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ABSTRACT

Hallucination remains a major challenge for the safe and trustworthy deployment
of large language models (LLMs) in factual content generation. Prior work has
explored confidence estimation as an effective approach to hallucination detection,
but often relies on post-hoc self-consistency methods that require computationally
expensive sampling. Verbalized confidence offers a more efficient alternative, but
existing approaches are largely limited to short-form question answering (QA)
tasks and do not generalize well to open-ended generation. In this paper, we
propose LoVeC (Long-form Verbalized Confidence), an on-the-fly verbalized
confidence estimation method for long-form generation. Specifically, we use
reinforcement learning (RL) to train LLMs to append numerical confidence scores
to each generated statement, serving as a direct and interpretable signal of the
factuality of generation. We introduce two novel evaluation settings, free-form
tagging and iterative tagging, to assess different verbalized confidence estimation
methods. Experiments on three long-form QA datasets show that our RL-trained
models achieve better calibration and generalize robustly across domains. Also,
our method is highly efficient, being 20x faster than traditional self-consistency
methods while achieving better calibration.

1 INTRODUCTION

While large language models (LLMs) demonstrate impressive performance across a wide range of
tasks (Touvron et al.,[2023} Jiang et al., 2023} |(OpenAll 2022), one of their most critical limitations
is hallucinations (Zhang et al., 2023} [Huang et al., |2023)). When faced with unfamiliar or uncertain
input, LLMs often generate fabricated or incorrect content. These hallucinations pose a significant
barrier to the real-world deployment of LLMs (Manakul et al.,[2023; Zhang et al., 2024alb; |[Yang
et al., 2024} 2025)), especially in high-stakes domains such as medicine, law, and finance, where
factual inaccuracies can have serious consequences (Zhang et al., [2024aib; Yang et al., 2024).

Reliable confidence and uncertainty estimation is thus crucial for improving the trustworthiness and
practical applicability of LLMs. Following the definitions by Lin et al.|(2023), uncertainty refers to the
variability or dispersion in the model’s predictions given only the input query. In contrast, confidence
is defined with respect to both the input and the specific generated output, capturing how certain
the model is about that particular response. While much prior research on confidence estimation
has focused on short-form question answering (QA) tasks, long-form QA (with outputs exceeding
100 words) is generally more common and better aligned with real-world applications (Zhang et al.,
2024ajjb; | Yang et al.| 2024;2025). However, methods for short-form QA are designed to produce a
single score for an entire response, and thus cannot be naturally generalized to long-form generation
with fine-grained confidence estimation.

Recently, there has been growing interest in confidence estimation methods for long-form out-
puts (Zhang et al., 2024 azb; Jiang et al., 2024; |[Fadeeva et al., 2024; |Liu et al.,2024). A key limitation
of existing approaches is that they are often post-hoc and computationally expensive. Many rely
on generating multiple samples for consistency checking (Zhang et al., |2024a3b; [Jiang et al.| 2024)),
or require an additional model (e.g., GPT-4 (OpenAll 2023)) to extract atomic claims (Fadeeva
et al.|, [2024; [Liu et al.|2024). In contrast, verbalized confidence offers a potentially more efficient
alternative, as it avoids both multiple sampling and auxiliary models. However, verbalized confidence
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% : In a paragraph, could you tell me what you know about Patagonia, Inc.?
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@: Patagonia, Inc. is an American retdiler of outdoor recreation
clothing, equipment, and food. <confidence> 8 </confidence> It
was founded by Yvon Chouinard in 1973. <confidence> 2
</confidence> The headquarter of Patagonia is in Palo Alto,
California. <confidence> 3 </confidence> In September 2022, ... ...

= {
@: Patagonia, Inc. is a U.S.-based company that sells clothing,
gear, and food for outdoor activities. The company was
— established in 1973 by Yvon Chouinard and is headquartered in
Palo Alto, California. In September 2022, Chouinard made an
announcement that...
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Figure 1: Overview of our two evaluation settings. In Free-form Tagging, the model generates both
the answer and confidence score suffix. In Iterative Tagging, the model is given a fixed response and
assigns confidence scores sentence-by-sentence.

remains underexplored in the context of long-form text generation, and it is unclear whether it can
provide well-calibrated confidence estimates.

To address these challenges, we propose LoVeC (Long-form Verbalized Confidence), an on-the-
fly verbalized confidence estimation method that generates confidence scores alongside long-form
factual statements in a single decoding pass (Contribution #1). Specifically, we apply a reinforcement
learning (RL)-based approach that enables LLMs to produce well-calibrated confidence estimates
during text generation (Figure [T)). Compared to supervised fine-tuning (SFT), RL enables direct
optimization toward task-specific reward signals, aligning model behavior with desired outcomes
beyond token-level likelihoods (Rafailov et al., 2023b; |Cao et al., 2024). Moreover, RL does not
require fine-grained token-level annotations, which are often expensive or unavailable in practice
(Lee et al.,|2023; [Kirk et al.| [2023)). We design both off-policy (DPO) and on-policy (GRPO) RL
training strategies to accommodate scenarios with or without an oracle fact-checker.

Another key challenge in confidence calibration lies in the fair and rigorous evaluation of different
models and methods. To this end, we propose two novel evaluation settings for verbalized confidence
estimation in long-form generation (Contribution #2; illustrated in Figure[I): free-form tagging
and iterative tagging. In free-form tagging, the model is prompted with a question and generates
a complete answer with verbalized confidence tags. Since different models may produce different
outputs under this setting, direct comparison can be challenging. To address scenarios where a fixed
long-form response is required, we introduce iterative tagging, a novel setting in which the model is
provided with a fixed answer and tasked with assigning confidence scores sentence-by-sentence.

Our experiments (§E]) on Llama-3-8B-Instruct (Meta, 2024)) and Gemma-2-9B-It (Team et al., [2024),
evaluated across three in-domain and out-of-domain long-form QA datasets, demonstrate better
calibration in both iterative and free-form tagging. Our analysis further shows that Lovec is highly
efficient, achieving a 20x speedup compared to state-of-the-art methods, and generalizes well to
short-form QA tasks. In our analysis (§6), we also investigate why RL outperforms SFT in our case
and provide practical insights for future applications.

2 RELATED WORK

Confidence/Uncertainty Estimation in Long-form Generations. Previous research on confidence
and uncertainty estimation has primarily focused on multiple-choice or short-form question answering
(Lin et al.| 2023} Murray & Chiang, 2018} [Kuhn et al.| 2023} [Vazhentsev et al.,|2023; |Duan et al.,
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2023} |Zhu et al., 2023} [Xiong et al.| |2024; Tian et al.,[2023; [UImer et al.,|2024). Recently, there has
been increasing interest in confidence and uncertainty estimation for long-form generation. |[Zhang
et al.| (2024a) propose LUQ, an uncertainty estimation method designed for long-form generation at
both the sentence and passage levels. This approach requires sampling multiple responses, making it
computationally expensive. Several studies (Zhang et al.,[2024b}; {Jiang et al.,|2024; Fadeeva et al.,
2024; L1iu et al., 2024) explore post-hoc methods that estimate claim-level uncertainty in long-form
outputs. While these approaches offer finer-grained confidence estimates, they typically rely on
GPT-based claim extraction, leading to high computational cost. In contrast, we propose an on-the-fly
verbalized confidence estimation method that generates confidence scores alongside long-form factual
statements in a single decoding pass. Our methods do not need additional sampling or API calling,
making it more efficient and scalable.

Verbalized Confidence Estimation. Teaching LLMs to verbalize their confidence has been widely
explored in short-form generation (Xiong et al., |2024; Tian et al. 2023} |Cheng et al., [2024} |(Chen
et al.| 2024} |Li et al.} 2024} [Lin et al., 2022; [ Xu et al.,[2024; Zhang et al.,[2024c; Han et al., [2024;
Stangel et al., 2025). However, extending verbalized uncertainty to long-form generation remains
challenging, as multiple aspects may vary in certainty within a single response. Recent work addresses
this problem by tightly coupling uncertainty cues with the generated output. LoGU (Yang et al.,
2024) trains models to flag uncertain claims during generation, and |Band et al.| (2024) propose
linguistic calibration by embedding expressions such as “I believe” or “I am 70% uncertain” into the
text. Although both approaches improve human interpretability, they lack machine interpretability,
making post-processing and integration with downstream tasks more difficult. In contrast, our method
produces structured outputs by appending numerical confidence tags to each sentence, offering greater
flexibility and interpretability.

