates an inter-
vention related to directional concepts, while Example
2 focuses on landmarks. Nonetheless, a subset of the
model’s predictions remains unchanged following the
intervention, suggesting a deficiency in the model’s abil-
ity to grasp underlying concepts.

metrics. The recent work (Wang et al., 2023) 041

suggests the performance of the state-of-the-art 042

is high and even quite close to human perfor- 043

mance on these standards. Does this mean that 044

the major challenges of the VLN task are almost 045

solved? This perspective might be overly opti- 046

mistic. For instance, the high success rate of 047

a randomly navigating agent (Anderson et al., 048

2018) is non-negligible. This indicates that cur- 049

rent evaluation metrics may be insufficiently de- 050

tailed. Furthermore, agents enhanced by Large 051

Multimodal Models (LMMs; Zhou et al. 2023; Lin 052

et al. 2024) perform unexpectedly low on standard 053

VLN datasets. This contrasts with the strong mul- 054

timodal understanding demonstrated by LMMs in 055

other domains (Fu et al., 2024; Wake et al., 2023). 056
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This discrepancy motivates us to revisit the evalua-057

tion of VLN models.058

In this work, we introduce a new evaluation059

framework that focuses on atomic instructions,060

i.e., the singular actions fundamental to VLN in-061

structions. Assessing VLN models at the atomic-062

instruction level allows us to gauge performance063

through various nuanced perspectives. To achieve064

this, we first iteratively construct a context-free065

grammar (CFG; Hopcroft et al. 2001) with the066

help of LLMs to systematically articulate the struc-067

ture of VLN task instructions. CFG, treated as068

a comprehensive representation of VLN instruc-069

tions, allows us to induct and define atomic in-070

struction categories. We group the components in071

our CFG into five main categories (i.e., direction072

change, vertical movement, landmark recognition,073

region recognition and numerical comprehension)074

and generate data accordingly to form our novel075

evaluation dataset NAVNUANCES. For each entry076

in NAVNUANCES, a candidate path is determined077

by the specific path proposing strategy according to078

its instruction category. The instruction is then gen-079

erated using CFG and further enriched by LLMs.080

To ensure the data correctness, we incorporate hu-081

man refinement into this automated generation pro-082

cess in the end. The rigorous evaluation protocols083

in our dataset pose significant challenges, as they084

require models to demonstrate a thorough under-085

standing of individual concepts.086

We benchmark various types of models based on087

our proposed evaluation framework. Experiments088

with NAVNUANCES expose model discrepancies089

and common issues. We observe that recent ad-090

vancements in the standard R2R dataset primarily091

stem from enhanced capabilities in vertical move-092

ment and region recognition. Despite this progress,093

numerical comprehension shows stagnation across094

various models. In terms of specific models, zero-095

shot agent enhanced by LLMs demonstrated even096

significant superiority over traditional supervised097

ones in handling changes in direction and recogniz-098

ing landmarks. Traditional supervised approaches099

suffer from selective bias, often leading to deficien-100

cies in adapting to shifts in atomic concepts, as101

demonstrated in Figure 1.102

Our contributions are threefold: Firstly, we de-103

vise a comprehensive evaluation framework that104

addresses diverse facets of Vision-and-Language105

Navigation (VLN) at a granular level. Sec-106

ondly, our work includes a thorough benchmark-107

ing of prevalent methodologies, coupled with an108

in-depth analysis. Thirdly, we present a zero- 109

shot baseline as a minor contribution, which en- 110

hances NavGPT (Zhou et al., 2023) with GPT- 111

4-vision (Achiam et al., 2023) integrating direct 112

vision-instruction alignment. 113

2 Related Work 114

2.1 Vision-language navigation Datasets 115

Vision-Language Navigation (VLN; Anderson et al. 116

2018) tasks integrate language guidance within em- 117

bodied environments. This task is initially intro- 118

duced by Room-to-Room dataset (R2R; Anderson 119

et al. 2018) which requires step-by-step navigation 120

in virtual spaces. Subsequent research expanded 121

this framework through variations like multilingual 122

RXR datasets (Ku et al., 2020) and addressed more 123

complex navigation challenges. The advent of con- 124

versational interfaces led to interactive VLN tasks, 125

exemplified by CVDN (Thomason et al., 2020) and 126

Teach (Padmakumar et al., 2022), fostering navi- 127

gation via dialogue interpretation. Concurrently, 128

efforts like VLN-CE (Krantz et al., 2020) aimed to 129

transition VLN tasks into continuous environments. 130

Despite these advancements, a nuanced evaluation 131

of VLN models on atomic-level instructions re- 132

mained underexplored. Our work addresses this 133

by developing a dataset specifically designed to 134

assess the fundamental capabilities of VLN agents, 135

thereby contributing to the refinement of models 136

across various VLN settings. 137

2.2 Models in VLN tasks 138

The introduction of the R2R dataset (Anderson 139

et al., 2018) catalyzed the development of numer- 140

ous models focusing on VLN tasks in discrete envi- 141

ronments. Early efforts, such as the Seq2Seq (An- 142

derson et al., 2018) and RCM (Wang et al., 2019) 143

models, emphasized training strategies leveraging 144

Imitation and Reinforcement Learning within a 145

conventional front-view framework. Subsequent 146

innovations like CLIP-ViL (Shen et al., 2021) aug- 147

mented these models with advanced visual fea- 148

tures from CLIP (Radford et al., 2021). Attention 149

then turned to the effective encapsulation of histor- 150

ical data, with approaches like VLN-BERT (Hong 151

et al., 2021) utilizing recurrent transformer struc- 152

tures, and HAMT (Chen et al., 2021) compactly 153

encoding historical visual cues. More recent en- 154

deavors (Chen et al., 2022; An et al., 2023) have 155

explored the integration of topological or even met- 156

ric maps to enrich navigational contexts. Parallel to 157
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these model-centric advancements, initiatives such158

