

000 001 REINFORCEMENT LEARNING FOR BETTER VERBAL- 002 IZED CONFIDENCE IN LONG-FORM GENERATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Hallucination remains a major challenge for the safe and trustworthy deployment
012 of large language models (LLMs) in factual content generation. Prior work has
013 explored confidence estimation as an effective approach to hallucination detection,
014 but often relies on post-hoc self-consistency methods that require computationally
015 expensive sampling. Verbalized confidence offers a more efficient alternative, but
016 existing approaches are largely limited to short-form question answering (QA)
017 tasks and do not generalize well to open-ended generation. In this paper, we
018 propose **LoVeC** (**L**ong-form **V**erbalized **C**onfidence), an on-the-fly verbalized
019 confidence estimation method for long-form generation. Specifically, we use
020 reinforcement learning (RL) to train LLMs to append numerical confidence scores
021 to each generated statement, serving as a direct and interpretable signal of the
022 factuality of generation. We introduce two novel evaluation settings, *free-form*
023 *tagging* and *iterative tagging*, to assess different verbalized confidence estimation
024 methods. Experiments on three long-form QA datasets show that our RL-trained
025 models achieve better calibration and generalize robustly across domains. Also,
026 our method is highly efficient, being 20 \times faster than traditional self-consistency
027 methods while achieving better calibration.

028 029 1 INTRODUCTION 030

031 While large language models (LLMs) demonstrate impressive performance across a wide range of
032 tasks (Touvron et al., 2023; Jiang et al., 2023; OpenAI, 2022), one of their most critical limitations
033 is hallucinations (Zhang et al., 2023; Huang et al., 2023). When faced with unfamiliar or uncertain
034 input, LLMs often generate fabricated or incorrect content. These hallucinations pose a significant
035 barrier to the real-world deployment of LLMs (Manakul et al., 2023; Zhang et al., 2024a;b; Yang
036 et al., 2024; 2025), especially in high-stakes domains such as medicine, law, and finance, where
037 factual inaccuracies can have serious consequences (Zhang et al., 2024a;b; Yang et al., 2024).

038 Reliable confidence and uncertainty estimation is thus crucial for improving the trustworthiness and
039 practical applicability of LLMs. Following the definitions by Lin et al. (2023), uncertainty refers to the
040 variability or dispersion in the model’s predictions given *only the input query*. In contrast, confidence
041 is defined with respect to *both the input and the specific generated output*, capturing how certain
042 the model is about that particular response. While much prior research on confidence estimation
043 has focused on short-form question answering (QA) tasks, long-form QA (with outputs exceeding
044 100 words) is generally more common and better aligned with real-world applications (Zhang et al.,
045 2024a;b; Yang et al., 2024; 2025). However, methods for short-form QA are designed to produce *a*
046 *single score for an entire response*, and thus **cannot** be naturally generalized to long-form generation
047 with fine-grained confidence estimation.

048 Recently, there has been growing interest in confidence estimation methods for long-form out-
049 puts (Zhang et al., 2024a;b; Jiang et al., 2024; Fadeeva et al., 2024; Liu et al., 2024). A key limitation
050 of existing approaches is that they are often **post-hoc and computationally expensive**. Many rely
051 on generating multiple samples for consistency checking (Zhang et al., 2024a;b; Jiang et al., 2024),
052 or require an additional model (*e.g.*, GPT-4 (OpenAI, 2023)) to extract atomic claims (Fadeeva
053 et al., 2024; Liu et al., 2024). In contrast, verbalized confidence offers a potentially more efficient
054 alternative, as it avoids both multiple sampling and auxiliary models. However, verbalized confidence

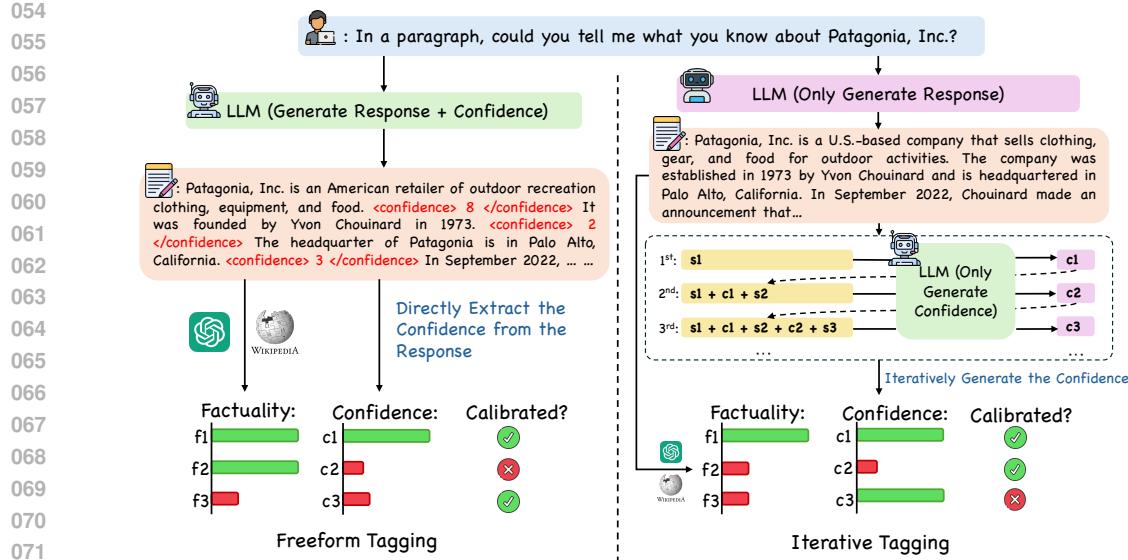


Figure 1: Overview of our two evaluation settings. In *Free-form Tagging*, the model generates both the answer and confidence score suffix. In *Iterative Tagging*, the model is given a fixed response and assigns confidence scores sentence-by-sentence.

remains underexplored in the context of long-form text generation, and it is unclear whether it can provide well-calibrated confidence estimates.

To address these challenges, we propose **LoVeC** (**L**ong-form **V**erbalized **C**onfidence), an *on-the-fly* verbalized confidence estimation method that generates confidence scores alongside long-form factual statements in a single decoding pass (Contribution #1). Specifically, we apply a reinforcement learning (RL)-based approach that enables LLMs to produce well-calibrated confidence estimates during text generation (Figure 1). Compared to supervised fine-tuning (SFT), RL enables direct optimization toward task-specific reward signals, aligning model behavior with desired outcomes beyond token-level likelihoods (Rafailov et al., 2023b; Cao et al., 2024). Moreover, RL does not require fine-grained token-level annotations, which are often expensive or unavailable in practice (Lee et al., 2023; Kirk et al., 2023). We design both off-policy (DPO) and on-policy (GRPO) RL training strategies to accommodate scenarios with or without an oracle fact-checker.

Another key challenge in confidence calibration lies in the fair and rigorous evaluation of different models and methods. To this end, we propose two novel evaluation settings for verbalized confidence estimation in long-form generation (Contribution #2; illustrated in Figure 1): *free-form tagging* and *iterative tagging*. In free-form tagging, the model is prompted with a question and generates a complete answer with verbalized confidence tags. Since different models may produce different outputs under this setting, direct comparison can be challenging. To address scenarios where a fixed long-form response is required, we introduce *iterative tagging*, a novel setting in which the model is provided with a fixed answer and tasked with assigning confidence scores sentence-by-sentence.

Our experiments (§5) on Llama-3-8B-Instruct (Meta, 2024) and Gemma-2-9B-It (Team et al., 2024), evaluated across three in-domain and out-of-domain long-form QA datasets, demonstrate better calibration in both iterative and free-form tagging. Our analysis further shows that LoVeC is highly efficient, achieving a $20\times$ speedup compared to state-of-the-art methods, and generalizes well to short-form QA tasks. In our analysis (§6), we also investigate why RL outperforms SFT in our case and provide practical insights for future applications.

2 RELATED WORK

Confidence/Uncertainty Estimation in Long-form Generations. Previous research on confidence and uncertainty estimation has primarily focused on multiple-choice or short-form question answering (Lin et al., 2023; Murray & Chiang, 2018; Kuhn et al., 2023; Vazhentsev et al., 2023; Duan et al.,

2023; Zhu et al., 2023; Xiong et al., 2024; Tian et al., 2023; Ulmer et al., 2024). Recently, there has
 109 been increasing interest in confidence and uncertainty estimation for long-form generation. Zhang
 110 et al. (2024a) propose LUQ, an uncertainty estimation method designed for long-form generation at
 111 both the sentence and passage levels. This approach requires sampling multiple responses, making it
 112 computationally expensive. Several studies (Zhang et al., 2024b; Jiang et al., 2024; Fadeeva et al.,
 113 2024; Liu et al., 2024) explore post-hoc methods that estimate claim-level uncertainty in long-form
 114 outputs. While these approaches offer finer-grained confidence estimates, they typically rely on
 115 GPT-based claim extraction, leading to high computational cost. In contrast, we propose an *on-the-fly*
 116 verbalized confidence estimation method that generates confidence scores alongside long-form factual
 117 statements *in a single decoding pass*. Our methods do not need additional sampling or API calling,
 118 making it more efficient and scalable.