Reinforcement Learning for Confidence Estimation Reinforcement learning (RL) is increasingly
used to fine-tune LLMs, often outperforming supervised fine-tuning (SFT) when target behaviors can
be sampled from the base model (Cao et al., 2024; |Ouyang et al., [2022; |Setlur et al., 2025} |Guo et al.|
2025)). Confidence estimation via RL is still new and mostly studied in short-form QA. PPO-based
methods such as RewardingDoubt (Stangel et al., 2025) and SaySelf (Xu et al., [2024) outperform
SFT techniques like R-tuning (Zhang et al., 2024d)), but work on long-form confidence remains
limited. LoGU (Yang et al., 2024) applies direct preference optimization (DPO) (Rafailov et al.|
2023b)) to generate ordinal phrases, whileBand et al.| (2024) use PPO to calibrate user-facing answers.
However, these approaches rely on text-embedded outputs that are difficult to process and evaluate
systematically. In contrast, we use DPO and group relative policy optimization (GRPO) (Shao et al.,
2024) to append a bounded numerical confidence score after each statement.

3 PRELIMINARIES
In this section, we introduce the preliminaries of confidence estimation in long-form generation.

Primary Goal. In long-form confidence estimation, the primary objective is to align confidence
scores with the factuality of the generated output (Zhang et al.,|2024ajb; [Yang et al., 2024; Huang
et al., [2024b; Jiang et al., 2024} [Fadeeva et al., 2024} Liu et al., 2024)). The focus on factuality is
mainly for two reasons: (1) hallucinations remain a significant challenge in LLMs, and confidence
estimation can effectively indicate potential hallucinations during generation; (2) the factuality of a
sentence can be objectively assessed, enabling a more quantitative and consistent evaluation compared
to subjective criteria such as creativity or coherence (Zhang et al.,|2024b; Yang et al.| [2024).

Granularity. Formally, given an input query ¢, an LLM parameterized by 6 generates a response
y = my(q). Confidence estimation can be performed at various granularities depending on whether
the confidence score is assigned at the level of atomic claims (a short sentence conveying a single
piece of information) (Zhang et al.| 2024b} Jiang et al., 2024} Fadeeva et al.| 2024), for each sentence
(Zhang et al., 2024a;|Manakul et al., 2023)), or the whole passage (Zhang et al., 2024a; Huang et al.,
2024b). For sentence-level confidence estimation, the response y is defined as: y = 7y(q) consisting
of a sequence of sentences s and corresponding confidence scores c:

Yy = {(817 Cl)v (32702)7 ceey (Snv Cn)} = {(S%Ci)}?:l' ()
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where s; represents the i*" sentence and ¢; € [0, 1] denotes the corresponding confidence score,
representing the estimated probability of factual correctness; higher values indicate greater confidence.

Factuality Evaluation. Each sentence s; is assigned a factuality score f; € [0, 1], reflecting its actual
factual accuracy. These factual scores f are obtained by prompting an oracle verification model O
with suitable supporting evidence E pertinent to the query ¢:

f = FactCheck(O,q, E,s). 2)
Confidence Evaluation. To evaluate these confidence scores, the objective is to ensure the confidence

scores c; generated by the model are well-calibrated and closely align with the independently
determined factuality scores f;. This calibration requirement is expressed as:

Vie{1,2,... |}, ¢ = fi, |f] = |c| 3)

Various metrics can be applied to measure this alignment. We discuss more details in Section 5]

4 LONG-FORM VERBALIZED CONFIDENCE

4.1 CONFIDENCE ESTIMATION VIA RL

We formulate the task of verbalizing confidence as a sequential decision-making problem on top
of language generation. An LLM operates as the policy 7y, parameterized by 6. The objective of
the policy is to assign confidence scores to its generated factual statements, such that these scores
align with independently verified factuality assessments. Notably, hallucination is not penalized as
generation errors; instead, the model is expected to assign low confidence scores to hallucinated
statements, thereby facilitating hallucination detection.

We estimate confidence at the sentence level, rather than at the passage or atomic-claim level.
Sentence-level estimation balances interpretability, computational efficiency, and alignment with nat-
ural language structure. Compared to passage-level estimation, it allows for finer-grained assessment.
Compared to atomic-claim-level methods, it avoids extra decomposition steps and produces outputs
that are more easily interpreted by humans. Moreover, using numerical confidence scores supports
flexible post-processing without affecting text fluency or factual content, unlike methods that embed
confidence markers (e.g., “I believe”, “I am uncertain”) directly into the output. For evaluation, we
introduce two task settings for difference use cases: free-form tagging and iterative tagging.

Free-form Tagging. We study a setting in which the policy model 7y produces factual statements
along with their associated confidence estimates in a single generation pass. As shown in the left
part of Figure[I] in this formulation, the action space includes all possible factual statements s and
corresponding confidence values ¢, spanning the model’s full vocabulary. The model outputs a
sequence of sentence—confidence pairs, y = {(s1,¢1), (S2,¢2), ..., (Sn, )}, by maximizing the
following objective, where ¢ is the ™ output token in sequence y:

ye = argmax 7o (y¢|y<¢, q) 4)
Yt
This free-form setting gives the model full generative freedom to balance content generation with
calibrated confidence expression. For example, we can use the output confidence to further constrain
model to decode only high confidence statements in on-stake domains such as medicine, law, etc.

Iterative Tagging. We also evaluate models in a controlled setting where the content is fixed
and only the confidence scores are predicted. This setting is motivated by use cases where the
generation cannot be altered and provides a consistent basis for model comparison. As shown on
the right in Figure [T} given a query ¢ and a base language model 7., We first generate a static

output Ypase = {S1,52,-..,5n}. The policy model 7y is then asked to assign confidence scores
¢i € {0,1,...,10} for each sentence, conditioned on the query and previously tagged pairs:
c; = argmax 7y ({q, (s1,¢1), (52, ¢2), .-+, (Si-1,¢i-1), 8: },€) (5)

By decoupling content generation from confidence estimation, this setting ensures fair comparison
across models and only requires models to generate confidence scores. In contrast to free-form
tagging, it avoids the confounding effects of content variation on confidence evaluation.
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Why RL. In our study, we prefer RL over SFT for confidence calibration in long-form generation
for the following reasons. Standard LLM SFT optimizes likelihood on dense signals from positive
references and offers limited leverage from negative samples. Though it learns to assign lower
probability to undesirable outputs, but not to adjust the degree of confidence or reason about the costs
of errors. By contrast, RL is expressly designed for sparse, delayed feedback and can exploit both
positive and negative outcomes by directly rewarding alignment between factuality and the emitted
confidence score (Kumar et al., 2024; Havrilla et al.,|2024)). In addition, effective calibration requires
Jjoint optimization of content and confidence: SFT learns a post-hoc mapping from fixed text to a
score, whereas RL treats the sentence and its score as one action, enabling credit assignment across
both and allowing the model to revise content for better calibration. This also lets us encode ordinal
structure and asymmetric penalties (e.g., being confidently wrong is worse than being uncertain) via
the reward, without hand-balancing differentiable losses. We propose both on-policy and off-policy
training strategies to accommodate different application scenarios.

4.2 ON-PoLICY DESIGN

Given a data point d = (g, F) ~ D, containing a query ¢ and the evidence F for verification, the
output sequence y = {(s;,¢;)}7; can be sampled from y = my(q). Given an oracle model O, we
can obtain the ground truth factuality f = FactCheck(O, ¢, E, s). In our setting, the core design
challenge for on-policy RL lies in constructing a reward signal that encourages aligning the model’s
predicted confidence scores ¢ with the factual correctness of each statement f.