as ScaleVLN (Wang et al., 2023) aimed at scaling159

up training data. More recently, research focus has160

switched to exploring VLN with LLMs (Zhou et al.,161

2023; Long et al., 2023; Chen et al., 2023; Lin et al.,162

2024). Despite these significant strides, a compre-163

hensive understanding of how these methodologies164

enhance specific VLN abilities, particularly atomic165

instruction comprehension, remains unclear. Our166

work seeks to shed light on this fundamental aspect167

and offers insights into the underlying capabilities168

necessary for effective VLN task execution.169

3 NavNuances Dataset170

The challenge of curating a nuanced dataset is to171

comprehensively cover the atomic categories in172

VLN instructions. To achieve this, our approach173

begins by iteratively constructing a context-free174

grammar (CFG) with the help of LLM to articulate175

and cover all components of VLN instructions in176

a unified representation (Section 3.1). Then, we177

induct and categorize the atomic components of178

the CFG into five principal categories (Section 3.2).179

Building on these categorizations, we develop an180

semi-automated process for data annotation of each181

atomic instruction category, adhering to the CFG-182

defined natural instruction standards (Section 3.3).183

3.1 The Context-Free Grammar for VLN184

Our CFG defines a set of rules and concepts that185

structure the instructions in VLN. It can be for-186

malized as a quadruple, i.e., CFG = (N,T, P, S).187

Non-terminals N (in uppercase such as Landmark188

in List 1) represent broader conceptual categories189

or composite concepts. Terminals T signify spe-190

cific actionable elements or descriptors and are191

denoted by lowercase words (e.g., left, right). Pro-192

duction Rules P within the CFG outline how var-193

ious elements are combined to form higher-level194

Non-terminals. And Start Symbol S triggering195

the instruction generation process. An illustra-196

tive instruction such as walk past the red chair197

can be generated by the pattern “ActionO+ Land-198

mark(Modifier(Attribute) + Object)" in List 1. The199

complete version of CFG is available in the supple-200

mentary materials (Appendix E).201

To ensure the integrity and completeness of the202

CFG, we instruct GPT-4 (Achiam et al., 2023)203

to parse the instructions in standard datasets204

(R2R (Anderson et al., 2018) and RxR (Ku et al.,205

2020)) using the CFG and identify any omissions206

List 1: Context-free grammar (partial)
1: S → V p
2: V p → ActionT
3: |ActionS
4: |ActionO + Landmark
5: |ActionR + Region
6: |V p+ V p
7: |V p+ Ir
8: Ir → (action irrelevant sentence)
9: Numerical → first|second|third| . . .

10: Room → room|kitchen|bathroom| . . .
11: Direction → left|right
12: Object → bed|table|chair| . . .
13: Attribute → red|yellow| . . .
14: Modifier → Attribute|...|ϵ
15: Landmark → Modifier +Object
16: ActionO → “walk past”|“walk towards”|...
17: ...

in the current CFG. Through an iterative refinement 207

process that incorporates manual adjustment, we 208

continuously update the CFG until GPT-4 can no 209

longer detect missing components. An example is 210

illustrated in Appendix I. The final CFG is defined 211

at the conceptual level and ignores linguistic varia- 212

tions linked to the same concept. For example, the 213

phrases “move towards" and “go towards" are both 214

represented by the same terminal “walk towards" 215

in CFG. 216

3.2 Atomic Instruction Categories 217

CFG provides a comprehensive yet elegant rep- 218

resentation of VLN instructions. Based on this, 219

we are able to discern what kind of concepts or 220

patterns are fundamental to the VLN instructions. 221

This further enables us to induct the atomic instruc- 222

tion categories. We define five primary categories 223

introduced as below: 224

Direction Change: This category stems from the 225

CFG’s ActionT, which encapsulates turning actions. 226

These actions are unique in that they are exclusive 227

to directional changes and do not depend on the 228

agent’s observations. 229

Vertical Movement: Derived from the ActionS, 230

this category is associated with movements in the 231

vertical plane, such as ascending or descending 232

stairs. It highlights the agent’s interactions with 233

vertical elements in the environment. 234

Numerical Comprehension: Numerical compre- 235

hension, i.e., being able to count or even calcu- 236

late, is quite hard yet crucial for an agent. This is 237
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Figure 2: Schematic diagram of annotation criteria for five main categories in NAVNUANCES dataset.