119 **Verbalized Confidence Estimation.** Teaching LLMs to verbalize their confidence has been widely
 120 explored in short-form generation (Xiong et al., 2024; Tian et al., 2023; Cheng et al., 2024; Chen
 121 et al., 2024; Li et al., 2024; Lin et al., 2022; Xu et al., 2024; Zhang et al., 2024c; Han et al., 2024;
 122 Stangel et al., 2025). However, *extending verbalized uncertainty to long-form generation remains*
 123 *challenging*, as multiple aspects may vary in certainty within a single response. Recent work addresses
 124 this problem by tightly coupling uncertainty cues with the generated output. LoGU (Yang et al.,
 125 2024) trains models to flag uncertain claims during generation, and Band et al. (2024) propose
 126 linguistic calibration by embedding expressions such as “I believe” or “I am 70% uncertain” into the
 127 text. Although both approaches improve human interpretability, they lack machine interpretability,
 128 making post-processing and integration with downstream tasks more difficult. In contrast, our method
 129 produces structured outputs by appending numerical confidence tags to each sentence, offering greater
 130 flexibility and interpretability.

131 **Reinforcement Learning for Confidence Estimation** Reinforcement learning (RL) is increasingly
 132 used to fine-tune LLMs, often outperforming supervised fine-tuning (SFT) when target behaviors can
 133 be sampled from the base model (Cao et al., 2024; Ouyang et al., 2022; Setlur et al., 2025; Guo et al.,
 134 2025). Confidence estimation via RL is still new and mostly studied in short-form QA. PPO-based
 135 methods such as RewardingDoubt (Stangel et al., 2025) and SaySelf (Xu et al., 2024) outperform
 136 SFT techniques like R-tuning (Zhang et al., 2024d), but work on long-form confidence remains
 137 limited. LoGU (Yang et al., 2024) applies direct preference optimization (DPO) (Rafailov et al.,
 138 2023b) to generate ordinal phrases, while Band et al. (2024) use PPO to calibrate user-facing answers.
 139 However, these approaches rely on text-embedded outputs that are difficult to process and evaluate
 140 systematically. In contrast, we use DPO and group relative policy optimization (GRPO) (Shao et al.,
 141 2024) to append a bounded numerical confidence score after each statement.

143 3 PRELIMINARIES

145 In this section, we introduce the preliminaries of confidence estimation in long-form generation.

147 **Primary Goal.** In long-form confidence estimation, the primary objective is to align confidence
 148 scores with the factuality of the generated output (Zhang et al., 2024a;b; Yang et al., 2024; Huang
 149 et al., 2024b; Jiang et al., 2024; Fadeeva et al., 2024; Liu et al., 2024). The focus on factuality is
 150 mainly for two reasons: (1) hallucinations remain a significant challenge in LLMs, and confidence
 151 estimation can effectively indicate potential hallucinations during generation; (2) the factuality of a
 152 sentence can be objectively assessed, enabling a more quantitative and consistent evaluation compared
 153 to subjective criteria such as creativity or coherence (Zhang et al., 2024b; Yang et al., 2024).

154 **Granularity.** Formally, given an input query q , an LLM parameterized by θ generates a response
 155 $y = \pi_\theta(q)$. Confidence estimation can be performed at various granularities depending on whether
 156 the confidence score is assigned at the level of atomic claims (a short sentence conveying a single
 157 piece of information) (Zhang et al., 2024b; Jiang et al., 2024; Fadeeva et al., 2024), for each sentence
 158 (Zhang et al., 2024a; Manakul et al., 2023), or the whole passage (Zhang et al., 2024a; Huang et al.,
 159 2024b). For sentence-level confidence estimation, the response y is defined as: $y = \pi_\theta(q)$ consisting
 160 of a sequence of sentences s and corresponding confidence scores c :

$$161 y = \{(s_1, c_1), (s_2, c_2), \dots, (s_n, c_n)\} = \{(s_i, c_i)\}_{i=1}^n. \quad (1)$$

162 where s_i represents the i^{th} sentence and $c_i \in [0, 1]$ denotes the corresponding confidence score,
 163 representing the estimated probability of factual correctness; higher values indicate greater confidence.
 164

165 **Factuality Evaluation.** Each sentence s_i is assigned a factuality score $f_i \in [0, 1]$, reflecting its actual
 166 factual accuracy. These factual scores \mathbf{f} are obtained by prompting an oracle verification model \mathcal{O}
 167 with suitable supporting evidence E pertinent to the query q :

$$\mathbf{f} = \text{FactCheck}(\mathcal{O}, q, E, \mathbf{s}). \quad (2)$$

168 **Confidence Evaluation.** To evaluate these confidence scores, the objective is to ensure the confidence
 169 scores c_i generated by the model are well-calibrated and closely align with the independently
 170 determined factuality scores f_i . This calibration requirement is expressed as:
 171

$$\forall i \in \{1, 2, \dots, |\mathbf{f}|\}, c_i \approx f_i, |\mathbf{f}| = |\mathbf{c}| \quad (3)$$

172 Various metrics can be applied to measure this alignment. We discuss more details in Section 5.
 173

174 4 LONG-FORM VERBALIZED CONFIDENCE

175 4.1 CONFIDENCE ESTIMATION VIA RL

176 We formulate the task of verbalizing confidence as a sequential decision-making problem on top
 177 of language generation. An LLM operates as the policy π_θ , parameterized by θ . The objective of
 178 the policy is to assign confidence scores to its generated factual statements, such that these scores
 179 align with independently verified factuality assessments. Notably, hallucination is not penalized as
 180 generation errors; instead, the model is expected to assign low confidence scores to hallucinated
 181 statements, thereby facilitating hallucination detection.

182 We estimate confidence at the *sentence level*, rather than at the passage or atomic-claim level.
 183 Sentence-level estimation balances *interpretability*, *computational efficiency*, and *alignment with natural*
 184 *language structure*. Compared to passage-level estimation, it allows for finer-grained assessment.
 185 Compared to atomic-claim-level methods, it avoids extra decomposition steps and produces outputs
 186 that are more easily interpreted by humans. Moreover, using numerical confidence scores supports
 187 flexible post-processing without affecting text fluency or factual content, unlike methods that embed
 188 confidence markers (e.g., “I believe”, “I am uncertain”) directly into the output. For evaluation, we
 189 introduce two task settings for difference use cases: free-form tagging and iterative tagging.
 190

191 **Free-form Tagging.** We study a setting in which the policy model π_θ produces factual statements
 192 along with their associated confidence estimates in a single generation pass. As shown in the left
 193 part of Figure 1, in this formulation, the action space includes all possible factual statements s and
 194 corresponding confidence values c , spanning the model’s full vocabulary. The model outputs a
 195 sequence of sentence–confidence pairs, $y = \{(s_1, c_1), (s_2, c_2), \dots, (s_n, c_n)\}$, by maximizing the
 196 following objective, where t is the t^{th} output token in sequence y :

$$y_t = \underset{y_t}{\operatorname{argmax}} \pi_\theta(y_t | y_{<t}, q) \quad (4)$$

200 This free-form setting gives the model full generative freedom to balance content generation with
 201 calibrated confidence expression. For example, we can use the output confidence to further constrain
 202 model to decode only high confidence statements in on-stake domains such as medicine, law, etc.
 203

204 **Iterative Tagging.** We also evaluate models in a controlled setting where the content is fixed
 205 and only the confidence scores are predicted. This setting is motivated by use cases where the
 206 generation cannot be altered and provides a consistent basis for model comparison. As shown on
 207 the right in Figure 1, given a query q and a base language model π_{base} , we first generate a static
 208 output $y_{\text{base}} = \{s_1, s_2, \dots, s_n\}$. The policy model π_θ is then asked to assign confidence scores
 209 $c_i \in \{0, 1, \dots, 10\}$ for each sentence, conditioned on the query and previously tagged pairs:
 210

