
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCEMENT LEARNING FOR BETTER VERBAL-
IZED CONFIDENCE IN LONG-FORM GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hallucination remains a major challenge for the safe and trustworthy deployment
of large language models (LLMs) in factual content generation. Prior work has
explored confidence estimation as an effective approach to hallucination detection,
but often relies on post-hoc self-consistency methods that require computationally
expensive sampling. Verbalized confidence offers a more efficient alternative, but
existing approaches are largely limited to short-form question answering (QA)
tasks and do not generalize well to open-ended generation. In this paper, we
propose LoVeC (Long-form Verbalized Confidence), an on-the-fly verbalized
confidence estimation method for long-form generation. Specifically, we use
reinforcement learning (RL) to train LLMs to append numerical confidence scores
to each generated statement, serving as a direct and interpretable signal of the
factuality of generation. We introduce two novel evaluation settings, free-form
tagging and iterative tagging, to assess different verbalized confidence estimation
methods. Experiments on three long-form QA datasets show that our RL-trained
models achieve better calibration and generalize robustly across domains. Also,
our method is highly efficient, being 20× faster than traditional self-consistency
methods while achieving better calibration.

1 INTRODUCTION

While large language models (LLMs) demonstrate impressive performance across a wide range of
tasks (Touvron et al., 2023; Jiang et al., 2023; OpenAI, 2022), one of their most critical limitations
is hallucinations (Zhang et al., 2023; Huang et al., 2023). When faced with unfamiliar or uncertain
input, LLMs often generate fabricated or incorrect content. These hallucinations pose a significant
barrier to the real-world deployment of LLMs (Manakul et al., 2023; Zhang et al., 2024a;b; Yang
et al., 2024; 2025), especially in high-stakes domains such as medicine, law, and finance, where
factual inaccuracies can have serious consequences (Zhang et al., 2024a;b; Yang et al., 2024).

Reliable confidence and uncertainty estimation is thus crucial for improving the trustworthiness and
practical applicability of LLMs. Following the definitions by Lin et al. (2023), uncertainty refers to the
variability or dispersion in the model’s predictions given only the input query. In contrast, confidence
is defined with respect to both the input and the specific generated output, capturing how certain
the model is about that particular response. While much prior research on confidence estimation
has focused on short-form question answering (QA) tasks, long-form QA (with outputs exceeding
100 words) is generally more common and better aligned with real-world applications (Zhang et al.,
2024a;b; Yang et al., 2024; 2025). However, methods for short-form QA are designed to produce a
single score for an entire response, and thus cannot be naturally generalized to long-form generation
with fine-grained confidence estimation.

Recently, there has been growing interest in confidence estimation methods for long-form out-
puts (Zhang et al., 2024a;b; Jiang et al., 2024; Fadeeva et al., 2024; Liu et al., 2024). A key limitation
of existing approaches is that they are often post-hoc and computationally expensive. Many rely
on generating multiple samples for consistency checking (Zhang et al., 2024a;b; Jiang et al., 2024),
or require an additional model (e.g., GPT-4 (OpenAI, 2023)) to extract atomic claims (Fadeeva
et al., 2024; Liu et al., 2024). In contrast, verbalized confidence offers a potentially more efficient
alternative, as it avoids both multiple sampling and auxiliary models. However, verbalized confidence
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: In a paragraph, could you tell me what you know about Patagonia, Inc.?

: Patagonia, Inc. is a U.S.-based company that sells clothing,
gear, and food for outdoor activities. The company was
established in 1973 by Yvon Chouinard and is headquartered in
Palo Alto, California. In September 2022, Chouinard made an
announcement that…

LLM (Only Generate Response)

Calibrated?Confidence:
c1
c2
c3

Factuality:
f1
f2
f3

Iterative Tagging

s1

s1 + c1 + s2

s1 + c1 + s2 + c2 + s3

1st:

2nd:

3rd:

c1

c2

c3

LLM (Only 
Generate 

Confidence)

……
Iteratively Generate the Confidence

: Patagonia, Inc. is an American retailer of outdoor recreation
clothing, equipment, and food. <confidence> 8 </confidence> It
was founded by Yvon Chouinard in 1973. <confidence> 2
</confidence> The headquarter of Patagonia is in Palo Alto,
California. <confidence> 3 </confidence> In September 2022, … …

LLM (Generate Response + Confidence)

Freeform Tagging

Calibrated?Confidence:
c1
c2
c3

Factuality:
f1
f2
f3

Directly Extract the 
Confidence from the 
Response

Figure 1: Overview of our two evaluation settings. In Free-form Tagging, the model generates both
the answer and confidence score suffix. In Iterative Tagging, the model is given a fixed response and
assigns confidence scores sentence-by-sentence.

remains underexplored in the context of long-form text generation, and it is unclear whether it can
provide well-calibrated confidence estimates.

To address these challenges, we propose LoVeC (Long-form Verbalized Confidence), an on-the-
fly verbalized confidence estimation method that generates confidence scores alongside long-form
factual statements in a single decoding pass (Contribution #1). Specifically, we apply a reinforcement
learning (RL)-based approach that enables LLMs to produce well-calibrated confidence estimates
during text generation (Figure 1). Compared to supervised fine-tuning (SFT), RL enables direct
optimization toward task-specific reward signals, aligning model behavior with desired outcomes
beyond token-level likelihoods (Rafailov et al., 2023b; Cao et al., 2024). Moreover, RL does not
require fine-grained token-level annotations, which are often expensive or unavailable in practice
(Lee et al., 2023; Kirk et al., 2023). We design both off-policy (DPO) and on-policy (GRPO) RL
training strategies to accommodate scenarios with or without an oracle fact-checker.

Another key challenge in confidence calibration lies in the fair and rigorous evaluation of different
models and methods. To this end, we propose two novel evaluation settings for verbalized confidence
estimation in long-form generation (Contribution #2; illustrated in Figure 1): free-form tagging
and iterative tagging. In free-form tagging, the model is prompted with a question and generates
a complete answer with verbalized confidence tags. Since different models may produce different
outputs under this setting, direct comparison can be challenging. To address scenarios where a fixed
long-form response is required, we introduce iterative tagging, a novel setting in which the model is
provided with a fixed answer and tasked with assigning confidence scores sentence-by-sentence.

Our experiments (§5) on Llama-3-8B-Instruct (Meta, 2024) and Gemma-2-9B-It (Team et al., 2024),
evaluated across three in-domain and out-of-domain long-form QA datasets, demonstrate better
calibration in both iterative and free-form tagging. Our analysis further shows that LoVeC is highly
efficient, achieving a 20× speedup compared to state-of-the-art methods, and generalizes well to
short-form QA tasks. In our analysis (§6), we also investigate why RL outperforms SFT in our case
and provide practical insights for future applications.

2 RELATED WORK

Confidence/Uncertainty Estimation in Long-form Generations. Previous research on confidence
and uncertainty estimation has primarily focused on multiple-choice or short-form question answering
(Lin et al., 2023; Murray & Chiang, 2018; Kuhn et al., 2023; Vazhentsev et al., 2023; Duan et al.,
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2023; Zhu et al., 2023; Xiong et al., 2024; Tian et al., 2023; Ulmer et al., 2024). Recently, there has
been increasing interest in confidence and uncertainty estimation for long-form generation. Zhang
et al. (2024a) propose LUQ, an uncertainty estimation method designed for long-form generation at
both the sentence and passage levels. This approach requires sampling multiple responses, making it
computationally expensive. Several studies (Zhang et al., 2024b; Jiang et al., 2024; Fadeeva et al.,
2024; Liu et al., 2024) explore post-hoc methods that estimate claim-level uncertainty in long-form
outputs. While these approaches offer finer-grained confidence estimates, they typically rely on
GPT-based claim extraction, leading to high computational cost. In contrast, we propose an on-the-fly
verbalized confidence estimation method that generates confidence scores alongside long-form factual
statements in a single decoding pass. Our methods do not need additional sampling or API calling,
making it more efficient and scalable.

Verbalized Confidence Estimation. Teaching LLMs to verbalize their confidence has been widely
explored in short-form generation (Xiong et al., 2024; Tian et al., 2023; Cheng et al., 2024; Chen
et al., 2024; Li et al., 2024; Lin et al., 2022; Xu et al., 2024; Zhang et al., 2024c; Han et al., 2024;
Stangel et al., 2025). However, extending verbalized uncertainty to long-form generation remains
challenging, as multiple aspects may vary in certainty within a single response. Recent work addresses
this problem by tightly coupling uncertainty cues with the generated output. LoGU (Yang et al.,
2024) trains models to flag uncertain claims during generation, and Band et al. (2024) propose
linguistic calibration by embedding expressions such as “I believe” or “I am 70% uncertain” into the
text. Although both approaches improve human interpretability, they lack machine interpretability,
making post-processing and integration with downstream tasks more difficult. In contrast, our method
produces structured outputs by appending numerical confidence tags to each sentence, offering greater
flexibility and interpretability.