challenging even for the latest LLMs (Stolfo et al.,238

2023; Lu et al., 2023). We propose to separately239

evaluate this category in VLN task. It focuses on in-240

structions that incorporate an unambiguous numer-241

ical concept, aiding in the identification of multiple242

landmarks or regions.243

Landmark Recognition: This category is in-244

ducted from production rules that involve a singular245

center object. It encompasses instructions that di-246

rect the agent towards or past specific landmarks247

within the environment.248

Region Recognition: Similar to Landmark Recog-249

nition, this category pertains to instructions related250

to distinct areas or rooms.251

3.3 Dataset Construction252

Our dataset is collected from 90 Matterport (Chang253

et al., 2017) virtual environments aided by the se-254

mantic annotations in Habitat simulator (Szot et al.,255

2021). Our annotation workflow consists of four256

stages: rule-based candidate path proposing, CFG-257

driven instruction crafting, human refinement, and258

linguistic enrichment via LLMs. Each annotated259

datum contains a natural language instruction, the260

agent’s initial pose, and annotations for evaluation261

purposes, such as the ground truth paths or land-262

mark locations. The statistics and examples of263

NAVNUANCES are detailed in Appendix D.264

Direction Change category: Instructions in direc-265

tion change category direct the agent to make turns.266

We eliminate ambiguity by selecting junctions with267

a clear divergence in path directions (adjacent paths268

exceeding a large angle between them as depicted 269

in Figure 2a), ensuring distinct navigation choices. 270

We integrate forward movement into the instruc- 271

tion crafting to accommodate different VLN mod- 272

els and to facilitate evaluation, leading to concise 273

instructions like “turn left/right/around, then walk 274

straight". Human annotators are involved to refine 275

the dataset by excluding starting positions without 276

central obstacles in the view. This exclusion is nec- 277

essary; some instances meet the selection criteria 278

only because the navigation graph is sparse. We 279

additionally annotate the paired instruction for left 280

and right turn with the same starting view. 281

Vertical Movement category: Vertical movement 282

in VLN tasks is typically confined to ascending 283

or descending stairs. Therefore, we identify the 284

longest paths within 3D bounding boxes labeled 285

by ’stairs’ in each environment. The instruction 286

template is straightforward containing only “go up- 287

stairs/downstairs and stop on the next floor". Given 288

the bounding boxes’ imprecision, human annota- 289

tors is involved to adjust the start and end position. 290

For views that encompass two staircases in oppo- 291

site vertical directions, annotators are instructed to 292

mark these special positions and annotate paired 293

paths from the same starting viewpoint, as shown 294

in Figure 2b. This subset is small but important 295

for assessing awareness of the vertical direction. 296

The human-refined trajectories are considered as 297

the ground truth and included in the dataset for 298

evaluation purposes. 299
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Numerical comprehension category: This cat-300

egory emphasizes the memory of sequential ele-301

ments and instance-level identification. We focus302

on region-level numerical comprehension, utilizing303

the semantic annotations of ’hallway’. The process304

begins by filtering out hallways with insufficient305

doors and using the longest paths within to deter-306

mine the starting positions. Subsequently, human307

annotators is asked to annotate the room count and308

the respective sides while navigating. The instruc-309

tion follows the template: “walk along the corridor310

and turn into the [i]-th room on your left/right".311

An example case is shown in Figure 2c. Paths that312

share identical initial poses, yet differ in numerical313

and directional values, are treated as negative data.314

These are included in the dataset to support the315

evaluation of numerical comprehension.316

Landmark Recognition category: This category317

requires taking a path associated with a specific318

landmark. To assess landmark recognition capabil-319

ities, instructions need instance-level descriptions.320

We begin by identifying potential navigable objects321

using the semantic annotations. We leverage GPT-322

4-vision (Achiam et al., 2023) for precise object323

category identification and instance-level descrip-324

tion generation given the view orientated towards325

the object. We then construct paths that meet spe-326

cific criteria regarding curvature and proximity to327

the object’s center, as shown in Figure 2d. The328

resulting instructions encompass actions such as329

“walk past + modifier + object". We include manual330

checks and modification to ensure visibility of tar-331

get landmarks from starting viewpoints. The object332

center is included in the dataset as supplementary333

information for evaluation.334

Region Recognition category: Finally, the region335

recognition category is narrowed down to ’go into’336

and ’exit’ actions due to the potential ambiguity in337

’go through’ instructions. Unlike specific endpoint-338

related data, region-related data pertains to a set of339

points associated with the concept. For example in340

Figure 2e, given a starting point and the instruction341

“go into the bedroom", we record all points inside342

adjacent bedrooms as correct responses. For “exit343

the dining area", all areas outside the current room344

are marked as valid positions.345

4 Experiment346

We conduct a comprehensive evaluation of various347

existing VLN models across the five main cate-348

gories in our NAVNUANCES dataset.349

4.1 Baselines 350

In this study, we examine baseline models catego- 351

rized by input modalities, action spaces, memory 352

representations, and supervision approaches. In- 353

put modalities range from front-view RGB images 354

(e.g., Seq2Seq model (Anderson et al., 2018)) and 355

panorama images (e.g., VLN-BERT (Hong et al., 356

2021)) to textual descriptions of panorama views 357

(e.g., NavGPT (Zhou et al., 2023)). Models differ 358

in their action space, utilizing viewpoint selection 359

(e.g., ScaleVLN (Wang et al., 2023)), predefined 360

rule-based actions (e.g., Seq2Seq (Anderson et al., 361

2018)), or a combination thereof. Memory repre- 362

sentation varies among models, employing hidden 363

states (e.g., CLIP-ViL (Shen et al., 2021)), past vi- 364

sual inputs (e.g., HAMT (Chen et al., 2021)), topo- 365

logical (e.g., DUET (Chen et al., 2022)) or metric 366

maps (e.g., BEVBERT (An et al., 2023)), or inter- 367

active chat histories (e.g., NavGPT (Zhou et al., 368

2023)). More details are available in Appendix A. 369

We introduce NavGPT4v, an enhancement of 370

the text-based NavGPT (Zhou et al., 2023) model 371

with visual inputs, integrating actual image views 372

with GPT-4-vision (Achiam et al., 2023). We mod- 373

ify the initial prompt in NavGPT to highlight the 374

presence of visual resources and their relevance to 375

a particular direction as illustrated in Appendix F. 376

This development targets incorporating direct vi- 377

sual information to capture essential details that 378

pre-captioning might miss. 379

4.2 Evaluation Protocols 380

In this section, we introduce the evaluation proto- 381

cols for our Vision-Language Navigation (VLN) 382

evaluation set. These protocols are designed to 383

precisely measure the performance of navigation 384

models based on detailed success criteria for differ- 385

ent categories of atomic instructions. 386

For categories Landmark Recognition, Numer- 387

ical Comprehension and Vertical Movement, the 388

evaluations follow the distance-related protocols. 389

The criteria differ slightly depending on the nature 390

of movement. For instance, in the vertical move- 391

ment category, success is defined by a 3-meters 392

radius to a specified endpoint. For instructions in- 393

volving more localized navigation, such as walking 394

towards an landmark, the metric focus more on 395

the reduction in distance to the landmark. Further 396

details can be found in Appendix B. 397

Region Recognition category is more related 398

to inclusion-related protocol, distance metrics are 399
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Method Experimental setting Evaluation Results R2R unseen
Vision Action History DC NU LR RR VM SR nDTW SPL