Intuitively, we want to reward the model when the confi-
dence ¢;, and correctness f; for each statement s; are close
(e.g., high correctness - high confidence and vice versa),
and penalize the model when they are far part (e.g., low
correctness, high confidence, vice versa). Similar to |Stan{
gel et al.| (2025)), we use a log-base reward as it imposes
stronger penalties to miscalibration comparing to simple
linear and quadratic losses, as visualized in Figure2} The
log-base reward is more appropriate for risk-sensitive ap-
“100 plications where confidence must reflect true correctness
2 likelihood. We design this confidence reward r<onf for an
0 0 output y using binary cross-entropy loss as below, where

) ) A is the scaling factor, R, is the normalizing factor and
Figure 2: GRPO Reward Function ® is the Hadamard product.
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Both confidence ¢; and factuality f; are normalized from integers in {0, 1, ..., 10} to real numbers

in [0, 1] for numerical stability in our implementation. In practice, we combine the confidence reward
with other subordinate objectives (e.g., informativeness, format reward) to ensure model is accurately
expressing confidence while retaining the quality of generation, with more details in Appendix [B]

We instantiate this on-policy setup using the GRPO algorithm (Shao et al. [2024), an on-policy
method adapted from PPO (Schulman et al., 2017). Given a dataset D = {d;,da,...,dy}, where
each data point d = (g, E'), we sample a group of output trajectories y = {y1, 2, - .., yq} from the
current policy 7y, and obtain the group reward r = {rq,...rg}. Then we calculate the averaged
advantage /Alj (7, Told, Y5, ) by computing the reward using fact-checking for policy update. The
GRPO loss is defined as below, with /3 as the KL-regularization factor with more details in Appendix

Bl

Lareo(0) = — E(q,E)~D7{yj}lewrs(,m(qu)

G
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Algorithm 1 Generating Preference Pair Dataset via Fact-Checked Confidence Scores

Require: Dataset D = {(g;, Ei)}f\le, model 7pase, generations per query n, orcale model O
Ensure: Preference dataset Dprer = {(¢s, Yuw,is yl,i)}zN:1

1: Initialize Dprer < 0

2: for each (¢, F) € D do

3: Generate outputs Yoase = {51, - - -, Sn } < Toase(q)

4: Compute winning scores f = (f1,..., fn) < FactCheck(O, ¢, E, Ypase)
5: Initialize losing score vector ¢’ = (cf,...,c})

6: for j from 1 to n do > Generate scores for the losing example y;
7: Sample ¢ ~ U({0,1,...10} \ {f;}) > Random integer in ({0, 1,...,10} \ {f;})
8: end for

9: Construct winning response set 4., = {(s;, fj)}j=1

10: Construct losing response set y; = {(s;,¢j)} =1 > Uses same s; but different scores ¢
11: Add preference tuple (g, Yuw, Y1) t0 Dprer

12: end for

13: return Dys

4.3 OFF-PoLICY DESIGN

For off-policy RL, we focus on preference learning (Christiano et al.| (2017). To construct the
preference-pair data (¢, Y, yi) ~ Dprer, for each query ¢, we need to construct a winning output
Y and a losing output y;. We first probe the model’s 7,45, initial knowledge, using query ¢ from
(¢, E) € D to elicit the initial response from the model. The response Ypase = Thase(¢) only contains
factual statements Ypase = {S1, S2, - - -, Sn} as we have not taught the model to generate formatted
confidence yet. Similarly, we generate the factual correctness score f = FactCheck(O, q, F, Ypase)
and augment the preference-pair dataset Dy for off-policy training, as detailed in Algorithm|[T} We
use implement DPO [Rafailov et al.| (2023a)) for preference based training . For DPO algorithm, we
first finetune the original model for format following on y,, with SFT only, to acquire msgr. We
then perform training with the standard DPO objective as below, with 3 to regularize the model’s
behaviour with respect to the reference model 7gpr.

®

76 (Yo 7r
Lopo(0) = —E(q.y., y0)~ Dy [bga (3 log M — Blog "(ylmﬂ

7rSFT(yw | Q) 7rSFT(yl \ Q)
5 EXPERIMENTS
5.1 EXPERIMENTS SETUP

Datasets. We use three datasets for evaluation. Among them, we split WildHallucination (WildHallu)
for training and testing, while the other two datasets are used for testing only: (1) WildHallu: It
contains 7919 entities mined from user-chatbot conversations collected in the wild. We divide the
original dataset (Zhao et al.,|2024) into training, development, and test sets with a 8:1:1 ratio. (2) Bios:
It consists of 183 human-annotated entities related to people on Wikipedia from FActScore (Min
et al.| 2023), covering a wide range of popularity levels. It has been widely used for evaluating both
long-form factuality and uncertainty (Zhang et al., [2024a3b; Jiang et al.,[2024). (3) PopQA (Mallen
et al.| [2023): Following Jiang et al.|(2024)), we use the long-form version of PopQA, which comprises
entities across diverse topics such as people, cities, movies, and companies.

Fact-checking. Both Bios and PopQA provide corresponding Wikipedia pages as evidence. For
WildHallu, the dataset authors provide the top-10 Google Search results for each entity. During
fact-checking, we input the content to be verified alongside the collected evidence, following the
pipelines described in (Zhang et al} [2024a} |Zhao et al.| [2024; [Min et al., [2023)). Specifically, we
use GPT-40 to obtain more accurate judgments. We conduct additional human annotation to double
check this pipeline in Appendix [C] The detailed prompting strategy is provided in the Appendix [M]

Baselines. We select baselines according to two key criteria. First, a method must produce a
structured, numerical confidence score for each output. This criterion excludes methods that do not
generate per-instance scores (Jiang et al., 2024} Kuhn et al.||2023), as well as approaches like LoGU
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Table 1: Free-form tagging results using Llama3-8B-Instruct. The top three results outperforming
LUQ are highlighted in cyan, with deeper shades indicating better performance. All values are
presented as percentages.

WildHallu Bios PopQA
Method BS| ECE-M| SCt BS, ECE-M| SCt BS, ECE-M| SCt
Literature SOTA
LUQ 14.5 21.5 56.8 20.0 29.5 63.8 16.7 23.2 62.5
Our Methods
LoVeC-SFT 8.9 15.1 58.8 16.6 26.1 58.9 19.4 27.8 52.6
LoVeC-GRPO 8.2 10.1 11.1 5.1
LoVeC-DPO 6.3 62.1 67.4 10.3 62.6

Table 2: Iterative tagging results using Llama3-8B-Instruct. The top three results outperforming
LUQ are highlighted in cyan, with deeper shades indicating better performance. All values are
presented as percentages.

WildHallu Bios PopQA
Method BS| ECE-M| SCt BS] ECE-M| SCt BS| ECE-M| SCt
Literature SOTA
LUQ 14.5 21.5 56.8 20.0 29.5 63.8 16.7 23.2 62.5
Baseline Methods
Vanilla 10.8 6.0 9.1 20.9 24.1 1.2 21.7 23.7 4.9
p(true) 23.8 23.6 15.8 19.7 28.6 17.3 19.9 24.3 23.1
Verb-Conf 20.3 22.1 13.4 21.2 25.3 10.8 18.8 22.1 18.3
Self-Cons 16.5 24.3 47.8 20.3 26.5 58.8 17.3 21.6 56.8
Our Methods
LoVeC-SET 9.1 15.2 51.1 16.6 25.8 56.0 18.0 25.9 52.7
LoVeC-GRPO 57.0 64.7 11.3 6.2 62.8
LoVeC-DPO 6.0 5.0 9.0 7.3

(Yang et al.l 2024) and Linguistic Calibration (Band et al.,[2024), which embed natural language

uncertainty phrases that are not suitable for automated quantitative comparison. Second, the method
must operate at the sentence level, without requiring fine-grained atomic claim decomposition using
GPTs (Fadeeva et al}, 2024} [Liu et all, 2024). Prompt formulations for all baselines are provided in
Appendix

Vanilla: This refers to directly prompting the original model (e.g., Llama-3-8B-Instruct).
p(true) (Kadavath et al 2022): We present a sentence to an LLM and ask whether it is
factually true or false. The likelihood associated with the "true" label is used as the confidence
score. Following (Zhang et all,[2024b)), we provide additional context to the LLM to address
co-reference issues.