Reinforcement Learning for Confidence Estimation Reinforcement learning (RL) is increasingly
used to fine-tune LLMs, often outperforming supervised fine-tuning (SFT) when target behaviors can
be sampled from the base model (Cao et al., 2024; Ouyang et al., 2022; Setlur et al., 2025; Guo et al.,
2025). Confidence estimation via RL is still new and mostly studied in short-form QA. PPO-based
methods such as RewardingDoubt (Stangel et al., 2025) and SaySelf (Xu et al., 2024) outperform
SFT techniques like R-tuning (Zhang et al., 2024d), but work on long-form confidence remains
limited. LoGU (Yang et al., 2024) applies direct preference optimization (DPO) (Rafailov et al.,
2023b) to generate ordinal phrases, while Band et al. (2024) use PPO to calibrate user-facing answers.
However, these approaches rely on text-embedded outputs that are difficult to process and evaluate
systematically. In contrast, we use DPO and group relative policy optimization (GRPO) (Shao et al.,
2024) to append a bounded numerical confidence score after each statement.

3 PRELIMINARIES

In this section, we introduce the preliminaries of confidence estimation in long-form generation.

Primary Goal. In long-form confidence estimation, the primary objective is to align confidence
scores with the factuality of the generated output (Zhang et al., 2024a;b; Yang et al., 2024; Huang
et al., 2024b; Jiang et al., 2024; Fadeeva et al., 2024; Liu et al., 2024). The focus on factuality is
mainly for two reasons: (1) hallucinations remain a significant challenge in LLMs, and confidence
estimation can effectively indicate potential hallucinations during generation; (2) the factuality of a
sentence can be objectively assessed, enabling a more quantitative and consistent evaluation compared
to subjective criteria such as creativity or coherence (Zhang et al., 2024b; Yang et al., 2024).

Granularity. Formally, given an input query q, an LLM parameterized by θ generates a response
y = πθ(q). Confidence estimation can be performed at various granularities depending on whether
the confidence score is assigned at the level of atomic claims (a short sentence conveying a single
piece of information) (Zhang et al., 2024b; Jiang et al., 2024; Fadeeva et al., 2024), for each sentence
(Zhang et al., 2024a; Manakul et al., 2023), or the whole passage (Zhang et al., 2024a; Huang et al.,
2024b). For sentence-level confidence estimation, the response y is defined as: y = πθ(q) consisting
of a sequence of sentences s and corresponding confidence scores c:

y = {(s1, c1), (s2, c2), . . . , (sn, cn)} = {(si, ci)}ni=1. (1)
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where si represents the ith sentence and ci ∈ [0, 1] denotes the corresponding confidence score,
representing the estimated probability of factual correctness; higher values indicate greater confidence.

Factuality Evaluation. Each sentence si is assigned a factuality score fi ∈ [0, 1], reflecting its actual
factual accuracy. These factual scores f are obtained by prompting an oracle verification model O
with suitable supporting evidence E pertinent to the query q:

f = FactCheck(O, q, E, s). (2)

Confidence Evaluation. To evaluate these confidence scores, the objective is to ensure the confidence
scores ci generated by the model are well-calibrated and closely align with the independently
determined factuality scores fi. This calibration requirement is expressed as:

∀i ∈ {1, 2, . . . , |f |}, ci ≈ fi, |f | = |c| (3)

Various metrics can be applied to measure this alignment. We discuss more details in Section 5.

4 LONG-FORM VERBALIZED CONFIDENCE

4.1 CONFIDENCE ESTIMATION VIA RL

We formulate the task of verbalizing confidence as a sequential decision-making problem on top
of language generation. An LLM operates as the policy πθ, parameterized by θ. The objective of
the policy is to assign confidence scores to its generated factual statements, such that these scores
align with independently verified factuality assessments. Notably, hallucination is not penalized as
generation errors; instead, the model is expected to assign low confidence scores to hallucinated
statements, thereby facilitating hallucination detection.

We estimate confidence at the sentence level, rather than at the passage or atomic-claim level.
Sentence-level estimation balances interpretability, computational efficiency, and alignment with nat-
ural language structure. Compared to passage-level estimation, it allows for finer-grained assessment.
Compared to atomic-claim-level methods, it avoids extra decomposition steps and produces outputs
that are more easily interpreted by humans. Moreover, using numerical confidence scores supports
flexible post-processing without affecting text fluency or factual content, unlike methods that embed
confidence markers (e.g., “I believe”, “I am uncertain”) directly into the output. For evaluation, we
introduce two task settings for difference use cases: free-form tagging and iterative tagging.

Free-form Tagging. We study a setting in which the policy model πθ produces factual statements
along with their associated confidence estimates in a single generation pass. As shown in the left
part of Figure 1, in this formulation, the action space includes all possible factual statements s and
corresponding confidence values c, spanning the model’s full vocabulary. The model outputs a
sequence of sentence–confidence pairs, y = {(s1, c1), (s2, c2), . . . , (sn, cn)}, by maximizing the
following objective, where t is the tth output token in sequence y:

yt = argmax
yt

πθ(yt|y<t, q) (4)

This free-form setting gives the model full generative freedom to balance content generation with
calibrated confidence expression. For example, we can use the output confidence to further constrain
model to decode only high confidence statements in on-stake domains such as medicine, law, etc.

Iterative Tagging. We also evaluate models in a controlled setting where the content is fixed
and only the confidence scores are predicted. This setting is motivated by use cases where the
generation cannot be altered and provides a consistent basis for model comparison. As shown on
the right in Figure 1, given a query q and a base language model πbase, we first generate a static
output ybase = {s1, s2, . . . , sn}. The policy model πθ is then asked to assign confidence scores
ci ∈ {0, 1, . . . , 10} for each sentence, conditioned on the query and previously tagged pairs:

ci = argmax
c

πθ({q, (s1, c1), (s2, c2), . . . , (si−1, ci−1), si}, c) (5)

By decoupling content generation from confidence estimation, this setting ensures fair comparison
across models and only requires models to generate confidence scores. In contrast to free-form
tagging, it avoids the confounding effects of content variation on confidence evaluation.

4
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Why RL. In our study, we prefer RL over SFT for confidence calibration in long-form generation
for the following reasons. Standard LLM SFT optimizes likelihood on dense signals from positive
references and offers limited leverage from negative samples. Though it learns to assign lower
probability to undesirable outputs, but not to adjust the degree of confidence or reason about the costs
of errors. By contrast, RL is expressly designed for sparse, delayed feedback and can exploit both
positive and negative outcomes by directly rewarding alignment between factuality and the emitted
confidence score (Kumar et al., 2024; Havrilla et al., 2024). In addition, effective calibration requires
joint optimization of content and confidence: SFT learns a post-hoc mapping from fixed text to a
score, whereas RL treats the sentence and its score as one action, enabling credit assignment across
both and allowing the model to revise content for better calibration. This also lets us encode ordinal
structure and asymmetric penalties (e.g., being confidently wrong is worse than being uncertain) via
the reward, without hand-balancing differentiable losses. We propose both on-policy and off-policy
training strategies to accommodate different application scenarios.

4.2 ON-POLICY DESIGN

Given a data point d = (q, E) ∼ D, containing a query q and the evidence E for verification, the
output sequence y = {(si, ci)}ni=1 can be sampled from y = πθ(q). Given an oracle model O, we
can obtain the ground truth factuality f = FactCheck(O, q, E, s). In our setting, the core design
challenge for on-policy RL lies in constructing a reward signal that encourages aligning the model’s
predicted confidence scores c with the factual correctness of each statement f .
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0
2

4
6

8
10

Co
rre

ctn
es

s

0
2

4
6

8
10

10.0
7.5
5.0
2.5

0.0
2.5
5.0
7.5
10.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Re
w

ar
d

Figure 2: GRPO Reward Function

Intuitively, we want to reward the model when the confi-
dence ci, and correctness fi for each statement si are close
(e.g., high correctness - high confidence and vice versa),
and penalize the model when they are far part (e.g., low
correctness, high confidence, vice versa). Similar to Stan-
gel et al. (2025), we use a log-base reward as it imposes
stronger penalties to miscalibration comparing to simple
linear and quadratic losses, as visualized in Figure 2. The
log-base reward is more appropriate for risk-sensitive ap-
plications where confidence must reflect true correctness
likelihood. We design this confidence reward rconf for an
output y using binary cross-entropy loss as below, where
λ is the scaling factor, Rmax is the normalizing factor and
⊙ is the Hadamard product.

rconf = λ · 1
n
1⊤

(
1+

f ⊙ log(c)− (1− f)⊙ log(1− c)

Rmax

)
(6)

Both confidence ci and factuality fi are normalized from integers in {0, 1, . . . , 10} to real numbers
in [0, 1] for numerical stability in our implementation. In practice, we combine the confidence reward
with other subordinate objectives (e.g., informativeness, format reward) to ensure model is accurately
expressing confidence while retaining the quality of generation, with more details in Appendix B.