Su
pe

rv
is

ed

Random None viewpoint None 36.79 7.69 30.22 57.45 11.76 15.88 24.21 14.04
Seq2Seq front-view rule-based hidden state 75.30 21.79 21.89 53.09 25.88 21.46 25.04 18.50
CLIP-ViL front-view rule-based hidden state 77.20 29.49 39.85 74.18 69.41 52.15 47.75 47.64
VLN-BERT panorama viewpoint hidden state 72.02 29.49 34.31 80.36 75.29 62.75 65.49 56.89
HAMT panorama viewpoint past views 79.62 28.21 34.74 77.81 68.82 63.22 66.37 57.70
DUET panorama viewpoint topo. map 64.76 26.92 35.62 77.45 76.47 71.52 67.78 60.85
BEVBERT panorama viewpoint topo./metric map 63.21 24.35 30.22 80.36 84.12 75.18 69.40 63.68
ScaleVLN panorama viewpoint topo. map 72.88 26.92 27.59 84.73 84.71 80.97 74.76 70.33

0-
sh

ot NavGPT3.5 pano. text viewpoint text history 81.87 20.51 58.54 39.63 7.06 12.67 40.82 11.45
NavGPT4 pano. text viewpoint text history 91.87 34.78 54.83 67.61 11.36 34.78 47.53 31.64
NavGPT4v panorama viewpoint text history 92.68 39.13 62.87 56.25 13.64 41.30 54.78 36.84

Human front-view turn/vpt. brain 95.83 89.13 89.44 89.89 94.42 - - -

Table 1: Main Results for baselines evaluated on five main categories of NavNuances dataset, i.e. Direction
Change (DC), Vertical Movement (VM), Landmark Recognition (LR), Region Recognition (RR) and
Numerical Comprehension (NU). We also post the reproduced performances on standard R2R unseen dataset.

Figure 3: Success rate of models evaluated on five main
categories of NavNuances dataset. Human performance
is denoted by green dashed line.

inadequate due to the lack of a precise endpoint.400

Success in this category is defined by the model’s401

ability to stop within a designated region, deter-402

mined by its boundaries.403

For Direction Change category, we evaluates404

the model’s compliance with directional instruc-405

tions. The protocol involves dividing the area406

around the starting point into sectors to assess the407

accuracy of the model’s initial movement direction408

in response to the given instruction.409

4.3 Main Results410

We report the performance evaluated on NAVNU-411

ANCES as well as the reproduced results on the412

validation unseen split of R2R dataset (Anderson413

et al., 2018) in Table 1. We assess NavGPT4 and414

NavGPT4v using a random subset of around 130415

samples, ensuring replicability of the officially re-416

ported NavGPT performance without incurring sig-417

nificant API costs.418

Reflecting on the advancements in the standard 419

R2R dataset, it appears that improved layout and 420

spatial understanding underpin the progress of 421

VLN models. This is evident from the results in 422

vertical movement (VM) and region recognition 423

(RR) tasks on our dataset. This correlation is prob- 424

ably due to the statistics of R2R unseen split. We 425

find that more than 35% of the instructions neces- 426

sitate navigation through stairs, and the majority 427

involve concepts related to rooms. The correlation 428

is observed consistently across different models. 429

For instance, CLIP-ViL’s leap in performance on 430

the R2R unseen split comparing to prior model 431

Seq2Seq (30.69% absolute increase of in success 432

rate) correlates with significant gains in vertical 433

movement (from 25.88% to 69.41%) and region 434

recognition (from 53.09% to 74.18%). And the low 435

performance of zero-shot methods on R2R also 436

follows the lower success rates in these tasks. 437

Despite advancements, there is a noticeable 438

stagnation in models’ numerical comprehension 439

(NU), likely due to the sparse numerical data in 440

existing datasets and the non-essential nature of nu- 441

merical comprehension for task completion. Com- 442

paring to traditional methods, LLM enhanced mod- 443

els shows slightly better performance, but still fall 444

significantly short of human capabilities. These 445

findings highlight that numerical comprehension 446

presents a substantial challenge across various 447

model types, the inference ability w.r.t. numeri- 448

cal values require further improvement. 449

In examining directional changes (DC) within 450

supervised methods, models with explicit direc- 451

tional commands (such as the methods with rule- 452

based action space, Seq2Seq and CLIP-ViL) can 453
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easily reach or even outperform those employing454