Verbalized Confidence (Verb-Conf) (Xiong et al.}[2024} [Tian et al.,[2023)): We prompt the LLM
to assign a numerical confidence score (ranging from 0 to 10) to a given sentence, reflecting the
model’s belief in its factuality. Similar to p(true), we additionally provide the full paragraph as
context to the model.

Self-Consistency (Self-Cons) (Manakul et al.,[2023)): We generate 10 additional outputs using
temperature 7" = 1 and compute the agreement between the original output and the sampled
outputs. The level of agreement is used as the confidence score.

LUQ (Zhang et al.} 2024a): A state-of-the-art (SOTA) uncertainty estimation method specifically
designed for long-form QAs. LUQ demonstrates better performance over a range of baselines

in short-form uncertainty estimation (Lin et al., 2023}, [Kuhn et al.} [2023)) and is also applied to
confidence estimation.

Training Settings. For the backbone language models, we use Llama-3-8B-Instruct 2024)) and
Gemma-2-9B-It (Team et al.,[2024)). We first perform one epoch of SFT on y,, from the Wildhallu
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preference dataset for format adherence. For a fair comparison, we subsequently fine-tune each model
for one additional epoch using SFT, GRPO, DPO, respectively. For GRPO, we use a copy of the
model itself as reward model for online reward assignment. More training details are in Appendix

Evaluation Metrics Since both factuality and confidence lie in [0, 1], we use metrics suited to
continuous labels: (1) Brier Score (BS) for mean squared error between predicted confidence and
correctness, (2) ECE-M (Huang et al., |2024a) for calibration under soft labels, and (3) Spearman
Correlation (SC) (Zhang et al.| |2024a)) to assess ordinal consistency. All results use greedy decoding.

5.2 EXPERIMENTAL RESULTS

LoVeC demonstrates substantial improvement on calibration in both freeform and iterative
tagging. As shown in Tables |I| and LoVeC-DPO and LoVeC-GRPO consistently outperform
all baselines, including the prior SOTA LUQ, across all evaluation metrics. This trend holds for
both Llama and Gemma. While SFT alone achieves results comparable to some baselines, applying
RL further improves performance, highlighting the necessity of optimizing confidence via RL. As
depicted in Table [7] and [8] (Appendix [D)), by averaging sentence-level confidence and factuality
over generated passage, the results exhibit consistent trends in passage-level. Additional studies in
Appendix [F confirms our models’ confidence is directly associate to the current fact during generation,
and not affected by previously assigned confidence scores. A case study can be found in Appendix [[]

LoVecC is highly efficient on test-time. Our method of- ‘

fers the btter test-time efficiency. Confidence scores are  Free-form I 64 =
generated inline with the answer, requiring no additional Iterative — 139 -
sampling or decomposition of responses into atomic claims  Self-Verb [mmm 367 -
via external API calls. In contrast, existing state-of-the- p-true [ 387 I
art sampling-based methods—such as LUQ for long-form  Self-Cons — s 1,225 =
generation—incur significant overhead due to repeated sam- LUQ | ] 1,525)-

pling and similarity computations. As depicted in Figure[3] \ \ \
our method completes the inference on Wildhallu test set 0 500 1,000 1,500 2,000
(792 instances) 20 times faster than existing SOTA LUQ on Time (seconds)
free-form tagging. A detailed discussion of the underlying
reasons for this efficiency is provided in Appendix [K]

Figure 3: Running-time Comparison

LoVeC generalizes well across domains and short-form QA. Tables [T] and [2] show that LoveC
generalizes effectively to diverse datasets such as Bios and PopQA. To assess cross-format transfer, we
test the model’s ability to adapt to short-form confidence estimation using the TriviaQA dataset (Joshi
et al.,[2017)), a benchmark for short-form QA. As shown in Table[@] and Appendix E]), our RL-trained
models achieve competitive ECE and AUROC scores compared to the baselines. Notably, LoveC
approaches the performance of the state-of-the-art RL-based method, RewardingDoubt (Stangel et al.|
2025), despite being trained on significantly less and fully out-of-domain data. More details are in
Appendix [J| Overall, the results highlight the robustness and transferability of LoVeC across both
domains and task formats.

LoVecC preserves response length and overall factuality. In the freeform tagging, our RL-trained
models may produce different content compared to the original model. We further compares the
generation lengths and factuality. LoVeC maintains both response length and factual accuracy,
confirming that our calibration improvements do not compromise informativeness and showing no
signs of reward hacking. Full details are in Appendix [H]

6 ANALYSIS

RL ensures numerical consistency. Examining the top-ranked tokens shows that RL-trained models,
especially GRPO, assign probabilities that respect the ordinal structure of the confidence scale. As
seen in Table 3| for RL methods, higher scores (e.g., 10, 9, 8) reliably outrank lower ones in factually
correct generation. Even under factually incorrect case (i.e., model hallucinates about an unknown
fact) RL methods maintains an ordered distribution centered on its prediction. Tokens representing
higher confidence appear in monotonic order with decreasing probability (e.g., 3, 4 comes after 2, and
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Table 3: Case study on predicting the next confidence score token. We use one factually Correct
sentence and one Incorrect sentence. The table lists the top-15 tokens; unrenderable characters are
shown as [ ?], and spaces are displayed as _. GRPO exhibits a clear ordinal pattern, DPO shows
partial ordering, and SFT shows little to none. See Appendix |I|for the prompt.

Model Top 15 Tokens

Correct: King’s College, Cambridge is a constituent college ... and most prestigious universities. <confidence>

GRPO 10 9 8 7 6 5 4 3 2 1 0 . 1 9 9
DPO 0 9 8 7 11 6 5 (71 09 _tenth [7] 12 4 71 _ten
SFT 10 0 1 4 8 2 3 7 11 9 5 6 12 X X

Incorrect: MiniGPT4 is a lightweight and efficient variant of ... in resource-constrained environments. <confidence>

GRPO 2 3 4 5 1 6 0 7 8 9 10 o 30 20 60
DPO 2 3 4 5 6 1 7 0 8 9 10 [71 _five  four  _four
SFT 0 10 1 4 2 3 8 7 5 6 9 11 12 13 14

0 comes after 1). We believe such desired behavior stems from the RL reward. GRPO shows the best
ordering since its reward explicitly aligns confidence with factuality. DPO exhibits partial ordering
but is often disrupted by irrelevant tokens, reflecting weaker ordinal constraints. SFT performs worst:
despite outputting plausible top scores (e.g., 10), subsequent tokens lack meaningful order, with
anomalies like 0 ranked highly. This lack of structural supervision undermines calibration. More
details are in Appendix

Ablating the oracle model achieves on-par results. For DPO, we initially employ GPT-40 as an
oracle model to generate preference pairs based on factuality comparisons. To assess the necessity
of this external supervision, we perform an ablation study by replacing GPT-40 with a self-labeling
setup. For instance, Llama-3-8B-Instruct generated outputs are fact-checked using a frozen copy of
itself. Our GRPO pipeline is oracle-free by design, as generating GPT-4o labels online during training
is prohibitively expensive. As shown in Appendix Table [9] DPO trained with self-generated
labels performs slightly worse than those using GPT-4o, but still outperforms the strongest baseline,
LUQ. The success of self-labeling highlights the potential for scalability in settings where external
oracle models are unavailable.

GRPO reward design improves calibration, while SFT regression offers no gains.. For GRPO,
we further examine the impact of alternative reward formulations. In addition to the log-based
reward in Equation [6] we experiment with linear and quadratic variants based on the absolute and
squared difference between predicted confidence and correctness as the target of alignment. As shown
in Table[T0} all reward functions promote such alignment, but the log-based reward proves more
effective: as a proper scoring rule, it sharply penalizes overconfident errors and provides stronger
calibration. We also explore whether replacing cross-entropy with a regression loss on confidence
scores during SFT improves calibration. However, as reported in Appendix [G] this modification
yields no benefit, further confirming the inherent limitations and inefficiency of SFT for this task.