We instantiate this on-policy setup using the GRPO algorithm (Shao et al., 2024), an on-policy
method adapted from PPO (Schulman et al., 2017). Given a dataset D = {d1, d2, . . . , dN}, where
each data point d = (q, E), we sample a group of output trajectories y = {y1, y2, . . . , yG} from the
current policy πθold and obtain the group reward r = {r1, . . . rG}. Then we calculate the averaged
advantage Âj(πθ, πold, yj , E) by computing the reward using fact-checking for policy update. The
GRPO loss is defined as below, with β as the KL-regularization factor with more details in Appendix
B.

LGRPO(θ) = − E(q,E)∼D, {yj}G
j=1∼πθold (y|q)

[
1

G

G∑
j=1

(
Âj(πθ, πold, yj , E)− β DKL[πθ∥πref]

)]
(7)
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Algorithm 1 Generating Preference Pair Dataset via Fact-Checked Confidence Scores

Require: Dataset D = {(qi, Ei)}Ni=1, model πbase, generations per query n, orcale model O
Ensure: Preference dataset Dpref = {(qi, yw,i, yl,i)}Ni=1

1: Initialize Dpref ← ∅
2: for each (q, E) ∈ D do
3: Generate outputs ybase = {s1, . . . , sn} ← πbase(q)
4: Compute winning scores f = (f1, . . . , fn)← FactCheck(O, q, E, ybase)
5: Initialize losing score vector c′ = (c′1, . . . , c

′
n)

6: for j from 1 to n do ▷ Generate scores for the losing example yl
7: Sample c′j ∼ U({0, 1, . . . 10} \ {fj}) ▷ Random integer in ({0, 1, . . . , 10} \ {fj})
8: end for
9: Construct winning response set yw = {(sj , fj)}nj=1

10: Construct losing response set yl = {(sj , c′j)}nj=1 ▷ Uses same sj but different scores c′j
11: Add preference tuple (q, yw, yl) to Dpref
12: end for
13: return Dpref

4.3 OFF-POLICY DESIGN

For off-policy RL, we focus on preference learning Christiano et al. (2017). To construct the
preference-pair data (q, yw, yl) ∼ Dpref, for each query q, we need to construct a winning output
yw and a losing output yl. We first probe the model’s πbase initial knowledge, using query q from
(q, E) ∈ D to elicit the initial response from the model. The response ybase = πbase(q) only contains
factual statements ybase = {s1, s2, . . . , sn} as we have not taught the model to generate formatted
confidence yet. Similarly, we generate the factual correctness score f = FactCheck(O, q, E, ybase)
and augment the preference-pair dataset Dpref for off-policy training, as detailed in Algorithm 1. We
use implement DPO Rafailov et al. (2023a) for preference based training . For DPO algorithm, we
first finetune the original model for format following on yw with SFT only, to acquire πSFT. We
then perform training with the standard DPO objective as below, with β to regularize the model’s
behaviour with respect to the reference model πSFT.

LDPO(θ) = −E(q,yw,yl)∼Dpref

[
log σ

(
β log

πθ(yw | q)
πSFT(yw | q)

− β log
πθ(yl | q)
πSFT(yl | q)

)]
(8)

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Datasets. We use three datasets for evaluation. Among them, we split WildHallucination (WildHallu)
for training and testing, while the other two datasets are used for testing only: (1) WildHallu: It
contains 7919 entities mined from user-chatbot conversations collected in the wild. We divide the
original dataset (Zhao et al., 2024) into training, development, and test sets with a 8:1:1 ratio. (2) Bios:
It consists of 183 human-annotated entities related to people on Wikipedia from FActScore (Min
et al., 2023), covering a wide range of popularity levels. It has been widely used for evaluating both
long-form factuality and uncertainty (Zhang et al., 2024a;b; Jiang et al., 2024). (3) PopQA (Mallen
et al., 2023): Following Jiang et al. (2024), we use the long-form version of PopQA, which comprises
entities across diverse topics such as people, cities, movies, and companies.

Fact-checking. Both Bios and PopQA provide corresponding Wikipedia pages as evidence. For
WildHallu, the dataset authors provide the top-10 Google Search results for each entity. During
fact-checking, we input the content to be verified alongside the collected evidence, following the
pipelines described in (Zhang et al., 2024a; Zhao et al., 2024; Min et al., 2023). Specifically, we
use GPT-4o to obtain more accurate judgments. We conduct additional human annotation to double
check this pipeline in Appendix C. The detailed prompting strategy is provided in the Appendix M.

Baselines. We select baselines according to two key criteria. First, a method must produce a
structured, numerical confidence score for each output. This criterion excludes methods that do not
generate per-instance scores (Jiang et al., 2024; Kuhn et al., 2023), as well as approaches like LoGU
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Table 1: Free-form tagging results using Llama3-8B-Instruct. The top three results outperforming
LUQ are highlighted in cyan, with deeper shades indicating better performance. All values are
presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literature SOTA

LUQ 14.5 21.5 56.8 20.0 29.5 63.8 16.7 23.2 62.5

Our Methods

LoVeC-SFT 8.9 15.1 58.8 16.6 26.1 58.9 19.4 27.8 52.6
LoVeC-GRPO 6.0 8.2 63.1 10.1 11.1 68.7 10.1 5.1 63.0
LoVeC-DPO 6.3 5.4 62.1 9.2 6.1 67.4 10.3 4.0 62.6

Table 2: Iterative tagging results using Llama3-8B-Instruct. The top three results outperforming
LUQ are highlighted in cyan, with deeper shades indicating better performance. All values are
presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literature SOTA

LUQ 14.5 21.5 56.8 20.0 29.5 63.8 16.7 23.2 62.5

Baseline Methods

Vanilla 10.8 6.0 9.1 20.9 24.1 1.2 21.7 23.7 4.9
p(true) 23.8 23.6 15.8 19.7 28.6 17.3 19.9 24.3 23.1
Verb-Conf 20.3 22.1 13.4 21.2 25.3 10.8 18.8 22.1 18.3
Self-Cons 16.5 24.3 47.8 20.3 26.5 58.8 17.3 21.6 56.8

Our Methods

LoVeC-SFT 9.1 15.2 51.1 16.6 25.8 56.0 18.0 25.9 52.7
LoVeC-GRPO 5.7 2.5 57.0 8.5 4.2 64.7 11.3 6.2 62.8
LoVeC-DPO 6.0 5.0 60.4 9.0 7.3 65.6 9.6 1.7 63.1

(Yang et al., 2024) and Linguistic Calibration (Band et al., 2024), which embed natural language
uncertainty phrases that are not suitable for automated quantitative comparison. Second, the method
must operate at the sentence level, without requiring fine-grained atomic claim decomposition using
GPTs (Fadeeva et al., 2024; Liu et al., 2024). Prompt formulations for all baselines are provided in
Appendix M.

• Vanilla: This refers to directly prompting the original model (e.g., Llama-3-8B-Instruct).
• p(true) (Kadavath et al., 2022): We present a sentence to an LLM and ask whether it is

factually true or false. The likelihood associated with the "true" label is used as the confidence
score. Following (Zhang et al., 2024b), we provide additional context to the LLM to address
co-reference issues.

• Verbalized Confidence (Verb-Conf) (Xiong et al., 2024; Tian et al., 2023): We prompt the LLM
to assign a numerical confidence score (ranging from 0 to 10) to a given sentence, reflecting the
model’s belief in its factuality. Similar to p(true), we additionally provide the full paragraph as
context to the model.

• Self-Consistency (Self-Cons) (Manakul et al., 2023): We generate 10 additional outputs using
temperature T = 1 and compute the agreement between the original output and the sampled
outputs. The level of agreement is used as the confidence score.

• LUQ (Zhang et al., 2024a): A state-of-the-art (SOTA) uncertainty estimation method specifically
designed for long-form QAs. LUQ demonstrates better performance over a range of baselines
in short-form uncertainty estimation (Lin et al., 2023; Kuhn et al., 2023) and is also applied to
confidence estimation.

Training Settings. For the backbone language models, we use Llama-3-8B-Instruct (Meta, 2024) and
Gemma-2-9B-It (Team et al., 2024). We first perform one epoch of SFT on yw from the Wildhallu
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preference dataset for format adherence. For a fair comparison, we subsequently fine-tune each model
for one additional epoch using SFT, GRPO, DPO, respectively. For GRPO, we use a copy of the
model itself as reward model for online reward assignment. More training details are in Appendix B.

Evaluation Metrics Since both factuality and confidence lie in [0, 1], we use metrics suited to
continuous labels: (1) Brier Score (BS) for mean squared error between predicted confidence and
correctness, (2) ECE-M (Huang et al., 2024a) for calibration under soft labels, and (3) Spearman
Correlation (SC) (Zhang et al., 2024a) to assess ordinal consistency. All results use greedy decoding.