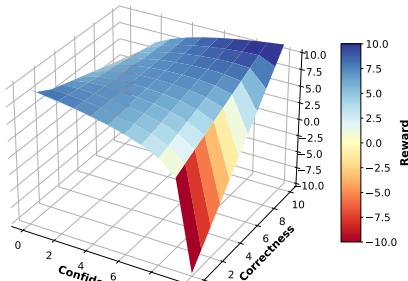
$$c_i = \underset{c}{\operatorname{argmax}} \pi_\theta(\{q, (s_1, c_1), (s_2, c_2), \dots, (s_{i-1}, c_{i-1}), s_i\}, c) \quad (5)$$

211 By decoupling content generation from confidence estimation, this setting ensures fair comparison
 212 across models and only requires models to generate confidence scores. In contrast to free-form
 213 tagging, it avoids the confounding effects of content variation on confidence evaluation.
 214

216 **Why RL.** In our study, we prefer RL over SFT for confidence calibration in long-form generation
 217 for the following reasons. Standard LLM SFT optimizes likelihood on dense signals from positive
 218 references and offers limited leverage from negative samples. Though it learns to assign lower
 219 probability to undesirable outputs, but not to adjust the *degree* of confidence or reason about the costs
 220 of errors. By contrast, RL is expressly designed for sparse, delayed feedback and can exploit both
 221 positive and negative outcomes by directly rewarding alignment between factuality and the emitted
 222 confidence score (Kumar et al., 2024; Havrilla et al., 2024). In addition, effective calibration requires
 223 *joint* optimization of content and confidence: SFT learns a post-hoc mapping from fixed text to a
 224 score, whereas RL treats the sentence *and* its score as one action, enabling credit assignment across
 225 both and allowing the model to revise content for better calibration. This also lets us encode ordinal
 226 structure and asymmetric penalties (e.g., being confidently wrong is worse than being uncertain) via
 227 the reward, without hand-balancing differentiable losses. We propose both on-policy and off-policy
 228 training strategies to accommodate different application scenarios.

229 4.2 ON-POLICY DESIGN

230 Given a data point $d = (q, E) \sim \mathcal{D}$, containing a query q and the evidence E for verification, the
 231 output sequence $y = \{(s_i, c_i)\}_{i=1}^n$ can be sampled from $y = \pi_\theta(q)$. Given an oracle model \mathcal{O} , we
 232 can obtain the ground truth factuality $\mathbf{f} = \text{FactCheck}(\mathcal{O}, q, E, \mathbf{s})$. In our setting, the core design
 233 challenge for on-policy RL lies in constructing a reward signal that encourages aligning the model’s
 234 predicted confidence scores \mathbf{c} with the factual correctness of each statement \mathbf{f} .



235 Figure 2: GRPO Reward Function

236 Intuitively, we want to reward the model when the confidence c_i , and correctness f_i for each statement s_i are close
 237 (e.g., high correctness - high confidence and vice versa), and penalize the model when they are far apart (e.g., low
 238 correctness, high confidence, vice versa). Similar to Stangel et al. (2025), we use a log-base reward as it imposes
 239 stronger penalties to miscalibration comparing to simple linear and quadratic losses, as visualized in Figure 2. The
 240 log-base reward is more appropriate for risk-sensitive applications where confidence must reflect true correctness
 241 likelihood. We design this confidence reward r^{conf} for an output y using binary cross-entropy loss as below, where
 242 λ is the scaling factor, R_{\max} is the normalizing factor and
 243 \odot is the Hadamard product.

$$244 r^{\text{conf}} = \lambda \cdot \frac{1}{n} \mathbf{1}^\top \left(\mathbf{1} + \frac{\mathbf{f} \odot \log(\mathbf{c}) - (\mathbf{1} - \mathbf{f}) \odot \log(\mathbf{1} - \mathbf{c})}{R_{\max}} \right) \quad (6)$$

245 Both confidence c_i and factuality f_i are normalized from integers in $\{0, 1, \dots, 10\}$ to real numbers
 246 in $[0, 1]$ for numerical stability in our implementation. In practice, we combine the confidence reward
 247 with other subordinate objectives (e.g., informativeness, format reward) to ensure model is accurately
 248 expressing confidence while retaining the quality of generation, with more details in Appendix B.

249 We instantiate this on-policy setup using the GRPO algorithm (Shao et al., 2024), an on-policy
 250 method adapted from PPO (Schulman et al., 2017). Given a dataset $\mathcal{D} = \{d_1, d_2, \dots, d_N\}$, where
 251 each data point $d = (q, E)$, we sample a group of output trajectories $\mathbf{y} = \{y_1, y_2, \dots, y_G\}$ from the
 252 current policy $\pi_{\theta_{\text{old}}}$ and obtain the group reward $\mathbf{r} = \{r_1, \dots, r_G\}$. Then we calculate the averaged
 253 advantage $\hat{A}_j(\pi_\theta, \pi_{\text{old}}, y_j, E)$ by computing the reward using fact-checking for policy update. The
 254 GRPO loss is defined as below, with β as the KL-regularization factor with more details in Appendix
 255 B.

$$256 \mathcal{L}_{\text{GRPO}}(\theta) = -\mathbb{E}_{(q, E) \sim \mathcal{D}, \{y_j\}_{j=1}^G \sim \pi_{\theta_{\text{old}}}(\mathbf{y}|q)} \left[\frac{1}{G} \sum_{j=1}^G \left(\hat{A}_j(\pi_\theta, \pi_{\text{old}}, y_j, E) - \beta \mathbb{D}_{\text{KL}}[\pi_\theta \parallel \pi_{\text{ref}}] \right) \right] \quad (7)$$

270 **Algorithm 1** Generating Preference Pair Dataset via Fact-Checked Confidence Scores

271 **Require:** Dataset $\mathcal{D} = \{(q_i, E_i)\}_{i=1}^N$, model π_{base} , generations per query n , oracle model \mathcal{O}

272 **Ensure:** Preference dataset $\mathcal{D}_{\text{pref}} = \{(q_i, y_{w,i}, y_{l,i})\}_{i=1}^N$

273 1: Initialize $\mathcal{D}_{\text{pref}} \leftarrow \emptyset$

274 2: **for** each $(q, E) \in \mathcal{D}$ **do**

275 3: Generate outputs $y_{\text{base}} = \{s_1, \dots, s_n\} \leftarrow \pi_{\text{base}}(q)$

276 4: Compute winning scores $\mathbf{f} = (f_1, \dots, f_n) \leftarrow \text{FactCheck}(\mathcal{O}, q, E, y_{\text{base}})$

277 5: Initialize losing score vector $\mathbf{c}' = (c'_1, \dots, c'_n)$

278 6: **for** j from 1 to n **do** ▷ Generate scores for the *losing* example y_l

279 7: Sample $c'_j \sim \mathcal{U}(\{0, 1, \dots, 10\} \setminus \{f_j\})$ ▷ Random integer in $(\{0, 1, \dots, 10\} \setminus \{f_j\})$

280 8: **end for**

281 9: Construct winning response set $y_w = \{(s_j, f_j)\}_{j=1}^n$

282 10: Construct losing response set $y_l = \{(s_j, c'_j)\}_{j=1}^n$ ▷ Uses same s_j but different scores c'_j

283 11: Add preference tuple (q, y_w, y_l) to $\mathcal{D}_{\text{pref}}$

284 12: **end for**

285 13: **return** $\mathcal{D}_{\text{pref}}$

286 4.3 OFF-POLICY DESIGN

287

288 For off-policy RL, we focus on preference learning Christiano et al. (2017). To construct the
 289 preference-pair data $(q, y_w, y_l) \sim \mathcal{D}_{\text{pref}}$, for each query q , we need to construct a winning output
 290 y_w and a losing output y_l . We first probe the model’s π_{base} initial knowledge, using query q from
 291 $(q, E) \in \mathcal{D}$ to elicit the initial response from the model. The response $y_{\text{base}} = \pi_{\text{base}}(q)$ only contains
 292 factual statements $y_{\text{base}} = \{s_1, s_2, \dots, s_n\}$ as we have not taught the model to generate formatted
 293 confidence yet. Similarly, we generate the factual correctness score $\mathbf{f} = \text{FactCheck}(\mathcal{O}, q, E, y_{\text{base}})$
 294 and augment the preference-pair dataset $\mathcal{D}_{\text{pref}}$ for off-policy training, as detailed in Algorithm 1. We
 295 use implement DPO Rafailov et al. (2023a) for preference based training . For DPO algorithm, we
 296 first finetune the original model for format following on y_w with SFT only, to acquire π_{SFT} . We
 297 then perform training with the standard DPO objective as below, with β to regularize the model’s
 298 behaviour with respect to the reference model π_{SFT} .