Suggestions to Practitioners. Both RL methods deliver strong and reliable performance, but with
distinct trade-offs. GRPO, though more computationally intensive due to its explicit reward model,
offers key advantages: it directly models ordinal relationships between confidence scores and provides
improved numerical consistency. In contrast, DPO avoids deploying a separate reward model but
relies on carefully curated offline preference pairs, which can be costly to construct and may restrict
flexibility. Thus, GRPO is preferable when ample computational resources are available, while DPO
serves as a lighter-weight alternative under tighter resource constraints.

7 CONCLUSION

We introduce LoVeC, a reinforcement learning method to improve confidence estimation in long-form
factual text generation. Our approach achieves SOTA performance in both confidence calibration and
runtime efficiency. Our results also demonstrate that RL enables more consistent and interpretable
confidence predictions. Further analysis shows strong generalization and scalability of our model to
out-of-domain datasets and short-form confidence estimations. The results highlight the potential of
our framework for deployment in risk-sensitive and high-stakes domains, or general LLM use cases,
where hallucination detection is crucial for trust and usability.
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Table 4: On the advantage of verbalized confidence. We compare four paradigms along three axes:
efficiency, suitability for long-form generation, and flexibility/machine-interpretability. Our numerical
verbalization consolidates the strengths of prior paradigms: it is efficient, works well for long-form
outputs, and is easy to parse/threshold.

. . Suitable for Flexibility &
Paradigm Efficient? Long-form? Machine Interpretability
Sampling/Consistency-based X v v
Logit/Probability-based v X 4
Verbalized Confidence (Linguistic) v v X
Verbalized Confidence (Numerical) — Ours v v v

A LIMITATION AND FUTURE WORK

Our reinforcement learning tuning approach requires access to white-box models, which limits its
applicability to black-box settings. Another limitation is our exclusive focus on factuality; this choice
is guided by the availability of widely adopted long-form factuality evaluation pipelines in existing
research. Future work could explore several directions. First, confidence estimation can be extended
to more general long-form generation tasks such as code generation, creative writing, and machine
translation. Second, applying our method to high-stakes domains—such as law, healthcare, and
finance—represents an important and impactful avenue for future research.

Broader Impact Our work presents potential for enhancing the trustworthiness of large language
models in real-world deployments, especially in high-stakes domains such as healthcare, law, and
education, by improving sentence-level confidence estimation and reducing hallucinations. The
interpretability and efficiency of our method may enable safer Al systems by allowing users to
make informed decisions based on model-generated content. However, we recognize that verbalized
confidence could be misused—for example, to give unwarranted credibility to inaccurate outputs
or manipulate perceived authority. As such, careful deployment and transparency about confidence
generation mechanisms are essential to prevent misuse and ensure ethical adoption.

B EXPERIMENT DETAILS

B.1 TRAINING SETUP

In our experiment we use SFT , GRPO, DPO, and ORPO. We choose them also as an ablation of
reward and reference model, with the details in Tabel E]below. We design a confidence quantification

Method Reward Model Reference Model

GRPO Yes Yes
DPO No Yes
ORPO No No

Table 5: Comparison of methods by use of Reward Model and Reference Model
prompt for instruction-following, which is prepended before each query. However, we observe
that the models often fail to generate responses that follow the expected confidence format. Thus,
for both of Llama-3-8B-Instruct and Gemma-2-9b-it, we perform 1 epoch of SFT on
(¢, Yw) ~ Dpres for format following on the completion y,, only before RL. For GRPO, we use the
frozen copy of original model as the reward model for fact-checking. Both DPO and ORPO are using
the exact same Dyt

We use LoRA Hu et al|(2022) on g_proj, k_proj, v_proj, o_proj consistently across
models and methods to fine-tune < 1% of the model’s parameters. Below are the detailed hyperpa-
rameter choices.
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B.2 INFRASTRUCTURE

We’ve used TRL [von Werra et al.|(2020) libraries for training and vLLM [Kwon et al.| (2023)) libraries
for inference. We’ve conducted our experiments on Google Cloud Platform using a2-ultragpu
machines with A100 80GB GPUs. We have consumed around 1500 GPU hours for this project. We
list the assets we used and their license in Table

Asset Category License

TRL v0.15.2 Code Apache License 2.0
vLLM v0.7.3 Code Apache License 2.0
WildHallucinations, ~ Dataset MIT License
Bios Dataset MIT License
PopQA Dataset MIT License
TriviaQA Dataset ~ Apache License 2.0

Table 6: List of external assets used and their licenses.

B.3 GRPO Loss DESIGN

Here we provide the full equation of our GRPO loss. For each data point d = (¢, E) a dataset
D = {dy,ds,...,dn}, we sample a group of output trajectories y = {y1,¥s,-..,yc} from the
current policy 7y, and obtain the group reward r = {r1,...rg}. Then we optimize a new policy
mg based on the per-output advantage estimates Vy; € y, Aj = %ﬁ?(r) € is the clipping factor
which helps to stabilize training by preventing excessively large policy updates. 7, is the model’s

frozen copy for KL-regularization. ¢ denotes the ¢ token of trajectory y.

|'UJ
1 To(Yje | @, Yj,<t) 4
Lcrpo(0) = —E, - o L Aji,
rpo(0) = a~D, {y;}5o1~mo, (Yla) Z |y Z{ [WG(M (it | @ Uj<t) Jit

Clip< 7o (Yje | quj,<t) 1o +€> i
Toue (Yit | @ Yj,<t)’ ’ 7

old

C))

- ﬂ DKL [7T9 Hﬂref] }

In our implementation, we applied reward stretching to make sure it is sensitive enough to model’s
responses. In order to retain the quality of model’s generation, we additionally added subordi-
nate rewards, 7°""¢“! represents the total factuality score, judged by reward model. The python
implementation of our reward function is below.

def improved_log_reward(confidence: int, correctness: int,
scale=10.0, gamma=1.5, penalty_strength=5.0):
if confidence is None or not (0 <= confidence <= 10):
return -3 x scale # malformed input penalty

# Core log-likelihood reward

p = np.clip(confidence / 10, le-6, 1 - le-6)

y = correctness / 10

nll = —-(y » math.log(p) + (1 - y) » math.log(l - p))

best_nll = 0
worst_nll = —(math.log(le-6) + math.log(l - le-6)) / 2

reward = scale » (1 - (nll - best_nll) / (worst_nll - best_nll))

# Stretch reward to amplify good/bad
reward = np.sign(reward) * (abs(reward) =x gamma)

# Correctness bonus (small)
reward += 0.15 » correctness

return float (reward)
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C HUMAN ANNOTATION: RELIABILITY OF GPT-40 ANNOTATIONS

Although the paradigm of using GPT+Evidence to fact-check has been widely used in previous work
(Zhang et al.l 2024a; Zhao et al.l 2024} [Min et al.| 2023; Wei et al.l [2024), we conduct additional
human annotation to evaluate the reliability of using GPT-40 as a fact-checker with retrieved evidence.
Two annotators with strong English proficiency and a master’s degree in computer science were
recruited. They were instructed to fact-check the sentences using the same prompt provided to
GPT-40. A random sample of 50 instances was drawn from the WildHallu dataset, consisting of
312 sentences in total. We use Spearman correlation as the metric for reliability assessment. The
inter-annotator agreement is 0.91 between Annotator 1 and Annotator 2. For the comparison between
GPT-40 and the human average, we observe a Spearman correlation of 0.88, indicating a very strong
alignment between the model and human judgments.

D ADDITIONAL RESULTS ON LLAMA-3-8B-INSTRUCT

D.1 RELIABILITY DIAGRAMS

Figure E] displays reliability diagrams for the SOTA method LUQ, the vanilla model, LoveC-SFT,
and LoVeC-DPO. A reliability curve closer to the perfect calibration line signifies better calibration.
We observe that both the vanilla model and LoVeC-SFT exhibit severe overconfidence. In contrast,
our LoVeC-DPO method breaks this overconfidence pattern, leading to improved calibration results.
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Figure 4: Reliability diagrams for iterative tagging using Llama3-8B-Instruct in sentence-level.

D.2 PASSAGE-LEVEL RESULTS

We provide passage-level results of Llama-3-8B-Instruct. We simply estimate the passage-
level performance by calculating the average of sentence-level confidence and factuality. As shown
in the tables below, our method, LoVeC, provides better performance than literature SOTA.