5.2 EXPERIMENTAL RESULTS

LoVeC demonstrates substantial improvement on calibration in both freeform and iterative
tagging. As shown in Tables 1 and 2, LoVeC-DPO and LoVeC-GRPO consistently outperform
all baselines, including the prior SOTA LUQ, across all evaluation metrics. This trend holds for
both Llama and Gemma. While SFT alone achieves results comparable to some baselines, applying
RL further improves performance, highlighting the necessity of optimizing confidence via RL. As
depicted in Table 7 and 8 (Appendix D), by averaging sentence-level confidence and factuality
over generated passage, the results exhibit consistent trends in passage-level. Additional studies in
Appendix F confirms our models’ confidence is directly associate to the current fact during generation,
and not affected by previously assigned confidence scores. A case study can be found in Appendix L.

0 500 1,000 1,500 2,000

LUQ
Self-Cons

p-true
Self-Verb

Iterative
Free-form

1,525

1,225

387

367

139

64

Time (seconds)

Figure 3: Running-time Comparison

LoVeC is highly efficient on test-time. Our method of-
fers the btter test-time efficiency. Confidence scores are
generated inline with the answer, requiring no additional
sampling or decomposition of responses into atomic claims
via external API calls. In contrast, existing state-of-the-
art sampling-based methods—such as LUQ for long-form
generation—incur significant overhead due to repeated sam-
pling and similarity computations. As depicted in Figure 3
our method completes the inference on Wildhallu test set
(792 instances) 20 times faster than existing SOTA LUQ on
free-form tagging. A detailed discussion of the underlying
reasons for this efficiency is provided in Appendix K.

LoVeC generalizes well across domains and short-form QA. Tables 1 and 2 show that LoVeC
generalizes effectively to diverse datasets such as Bios and PopQA. To assess cross-format transfer, we
test the model’s ability to adapt to short-form confidence estimation using the TriviaQA dataset (Joshi
et al., 2017), a benchmark for short-form QA. As shown in Table 20 and Appendix J), our RL-trained
models achieve competitive ECE and AUROC scores compared to the baselines. Notably, LoVeC
approaches the performance of the state-of-the-art RL-based method, RewardingDoubt (Stangel et al.,
2025), despite being trained on significantly less and fully out-of-domain data. More details are in
Appendix J. Overall, the results highlight the robustness and transferability of LoVeC across both
domains and task formats.

LoVeC preserves response length and overall factuality. In the freeform tagging, our RL-trained
models may produce different content compared to the original model. We further compares the
generation lengths and factuality. LoVeC maintains both response length and factual accuracy,
confirming that our calibration improvements do not compromise informativeness and showing no
signs of reward hacking. Full details are in Appendix H.

6 ANALYSIS

RL ensures numerical consistency. Examining the top-ranked tokens shows that RL-trained models,
especially GRPO, assign probabilities that respect the ordinal structure of the confidence scale. As
seen in Table 3, for RL methods, higher scores (e.g., 10, 9, 8) reliably outrank lower ones in factually
correct generation. Even under factually incorrect case (i.e., model hallucinates about an unknown
fact) RL methods maintains an ordered distribution centered on its prediction. Tokens representing
higher confidence appear in monotonic order with decreasing probability (e.g., 3, 4 comes after 2, and
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Table 3: Case study on predicting the next confidence score token. We use one factually Correct
sentence and one Incorrect sentence. The table lists the top-15 tokens; unrenderable characters are
shown as [?], and spaces are displayed as . GRPO exhibits a clear ordinal pattern, DPO shows
partial ordering, and SFT shows little to none. See Appendix I for the prompt.

Model Top 15 Tokens

Correct: King’s College, Cambridge is a constituent college ... and most prestigious universities. <confidence>

GRPO 10 9 8 7 6 5 4 3 2 1 0 11 90 99
DPO 10 9 8 7 11 6 5 [?] 09 tenth [?] 12 4 [?] ten
SFT 10 0 1 4 8 2 3 7 11 9 5 6 12 X X

Incorrect: MiniGPT4 is a lightweight and efficient variant of ... in resource-constrained environments. <confidence>

GRPO 2 3 4 5 1 6 0 7 8 9 10 30 20 60
DPO 2 3 4 5 6 1 7 0 8 9 10 [?] five four four
SFT 0 10 1 4 2 3 8 7 5 6 9 11 12 13 14

0 comes after 1). We believe such desired behavior stems from the RL reward. GRPO shows the best
ordering since its reward explicitly aligns confidence with factuality. DPO exhibits partial ordering
but is often disrupted by irrelevant tokens, reflecting weaker ordinal constraints. SFT performs worst:
despite outputting plausible top scores (e.g., 10), subsequent tokens lack meaningful order, with
anomalies like 0 ranked highly. This lack of structural supervision undermines calibration. More
details are in Appendix I.

Ablating the oracle model achieves on-par results. For DPO, we initially employ GPT-4o as an
oracle model to generate preference pairs based on factuality comparisons. To assess the necessity
of this external supervision, we perform an ablation study by replacing GPT-4o with a self-labeling
setup. For instance, Llama-3-8B-Instruct generated outputs are fact-checked using a frozen copy of
itself. Our GRPO pipeline is oracle-free by design, as generating GPT-4o labels online during training
is prohibitively expensive. As shown in Appendix D.3, Table 9, DPO trained with self-generated
labels performs slightly worse than those using GPT-4o, but still outperforms the strongest baseline,
LUQ. The success of self-labeling highlights the potential for scalability in settings where external
oracle models are unavailable.

GRPO reward design improves calibration, while SFT regression offers no gains.. For GRPO,
we further examine the impact of alternative reward formulations. In addition to the log-based
reward in Equation 6, we experiment with linear and quadratic variants based on the absolute and
squared difference between predicted confidence and correctness as the target of alignment. As shown
in Table 10, all reward functions promote such alignment, but the log-based reward proves more
effective: as a proper scoring rule, it sharply penalizes overconfident errors and provides stronger
calibration. We also explore whether replacing cross-entropy with a regression loss on confidence
scores during SFT improves calibration. However, as reported in Appendix G, this modification
yields no benefit, further confirming the inherent limitations and inefficiency of SFT for this task.

Suggestions to Practitioners. Both RL methods deliver strong and reliable performance, but with
distinct trade-offs. GRPO, though more computationally intensive due to its explicit reward model,
offers key advantages: it directly models ordinal relationships between confidence scores and provides
improved numerical consistency. In contrast, DPO avoids deploying a separate reward model but
relies on carefully curated offline preference pairs, which can be costly to construct and may restrict
flexibility. Thus, GRPO is preferable when ample computational resources are available, while DPO
serves as a lighter-weight alternative under tighter resource constraints.

7 CONCLUSION

We introduce LoVeC, a reinforcement learning method to improve confidence estimation in long-form
factual text generation. Our approach achieves SOTA performance in both confidence calibration and
runtime efficiency. Our results also demonstrate that RL enables more consistent and interpretable
confidence predictions. Further analysis shows strong generalization and scalability of our model to
out-of-domain datasets and short-form confidence estimations. The results highlight the potential of
our framework for deployment in risk-sensitive and high-stakes domains, or general LLM use cases,
where hallucination detection is crucial for trust and usability.
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REPRODUCIBILITY STATEMENT

Datasets we used, WildHallucinations, Bios, PopQA, and TriviaQA, are all publicly available.
Prompts used are fully described in Appendix M. We use publicly released backbones (Llama-3-8B-
Instruct, Gemma-2-9B-It). All fact checking pipelines and human annotation protocols are described
in Appendix C. Training scripts, configuration files, will be released as anonymous supplementary
material. Full reward formulations and GRPO loss equations are provided in Appendix B, together
with hyperparameters, optimization settings, and LoRA configurations. Experiments were run on
Google Cloud A100 80GB GPUs ( 1500 GPU hours). Software stack and licenses are listed in
Appendix B.

ETHICS STATEMENT

Our research adheres to the ICLR Code of Ethics. We do not foresee any risks or potential harm
from this study. All datasets and code used are under appropriate licenses. Human annotation was
conducted following standard practices, with annotators providing consent to share the data for
research purposes. We use LLMs only for polishing the paper writing.
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Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, and Karin Verspoor (eds.),
Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 212–223,
Brussels, Belgium, October 2018. Association for Computational Linguistics. doi: 10.18653/v1/
W18-6322. URL https://aclanthology.org/W18-6322/.

OpenAI. Chatgpt blog post. https://openai.com/blog/chatgpt, 2022. Accessed: 2024-
09-06.

OpenAI. Gpt-4 technical report, 2023. URL https://arxiv.org/abs/2303.08774.

12

https://arxiv.org/abs/2406.10099
https://arxiv.org/abs/2205.14334
https://openreview.net/forum?id=jH67LHVOIO
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.acl-long.546/
https://aclanthology.org/2023.emnlp-main.557/
https://aclanthology.org/2023.emnlp-main.557/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://aclanthology.org/2023.emnlp-main.741/
https://aclanthology.org/W18-6322/
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal. arXiv preprint arXiv:2502.12118, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models, 2024. URL https://arxiv. org/abs/2402.03300, 2024.