viewpoint selection techniques, suggesting the im-455

portance of clear action spaces for effective turning456

choices. This is further supported by the superior457

performance of zero-shot agents, as each observa-458

tion in the zero-shot agent’s prompt includes a clear459

description of its orientation.460

In landmark recognition (LR), zero-shot461

agents outperform models supervised on R2R data,462

which show a contrast to their performance on the463

standard R2R dataset. This indicates that exten-464

sive knowledge of large pre-trained models can465

overcome the constraints inherent in small-scale su-466

pervised training. A notable comparison between467

NavGPT4 and our enhanced NavGPT4v reveals468

that conditioning observations on specific instruc-469

tions lead to more accurate landmark recognition,470

attributed to the richness of visual content beyond471

mere captions. In addition, the high performance472

of random agent suggests the choices within a fixed473

radius are limited. This highlights the limitations474

of supervised agents. Their performance, while475

comparable to the random agent, falls short of a476

true understanding of individual object instances.477

Comparing to traditional supervised methods,478

the performances of LMMs (e.g., NavGPT4v) on479

Region Recgonition (RR) and Vertical Move-480

ment (LM) are quite low as illustrated in Figure 3.481

The diminished performance in vertical movement482

may be attributed to a lack of contextual under-483

standing, as discussed in recent multimodal bench-484

mark CODIS (Luo et al., 2024). Regarding the sur-485

prisingly low performance on region recognition,486

this issue seems to stem from the LMM’s impre-487

cise boundary judgment; the model tends to prema-488

turely halt while merely observing the target region.489

Further discussion is avaliable in Appendix C.490

4.4 Additional Experiments491

Does the agent understand numerical values?492

In this additional experiment, we aim to further493

study the numerical comprehension capabilities of494

models. Despite observing an overall low perfor-495

mance in this category, these models do show some496

improvements over a baseline random walk agent.497

However, since the tasks involve not only numeri-498

cal values but also spatial and directional concepts,499

we introduce two additional random agents to iso-500

late these factors: The first agent simulates a basic501

understanding of spatial layouts (Agent 1*), en-502

abling the agent to select a room to enter. The sec-503

ond agent embodies directional intelligence (Agent504

Figure 4: Success rate relative to two additional random
agents in numerical comprehension category. Agent 1*
are random agent which knows the concept of entering
the room in the corridor. Agent 2* are random agent
which also has directional awareness. The success rate
of Agent 1* and Agent 2* are 32.06% and 41.03%.

2*), allowing the agent to choose a room on the 505

specific side, such as entering a room on the left. 506

As shown in Figure 4, for some of the supervised 507

models such as HAMT and ScaleVLN, the per- 508

formance is comparable (relative success rate ap- 509

proach zero) to that of the Agent 1* but significantly 510

lagged behind the Agent 2*. Zero-shot agents en- 511

hanced by GPT-4 can surpass but still have much 512

lower performance than humans (50% success rate 513

below). This discrepancy highlights a critical gap 514

in current models: while they may grasp basic lay- 515

out concepts to a degree, their understanding of 516

more complex scenarios involving both numerical 517

values and directional cues is markedly deficient. 518

The results, illustrated in Figure 4, highlights the 519

need for advanced models that integrate numerical, 520

layout, and directional understanding. 521

Can the model understand specific landmarks 522

and the spatial relation with them? 523

In the Landmark recognition category, we fur- 524

ther assess the models’ performance in its two dis- 525

tinct subsets: navigating towards a specific object 526

and navigating past an object. The former primar- 527

ily tests the models’ visual grounding capabilities, 528

while the latter introduces an additional layer of 529

complexity by requiring an understanding of spatial 530

relationships based on sequential observations. 531

We evaluate these subsets against three cate- 532

gories of baseline models: supervised fornt-view 533

models, supervised panorama-view models, and 534

zero-shot models enhanced with Large Multimodal 535
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Figure 5: Results of two subsets of Landmark recogni-
tion category in NavNuances dataset. The significant
gap of ’moving towards’ subset comes from large pre-
trained vision models since NavGPT3.5

models (LMMs). As illustrated in Figure 5, the536

simplest Seq2Seq model augmented with CLIP fea-537

tures (from the CLIP-ViL model), outperformed538

more recent approaches like HAMT and ScaleVLN539

on both tasks. This suggests that robust visual fea-540

tures even only using front-view can align well541

with object-centric instructions.542

Advanced models like BLIP2 (Li et al., 2023)543

(in NavGPT 3.5 and 4) and GPT-4-vision (in544

NavGPT4v) show marked improvements in nav-545

igating towards objects. However, they still strug-546

gle with the spatial relation aspect, particularly in547

navigating past objects. Analysis of error cases548

reveal inconsistent decision-making. For instance,549

the models correctly interpret moving from an ob-550

ject’s front to back as having navigated past it in551

some cases. However, the models sometimes as-552

sume they have passed an object merely because553

it is beside them, contradicting the commonsense554

of walking past. This inconsistency highlights the555

need for future models to better align with nuanced556

human commonsense in spatial reasoning.557

Does the agent have a preference of turning di-558

rection?559

To assess if vision-language navigation models560

exhibit a turning direction preference, we analyze561

their performance on turn left and turn right com-562

mands using models like HAMT and NavGPT. Our563

dataset, containing paired turn right and turn left564

instructions for each starting viewpoint, facilitated565

this analysis. We introduced a "Dual Success Rate"566

(Dual SR) metric to measure a model’s accuracy in567

Figure 6: Results for the left/right turn subsets within
the direction change category of the NAVNUANCES
dataset, with Dual SR indicating the success rates for
both right and left turns from a specific starting view