299
$$\mathcal{L}_{\text{DPO}}(\theta) = -\mathbb{E}_{(q, y_w, y_l) \sim \mathcal{D}_{\text{pref}}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w | q)}{\pi_{\text{SFT}}(y_w | q)} - \beta \log \frac{\pi_{\theta}(y_l | q)}{\pi_{\text{SFT}}(y_l | q)} \right) \right] \quad (8)$$

300

302 5 EXPERIMENTS

303

304 5.1 EXPERIMENTS SETUP

305

306 **Datasets.** We use three datasets for evaluation. Among them, we split WildHallucination (WildHallu)
 307 for training and testing, while the other two datasets are used for **testing only**: **(1) WildHallu:** It
 308 contains 7919 entities mined from user-chatbot conversations collected in the wild. We divide the
 309 original dataset (Zhao et al., 2024) into training, development, and test sets with a 8:1:1 ratio. **(2) Bios:**
 310 It consists of 183 human-annotated entities related to people on Wikipedia from FActScore (Min
 311 et al., 2023), covering a wide range of popularity levels. It has been widely used for evaluating both
 312 long-form factuality and uncertainty (Zhang et al., 2024a;b; Jiang et al., 2024). **(3) PopQA** (Mallen
 313 et al., 2023): Following Jiang et al. (2024), we use the long-form version of PopQA, which comprises
 314 entities across diverse topics such as people, cities, movies, and companies.

315 **Fact-checking.** Both Bios and PopQA provide corresponding Wikipedia pages as evidence. For
 316 WildHallu, the dataset authors provide the top-10 Google Search results for each entity. During
 317 fact-checking, we input the content to be verified alongside the collected evidence, following the
 318 pipelines described in (Zhang et al., 2024a; Zhao et al., 2024; Min et al., 2023). Specifically, we
 319 use GPT-4o to obtain more accurate judgments. We conduct additional human annotation to double
 320 check this pipeline in Appendix C. The detailed prompting strategy is provided in the Appendix M.

321

322 **Baselines.** We select baselines according to two key criteria. First, a method must produce a
 323 structured, numerical confidence score for each output. This criterion excludes methods that do not
 324 generate per-instance scores (Jiang et al., 2024; Kuhn et al., 2023), as well as approaches like LoGU

324
 325 **Table 1: Free-form tagging** results using Llama3-8B-Instruct. The top three results outperforming
 326 LUQ are highlighted in **cyan**, with deeper shades indicating better performance. All values are
 327 presented as percentages.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	WildHallu			Bios			PopQA		
	Method	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓
Literature SOTA									
LUQ	14.5	21.5	56.8	20.0	29.5	63.8	16.7	23.2	62.5
Our Methods									
LoVeC-SFT	8.9	15.1	58.8	16.6	26.1	58.9	19.4	27.8	52.6
LoVeC-GRPO	6.0	8.2	63.1	10.1	11.1	68.7	10.1	5.1	63.0
LoVeC-DPO	6.3	5.4	62.1	9.2	6.1	67.4	10.3	4.0	62.6

337
 338 **Table 2: Iterative tagging** results using Llama3-8B-Instruct. The top three results outperforming
 339 LUQ are highlighted in **cyan**, with deeper shades indicating better performance. All values are
 340 presented as percentages.

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	WildHallu			Bios			PopQA		
	Method	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓
Literature SOTA									
LUQ	14.5	21.5	56.8	20.0	29.5	63.8	16.7	23.2	62.5
Baseline Methods									
Vanilla	10.8	6.0	9.1	20.9	24.1	1.2	21.7	23.7	4.9
p(true)	23.8	23.6	15.8	19.7	28.6	17.3	19.9	24.3	23.1
Verb-Conf	20.3	22.1	13.4	21.2	25.3	10.8	18.8	22.1	18.3
Self-Cons	16.5	24.3	47.8	20.3	26.5	58.8	17.3	21.6	56.8
Our Methods									
LoVeC-SFT	9.1	15.2	51.1	16.6	25.8	56.0	18.0	25.9	52.7
LoVeC-GRPO	5.7	2.5	57.0	8.5	4.2	64.7	11.3	6.2	62.8
LoVeC-DPO	6.0	5.0	60.4	9.0	7.3	65.6	9.6	1.7	63.1

(Yang et al., 2024) and Linguistic Calibration (Band et al., 2024), which embed natural language uncertainty phrases that are not suitable for automated quantitative comparison. Second, the method must operate at the sentence level, without requiring fine-grained atomic claim decomposition using GPTs (Fadeeva et al., 2024; Liu et al., 2024). Prompt formulations for all baselines are provided in Appendix M.

- **Vanilla**: This refers to directly prompting the original model (*e.g.*, Llama-3-8B-Instruct).
- **p(true)** (Kadavath et al., 2022): We present a sentence to an LLM and ask whether it is factually true or false. The likelihood associated with the "true" label is used as the confidence score. Following (Zhang et al., 2024b), we provide additional context to the LLM to address co-reference issues.
- **Verbalized Confidence (Verb-Conf)** (Xiong et al., 2024; Tian et al., 2023): We prompt the LLM to assign a numerical confidence score (ranging from 0 to 10) to a given sentence, reflecting the model’s belief in its factuality. Similar to p(true), we additionally provide the full paragraph as context to the model.
- **Self-Consistency (Self-Cons)** (Manakul et al., 2023): We generate 10 additional outputs using temperature $T = 1$ and compute the agreement between the original output and the sampled outputs. The level of agreement is used as the confidence score.
- **LUQ** (Zhang et al., 2024a): A state-of-the-art (SOTA) uncertainty estimation method specifically designed for long-form QAs. LUQ demonstrates better performance over a range of baselines in short-form uncertainty estimation (Lin et al., 2023; Kuhn et al., 2023) and is also applied to confidence estimation.

Training Settings. For the backbone language models, we use Llama-3-8B-Instruct (Meta, 2024) and Gemma-2-9B-It (Team et al., 2024). We first perform one epoch of SFT on y_w from the **Wildhallu**

378 preference dataset for format adherence. For a fair comparison, we subsequently fine-tune each model
 379 for one additional epoch using SFT, GRPO, DPO, respectively. For GRPO, we use a copy of the
 380 model itself as reward model for online reward assignment. More training details are in Appendix B.
 381

382 **Evaluation Metrics** Since both factuality and confidence lie in $[0, 1]$, we use metrics suited to
 383 continuous labels: (1) **Brier Score (BS)** for mean squared error between predicted confidence and
 384 correctness, (2) **ECE-M** (Huang et al., 2024a) for calibration under soft labels, and (3) **Spearman**
 385 **Correlation (SC)** (Zhang et al., 2024a) to assess ordinal consistency. All results use greedy decoding.
 386

387 5.2 EXPERIMENTAL RESULTS

388 **LoVeC demonstrates substantial improvement on calibration in both freeform and iterative**
 389 **tagging.** As shown in Tables 1 and 2, LoVeC-DPO and LoVeC-GRPO consistently outperform
 390 all baselines, including the prior SOTA LUQ, across all evaluation metrics. This trend holds for
 391 both Llama and Gemma. While SFT alone achieves results comparable to some baselines, applying
 392 RL further improves performance, highlighting the necessity of optimizing confidence via RL. As
 393 depicted in Table 7 and 8 (Appendix D), by averaging sentence-level confidence and factuality
 394 over generated passage, the results exhibit consistent trends in passage-level. Additional studies in
 395 Appendix F confirms our models’ confidence is directly associate to the current fact during generation,
 396 and not affected by previously assigned confidence scores. A case study can be found in Appendix L.
 397

398 **LoVeC is highly efficient on test-time.** Our method of-
 399 fers the better test-time efficiency. Confidence scores are
 400 generated inline with the answer, requiring no additional
 401 sampling or decomposition of responses into atomic claims
 402 via external API calls. In contrast, existing state-of-the-
 403 art sampling-based methods—such as LUQ for long-form
 404 generation—incurred significant overhead due to repeated sam-
 405 pling and similarity computations. As depicted in Figure 3
 406 our method completes the inference on **Wildhallu** test set
 407 (792 instances) 20 times faster than existing SOTA LUQ on
 408 free-form tagging. A detailed discussion of the underlying
 409 reasons for this efficiency is provided in Appendix K.