D.3 ABLATING THE ORACLE MODEL

To assess the necessity of using a high-capacity oracle model, we conduct an ablation study by
replacing GPT-40 with Llama-3-8B-Instruct for generating preference datasets. Specifically, instead
of relying on GPT-4o for fact-checking and labeling preference pairs, we use the training model itself
to self-label its outputs prior to DPO training.

As shown in Table 0] while models trained on self-labeled data perform slightly worse than those
using GPT-4o0 supervision, they still surpass strong baselines. Notably, LoveC-DPO trained with self-
labeling continues to outperform the previous state-of-the-art method, LUQ. This result highlights
the practicality and effectiveness of oracle-free training, making the approach more accessible and
cost-efficient without significantly compromising performance.
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Table 7: Passage-level iterative tagging results using Llama3-8B-Instruct. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA
Method BS| ECE-M| SCt BS| ECE-M| SCt BS| ECE-M| SCt
Literatrue SOTA
LUQ 8.0 19.1 70.5 12.4 28.1 75.3 9.8 21.9 73.1
Baseline Methods
Vanilla 8.4 7.1 30.0 17.4 26.0 18.5 189 26.0 18.3
p(true) 154 19.9 27.6 16.2 23.8 294 17.3 19.6 34.1
Verb-Conf 17.9 20.3 23.8 17.7 20.1 22.7 16.4 16.8 25.4
Self-Cons 12.1 17.4 59.2 18.3 21.2 64.7 14.7 17.1 61.3
Our Methods
LoVeC-SFT 6.8 15.5 54.0 13.1 26.6 63.9 144 26.3 60.5
LoVeC-GRPO 72.5 77.2 7.7 7.5
LoVeC-DPO 3.5 5.5 5.2 7.0 74.1

Table 8: Sentence-level free-form tagging results using Llama3-8B-Instruct. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA
Method BS| ECE-M| SCt BS| ECE-M| SCt BS| ECE-M| SCt
Literature SOTA
LUQ 14.5 21.5 56.8 20.0 29.5 63.8 16.7 232 62.5
Our Methods
LoVeC-SFT 6.4 15.2 60.6 124 25.6 66.1 154 27.1 59.5
LoVeC-GRPO 3.8 8.0 73.0 5.8 10.8 5.3
Lovec-DPO IS 5.6 B 53 6.9 78.1 6.5 73.2

D.4 THE SELECTION OF REWARD FUNCTION

We compare different reward functions used in our GRPO framework, including logarithmic, linear,
and quadratic forms, as shown in Table [I0] This demonstrates that the choice of reward function
plays a crucial role in guiding the learning process.

E GEMMA-2-9B-IT RESULTS

Here we provide results for Gemma-2-9B-It. As described in the tables below, our method shows
consistent improvements across models, beating the literature SOTA, LUQ, across datasets.
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Table 9: Comparison of WildHallu results for LUQ, SFT, DPO, and GRPO across tagging strategies.
All values are presented as percentages.

Method Iterative Tagging Freeform Tagging
BS ECE-M SC BS ECE-M SC

LUQ 145 21.5 56.8 145 21.5 56.8

LoVeC-GRPO 5.7 2.5 57.0 6.0 8.2 63.1

Fact-Checking with GPT-40 + Evidence

LoVeC-SFT 9.1 15.2 51.1 8.9 15.1 58.8

LoVeC-DPO 6.0 5.0 60.4 6.3 5.4 62.1

Fact-Checking with Llama3-8B + Evidence

LoVeC-SFT 8.2 9.0 49.6 8.3 9.5 58.3

LoVeC-DPO 72 9.8 58.0 7.1 7.8 60.4

Table 10: Comparison of WildHallu results for LUQ, GRPO-log, GRPO-linear, GRPO-quadratic. All
values are presented as percentages.

Method Iterative Tagging Freeform Tagging
BS ECE-M SC BS ECE-M SC
LUQ 14.5 21.5 56.8 14.5 21.5 56.8
GRPO-log 5.7 2.5 57.0 6.0 8.2 63.1
GRPO-quadratic 7.0 8.7 55.1 73 9.3 62.3
GRPO-linear 8.5 10.8 543 8.2 104 59.8

Table 11: Sentence-level iterative tagging results using Gemma-2-9B-It. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA
Method BS| ECE-M| SCt BS| ECE-M| SCt BS| ECE-M| SCt
Literature SOTA
Iuq 119 16.3 50.0 12.2 15.5 69.2 13.6 15.1 62.6
Our Methods
Vanilla 22.5 26.3 28.9 24.5 28.8 355 24.0 27.7 23.7
p(true) 19.3 22.8 254 21.0 25.0 31.0 21.5 24.5 26.0
Verb-Conf 18.5 19.2 35.1 18.0 19.0 39.5 19.5 20.0 36.2
Self-Cons 13.4 17.7 43.2 13.0 17.0 53.0 13.5 16.5 48.5
Our Methods
LoVeC-SFT 8.0 12.2 36.1 18.8 25.1 54.9 258 32.6 37.1
LoVeC-GRPO 7.3 5.6 10.7 11.1 72.4 13.1 18.1 64.2
LoVeC-DPO 51.8
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Table 12: Passage-level iterative tagging results using Gemma-2-9B-It. The top three results outper-
forming LUQ are highlighted in cyan, with deeper shades indicating better performance. All values
are presented as percentages.

WildHallu Bios PopQA
Method BS| ECE-M| SCt BS| ECE-M| SCt BS, ECE-M| SCt
Literature SOTA
LUQ 6.3 14.1 61.2 6.8 14.2 81.6 9.2 11.8 73.8
Baseline Methods
Vanilla 19.3 23.1 35.5 21.6 29.4 43.1 21.4 28.1 33.6
p(true) 17.8 20.3 28.7 19.6 24.2 33.8 20.4 23.7 30.2
Verb-Conf 16.3 17.1 34.6 17.5 17.9 35.7 18.4 18.8 32.3
Self-Cons 12.2 154 48.9 12.9 16.1 58.1 134 152 54.4
Our Methods
LoVeC-SFT 6.5 12.1 31.9 16.2 25.6 55.6 23.6 32.8 38.3
LoVeC-GRPO 2.9 3.6 64.4 82.5 8.6 74.3
Lovec-DpPO 2SI 29 4.6 7.8 9.0 13.2

Table 13: Sentence-level free-form tagging results using Gemma-2-9B-It. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA
Method BS| ECE-M| SCt BS| ECE-M| SCt BS| ECE-M| SCt
Literature SOTA
LUQ 11.9 16.3 50.0 12.2 15.5 69.2 13.6 15.1 62.6
Our Methods
LoVeC-SFT 7.3 11.6 S728 115 17.8 70.6 19.4 26.3 50.4
LoVeC-GRPO 4.6 56.1 8.3 8.9 63.5
LoVeC-DPO 4.5 55.2 4.2 70.3 9.5

Table 14: Passage-level free-form tagging results using Gemma-2-9B-It. The top three results
outperforming LUQ are highlighted in cyan, with deeper shades indicating better performance. All
values are presented as percentages.

WildHallu Bios PopQA
Method BS, ECE-M| SCt BS| ECE-M| SCt BS, ECE-M| SCt
Literature SOTA
LUQ 6.3 14.1 61.2 6.8 14.2 81.6 9.2 11.8 73.8
Our Methods
LoVeC-SFT 6.0 11.7 52.3 8.3 17.6 73.9 16.0 25.7 55.8
LoVeC-GRPO 3.3 4.0 3.8 4.7 83.6 6.2
LoVeC-DPO 2.7 3.2 65.4 6.1 7.9 77.4
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F SHOULD THE MODEL SEE PREVIOUSLY TAGGED LABELS?

Our iterative tagging protocol conditions each sentence’s confidence on all previously tagged (sen-
tence, score) pairs. A natural concern is whether this sequential conditioning introduces bias. We
therefore ablate visibility of prior scores and compare against the default setting where the model
does see them.

Setup. We keep the model (Llama3-8B-Instruct), data split (WildHallu), verifier, and decoding
identical to the main iterative tagging experiments and only change the input format:

Original (with prior scores): {s1,c¢1,s2} — ca, No previous scores: {s1, s2} — ca.