Paul Stangel, David Bani-Harouni, Chantal Pellegrini, Ege Özsoy, Kamilia Zaripova, Matthias
Keicher, and Nassir Navab. Rewarding doubt: A reinforcement learning approach to confidence
calibration of large language models. arXiv preprint arXiv:2503.02623, 2025.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human feedback. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5433–5442, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL https://aclanthology.org/
2023.emnlp-main.330/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

13

http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://aclanthology.org/2023.emnlp-main.330/
https://aclanthology.org/2023.emnlp-main.330/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dennis Ulmer, Martin Gubri, Hwaran Lee, Sangdoo Yun, and Seong Oh. Calibrating large
language models using their generations only. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 15440–15459, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.824. URL
https://aclanthology.org/2024.acl-long.824/.

Artem Vazhentsev, Akim Tsvigun, Roman Vashurin, Sergey Petrakov, Daniil Vasilev, Maxim Panov,
Alexander Panchenko, and Artem Shelmanov. Efficient out-of-domain detection for sequence to
sequence models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of
the Association for Computational Linguistics: ACL 2023, pp. 1430–1454, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.93. URL
https://aclanthology.org/2023.findings-acl.93/.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran,
Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. Long-form factual-
ity in large language models. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
937ae0e83eb08d2cb8627fe1def8c751-Abstract-Conference.html.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
express their uncertainty? an empirical evaluation of confidence elicitation in llms. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
gjeQKFxFpZ.

Tianyang Xu, Shujin Wu, Shizhe Diao, Xiaoze Liu, Xingyao Wang, Yangyi Chen, and Jing Gao.
Sayself: Teaching llms to express confidence with self-reflective rationales, 2024.

Ruihan Yang, Caiqi Zhang, Zhisong Zhang, Xinting Huang, Sen Yang, Nigel Collier, Dong Yu,
and Deqing Yang. Logu: Long-form generation with uncertainty expressions, 2024. URL
https://arxiv.org/abs/2410.14309.

Ruihan Yang, Caiqi Zhang, Zhisong Zhang, Xinting Huang, Dong Yu, Nigel Collier, and Deqing
Yang. Uncle: Uncertainty expressions in long-form generation, 2025.

Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. LUQ: Long-text uncertainty quantifi-
cation for LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 5244–5262, Mi-
ami, Florida, USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.299. URL https://aclanthology.org/2024.emnlp-main.299/.

Caiqi Zhang, Ruihan Yang, Zhisong Zhang, Xinting Huang, Sen Yang, Dong Yu, and Nigel Collier.
Atomic calibration of llms in long-form generations, 2024b.

Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng
Ji, and Tong Zhang. R-tuning: Instructing large language models to say ‘I don‘t know’. In
Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pp. 7113–7139, Mexico City, Mexico, June
2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.394. URL
https://aclanthology.org/2024.naacl-long.394/.

Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng
Ji, and Tong Zhang. R-tuning: Instructing large language models to say ‘I don’t know’. In

14

https://aclanthology.org/2024.acl-long.824/
https://aclanthology.org/2023.findings-acl.93/
https://github.com/huggingface/trl
http://papers.nips.cc/paper_files/paper/2024/hash/937ae0e83eb08d2cb8627fe1def8c751-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/937ae0e83eb08d2cb8627fe1def8c751-Abstract-Conference.html
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://arxiv.org/abs/2410.14309
https://aclanthology.org/2024.emnlp-main.299/
https://aclanthology.org/2024.naacl-long.394/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 7113–7139, Mexico City, Mexico, 2024d. Association
for Computational Linguistics. URL https://aclanthology.org/2024.naacl-long.
394.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. ArXiv preprint, abs/2309.01219, 2023. URL https://arxiv.org/abs/
2309.01219.

Wenting Zhao, Tanya Goyal, Yu Ying Chiu, Liwei Jiang, Benjamin Newman, Abhilasha Ravichander,
Khyathi Chandu, Ronan Le Bras, Claire Cardie, Yuntian Deng, and Yejin Choi. Wildhallucinations:
Evaluating long-form factuality in llms with real-world entity queries, 2024. URL https:
//arxiv.org/abs/2407.17468.

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the calibration
of large language models and alignment. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 9778–9795, Sin-
gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.654. URL https://aclanthology.org/2023.findings-emnlp.
654/.

15

https://aclanthology.org/2024.naacl-long.394
https://aclanthology.org/2024.naacl-long.394
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2407.17468
https://arxiv.org/abs/2407.17468
https://aclanthology.org/2023.findings-emnlp.654/
https://aclanthology.org/2023.findings-emnlp.654/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: On the advantage of verbalized confidence. We compare four paradigms along three axes:
efficiency, suitability for long-form generation, and flexibility/machine-interpretability. Our numerical
verbalization consolidates the strengths of prior paradigms: it is efficient, works well for long-form
outputs, and is easy to parse/threshold.

Paradigm Efficient? Suitable for
Long-form?

Flexibility &
Machine Interpretability

Sampling/Consistency-based ✗ ✓ ✓
Logit/Probability-based ✓ ✗ ✓
Verbalized Confidence (Linguistic) ✓ ✓ ✗

Verbalized Confidence (Numerical) — Ours ✓ ✓ ✓

A LIMITATION AND FUTURE WORK

Our reinforcement learning tuning approach requires access to white-box models, which limits its
applicability to black-box settings. Another limitation is our exclusive focus on factuality; this choice
is guided by the availability of widely adopted long-form factuality evaluation pipelines in existing
research. Future work could explore several directions. First, confidence estimation can be extended
to more general long-form generation tasks such as code generation, creative writing, and machine
translation. Second, applying our method to high-stakes domains—such as law, healthcare, and
finance—represents an important and impactful avenue for future research.

Broader Impact Our work presents potential for enhancing the trustworthiness of large language
models in real-world deployments, especially in high-stakes domains such as healthcare, law, and
education, by improving sentence-level confidence estimation and reducing hallucinations. The
interpretability and efficiency of our method may enable safer AI systems by allowing users to
make informed decisions based on model-generated content. However, we recognize that verbalized
confidence could be misused—for example, to give unwarranted credibility to inaccurate outputs
or manipulate perceived authority. As such, careful deployment and transparency about confidence
generation mechanisms are essential to prevent misuse and ensure ethical adoption.

B EXPERIMENT DETAILS

B.1 TRAINING SETUP

In our experiment we use SFT , GRPO, DPO, and ORPO. We choose them also as an ablation of
reward and reference model, with the details in Tabel 5 below. We design a confidence quantification

Method Reward Model Reference Model
GRPO Yes Yes
DPO No Yes
ORPO No No

Table 5: Comparison of methods by use of Reward Model and Reference Model
prompt for instruction-following, which is prepended before each query. However, we observe
that the models often fail to generate responses that follow the expected confidence format. Thus,
for both of Llama-3-8B-Instruct and Gemma-2-9b-it, we perform 1 epoch of SFT on
(q, yw) ∼ Dpref for format following on the completion yw only before RL. For GRPO, we use the
frozen copy of original model as the reward model for fact-checking. Both DPO and ORPO are using
the exact same Dpref.

We use LoRA Hu et al. (2022) on q_proj, k_proj, v_proj, o_proj consistently across
models and methods to fine-tune < 1% of the model’s parameters. Below are the detailed hyperpa-
rameter choices.
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B.2 INFRASTRUCTURE

We’ve used TRL von Werra et al. (2020) libraries for training and vLLM Kwon et al. (2023) libraries
for inference. We’ve conducted our experiments on Google Cloud Platform using a2-ultragpu
machines with A100 80GB GPUs. We have consumed around 1500 GPU hours for this project. We
list the assets we used and their license in Table 6.

Asset Category License
TRL v0.15.2 Code Apache License 2.0
vLLM v0.7.3 Code Apache License 2.0
WildHallucinations Dataset MIT License
Bios Dataset MIT License
PopQA Dataset MIT License
TriviaQA Dataset Apache License 2.0

Table 6: List of external assets used and their licenses.

B.3 GRPO LOSS DESIGN

Here we provide the full equation of our GRPO loss. For each data point d = (q, E) a dataset
D = {d1, d2, . . . , dN}, we sample a group of output trajectories y = {y1, y2, . . . , yG} from the
current policy πθold and obtain the group reward r = {r1, . . . rG}. Then we optimize a new policy
πθ based on the per-output advantage estimates ∀yj ∈ y, Âj =

rj−mean(r)
std(r) . ϵ is the clipping factor

which helps to stabilize training by preventing excessively large policy updates. πref is the model’s
frozen copy for KL-regularization. t denotes the tth token of trajectory y.

LGRPO(θ) = − Eq∼D, {yj}G
j=1∼πθold (y|q)

1

G

G∑
j=1

1

|yj |

|yj |∑
t=1

{
min

[
πθ(yj,t | q, yj,<t)

πθold(yj,t | q, yj,<t)
Âj,t,

clip
(

πθ(yj,t | q, yj,<t)

πθold(yj,t | q, yj,<t)
, 1− ϵ, 1 + ϵ

)
Âj,t

]
− β DKL[πθ∥πref]

} (9)

In our implementation, we applied reward stretching to make sure it is sensitive enough to model’s
responses. In order to retain the quality of model’s generation, we additionally added subordi-
nate rewards, rcorrect represents the total factuality score, judged by reward model. The python
implementation of our reward function is below.