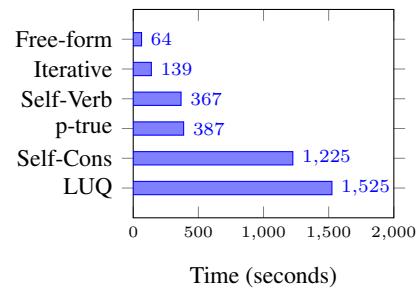


Figure 3: Running-time Comparison

410 **LoVeC generalizes well across domains and short-form QA.** Tables 1 and 2 show that LoVeC
 411 generalizes effectively to diverse datasets such as Bios and PopQA. To assess cross-format transfer, we
 412 test the model’s ability to adapt to short-form confidence estimation using the TriviaQA dataset (Joshi
 413 et al., 2017), a benchmark for short-form QA. As shown in Table 20 and Appendix J, our RL-trained
 414 models achieve competitive ECE and AUROC scores compared to the baselines. Notably, LoVeC
 415 approaches the performance of the state-of-the-art RL-based method, RewardingDoubt (Stangel et al.,
 416 2025), despite being trained on significantly less and fully out-of-domain data. More details are in
 417 Appendix J. Overall, the results highlight the robustness and transferability of LoVeC across both
 418 domains and task formats.

419 **LoVeC preserves response length and overall factuality.** In the freeform tagging, our RL-trained
 420 models may produce different content compared to the original model. We further compares the
 421 generation lengths and factuality. LoVeC maintains both response length and factual accuracy,
 422 confirming that our calibration improvements do not compromise informativeness and showing no
 423 signs of reward hacking. Full details are in Appendix H.

424 6 ANALYSIS

425 **RL ensures numerical consistency.** Examining the top-ranked tokens shows that RL-trained models,
 426 especially GRPO, assign probabilities that respect the ordinal structure of the confidence scale. As
 427 seen in Table 3, for RL methods, higher scores (e.g., 10, 9, 8) reliably outrank lower ones in factually
 428 correct generation. Even under factually incorrect case (i.e., model hallucinates about an unknown
 429 fact) RL methods maintains an ordered distribution centered on its prediction. Tokens representing
 430 higher confidence appear in monotonic order with decreasing probability (e.g., 3, 4 comes after 2, and
 431 5 comes after 3, and so on).

432 Table 3: Case study on predicting the next confidence score token. We use one factually **Correct**
 433 sentence and one **Incorrect** sentence. The table lists the top-15 tokens; unrenderable characters are
 434 shown as [?], and spaces are displayed as $__$. GRPO exhibits a clear ordinal pattern, DPO shows
 435 partial ordering, and SFT shows little to none. See Appendix I for the prompt.

Model	Top 15 Tokens														
Correct: King's College, Cambridge is a constituent college ... and most prestigious universities. <confidence>															
GRPO	10	9	8	7	6	5	4	3	2	1	0	$__$	11	90	99
DPO	10	9	8	7	11	6	5	[?]	09	$__$ tenth	[?]	12	4	[?]	$__$ ten
SFT	10	0	1	4	8	2	3	7	11	9	5	6	12	$__X$	X
Incorrect: MiniGPT4 is a lightweight and efficient variant of ... in resource-constrained environments. <confidence>															
GRPO	2	3	4	5	1	6	0	7	8	9	10	$__$	30	20	60
DPO	2	3	4	5	6	1	7	0	8	9	10	[?]	$__$ five	four	$__$ four
SFT	0	10	1	4	2	3	8	7	5	6	9	11	12	13	14

446 0 comes after 1). We believe such desired behavior stems from the RL reward. GRPO shows the best
 447 ordering since its reward explicitly aligns confidence with factuality. DPO exhibits partial ordering
 448 but is often disrupted by irrelevant tokens, reflecting weaker ordinal constraints. SFT performs worst:
 449 despite outputting plausible top scores (e.g., 10), subsequent tokens lack meaningful order, with
 450 anomalies like 0 ranked highly. This lack of structural supervision undermines calibration. More
 451 details are in Appendix I.

452 **Ablating the oracle model achieves on-par results.** For DPO, we initially employ GPT-4o as an
 453 oracle model to generate preference pairs based on factuality comparisons. To assess the necessity
 454 of this external supervision, we perform an ablation study by replacing GPT-4o with a self-labeling
 455 setup. For instance, Llama-3-8B-Instruct generated outputs are fact-checked using a frozen copy of
 456 itself. Our GRPO pipeline is oracle-free by design, as generating GPT-4o labels online during training
 457 is prohibitively expensive. As shown in Appendix D.3, Table 9, DPO trained with self-generated
 458 labels performs slightly worse than those using GPT-4o, but still outperforms the strongest baseline,
 459 LUQ. The success of self-labeling highlights the potential for scalability in settings where external
 460 oracle models are unavailable.

461 **GRPO reward design improves calibration, while SFT regression offers no gains..** For GRPO,
 462 we further examine the impact of alternative reward formulations. In addition to the log-based
 463 reward in Equation 6, we experiment with linear and quadratic variants based on the absolute and
 464 squared difference between predicted confidence and correctness as the target of alignment. As shown
 465 in Table 10, all reward functions promote such alignment, but the log-based reward proves more
 466 effective: as a proper scoring rule, it sharply penalizes overconfident errors and provides stronger
 467 calibration. We also explore whether replacing cross-entropy with a regression loss on confidence
 468 scores during SFT improves calibration. However, as reported in Appendix G, this modification
 469 yields no benefit, further confirming the inherent limitations and inefficiency of SFT for this task.

470 **Suggestions to Practitioners.** Both RL methods deliver strong and reliable performance, but with
 471 distinct trade-offs. GRPO, though more computationally intensive due to its explicit reward model,
 472 offers key advantages: it directly models ordinal relationships between confidence scores and provides
 473 improved numerical consistency. In contrast, DPO avoids deploying a separate reward model but
 474 relies on carefully curated offline preference pairs, which can be costly to construct and may restrict
 475 flexibility. Thus, GRPO is preferable when ample computational resources are available, while DPO
 476 serves as a lighter-weight alternative under tighter resource constraints.

478 7 CONCLUSION

480 We introduce L_oV_eC, a reinforcement learning method to improve confidence estimation in long-form
 481 factual text generation. Our approach achieves SOTA performance in both confidence calibration and
 482 runtime efficiency. Our results also demonstrate that RL enables more consistent and interpretable
 483 confidence predictions. Further analysis shows strong generalization and scalability of our model to
 484 out-of-domain datasets and short-form confidence estimations. The results highlight the potential of
 485 our framework for deployment in risk-sensitive and high-stakes domains, or general LLM use cases,
 where hallucination detection is crucial for trust and usability.

486 REPRODUCIBILITY STATEMENT
487

488 Datasets we used, WildHallucinations, Bios, PopQA, and TriviaQA, are all publicly available.
489 Prompts used are fully described in Appendix M. We use publicly released backbones (Llama-3-8B-
490 Instruct, Gemma-2-9B-It). All fact checking pipelines and human annotation protocols are described
491 in Appendix C. Training scripts, configuration files, will be released as anonymous supplementary
492 material. Full reward formulations and GRPO loss equations are provided in Appendix B, together
493 with hyperparameters, optimization settings, and LoRA configurations. Experiments were run on
494 Google Cloud A100 80GB GPUs (1500 GPU hours). Software stack and licenses are listed in
495 Appendix B.

496
497 ETHICS STATEMENT
498

499 Our research adheres to the ICLR Code of Ethics. We do not foresee any risks or potential harm
500 from this study. All datasets and code used are under appropriate licenses. Human annotation was
501 conducted following standard practices, with annotators providing consent to share the data for
502 research purposes. We use LLMs only for polishing the paper writing.

503
504 REFERENCES
505

506 Neil Band, Xuechen Li, Tengyu Ma, and Tatsunori Hashimoto. Linguistic calibration of long-
507 form generations. In *Forty-first International Conference on Machine Learning, ICML 2024,*
508 *Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=rJVjQSQ8ye>.

510 Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
511 Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
512 Concept, taxonomy, and methods. *IEEE Transactions on Neural Networks and Learning Systems*,
513 2024.

514 Lida Chen, Zujie Liang, Xintao Wang, Jiaqing Liang, Yanghua Xiao, Feng Wei, Jinglei Chen,
515 Zhenghong Hao, Bing Han, and Wei Wang. Teaching large language models to express knowledge
516 boundary from their own signals, 2024. URL <https://arxiv.org/abs/2406.10881>.

517 Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wenwei Zhang, Zhangyue Yin, Shimin Li, Linyang
518 Li, Zhengfu He, Kai Chen, and Xipeng Qiu. Can AI assistants know what they don't know?
519 In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,*
520 *July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=girxGkdECL>.

521 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
522 reinforcement learning from human preferences. *Advances in neural information processing*
523 *systems*, 30, 2017.