executing both directions from the same point. 568

Our findings, as depicted in Figure 6, indicate 569

a directional bias in some models. For instance, 570

ScaleVLN show a notable preference for turn right 571

instructions, with an 18.23% higher success rate for 572

right turns compared to left turns. There are also 573

general selective bias across all supervised models, 574

as evidenced by their heavily reduced performance 575

on the Dual SR metric. On possible reason for 576

this bias is that there might be the models’ po- 577

tential preference for specific visual cues over the 578

given navigational commands. Conversely, zero- 579

shot models like NavGPT3.5 and NavGPT4v show 580

minimal bias and perform comparably to humans 581

in handling both left and right turns. 582

5 Conclusion 583

In this study, we develop a systematic framework 584

for designing and evaluating atomic instructions in 585

the domain of vision-language navigation (VLN), 586

introducing a novel benchmark dataset NAVNU- 587

ANCES in discrete environments. Our analysis of di- 588

verse models uncovers limitations of specific mod- 589

els and reveals common issues, which highlights 590

ongoing challenges in the VLN task. In addition, 591

our investigation into a modified zero-shot agent 592

enhanced by GPT-4-vision provides empirical evi- 593

dence that a direct alignment between vision and 594

instructions significantly enhances landmark recog- 595

nition performance. This insight underscores the 596

potential for leveraging advanced large multimodal 597

models in improving VLN systems. 598
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Limitations599

Despite our efforts on developing the NAVNU-600

ANCED dataset, the constraints imposed by the601

static discrete environments (Matterport3D) lead to602

several limitations. Since we are not able to edit the603

environment such as adding or removing objects,604

we are restricted to generating data from existing605

layouts. This limits the data diversity for some606

instruction categories. For instance, in numerical607

comprehension category, due to a lack of identical608

object categories within single regions, we are un-609

able to encompass numerical comprehension data610

in the object level, such as “move close to the [i]-th611

apple on your right". Additionally, because we612

cannot rearrange object attributes and positions, it613

is difficult to achieve a detailed attribute-level data614

design in the landmark recognition category.615

In addition, this study focuses exclusively on616

atomic-level capabilities, which do not encompass617

the full range of capabilities of VLN agents such618

as error correction for executing long instructions.619

The understanding sequences of multiple actions620

within long instructions is also a crucial aspect for621

VLN task. Evaluating from this aspect is challeng-622

ing but represents a promising direction for future623

research.624
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A Details of baseline models784

We mainly study the following models:785

1. Random Agent: This model, serving as a rudi-786

mentary baseline in VLN tasks, executes five787

arbitrary movements within the navigation788

graph without relying on navigational instruc-789

tions or environmental observations.790

2. Seq2Seq (Anderson et al., 2018) / CLIP-ViL-791

VLN (Shen et al., 2021): These models pro-792

cess only the frontal RGB visual input. The vi-793

sual features for Seq2Seq and CLIP-ViL-VLN794

are derived from pre-trained ImageNet (Deng795

et al., 2009) and CLIP vision encoders (Rad-796

ford et al., 2021), respectively. Navigation797

decisions are stored in LSTM’s hidden states,798

with the action space confined to predefined799

movements such as forward, left, right, up,800

and down.801

3. VLN-BERT (Hong et al., 2021): Distin-802

guished by its use of panoramic visuals at each803

navigation point, this model alters the action804

space to the selection of subsequent naviga-805

tion points. It utilizes the first special token in806

the Transformer-based model to represent the807

history state.808

4. HAMT (Chen et al., 2021): Similar to VLN-809

BERT in terms of visual input and action810

space, this model differentiates itself by em-811

ploying the features of historical observations812

to represent navigational memory.813

5. DUET (Chen et al., 2022) / ScaleVLN (Wang814

et al., 2023): Both models utilize panoramic815

visuals and navigate by choosing subsequent816

points. The historical memory is encapsulated817

within a topological graph. ScaleVLN fur-818

ther enhances its capability by incorporating a819

vast collection of automatically gathered VLN820

data.821

6. BEVBERT (An et al., 2023): Building822

upon the foundation laid by VLN-DUET,823

BEVBERT introduces metric maps as an addi-824

tional observational and memory component,825

aiming for a more enriched navigational con-826

text.827

7. NavGPT (Zhou et al., 2023) / NavCoT (Lin828

et al., 2024): These zero-shot large language829

models (LLMs) encapsulate navigational his- 830

tory within a dialogue history, offering a novel 831

approach to VLN tasks. Observations are con- 832

verted into descriptions by a pre-trained cap- 833

tioning model, treating the VLN task as a text- 834

based navigation challenge. 835

8. NavGPT4v: We enhance the text-based 836

NavGPT model (Zhou et al., 2023) by visual 837

input, NavGPT4v incorporates actual image 838

views alongside a Large Multimodal Model 839

(LMM) - GPT-4-vision (Achiam et al., 2023) 840

with modified prompts. This addition aims 841

to address the limitations of pre-captioning 842

observations, which may overlook critical de- 843

tails in the views due to the generic nature of 844

captions. 845

Through the lens of these diverse models, our study 846

aims to shed light on the multifaceted nature of 847

VLN tasks and the inherent capabilities and limita- 848

tions of each approach. 849

B Detailed Evaluation metrics 850

This section presents the evaluation metrics for 851

each category within the NavNuances dataset, ad- 852

hering to the overarching protocols delineated in 853

Section 4.2. 854

B.1 Direction Change category 855

In Direction Change category, we design evalua- 856

tion metrics based on the direction protocol, focus- 857

ing exclusively on the initial sub-path—defined as 858

the trajectory connecting the first and second nav- 859

igation points. The categorization of directional 860

changes is as follows: if the sub-path’s orienta- 861

tion relative to the starting point falls within a 120- 862

degree arc to the left, it is classified as a turn left; 863

similarly, a 120-degree arc to the right is classified 864

as a turn right, and a 120-degree arc to the rear 865

is classified as a turn around. An agent’s success 866

is determined by the accuracy of its directional 867

change in response to the given instruction. 868

B.2 Landmark Recognition category 869

For the Landmark Recognition category, metrics 870

are based on a distance protocol, utilizing object 871

center coordinates for evaluation: 872

walking towards a specific landmark: Success is 873

determined if the agent’s final position is nearer to 874

the landmark’s center coordinate compared to its 875

starting position, with the landmark being visible 876

and at a distance from the starting point. 877
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walking past a specific landmark: the agent’s878