1 def improved_log_reward(confidence: int, correctness: int,
2 scale=10.0, gamma=1.5, penalty_strength=5.0):
3 if confidence is None or not (0 <= confidence <= 10):
4 return -3 * scale # malformed input penalty
5

6 # Core log-likelihood reward
7 p = np.clip(confidence / 10, 1e-6, 1 - 1e-6)
8 y = correctness / 10
9 nll = -(y * math.log(p) + (1 - y) * math.log(1 - p))

10

11 best_nll = 0
12 worst_nll = -(math.log(1e-6) + math.log(1 - 1e-6)) / 2
13

14 reward = scale * (1 - (nll - best_nll) / (worst_nll - best_nll))
15

16 # Stretch reward to amplify good/bad
17 reward = np.sign(reward) * (abs(reward) ** gamma)
18

19 # Correctness bonus (small)
20 reward += 0.15 * correctness
21

22 return float(reward)
23

17
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C HUMAN ANNOTATION: RELIABILITY OF GPT-4O ANNOTATIONS

Although the paradigm of using GPT+Evidence to fact-check has been widely used in previous work
(Zhang et al., 2024a; Zhao et al., 2024; Min et al., 2023; Wei et al., 2024), we conduct additional
human annotation to evaluate the reliability of using GPT-4o as a fact-checker with retrieved evidence.
Two annotators with strong English proficiency and a master’s degree in computer science were
recruited. They were instructed to fact-check the sentences using the same prompt provided to
GPT-4o. A random sample of 50 instances was drawn from the WildHallu dataset, consisting of
312 sentences in total. We use Spearman correlation as the metric for reliability assessment. The
inter-annotator agreement is 0.91 between Annotator 1 and Annotator 2. For the comparison between
GPT-4o and the human average, we observe a Spearman correlation of 0.88, indicating a very strong
alignment between the model and human judgments.

D ADDITIONAL RESULTS ON LLAMA-3-8B-INSTRUCT

D.1 RELIABILITY DIAGRAMS

Figure 4 displays reliability diagrams for the SOTA method LUQ, the vanilla model, LoVeC-SFT,
and LoVeC-DPO. A reliability curve closer to the perfect calibration line signifies better calibration.
We observe that both the vanilla model and LoVeC-SFT exhibit severe overconfidence. In contrast,
our LoVeC-DPO method breaks this overconfidence pattern, leading to improved calibration results.
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Figure 4: Reliability diagrams for iterative tagging using Llama3-8B-Instruct in sentence-level.

D.2 PASSAGE-LEVEL RESULTS

We provide passage-level results of Llama-3-8B-Instruct. We simply estimate the passage-
level performance by calculating the average of sentence-level confidence and factuality. As shown
in the tables below, our method, LoVeC, provides better performance than literature SOTA.

D.3 ABLATING THE ORACLE MODEL

To assess the necessity of using a high-capacity oracle model, we conduct an ablation study by
replacing GPT-4o with Llama-3-8B-Instruct for generating preference datasets. Specifically, instead
of relying on GPT-4o for fact-checking and labeling preference pairs, we use the training model itself
to self-label its outputs prior to DPO training.

As shown in Table 9, while models trained on self-labeled data perform slightly worse than those
using GPT-4o supervision, they still surpass strong baselines. Notably, LoVeC-DPO trained with self-
labeling continues to outperform the previous state-of-the-art method, LUQ. This result highlights
the practicality and effectiveness of oracle-free training, making the approach more accessible and
cost-efficient without significantly compromising performance.
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Table 7: Passage-level iterative tagging results using Llama3-8B-Instruct. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literatrue SOTA

LUQ 8.0 19.1 70.5 12.4 28.1 75.3 9.8 21.9 73.1

Baseline Methods

Vanilla 8.4 7.1 30.0 17.4 26.0 18.5 18.9 26.0 18.3
p(true) 15.4 19.9 27.6 16.2 23.8 29.4 17.3 19.6 34.1
Verb-Conf 17.9 20.3 23.8 17.7 20.1 22.7 16.4 16.8 25.4
Self-Cons 12.1 17.4 59.2 18.3 21.2 64.7 14.7 17.1 61.3

Our Methods

LoVeC-SFT 6.8 15.5 54.0 13.1 26.6 63.9 14.4 26.3 60.5
LoVeC-GRPO 3.3 2.7 72.5 5.0 5.0 77.2 7.7 7.5 75.1
LoVeC-DPO 3.5 5.5 73.1 5.2 7.0 78.3 6.1 5.5 74.1

Table 8: Sentence-level free-form tagging results using Llama3-8B-Instruct. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literature SOTA

LUQ 14.5 21.5 56.8 20.0 29.5 63.8 16.7 23.2 62.5

Our Methods

LoVeC-SFT 6.4 15.2 60.6 12.4 25.6 66.1 15.4 27.1 59.5
LoVeC-GRPO 3.8 8.0 73.0 5.8 10.8 81.5 6.4 5.3 73.6
LoVeC-DPO 3.6 5.6 73.1 5.3 6.9 78.1 6.5 3.9 73.2

D.4 THE SELECTION OF REWARD FUNCTION

We compare different reward functions used in our GRPO framework, including logarithmic, linear,
and quadratic forms, as shown in Table 10. This demonstrates that the choice of reward function
plays a crucial role in guiding the learning process.

E GEMMA-2-9B-IT RESULTS

Here we provide results for Gemma-2-9B-It. As described in the tables below, our method shows
consistent improvements across models, beating the literature SOTA, LUQ, across datasets.
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Table 9: Comparison of WildHallu results for LUQ, SFT, DPO, and GRPO across tagging strategies.
All values are presented as percentages.

Method Iterative Tagging Freeform Tagging

BS ECE-M SC BS ECE-M SC

LUQ 14.5 21.5 56.8 14.5 21.5 56.8
LoVeC-GRPO 5.7 2.5 57.0 6.0 8.2 63.1

Fact-Checking with GPT-4o + Evidence

LoVeC-SFT 9.1 15.2 51.1 8.9 15.1 58.8
LoVeC-DPO 6.0 5.0 60.4 6.3 5.4 62.1

Fact-Checking with Llama3-8B + Evidence

LoVeC-SFT 8.2 9.0 49.6 8.3 9.5 58.3
LoVeC-DPO 7.2 9.8 58.0 7.1 7.8 60.4

Table 10: Comparison of WildHallu results for LUQ, GRPO-log, GRPO-linear, GRPO-quadratic. All
values are presented as percentages.

Method Iterative Tagging Freeform Tagging

BS ECE-M SC BS ECE-M SC

LUQ 14.5 21.5 56.8 14.5 21.5 56.8
GRPO-log 5.7 2.5 57.0 6.0 8.2 63.1
GRPO-quadratic 7.0 8.7 55.1 7.3 9.3 62.3
GRPO-linear 8.5 10.8 54.3 8.2 10.4 59.8

Table 11: Sentence-level iterative tagging results using Gemma-2-9B-It. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literature SOTA

luq 11.9 16.3 50.0 12.2 15.5 69.2 13.6 15.1 62.6

Our Methods

Vanilla 22.5 26.3 28.9 24.5 28.8 35.5 24.0 27.7 23.7
p(true) 19.3 22.8 25.4 21.0 25.0 31.0 21.5 24.5 26.0
Verb-Conf 18.5 19.2 35.1 18.0 19.0 39.5 19.5 20.0 36.2
Self-Cons 13.4 17.7 43.2 13.0 17.0 53.0 13.5 16.5 48.5

Our Methods

LoVeC-SFT 8.0 12.2 36.1 18.8 25.1 54.9 25.8 32.6 37.1
LoVeC-GRPO 7.3 5.6 52.2 10.7 11.1 72.4 13.1 18.1 64.2
LoVeC-DPO 4.1 1.3 51.8 7.5 7.3 75.2 11.6 13.2 65.3
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Table 12: Passage-level iterative tagging results using Gemma-2-9B-It. The top three results outper-
forming LUQ are highlighted in cyan, with deeper shades indicating better performance. All values
are presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literature SOTA

LUQ 6.3 14.1 61.2 6.8 14.2 81.6 9.2 11.8 73.8

Baseline Methods

Vanilla 19.3 23.1 35.5 21.6 29.4 43.1 21.4 28.1 33.6
p(true) 17.8 20.3 28.7 19.6 24.2 33.8 20.4 23.7 30.2
Verb-Conf 16.3 17.1 34.6 17.5 17.9 35.7 18.4 18.8 32.3
Self-Cons 12.2 15.4 48.9 12.9 16.1 58.1 13.4 15.2 54.4

Our Methods

LoVeC-SFT 6.5 12.1 31.9 16.2 25.6 55.6 23.6 32.8 38.3
LoVeC-GRPO 2.9 3.6 64.4 3.4 5.7 82.5 8.6 7.5 74.3
LoVeC-DPO 2.5 2.9 65.9 4.6 7.8 84.3 9.0 13.2 75.4

Table 13: Sentence-level free-form tagging results using Gemma-2-9B-It. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literature SOTA

LUQ 11.9 16.3 50.0 12.2 15.5 69.2 13.6 15.1 62.6

Our Methods

LoVeC-SFT 7.3 11.6 57.2 11.5 17.8 70.6 19.4 26.3 50.4
LoVeC-GRPO 4.3 4.6 56.1 8.3 3.7 72.6 8.5 8.9 63.5
LoVeC-DPO 4.5 2.2 55.2 6.6 4.2 70.3 9.5 8.2 66.6

Table 14: Passage-level free-form tagging results using Gemma-2-9B-It. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA

Method BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑ BS↓ ECE-M↓ SC↑
Literature SOTA

LUQ 6.3 14.1 61.2 6.8 14.2 81.6 9.2 11.8 73.8

Our Methods

LoVeC-SFT 6.0 11.7 52.3 8.3 17.6 73.9 16.0 25.7 55.8
LoVeC-GRPO 3.3 4.0 66.3 3.8 4.7 83.6 6.2 4.3 78.2
LoVeC-DPO 2.7 3.2 65.4 3.1 4.6 83.9 6.1 7.9 77.4
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F SHOULD THE MODEL SEE PREVIOUSLY TAGGED LABELS?