524 Jinhao Duan, Hao Cheng, Shiqi Wang, Chenan Wang, Alex Zavalny, Renjing Xu, Bhavya Kailkhura,
525 and Kaidi Xu. Shifting attention to relevance: Towards the uncertainty estimation of large language
526 models. *ArXiv preprint*, abs/2307.01379, 2023. URL <https://arxiv.org/abs/2307.01379>.

527 Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem Shelmanov, Sergey Petrakov, Haonan Li, Hamdy
528 Mubarak, Evgenii Tsybalov, Gleb Kuzmin, Alexander Panchenko, Timothy Baldwin, Preslav
529 Nakov, and Maxim Panov. Fact-checking the output of large language models via token-level
530 uncertainty quantification. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of*
531 *the Association for Computational Linguistics: ACL 2024*, pp. 9367–9385, Bangkok, Thailand,
532 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.558.
533 URL [https://aclanthology.org/2024.findings-acl.558/](https://aclanthology.org/2024.findings-acl.558).

534 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
535 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
536 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

540 Haixia Han, Tingyun Li, Shisong Chen, Jie Shi, Chengyu Du, Yanghua Xiao, Jiaqing Liang, and
 541 Xin Lin. Enhancing confidence expression in large language models through learning from past
 542 experience, 2024. URL <https://arxiv.org/abs/2404.10315>.

543

544 Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
 545 Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
 546 language models to reason with reinforcement learning. *arXiv preprint arXiv:2403.04642*, 2024.

547 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 548 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Interna-*
 549 *tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.*
 550 OpenReview.net, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

551

552 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 553 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 554 language models: Principles, taxonomy, challenges, and open questions, 2023.

555

556 Yukun Huang, Yixin Liu, Raghavveer Thirukovalluru, Arman Cohan, and Bhuwan Dhingra. Cali-
 557 brating long-form generations from large language models. In Yaser Al-Onaizan, Mohit
 558 Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguis-*
 559 *tics: EMNLP 2024*, pp. 13441–13460, Miami, Florida, USA, November 2024a. Association
 560 for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.785. URL <https://aclanthology.org/2024.findings-emnlp.785/>.

561

562 Yukun Huang, Yixin Liu, Raghavveer Thirukovalluru, Arman Cohan, and Bhuwan Dhingra. Calibrat-
 563 ing long-form generations from large language models, 2024b.

564

565 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 566 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 567 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 568 Wang, Timothée Lacroix, and William El Sayed. Mistral 7B, 2023.

569

570 Mingjian Jiang, Yangjun Ruan, Prasanna Sattigeri, Salim Roukos, and Tatsunori Hashimoto. Graph-
 571 based uncertainty metrics for long-form language model outputs. *ArXiv preprint*, abs/2410.20783,
 572 2024. URL <https://arxiv.org/abs/2410.20783>.

573

574 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
 575 distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
 576 Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Com-*
 577 *putational Linguistics (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July
 578 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

579

580 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 581 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk,
 582 Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
 583 Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt,
 584 Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas
 585 Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. Language models (mostly)
 586 know what they know, 2022.

587

588 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 589 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 590 diversity. *arXiv preprint arXiv:2310.06452*, 2023.

591

592 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 593 uncertainty estimation in natural language generation. In *The Eleventh International Conference
 594 on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
 595 URL <https://openreview.net/pdf?id=VD-AYtP0dve>.

596

597 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
 598 Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
 599 reinforcement learning. *arXiv preprint arXiv:2409.12917*, 2024.

594 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 595 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 596 serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems
 597 Principles*, pp. 611–626, 2023.

598

599 Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
 600 Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling reinforcement
 601 learning from human feedback with ai feedback. *arXiv preprint arXiv:2309.00267*, 2023.

602

603 Jiaqi Li, Yixuan Tang, and Yi Yang. Know the unknown: An uncertainty-sensitive method for llm
 604 instruction tuning, 2024. URL <https://arxiv.org/abs/2406.10099>.

605

606 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in words.
 607 *ArXiv preprint*, abs/2205.14334, 2022. URL <https://arxiv.org/abs/2205.14334>.

608

609 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifica-
 610 tion for black-box large language models, 2023.

611

612 Xin Liu, Muhammad Khalifa, and Lu Wang. Ltcab: Lightweight language model calibration
 613 over short- and long-form responses. In *The Twelfth International Conference on Learning
 614 Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
<https://openreview.net/forum?id=jH67LHVOIO>.

615

616 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 617 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 618 memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the
 619 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 620 pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
 621 10.18653/v1/2023.acl-long.546. URL [https://aclanthology.org/2023.acl-long.
 546/](https://aclanthology.org/2023.acl-long.546/).

622

623 Potsawee Manakul, Adian Liusie, and Mark Gales. SelfCheckGPT: Zero-resource black-box hal-
 624 lucination detection for generative large language models. In Houda Bouamor, Juan Pino, and
 625 Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
 626 guage Processing*, pp. 9004–9017, Singapore, December 2023. Association for Computational
 627 Linguistics. doi: 10.18653/v1/2023.emnlp-main.557. URL [https://aclanthology.org/
 2023.emnlp-main.557/](https://aclanthology.org/2023.emnlp-main.557/).

628

629 Meta. Llama 3 model card. 2024. URL [https://github.com/meta-llama/llama3/
 630 blob/main/MODEL_CARD.md](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md).

631

632 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
 633 Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of factual
 634 precision in long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Pro-
 635 ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 12076–
 636 12100, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
 637 2023.emnlp-main.741. URL <https://aclanthology.org/2023.emnlp-main.741/>.

638

639 Kenton Murray and David Chiang. Correcting length bias in neural machine translation. In Ondřej
 640 Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
 641 Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie
 642 Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, and Karin Verspoor (eds.),
 643 *Proceedings of the Third Conference on Machine Translation: Research Papers*, pp. 212–223,
 644 Brussels, Belgium, October 2018. Association for Computational Linguistics. doi: 10.18653/v1/
 645 W18-6322. URL <https://aclanthology.org/W18-6322/>.

646

647 OpenAI. Chatgpt blog post. <https://openai.com/blog/chatgpt>, 2022. Accessed: 2024-
 09-06.

648

649 OpenAI. Gpt-4 technical report, 2023. URL <https://arxiv.org/abs/2303.08774>.

648 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 649 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 650 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 651 27744, 2022.

652 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 653 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 654 in Neural Information Processing Systems*, 36:53728–53741, 2023a.

655 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
 656 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 657 Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 658 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 659 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 660 16, 2023*, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

661 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 662 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*.
 663 Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

664 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 665 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

666 Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
 667 without verification or rl is suboptimal. *arXiv preprint arXiv:2502.12118*, 2025.

668 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 669 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 670 reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>, 2024.

671 Paul Stangel, David Bani-Harouni, Chantal Pellegrini, Ege Özsoy, Kamilia Zaripova, Matthias
 672 Keicher, and Nassir Navab. Rewarding doubt: A reinforcement learning approach to confidence
 673 calibration of large language models. *arXiv preprint arXiv:2503.02623*, 2025.

674 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 675 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 676 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 677 2024.

678 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
 679 and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated confidence
 680 scores from language models fine-tuned with human feedback. In Houda Bouamor, Juan Pino,
 681 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural
 682 Language Processing*, pp. 5433–5442, Singapore, December 2023. Association for Computational
 683 Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL <https://aclanthology.org/2023.emnlp-main.330/>.

684 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 685 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 686 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 687 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 688 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 689 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 690 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 691 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 692 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 693 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 694 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 695 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 696 2023.

702 Dennis Ulmer, Martin Gubri, Hwaran Lee, Sangdoo Yun, and Seong Oh. Calibrating large
 703 language models using their generations only. In Lun-Wei Ku, Andre Martins, and Vivek
 704 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Compu-
 705 tational Linguistics (Volume 1: Long Papers)*, pp. 15440–15459, Bangkok, Thailand, August
 706 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.824. URL
 707 <https://aclanthology.org/2024.acl-long.824/>.

708 Artem Vazhentsev, Akim Tsvigun, Roman Vashurin, Sergey Petrakov, Daniil Vasilev, Maxim Panov,
 709 Alexander Panchenko, and Artem Shelmanov. Efficient out-of-domain detection for sequence to
 710 sequence models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of
 711 the Association for Computational Linguistics: ACL 2023*, pp. 1430–1454, Toronto, Canada, July
 712 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.93. URL
 713 <https://aclanthology.org/2023.findings-acl.93/>.

714 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 715 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 716 learning. <https://github.com/huggingface/trl>, 2020.

717 Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran,
 718 Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. Long-form factual-
 719 ity in large language models. In Amir Globersons, Lester Mackey, Danielle Belgrave,
 720 Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in
 721 Neural Information Processing Systems 38: Annual Conference on Neural Information
 722 Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
 723 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/937ae0e83eb08d2cb8627fe1def8c751-Abstract-Conference.html.