Concretely, at step ¢ the Original setting conditions on (g, (s1,¢1),...,(8i—1,¢i—1), 8;) (Eq.
in the main paper), whereas the No-Previous-Scores variant conditions on (g, $;_1, ;) but omits

{c1,...,¢i—1}. All other details follow the iterative tagging evaluation in the main text.
Setting Method BS| ECE-M| SC*t
Original LoVeC-GRPO 5.7 2.5 57.0
No Previous Scores LoVeC-GRPO 8.1 4.4 43.0
Original LoVeC-DPO 6.0 5.0 60.4
No Previous Scores  LoVeC-DPO 7.2 6.2 523

Table 15: Effect of hiding previous confidence labels in iterative tagging.

Findings. Hiding previously tagged labels degrades all metrics for both training schemes. Our
hypothesis is that the prior score acts as a local calibration anchor that helps the model focus its
uncertainty estimate on the current sentence rather than implicitly re-evaluating the entire prefix.
Removing that anchor consistently harms calibration with a stronger effect under GRPO.

These results provide no evidence that sequential conditioning introduces a harmful bias. On the
contrary, allowing the model to see previously tagged labels yields materially better calibration and
discrimination. We therefore recommend including prior scores for iterative tagging; the No-Previous-
Scores variant remains a viable ablation, but it incurs substantial performance loss.

G DO WE NEED REGRESSION LOSS IN SFT?

We evaluate whether using a regression loss to SFT improves confidence estimation under our iterative
tagging protocol (We use Llama-3-8B-Instruct on WildHallu as example).

Table 16: SFT vs. SFT-regression under iterative tagging. Lower is better for BS/ECE-M; higher
is better for AUROC.

Model BS, ECEM| SP?
LoVeC-SFT 9.1 15.2 51.1
LoVeC-SFT-regression  12.9 19.8 47.1

Findings. Using the regression loss hurts across all metrics. Therefore, under our setting, vanilla
SFT is preferable. A plausible cause is that the regression target encourages absolute score mimicry
that is misaligned with the iterative tagging objective, which prioritizes well-calibrated, locally
contextualized confidence on the current sentence.

H DOES OUR TRAINING INDUCE REWARD HACKING?

Setup. We evaluate generations from Llama-3 on the WildHallu benchmark and compare RL-tuned
models to non-RL baselines (Vanilla, SFT). We track four simple but sensitive diagnostics:
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Table 17: Generation statistics on LLAMA-3 for WildHallu. Higher is better for Factuality, Semantic
Diversity, and Vocabulary Richness.

Model Word Count Factuality Semantic Diversity  Vocabulary Richness

Vanilla 134.29 0.72 0.5688 0.5732
SFT 132.31 0.73 0.5370 0.5738
GRPO 130.62 0.73 0.5691 0.5670
DPO 133.50 0.74 0.5403 0.5338

» Word Count (avg. tokens per output) to detect length hacking.
* Factuality (same estimator as in the main results) to ensure truthfulness is not traded away.

* Semantic Diversity, computed as the mean embedding cosine dissimilarity across outputs:

2
SemDiv = 1 — Py Zcos(ei,ej)
1<J
where e; is the embedding of the ¢-th sentence within the model’s generated paragraph.

Funique tokens

» Vocabulary Richness, measured by the type—token ratio (TTR): TTR = ZFtokens

We compute sentence embeddings with a11-MiniIM-L6-v2 using SentenceTransformers
(Reimers & Gurevych,|[2019) and calculate TTR with n1t kE]

Findings. RL methods are comparable to baselines on length and factuality and do not reduce
semantic diversity or vocabulary richness (Table[T7). We additionally audited 100 samples per RL
method and found no systematic repetition loops, prompt copying, or template collapse.

Therefore, under our setup, we observe no evidence of reward hacking. While these diagnostics are
proxies, they provide a simple, reproducible check that complements the main metrics.

I NUMERICAL CONSISTENCY

We investigate the probability distribution over decoded confidence tokens to assess whether models
have learned to internalize the ordinal structure of the confidence scale. Ideally, a well-calibrated
model should rank numerical confidence tokens in an order that reflects their semantic mean-
ing—placing higher probabilities on larger values (e.g., 10 over 9, 9 over 8, etc.) when expressing
high certainty.

To probe this behavior, we deliberately select some factually correct statements. We then inspect
the top 15 tokens with the highest decoding probabilities. As shown in the following two cases, all
models correctly assign the most probable token as 10, reflecting high confidence. However, the
surrounding distributions reveal key differences.

The GRPO-trained model displays a near-perfect ordinal alignment: tokens are ranked in descend-
ing order from 10 down to 0, without the presence of extraneous symbols or irrelevant content. This
indicates that GRPO not only learns to express high confidence but also internalizes the structure of
the confidence scale. In contrast, the DPO model also shows partial ordinal structure, but includes
non-numeric or unrelated tokens among its top predictions. We attribute this to DPO’s lack of explicit
format control, whereas GRPO incorporates a format penalty during training to discourage malformed
outputs.

SFT, although it outputs 10 as the most likely token, fails to preserve any consistent ordinal pattern in
the rest of the distribution—e.g., lower-confidence values like 0 or 1 may appear above intermediate
values. This suggests that SFT does not effectively capture the ordinal relationship between confidence
scores, which may contribute to its weaker calibration performance.

More interestingly, such trend holds when the model is uncertain about their output. It demonstrates
a desired concave ranking centered at the most probable token. For example in Figure[6] for GRPO,

"Exact preprocessing: lowercasing, basic punctuation stripping, and whitespace tokenization.
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Tag on Factually Correct Output

Query:

In a paragraph, could you tell me what you know about King’s College, Cambridge?
Tagging Input:
King’s College, Cambridge is a constituent college of the University of Cambridge, one of
the world’s oldest and most prestigious universities. <confidence>

Table 18: Example of model’s high confidence output next-token-probability probing.
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Figure 5: Token probability distributions when the model is confident. The sentence to tag is: “King’s
College, Cambridge is a constituent college of the University of Cambridge, one of the world’s oldest
and most prestigious universities.”

any confidence score large than it’s most probable token 2 is in ascending order, any score smaller
in in descending order. Again DPO shows similar pattern but with irrelevant tokens, and SFT fails
to grasp the order. These findings reinforce the advantage of reinforcement learning in inducing
consistent numerical structure and semantic alignment in confidence estimation.

Tag on Factually Incorrect Output

Query:

In a paragraph, could you tell me what you know about MiniGPT4?

Tagging Input:

MiniGPT4 is a lightweight and efficient variant of the popular GPT-4 language model,
designed to be more accessible and easier to deploy in resource-constrained environments.
<confidence>

Table 19: Example for model’s low confidence output for next-token-probability probing.
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Figure 6: Token probability distributions when the model is uncertain. The sentence to tag is:
“MiniGPT4 is a lightweight and efficient variant of the popular GPT-4 language model, designed to
be more accessible and easier to deploy in resource-constrained environments.”

J GENERALIZATION TO SHORT-FORM QA

To assess the generalization capability of our method on short-form confidence estimation, we
evaluate it on the TriviaQA Joshi et al.|(2017)) test set. As illustrated in Table@], our results show that
the proposed method performs on par with sampling-based self-consistency baselines, and closely
approaches the performance of the current RL-based state-of-the-art, RewardingDoubt.

Notably, both ours method and RewardingDoubt use the same base model,
Llama-3-8B-Instruct, and a similar LoRA fine-tuning setup. However, our method
is trained on the out-of-domain Wildhallu dataset, using only 5.6k examples for a single epoch. In
contrast, RewardingDoubt is trained directly on the in-domain TriviaQA dataset, with 174k examples
across two epochs. Despite this disparity in domain alignment and data volume, our model achieves a
strong approximation to RewardingDoubt’s performance.

These results highlight the robustness and domain-transferability of our approach. We believe this
test provides encouraging evidence that our method generalizes well to short-form QA tasks, and has
the potential for further gains with in-domain fine-tuning.

Table 20: AUROC and ECE metrics for various methods on short-form QA dataset: Trivia QA. All
values are presented as percentages.