Our iterative tagging protocol conditions each sentence’s confidence on all previously tagged (sen-
tence, score) pairs. A natural concern is whether this sequential conditioning introduces bias. We
therefore ablate visibility of prior scores and compare against the default setting where the model
does see them.

Setup. We keep the model (Llama3-8B-Instruct), data split (WildHallu), verifier, and decoding
identical to the main iterative tagging experiments and only change the input format:

Original (with prior scores): {s1, c1, s2} → c2, No previous scores: {s1, s2} → c2.

Concretely, at step i the Original setting conditions on (q, (s1, c1), . . . , (si−1, ci−1), si) (Eq. (5)
in the main paper), whereas the No-Previous-Scores variant conditions on (q, si−1, si) but omits
{c1, . . . , ci−1}. All other details follow the iterative tagging evaluation in the main text.

Setting Method BS ↓ ECE-M ↓ SC ↑

Original LoVeC-GRPO 5.7 2.5 57.0
No Previous Scores LoVeC-GRPO 8.1 4.4 43.0
Original LoVeC-DPO 6.0 5.0 60.4
No Previous Scores LoVeC-DPO 7.2 6.2 52.3

Table 15: Effect of hiding previous confidence labels in iterative tagging.

Findings. Hiding previously tagged labels degrades all metrics for both training schemes. Our
hypothesis is that the prior score acts as a local calibration anchor that helps the model focus its
uncertainty estimate on the current sentence rather than implicitly re-evaluating the entire prefix.
Removing that anchor consistently harms calibration with a stronger effect under GRPO.

These results provide no evidence that sequential conditioning introduces a harmful bias. On the
contrary, allowing the model to see previously tagged labels yields materially better calibration and
discrimination. We therefore recommend including prior scores for iterative tagging; the No-Previous-
Scores variant remains a viable ablation, but it incurs substantial performance loss.

G DO WE NEED REGRESSION LOSS IN SFT?

We evaluate whether using a regression loss to SFT improves confidence estimation under our iterative
tagging protocol (We use Llama-3-8B-Instruct on WildHallu as example).

Table 16: SFT vs. SFT-regression under iterative tagging. Lower is better for BS/ECE-M; higher
is better for AUROC.

Model BS ↓ ECE-M ↓ SP ↑

LoVeC-SFT 9.1 15.2 51.1
LoVeC-SFT-regression 12.9 19.8 47.1

Findings. Using the regression loss hurts across all metrics. Therefore, under our setting, vanilla
SFT is preferable. A plausible cause is that the regression target encourages absolute score mimicry
that is misaligned with the iterative tagging objective, which prioritizes well-calibrated, locally
contextualized confidence on the current sentence.

H DOES OUR TRAINING INDUCE REWARD HACKING?

Setup. We evaluate generations from Llama-3 on the WildHallu benchmark and compare RL-tuned
models to non-RL baselines (Vanilla, SFT). We track four simple but sensitive diagnostics:
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Table 17: Generation statistics on LLAMA-3 for WildHallu. Higher is better for Factuality, Semantic
Diversity, and Vocabulary Richness.

Model Word Count Factuality Semantic Diversity Vocabulary Richness

Vanilla 134.29 0.72 0.5688 0.5732
SFT 132.31 0.73 0.5370 0.5738
GRPO 130.62 0.73 0.5691 0.5670
DPO 133.50 0.74 0.5403 0.5338

• Word Count (avg. tokens per output) to detect length hacking.
• Factuality (same estimator as in the main results) to ensure truthfulness is not traded away.
• Semantic Diversity, computed as the mean embedding cosine dissimilarity across outputs:

SemDiv = 1− 2

n(n− 1)

∑
i<j

cos(ei, ej)

where ei is the embedding of the i-th sentence within the model’s generated paragraph.

• Vocabulary Richness, measured by the type–token ratio (TTR): TTR = #unique tokens
#tokens .

We compute sentence embeddings with all-MiniLM-L6-v2 using SentenceTransformers
(Reimers & Gurevych, 2019) and calculate TTR with nltk.1

Findings. RL methods are comparable to baselines on length and factuality and do not reduce
semantic diversity or vocabulary richness (Table 17). We additionally audited 100 samples per RL
method and found no systematic repetition loops, prompt copying, or template collapse.

Therefore, under our setup, we observe no evidence of reward hacking. While these diagnostics are
proxies, they provide a simple, reproducible check that complements the main metrics.

I NUMERICAL CONSISTENCY

We investigate the probability distribution over decoded confidence tokens to assess whether models
have learned to internalize the ordinal structure of the confidence scale. Ideally, a well-calibrated
model should rank numerical confidence tokens in an order that reflects their semantic mean-
ing—placing higher probabilities on larger values (e.g., 10 over 9, 9 over 8, etc.) when expressing
high certainty.

To probe this behavior, we deliberately select some factually correct statements. We then inspect
the top 15 tokens with the highest decoding probabilities. As shown in the following two cases, all
models correctly assign the most probable token as 10, reflecting high confidence. However, the
surrounding distributions reveal key differences.

The GRPO-trained model displays a near-perfect ordinal alignment: tokens are ranked in descend-
ing order from 10 down to 0, without the presence of extraneous symbols or irrelevant content. This
indicates that GRPO not only learns to express high confidence but also internalizes the structure of
the confidence scale. In contrast, the DPO model also shows partial ordinal structure, but includes
non-numeric or unrelated tokens among its top predictions. We attribute this to DPO’s lack of explicit
format control, whereas GRPO incorporates a format penalty during training to discourage malformed
outputs.

SFT, although it outputs 10 as the most likely token, fails to preserve any consistent ordinal pattern in
the rest of the distribution—e.g., lower-confidence values like 0 or 1 may appear above intermediate
values. This suggests that SFT does not effectively capture the ordinal relationship between confidence
scores, which may contribute to its weaker calibration performance.

More interestingly, such trend holds when the model is uncertain about their output. It demonstrates
a desired concave ranking centered at the most probable token. For example in Figure 6, for GRPO,

1Exact preprocessing: lowercasing, basic punctuation stripping, and whitespace tokenization.
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Tag on Factually Correct Output

Query:
In a paragraph, could you tell me what you know about King’s College, Cambridge?

Tagging Input:
King’s College, Cambridge is a constituent college of the University of Cambridge, one of
the world’s oldest and most prestigious universities. <confidence>

Table 18: Example of model’s high confidence output next-token-probability probing.
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Figure 5: Token probability distributions when the model is confident. The sentence to tag is: “King’s
College, Cambridge is a constituent college of the University of Cambridge, one of the world’s oldest
and most prestigious universities.”

any confidence score large than it’s most probable token 2 is in ascending order, any score smaller
in in descending order. Again DPO shows similar pattern but with irrelevant tokens, and SFT fails
to grasp the order. These findings reinforce the advantage of reinforcement learning in inducing
consistent numerical structure and semantic alignment in confidence estimation.

Tag on Factually Incorrect Output

Query:
In a paragraph, could you tell me what you know about MiniGPT4?

Tagging Input:
MiniGPT4 is a lightweight and efficient variant of the popular GPT-4 language model,
designed to be more accessible and easier to deploy in resource-constrained environments.
<confidence>

Table 19: Example for model’s low confidence output for next-token-probability probing.
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Figure 6: Token probability distributions when the model is uncertain. The sentence to tag is:
“MiniGPT4 is a lightweight and efficient variant of the popular GPT-4 language model, designed to
be more accessible and easier to deploy in resource-constrained environments.”

J GENERALIZATION TO SHORT-FORM QA

To assess the generalization capability of our method on short-form confidence estimation, we
evaluate it on the TriviaQA Joshi et al. (2017) test set. As illustrated in Table 20, our results show that
the proposed method performs on par with sampling-based self-consistency baselines, and closely
approaches the performance of the current RL-based state-of-the-art, RewardingDoubt.