724 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
 725 express their uncertainty? an empirical evaluation of confidence elicitation in llms. In *The
 726 Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
 727 May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=gjeQKFxFpZ>.

728 Tianyang Xu, Shujin Wu, Shizhe Diao, Xiaoze Liu, Xingyao Wang, Yangyi Chen, and Jing Gao.
 729 Sayself: Teaching llms to express confidence with self-reflective rationales, 2024.

730 Ruihan Yang, Caiqi Zhang, Zhisong Zhang, Xinting Huang, Sen Yang, Nigel Collier, Dong Yu,
 731 and Deqing Yang. Logu: Long-form generation with uncertainty expressions, 2024. URL
 732 <https://arxiv.org/abs/2410.14309>.

733 Ruihan Yang, Caiqi Zhang, Zhisong Zhang, Xinting Huang, Dong Yu, Nigel Collier, and Deqing
 734 Yang. Uncle: Uncertainty expressions in long-form generation, 2025.

735 Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. LUQ: Long-text uncertainty quantifi-
 736 cation for LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of
 737 the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 5244–5262, Mi-
 738 ami, Florida, USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/
 739 2024.emnlp-main.299. URL <https://aclanthology.org/2024.emnlp-main.299/>.

740 Caiqi Zhang, Ruihan Yang, Zhisong Zhang, Xinting Huang, Sen Yang, Dong Yu, and Nigel Collier.
 741 Atomic calibration of llms in long-form generations, 2024b.

742 Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng
 743 Ji, and Tong Zhang. R-tuning: Instructing large language models to say ‘I don’t know’. In
 744 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of
 745 the North American Chapter of the Association for Computational Linguistics: Human Lan-
 746 guage Technologies (Volume 1: Long Papers)*, pp. 7113–7139, Mexico City, Mexico, June
 747 2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.394. URL
 748 <https://aclanthology.org/2024.naacl-long.394/>.

749 Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng
 750 Ji, and Tong Zhang. R-tuning: Instructing large language models to say ‘I don’t know’. In
 751 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of
 752 the North American Chapter of the Association for Computational Linguistics: Human Lan-
 753 guage Technologies (Volume 1: Long Papers)*, pp. 7113–7139, Mexico City, Mexico, June
 754 2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.394. URL
 755 <https://aclanthology.org/2024.naacl-long.394/>.

756 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of*
757 *the North American Chapter of the Association for Computational Linguistics: Human Language*
758 *Technologies (Volume 1: Long Papers)*, pp. 7113–7139, Mexico City, Mexico, 2024d. Association
759 for Computational Linguistics. URL <https://aclanthology.org/2024.naacl-long.394>.

760

761 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
762 Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
763 language models. *ArXiv preprint*, abs/2309.01219, 2023. URL <https://arxiv.org/abs/2309.01219>.

764

765 Wenting Zhao, Tanya Goyal, Yu Ying Chiu, Liwei Jiang, Benjamin Newman, Abhilasha Ravichander,
766 Khyathi Chandu, Ronan Le Bras, Claire Cardie, Yuntian Deng, and Yejin Choi. Wildhallucinations:
767 Evaluating long-form factuality in llms with real-world entity queries, 2024. URL <https://arxiv.org/abs/2407.17468>.

768

769 Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the calibration
770 of large language models and alignment. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
771 *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 9778–9795, Sin-
772 gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
773 findings-emnlp.654. URL <https://aclanthology.org/2023.findings-emnlp.654>.

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
 811 Table 4: On the advantage of verbalized confidence. We compare four paradigms along three axes:
 812 efficiency, suitability for long-form generation, and flexibility/machine-interpretability. Our numerical
 813 verbalization consolidates the strengths of prior paradigms: it is efficient, works well for long-form
 814 outputs, and is easy to parse/threshold.

815 Paradigm	816 Efficient?	817 Suitable for 818 Long-form?	819 Flexibility & 820 Machine Interpretability
817 Sampling/Consistency-based	818 ✗	819 ✓	✓
818 Logit/Probability-based	✓	✗	✓
819 Verbalized Confidence (Linguistic)	✓	✓	✗
820 Verbalized Confidence (Numerical) — Ours	✓	✓	✓

821 A LIMITATION AND FUTURE WORK

822 Our reinforcement learning tuning approach requires access to white-box models, which limits its
 823 applicability to black-box settings. Another limitation is our exclusive focus on factuality; this choice
 824 is guided by the availability of widely adopted long-form factuality evaluation pipelines in existing
 825 research. Future work could explore several directions. First, confidence estimation can be extended
 826 to more general long-form generation tasks such as code generation, creative writing, and machine
 827 translation. Second, applying our method to high-stakes domains—such as law, healthcare, and
 828 finance—represents an important and impactful avenue for future research.

829 **Broader Impact** Our work presents potential for enhancing the trustworthiness of large language
 830 models in real-world deployments, especially in high-stakes domains such as healthcare, law, and
 831 education, by improving sentence-level confidence estimation and reducing hallucinations. The
 832 interpretability and efficiency of our method may enable safer AI systems by allowing users to
 833 make informed decisions based on model-generated content. However, we recognize that verbalized
 834 confidence could be misused—for example, to give unwarranted credibility to inaccurate outputs
 835 or manipulate perceived authority. As such, careful deployment and transparency about confidence
 836 generation mechanisms are essential to prevent misuse and ensure ethical adoption.

841 B EXPERIMENT DETAILS

842 B.1 TRAINING SETUP

843 In our experiment we use SFT, GRPO, DPO, and ORPO. We choose them also as an ablation of
 844 reward and reference model, with the details in Tabel 5 below. We design a confidence quantification

845 Method	846 Reward Model	847 Reference Model
846 GRPO	Yes	Yes
847 DPO	No	Yes
848 ORPO	No	No

849 Table 5: Comparison of methods by use of Reward Model and Reference Model
 850 prompt for instruction-following, which is prepended before each query. However, we observe
 851 that the models often fail to generate responses that follow the expected confidence format. Thus,
 852 for both of Llama-3-8B-Instruct and Gemma-2-9b-it, we perform 1 epoch of SFT on
 853 $(q, y_w) \sim \mathcal{D}_{\text{pref}}$ for format following on the completion y_w only before RL. For GRPO, we use the
 854 frozen copy of original model as the reward model for fact-checking. Both DPO and ORPO are using
 855 the exact same $\mathcal{D}_{\text{pref}}$.

856 We use LoRA Hu et al. (2022) on q_{proj} , k_{proj} , v_{proj} , o_{proj} consistently across
 857 models and methods to fine-tune < 1% of the model’s parameters. Below are the detailed hyperpa-
 858 rameter choices.

864 B.2 INFRASTRUCTURE
865

866 We've used TRL von Werra et al. (2020) libraries for training and vLLM Kwon et al. (2023) libraries
867 for inference. We've conducted our experiments on Google Cloud Platform using a2-ultragpu
868 machines with A100 80GB GPUs. We have consumed around 1500 GPU hours for this project. We
869 list the assets we used and their license in Table 6.

870	871	Asset	Category	License
872		TRL v0.15.2	Code	Apache License 2.0
873		vLLM v0.7.3	Code	Apache License 2.0
874		WildHallucinations	Dataset	MIT License
875		Bios	Dataset	MIT License
876		PopQA	Dataset	MIT License
877		TriviaQA	Dataset	Apache License 2.0

878 Table 6: List of external assets used and their licenses.
879
880881 B.3 GRPO LOSS DESIGN
882

883 Here we provide the full equation of our GRPO loss. For each data point $d = (q, E)$ a dataset
884 $\mathcal{D} = \{d_1, d_2, \dots, d_N\}$, we sample a group of output trajectories $\mathbf{y} = \{y_1, y_2, \dots, y_G\}$ from the
885 current policy $\pi_{\theta_{\text{old}}}$ and obtain the group reward $\mathbf{r} = \{r_1, \dots, r_G\}$. Then we optimize a new policy
886 π_{θ} based on the per-output advantage estimates $\forall y_j \in \mathbf{y}, \hat{A}_j = \frac{r_j - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})}$. ϵ is the clipping factor
887 which helps to stabilize training by preventing excessively large policy updates. π_{ref} is the model's
888 frozen copy for KL-regularization. t denotes the t^{th} token of trajectory y .