Category Method AUROCT ECE|
Self-Verb 50.0 69.3
Baselines p(true) 60.1 21.1
Self-Cons 73.4 12.2
Literature SOTA  Rewarding Doubt* 85.9 2.2
LoVeC-SFT 56.3 2.0
LoVeC-GRPO 69.2 6.3
OurMethods | Jyec.ppo 712 6.9
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K RUNNING TIME

We compare the running time of different confidence estimation methods on Wildhallu test set (792
data points) using Gemma2-9B-It and it’s RL fine-tuned model on single A100 80GB. Note that
Iterative Tagging time counts the generation time of no-confidence facts from the original model. As
depicted in[7]below, not only do our methods show better calibration, they also runs 10 ~ 20x faster
than sampling based methods, including the literature SOTA, LUQ.

Why LoVec is faster.

1. Single-pass generation. Self-verification methods (e.g., LUQ, Self-Consistency) resample
or decompose outputs and then check them, incurring extra decoding and verifier calls. If L
is the number of decoded tokens and k£ > 1 the number of samples, the baseline scales like

O(k - L) + O(consistency checks) .
——

resampling often extra NLI calls
LOVEC produces the answer and the confidence in the same decoding pass:

O(L) (noresampling, no separate checker).

2. Efficient iterative tagging. When the passage is fixed, the model emits only a few confi-
dence tokens per sentence, with no content re-generation. If S is the number of sentences
(and each gets a small constant number of confidence tokens), the per-iteration cost is

O(S) (tags only),

whereas self-verification still pays for multiple tag generations and additional checks in each
iteration.

Freeform Tagging

Iterative Tagging

Self-Verb =
p-true L
Self-Cons =
LUQ 1,525 =
| | |
0 500 1,000 1,500 2,000

Time (seconds)

Figure 7: Comparison of total processing time (in seconds) for WildHallu test set (792 samples) using
Gemma?2-9B-It on single A100 80GB.
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L CASE STUDY

Table 21: Examples generated by LoveC-DPO from the health domain. The model’s low-confidence
sentences (highlighted in red) indeed correspond to hallucinated or factually incorrect statements.

Case Study on Health

Query:

In a paragraph, could you tell me what you know about Stiff Person Syndrome?

Model Output:

Stiff Person Syndrome (SPS) is a rare autoimmune neurological disorder characterized by progressive
muscle stiftness and painful spasms, often triggered by stimuli like noise or emotional stress. <confi-
dence> 8 </confidence> The condition is caused by a deficiency of dopamine in the brain, leading to
impaired muscle coordination. <confidence> 4 </confidence> SPS primarily affects the muscles of
the trunk and limbs, leading to difficulties in movement and posture. <confidence> 8 </confidence>
It is commonly treated with antibiotics to eliminate the underlying bacterial infection responsible for
the symptoms. <confidence> 2 </confidence> Diagnosis often involves detecting antibodies against
glutamic acid decarboxylase (GAD) and conducting electromyography (EMG) tests. <confidence> 7
</confidence> While there is no cure, treatments like benzodiazepines, baclofen, and immunotherapies
can help manage the symptoms effectively. <confidence> 9 </confidence>

Table 22: Examples generated by LoveC-DPO from the legal domain. The model’s low-confidence
sentences (highlighted in red) indeed correspond to hallucinated or factually incorrect statements.

Case Study on Law

Query:

In a paragraph, could you tell me what you know about Daubert v. Merrell Dow Pharmaceuticals?
Model Output:

The 1993 Supreme Court decision in Daubert v. Merrell Dow Pharmaceuticals established the "Daubert
standard," which guides federal courts in assessing the admissibility of expert scientific testimony.
<confidence> 9 </confidence> This standard emphasizes factors such as testability, peer review, error
rates, and general acceptance within the relevant scientific community. <confidence> 10 </confidence>
Under Daubert, the role of evaluating expert evidence shifted from the jury to a specialized panel of
scientific advisors appointed by the court. <confidence> 8 </confidence> The case arose when plaintiffs
alleged that the drug Bendectin caused birth defects, and the Court held that expert testimony must be
based on scientifically valid reasoning. <confidence> 9 </confidence> Following this ruling, all U.S.
states were mandated to adopt the Daubert standard for evaluating expert testimony. <confidence> 5
</confidence> The decision underscored the trial judge’s role as a "gatekeeper” in ensuring that any
and all scientific testimony or evidence admitted is not only relevant but also reliable. <confidence> 10
</confidence>
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M PROMPTS

M.1 PROMPT FOR SFT AND RL-BASED TUNING:

You are a helpful assistant. Your task is to provide accurate and
informative answers to user queries.

For each sentence in your response:
- Include a confidence score from O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
— The score indicates how certain you are that the sentence is factually

correct:
- 0 = very low confidence (likely incorrect)
- 10 = very high confidence (very likely correct)

Append the confidence score at the end of each sentence using the format:
<confidence> X </confidence>,
where X is a number from 0 to 10.

M.2 PROMPT FOR P(TRUE):

You are required to determine whether a sentence is factually correct
based on real-world knowledge.

A context 1is provided for reference, but your judgment should not be
limited to it.

Respond with 'True' or 'False' only. Do not include any explanations.

Context (for reference): {context}
Sentence: {sentence}

True or False:

M.3 PROMPT FOR VERBALIZED CONFIDENCE (VC):

You are required to determine whether a sentence is factually correct
based on real-world knowledge.

A context is provided for reference, but your judgment should not be
limited to it.

For each sentence:
- Assign a confidence score from O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
— The score indicates how certain you are that the sentence is factually

correct:

- 0 = very low confidence (likely incorrect)

- 10 = very high confidence (very likely correct)
Context (for reference): {context}
Sentence: {sentence}
Confidence:

M.4 PROMPT FOR FACT-CHECKING:

Your task is to fact-check each of the following sentences.
Each sentence may contain multiple factual claims. For each one:
1. Break down and assess the factual accuracy of each individual detail.

2. Consider names, dates, locations, statistics, events, and attributions

3. Assign a numeric *xveracity rating*x from O to 10 based on this scale:

0: Completely incorrect - entirely false or misleading.
1-3: Mostly incorrect - several key inaccuracies.
4-6: Partially correct - mix of accurate and inaccurate information.
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7-9: Mostly correct - generally accurate with minor issues.
10: Completely correct - all facts are verifiably accurate.

Use the following format for your output (do *+xnotxx repeat the sentence)

**xAnalysis:xx [Your detailed factual analysis]
**Rating:** $[0-10]$

*xExample Inputs:xx

### Marie Curie won two Nobel Prizes, one in Physics in 1903 and another
in Chemistry in 1911 for her work on radiocactivity.

### The Great Fire of London occurred in 1666 and destroyed nearly half
of the city's modern skyscrapers.

### Albert Einstein developed the theory of relativity while working as a
professor at the University of Zurich and received the Nobel Prize
in Physics in 1921 for this work.

### Mount Everest, located on the border between Nepal and India, is the
second-highest mountain in the world after K2.

*+Example Outputs:*x*

**Analysis:*+ Marie Curie received the Nobel Prize in Physics in 1903 (
shared with Pierre Curie and Henri Becquerel) and the Nobel Prize in
Chemistry in 1911 for discovering polonium and radium. The statement
is entirely accurate.

*xRating:x* $10$

+**xAnalysis:+x While the date of the fire is correct, the mention of "
modern skyscrapers" is anachronistic and factually incorrect.
Skyscrapers did not exist in 1666.

+*Rating:*+ $2$

**Analysis:*x Einstein did work at the University of Zurich and received
the Nobel Prize in 1921, but it was awarded for his explanation of
the photoelectric effect, not for the theory of relativity.

**Rating:+* $68S

**xAnalysis:+x Mount Everest is located between Nepal and the Tibet
Autonomous Region of China, not India. Additionally, it is the

highest mountain in the world, not the second-highest.
**xRating:x* $1$

Here is some relevant information for your reference:

{evidence}
Now evaluate the following sentences and output all the results in one go
You should only output the analysis and rating for each sentence without

repeating the sentences.:

{sentence}
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