Notably, both ours method and RewardingDoubt use the same base model,
Llama-3-8B-Instruct, and a similar LoRA fine-tuning setup. However, our method
is trained on the out-of-domain Wildhallu dataset, using only 5.6k examples for a single epoch. In
contrast, RewardingDoubt is trained directly on the in-domain TriviaQA dataset, with 174k examples
across two epochs. Despite this disparity in domain alignment and data volume, our model achieves a
strong approximation to RewardingDoubt’s performance.

These results highlight the robustness and domain-transferability of our approach. We believe this
test provides encouraging evidence that our method generalizes well to short-form QA tasks, and has
the potential for further gains with in-domain fine-tuning.

Table 20: AUROC and ECE metrics for various methods on short-form QA dataset: Trivia QA. All
values are presented as percentages.

Category Method AUROC↑ ECE↓

Baselines
Self-Verb 50.0 69.3
p(true) 60.1 21.1
Self-Cons 73.4 12.2

Literature SOTA Rewarding Doubt* 85.9 2.2

Our Methods

LoVeC-SFT 56.3 2.0
LoVeC-GRPO 69.2 6.3
LoVeC-DPO 71.2 6.9
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K RUNNING TIME

We compare the running time of different confidence estimation methods on Wildhallu test set (792
data points) using Gemma2-9B-It and it’s RL fine-tuned model on single A100 80GB. Note that
Iterative Tagging time counts the generation time of no-confidence facts from the original model. As
depicted in 7 below, not only do our methods show better calibration, they also runs 10 ∼ 20× faster
than sampling based methods, including the literature SOTA, LUQ.

Why LoVeC is faster.

1. Single-pass generation. Self-verification methods (e.g., LUQ, Self-Consistency) resample
or decompose outputs and then check them, incurring extra decoding and verifier calls. If L
is the number of decoded tokens and k > 1 the number of samples, the baseline scales like

O(k · L)︸ ︷︷ ︸
resampling

+ O(consistency checks)︸ ︷︷ ︸
often extra NLI calls

.

LOVEC produces the answer and the confidence in the same decoding pass:

O(L) (no resampling, no separate checker).

2. Efficient iterative tagging. When the passage is fixed, the model emits only a few confi-
dence tokens per sentence, with no content re-generation. If S is the number of sentences
(and each gets a small constant number of confidence tokens), the per-iteration cost is

O(S) (tags only),

whereas self-verification still pays for multiple tag generations and additional checks in each
iteration.

0 500 1,000 1,500 2,000

LUQ

Self-Cons

p-true

Self-Verb

Iterative Tagging

Freeform Tagging

1,525

1,225

387

367

139

64

Time (seconds)

Figure 7: Comparison of total processing time (in seconds) for WildHallu test set (792 samples) using
Gemma2-9B-It on single A100 80GB.
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L CASE STUDY

Table 21: Examples generated by LoVeC-DPO from the health domain. The model’s low-confidence
sentences (highlighted in red) indeed correspond to hallucinated or factually incorrect statements.

Case Study on Health

Query:
In a paragraph, could you tell me what you know about Stiff Person Syndrome?

Model Output:
Stiff Person Syndrome (SPS) is a rare autoimmune neurological disorder characterized by progressive
muscle stiffness and painful spasms, often triggered by stimuli like noise or emotional stress. <confi-
dence> 8 </confidence> The condition is caused by a deficiency of dopamine in the brain, leading to
impaired muscle coordination. <confidence> 4 </confidence> SPS primarily affects the muscles of
the trunk and limbs, leading to difficulties in movement and posture. <confidence> 8 </confidence>
It is commonly treated with antibiotics to eliminate the underlying bacterial infection responsible for
the symptoms. <confidence> 2 </confidence> Diagnosis often involves detecting antibodies against
glutamic acid decarboxylase (GAD) and conducting electromyography (EMG) tests. <confidence> 7
</confidence> While there is no cure, treatments like benzodiazepines, baclofen, and immunotherapies
can help manage the symptoms effectively. <confidence> 9 </confidence>

Table 22: Examples generated by LoVeC-DPO from the legal domain. The model’s low-confidence
sentences (highlighted in red) indeed correspond to hallucinated or factually incorrect statements.

Case Study on Law

Query:
In a paragraph, could you tell me what you know about Daubert v. Merrell Dow Pharmaceuticals?

Model Output:
The 1993 Supreme Court decision in Daubert v. Merrell Dow Pharmaceuticals established the "Daubert
standard," which guides federal courts in assessing the admissibility of expert scientific testimony.
<confidence> 9 </confidence> This standard emphasizes factors such as testability, peer review, error
rates, and general acceptance within the relevant scientific community. <confidence> 10 </confidence>
Under Daubert, the role of evaluating expert evidence shifted from the jury to a specialized panel of
scientific advisors appointed by the court. <confidence> 8 </confidence> The case arose when plaintiffs
alleged that the drug Bendectin caused birth defects, and the Court held that expert testimony must be
based on scientifically valid reasoning. <confidence> 9 </confidence> Following this ruling, all U.S.
states were mandated to adopt the Daubert standard for evaluating expert testimony. <confidence> 5
</confidence> The decision underscored the trial judge’s role as a "gatekeeper" in ensuring that any
and all scientific testimony or evidence admitted is not only relevant but also reliable. <confidence> 10
</confidence>
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M PROMPTS

M.1 PROMPT FOR SFT AND RL-BASED TUNING:

You are a helpful assistant. Your task is to provide accurate and
informative answers to user queries.

For each sentence in your response:
- Include a confidence score from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
- The score indicates how certain you are that the sentence is factually

correct:
- 0 = very low confidence (likely incorrect)
- 10 = very high confidence (very likely correct)

Append the confidence score at the end of each sentence using the format:
<confidence> X </confidence>,

where X is a number from 0 to 10.

M.2 PROMPT FOR P(TRUE):

You are required to determine whether a sentence is factually correct
based on real-world knowledge.

A context is provided for reference, but your judgment should not be
limited to it.

Respond with 'True' or 'False' only. Do not include any explanations.

Context (for reference): {context}
Sentence: {sentence}

True or False:

M.3 PROMPT FOR VERBALIZED CONFIDENCE (VC):

You are required to determine whether a sentence is factually correct
based on real-world knowledge.

A context is provided for reference, but your judgment should not be
limited to it.

For each sentence:
- Assign a confidence score from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
- The score indicates how certain you are that the sentence is factually

correct:
- 0 = very low confidence (likely incorrect)
- 10 = very high confidence (very likely correct)

Context (for reference): {context}
Sentence: {sentence}

Confidence:

M.4 PROMPT FOR FACT-CHECKING:

Your task is to fact-check each of the following sentences.

Each sentence may contain multiple factual claims. For each one:
1. Break down and assess the factual accuracy of each individual detail.
2. Consider names, dates, locations, statistics, events, and attributions

.
3. Assign a numeric **veracity rating** from 0 to 10 based on this scale:

0: Completely incorrect - entirely false or misleading.
1-3: Mostly incorrect - several key inaccuracies.
4-6: Partially correct - mix of accurate and inaccurate information.
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7-9: Mostly correct - generally accurate with minor issues.
10: Completely correct - all facts are verifiably accurate.

Use the following format for your output (do **not** repeat the sentence)
:

**Analysis:** [Your detailed factual analysis]
**Rating:** $[0-10]$

---

**Example Inputs:**
### Marie Curie won two Nobel Prizes, one in Physics in 1903 and another

in Chemistry in 1911 for her work on radioactivity.
### The Great Fire of London occurred in 1666 and destroyed nearly half

of the city's modern skyscrapers.
### Albert Einstein developed the theory of relativity while working as a

professor at the University of Zurich and received the Nobel Prize
in Physics in 1921 for this work.

### Mount Everest, located on the border between Nepal and India, is the
second-highest mountain in the world after K2.

**Example Outputs:**
**Analysis:** Marie Curie received the Nobel Prize in Physics in 1903 (

shared with Pierre Curie and Henri Becquerel) and the Nobel Prize in
Chemistry in 1911 for discovering polonium and radium. The statement
is entirely accurate.

**Rating:** $10$

**Analysis:** While the date of the fire is correct, the mention of "
modern skyscrapers" is anachronistic and factually incorrect.
Skyscrapers did not exist in 1666.

**Rating:** $2$

**Analysis:** Einstein did work at the University of Zurich and received
the Nobel Prize in 1921, but it was awarded for his explanation of
the photoelectric effect, not for the theory of relativity.

**Rating:** $6$

**Analysis:** Mount Everest is located between Nepal and the Tibet
Autonomous Region of China, not India. Additionally, it is the
highest mountain in the world, not the second-highest.

**Rating:** $1$

---

Here is some relevant information for your reference:

{evidence}

---

Now evaluate the following sentences and output all the results in one go
.

You should only output the analysis and rating for each sentence without
repeating the sentences.:

{sentence}
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