decision is considered as success if the object cen-879

ter can projected within the line segment defined880

by start and end position, and the end position is881

within three meters of the landmark’s center.882

B.3 Numerical Comprehension category883

This category employs a distance protocol, with884

a unique consideration for path similarity. Given885

that paths within the same hallway and identical886

starting points are indexed by the same set number,887

success criteria include:888

1. The agent’s final position must be within 3 me-889

ters in geometric distance of the endpoint.890

2. The normalized Dynamic Time Warping891

(nDTW) metric, which assesses path similarity,892

must indicate that the agent’s path more closely893

aligns with the ground truth path than with any894

other paths in the set (nDTW larger than other paths895

in the same set).896

B.4 Vertical Movement category897

Adhering to a distance protocol, an agent is deemed898

successful in the Vertical Movement category if it899

stops within a three-meter geometric radius of the900

annotated endpoint, emphasizing vertical naviga-901

tion accuracy.902

B.5 Region Recognition category903

The Region Recognition category utilizes the inclu-904

sion evaluation protocol:905

entering a region: Success is achieved if the agent906

stops within a region marked with the same room907

category as specified in the instruction and proxi-908

mate to the starting region.909

exiting a region: Success is determined if the910

agent’s stopping point lies outside the boundaries911

of the starting region.912

C Whether the model can understand913

room category very well?914

In our primary results, we focused on evaluating915

various actions related to navigating through re-916

gions within a dataset to gauge the models’ profi-917

ciency with region-associated tasks. This approach918

provides a general overview of a model’s capability919

in handling layout concepts. However, the tasks920

of entering a region and exiting a region present921

unique challenges. Specifically, entering a region922

demands a more nuanced understanding of the re-923

gion’s category. For example, when given the in-924

struction "go into the dining room" from a location925

Figure 7: Results for success rate of subsets in room
recognition category.

adjacent to multiple rooms, the agent must discern 926

the characteristics that define a dining room to nav- 927

igate successfully. Conversely, leaving a region 928

only involves recognizing the concept of a region, 929

without necessitating an in-depth categorization. 930

To delve deeper into this distinction, we evaluate 931

these two subsets from the data of region recogni- 932

tion category: one is related to entering a region, 933

and the other is related to exiting a region. Zero- 934

shot agents, which typically perform poorly and 935

lack a clear understanding of region boundaries, 936

often optimistically halt upon merely observing the 937

room from just outside the boundary. The error 938

cases can be found in Figure 13. In this subsection, 939

we only discuss the results of supervised methods. 940

As shown in Figure 7, starting from the VLN-BERT 941

model onwards, the performance on tasks involv- 942

ing ’exit a region’ has remained consistently high, 943

indicating that subsequent models have effectively 944

grasped the concept of a region. On the other hand, 945

the ability to understand and categorize different 946

types of regions appears to have progressively im- 947

proved with each new model iteration. 948

However, when comparing these results to hu- 949

man performance, a significant discrepancy be- 950

comes evident. The gap in understanding and cate- 951

gorizing regions between humans and the current 952

state-of-the-art (SOTA) models is approximately 953

21.59%. This gap highlights the ongoing challenge 954

in the field of Vision-Language Navigation (VLN) 955

to develop models that can match human-level 956

comprehension of spatial and categorical concepts 957

within navigational tasks. 958
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D Dataset statistics and examples959

Our NAVNUANCES dataset comprises 579 instances of Direction Change, 170 of Vertical Movement960

(with 44 having a pair of staircases in opposing directions at the initial viewpoint), 78 of Numerical961

Comprehension, 275 of Region Recognition, and 685 of Landmark Recognition.962

The statistics for subsets in each category:963

Direction Change: there are 192 instances for “turn right", 192 instances for “turn left" and 195 instances964

for “turn around".965

Landmark Recognition: there are 353 instances for “walk towards a landmark", 332 instances for “walk966

past a landmark".967

Numerical Comprehension: there are 31 instances for “first room", 24 instances for “second room", 13968

instances for “third room", 6 instances for “fourth room", 2 instances for “fifth room", and 2 instances for969

“sixth room".970

Region Recognition: there are 105 instances for “go into a room", 170 instances for “exit a room".971

Vertical Movement: there are 87 instances for “go upstairs", 83 instances for “go downstairs".972

Figure 8: Landmark Recognition data samples

Figure 9: Numerical Comprehension data samples
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Figure 10: Vertical Movement data samples

Figure 11: Region Recognition data samples

Figure 12: Direction Change data samples
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E The context-free grammar in concept for VLN instruction973

For the initial set of production rules we refer to our observations and also definitions in prior works such974

as A2Nav (Chen et al., 2023; Long et al., 2023). Then we interact with GPT-4 (Achiam et al., 2023), we975

input the CFG definitions with long instructions, and the GPT-4 with return the parsing results. We find976

GPT-4 can leverage CFG very well, and automatically detect which instruction segment cannot be parsed977

by the CFG. Then we utilize this information to update our CFG. This iterative updating will last for about978

ten rounds.979

List 2: Context-free grammar
1: S → V p
2: V p → ActionT
3: |ActionS
4: |ActionO + Landmark
5: |ActionR + Region
6: |V p+ V p
7: |V p+ Ir
8: Ir → (sentence describing the state of observation, not action)
9: Numerical → first|second|third|fourth|fifth| . . .

10: Room → room|kitchen|bathroom| . . .
11: Direction → left|right
12: Object → bed|table|chair| . . .
13: Attribute → red|yellow| . . .
14: Modifier →

Object+ “is on the” +Direction|Attribute|Numerical|Direction|Modifier +Modifier|ϵ
15: Landmark → Modifier +Object
16: Region → Modifier +Room
17: ActionT → “turn” +Direction|“turn around”
18: ActionO → “walk towards”(“wait at”)|“walk past”|“walk past from” +Direction
19: ActionR → “go into”(“wait at”)|“exit”|“walk through”
20: ActionS → “go upstairs”|“go downstairs”

980
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F Prompts used 981

Listing 1: NavGPT4v prompts (extend from NavGPT). The actual implementation of api calls will split the template
into several parts, vision related inputs will follow the API standard in GPT-4-vision to first transfer the image to
base64 encoded string and then add special tag.
As an intelligent embodied agent , you will navigate an indoor environment to reach a 982
target viewpoint based on a given instruction , performing the Vision and Language 983

Navigation (VLN) task. You 'll move among static positions within a pre -defined graph 984
, aiming for minimal steps. 985

986
You will receive a trajectory instruction at the start and will have access to step 987
history (your Thought , Action , Action Input and Obeservation after the Begin! sign) 988
and current viewpoint observation (including the photos captured around , breif scene 989
descriptions , objects , and navigable directions/distances within 3 meters). Each 990

photo has a blue index on its topleft corner. The correspondence between the photo 991
index and the viewing direction is as follows: photo 0 is Front view; photo 1 is 992
Front Right view; photo 2 is Right view; photo 3 is Rear Right view; photo 4 is Rear 993
view; photo 5 is Rear Left view; photo 6 is Left view; photo 7 is Front Left view. 994

Scene descriptions and object descriptions are just for reference , might be 995
incomplete. 996

997
Orientations range from -180 to 180 degrees , with 0 being forward , right 90 998
rightward , right/left 180 backward , and left 90 leftward. 999

1000
Explore the environment while avoiding revisiting viewpoints by comparing current 1001
and previously visited IDs. Reach within 3 meters of the instructed destination , and 1002
if it 's visible but no objects are detected , move closer. 1003

1004
At each step , determine if you 've reached the destination. 1005
If yes , stop and output 'Final Answer: Finished!'. 1006
If not , continue by considering your location and the next viewpoint based on the 1007
instruction , using the action_maker tool. 1008
Show your reasoning in the Thought section. 1009

1010
Follow the given format and use provided tools. 1011
{tool_descriptions} 1012
Do not fabricate nonexistent viewpoint IDs. 1013

1014
---- 1015
Starting below , you should follow this format: 1016

1017
Instruction: the instruction describing the whole trajectory 1018
Initial Observation: the initial observation of the environment 1019
Thought: you should always think about what to do next and why 1020
Action: the action to take , must be one of the tools [{ tool_names }] 1021
Action Input: "Viewpoint ID" 1022
Observation: the result of the action 1023
... (this Thought/Action/Action Input/Observation can repeat N times) 1024
Thought: I have reached the destination , I can stop. 1025
Final Answer: Finished! 1026
---- 1027

1028
Begin! 1029

1030
Instruction: {action_plan} 1031
Initial Observation: {visual_observations} 1032
Thought: I should start navigation according to the instruction , {agent_scratchpad} 1033

17



Listing 2: Prompts for landmark description
1034

Here is a picture with probably some objects in the middle. Please breifly describe1035
the most identifiable object which is close to you in under ten words with1036
elementary -level vocabularies. The object should be large and unique in the given1037
picture , for instance a 'black round table '. The object category cannot be the1038
mirror , door , floor , ceiling , wall , windows , light switch , control panel or any1039
small objects. If you cannot find any valid object in the picture , return the '1040
object not found '. If in the center of the image is a wall or the doorframe , please1041
also return 'object not found '.1042

1043
Picture: {image}1044

Listing 3: Prompts for linguistic enrichment
1045

Here is a simple instruction , please rephrase it without changing its content.1046
Please also keep the rephrased instruction natural. For turning action about turn1047
around , try not modify this action.1048

1049
Instruction: {instr}.1050
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G Case studies 1051

Figure 13: Failure case of “entering" subset of Region Recognition category: NavGPT4v stop before entering the
target region
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Figure 14: Failure case of “walking past" subset under Landmark Recognition category for NavGPT4v: Incorrect
conceptual understanding of ’walking past’ instruction, stop by the side of the object rather than fully walk past the
target landmark.
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Figure 15: Failure case of “walking past" subset under Landmark Recognition category: NavGPT4v stop before
fully past the target landmar. Correct conceptual understanding by recognizing that navigating from the front to the
back of an object signifies having walked past it. But misinterpreted the front view as the rear.

21



H Instruction given to the annotator1052

During the annotation process, we utilize command line instructions to guide the annotators. Each1053

annotator begins with a starting view, which is pre-selected according to our path-proposing strategy1054

within the specified instruction category. Following this, the annotator receives instructions on how to1055

navigate and perform annotations within the virtual environment. Additionally, we provide a navigation1056

graph that displays the user’s trajectory, facilitating easier self-localization.1057

Figure 16: An example of interactive annotation.

22



I CFG iterative construction 1058

In the main content, we discuss the procedure of iteratively constructing a context-free grammar to cover 1059

all concepts in VLN instructions. In this section, we pose one iteration of the process. The omissions 1060

detected by GPT-4 will be manually updated to the existing CFG. 1061
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