$$889 \mathcal{L}_{\text{GRPO}}(\theta) = -\mathbb{E}_{q \sim \mathcal{D}, \{y_j\}_{j=1}^G \sim \pi_{\theta_{\text{old}}}(\mathbf{y} | q)} \frac{1}{G} \sum_{j=1}^G \frac{1}{|y_j|} \sum_{t=1}^{|y_j|} \left\{ \min \left[\frac{\pi_{\theta}(y_{j,t} | q, y_{j,<t})}{\pi_{\theta_{\text{old}}}(y_{j,t} | q, y_{j,<t})} \hat{A}_{j,t}, \right. \right. \\ 890 \left. \left. \text{clip} \left(\frac{\pi_{\theta}(y_{j,t} | q, y_{j,<t})}{\pi_{\theta_{\text{old}}}(y_{j,t} | q, y_{j,<t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{j,t} \right] - \beta \mathbb{D}_{\text{KL}}[\pi_{\theta} \| \pi_{\text{ref}}] \right\} \quad (9)$$

891 In our implementation, we applied reward stretching to make sure it is sensitive enough to model's
892 responses. In order to retain the quality of model's generation, we additionally added subordi-
893 nate rewards, r^{correct} represents the total factuality score, judged by reward model. The python
894 implementation of our reward function is below.
895

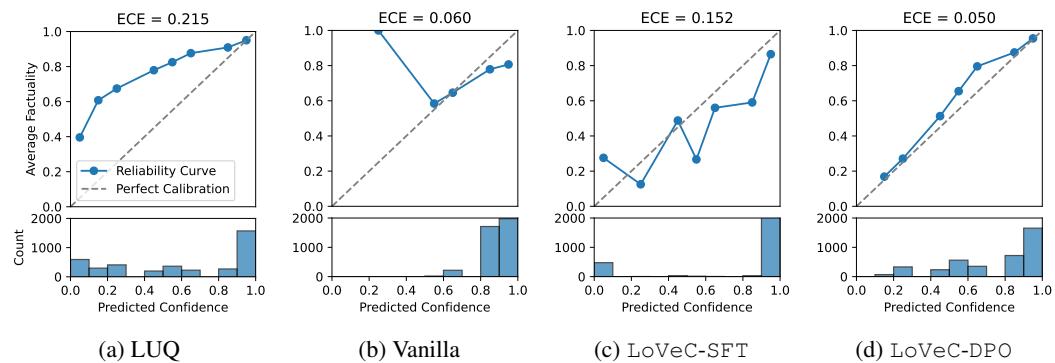
```
900 1 def improved_log_reward(confidence: int, correctness: int,
901 2 scale=10.0, gamma=1.5, penalty_strength=5.0):
902 3     if confidence is None or not (0 <= confidence <= 10):
903 4         return -3 * scale # malformed input penalty
904 5
905 6     # Core log-likelihood reward
906 7     p = np.clip(confidence / 10, 1e-6, 1 - 1e-6)
907 8     y = correctness / 10
908 9     nll = -(y * math.log(p) + (1 - y) * math.log(1 - p))
909 10
910 11     best_nll = 0
911 12     worst_nll = -(math.log(1e-6) + math.log(1 - 1e-6)) / 2
912 13
913 14     reward = scale * (1 - (nll - best_nll) / (worst_nll - best_nll))
914 15
915 16     # Stretch reward to amplify good/bad
916 17     reward = np.sign(reward) * (abs(reward) ** gamma)
917 18
918 19     # Correctness bonus (small)
919 20     reward += 0.15 * correctness
920 21
921 22     return float(reward)
922 23
```

918 C HUMAN ANNOTATION: RELIABILITY OF GPT-4O ANNOTATIONS
919

920 Although the paradigm of using GPT+Evidence to fact-check has been widely used in previous work
 921 (Zhang et al., 2024a; Zhao et al., 2024; Min et al., 2023; Wei et al., 2024), we conduct additional
 922 human annotation to evaluate the reliability of using GPT-4o as a fact-checker with retrieved evidence.
 923 Two annotators with strong English proficiency and a master’s degree in computer science were
 924 recruited. They were instructed to fact-check the sentences using the same prompt provided to
 925 GPT-4o. A random sample of 50 instances was drawn from the WildHallu dataset, consisting of
 926 312 sentences in total. We use Spearman correlation as the metric for reliability assessment. The
 927 inter-annotator agreement is 0.91 between Annotator 1 and Annotator 2. For the comparison between
 928 GPT-4o and the human average, we observe a Spearman correlation of 0.88, indicating a very strong
 929 alignment between the model and human judgments.

930
931 D ADDITIONAL RESULTS ON LLAMA-3-8B-INSTRUCT
932933 D.1 RELIABILITY DIAGRAMS
934

935 Figure 4 displays reliability diagrams for the SOTA method LUQ, the vanilla model, LoVeC-SFT ,
 936 and LoVeC-DPO . A reliability curve closer to the perfect calibration line signifies better calibration.
 937 We observe that both the vanilla model and LoVeC-SFT exhibit severe overconfidence. In contrast,
 938 our LoVeC-DPO method breaks this overconfidence pattern, leading to improved calibration results.
 939

951
952 Figure 4: Reliability diagrams for iterative tagging using Llama3-8B-Instruct in sentence-level.
953954 D.2 PASSAGE-LEVEL RESULTS
955

956 We provide passage-level results of Llama-3-8B-Instruct. We simply estimate the passage-
 957 level performance by calculating the average of sentence-level confidence and factuality. As shown
 958 in the tables below, our method, LoVeC , provides better performance than literature SOTA.
 959

960 D.3 ABLATING THE ORACLE MODEL
961

962 To assess the necessity of using a high-capacity oracle model, we conduct an ablation study by
 963 replacing GPT-4o with Llama-3-8B-Instruct for generating preference datasets. Specifically, instead
 964 of relying on GPT-4o for fact-checking and labeling preference pairs, we use the training model itself
 965 to self-label its outputs prior to DPO training.
 966

967 As shown in Table 9, while models trained on self-labeled data perform slightly worse than those
 968 using GPT-4o supervision, they still surpass strong baselines. Notably, LoVeC-DPO trained with self-
 969 labeling continues to outperform the previous state-of-the-art method, LUQ. This result highlights
 970 the practicality and effectiveness of oracle-free training, making the approach more accessible and
 971 cost-efficient without significantly compromising performance.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 7: Passage-level iterative tagging results using Llama3-8B-Instruct. The top three results outperforming LUQ are highlighted in **cyan**, with deeper shades indicating better performance. All values are presented as percentages.

Method	WildHallu			Bios			PopQA		
	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑
Literature SOTA									
LUQ	8.0	19.1	70.5	12.4	28.1	75.3	9.8	21.9	73.1
Baseline Methods									
Vanilla	8.4	7.1	30.0	17.4	26.0	18.5	18.9	26.0	18.3
p(true)	15.4	19.9	27.6	16.2	23.8	29.4	17.3	19.6	34.1
Verb-Conf	17.9	20.3	23.8	17.7	20.1	22.7	16.4	16.8	25.4
Self-Cons	12.1	17.4	59.2	18.3	21.2	64.7	14.7	17.1	61.3
Our Methods									
LoVeC-SFT	6.8	15.5	54.0	13.1	26.6	63.9	14.4	26.3	60.5
LoVeC-GRPO	3.3	2.7	72.5	5.0	5.0	77.2	7.7	7.5	75.1
LoVeC-DPO	3.5	5.5	73.1	5.2	7.0	78.3	6.1	5.5	74.1

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 8: Sentence-level free-form tagging results using Llama3-8B-Instruct. The top three results outperforming LUQ are highlighted in **cyan**, with deeper shades indicating better performance. All values are presented as percentages.

Method	WildHallu			Bios			PopQA		
	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑
Literature SOTA									
LUQ	14.5	21.5	56.8	20.0	29.5	63.8	16.7	23.2	62.5
Our Methods									
LoVeC-SFT	6.4	15.2	60.6	12.4	25.6	66.1	15.4	27.1	59.5
LoVeC-GRPO	3.8	8.0	73.0	5.8	10.8	81.5	6.4	5.3	73.6
LoVeC-DPO	3.6	5.6	73.1	5.3	6.9	78.1	6.5	3.9	73.2

D.4 THE SELECTION OF REWARD FUNCTION

We compare different reward functions used in our GRPO framework, including logarithmic, linear, and quadratic forms, as shown in Table 10. This demonstrates that the choice of reward function plays a crucial role in guiding the learning process.

E GEMMA-2-9B-IT RESULTS

Here we provide results for Gemma-2-9B-It. As described in the tables below, our method shows consistent improvements across models, beating the literature SOTA, LUQ, across datasets.

1026

1027

1028 Table 9: Comparison of WildHallu results for LUQ, SFT, DPO, and GRPO across tagging strategies.
1029 All values are presented as percentages.

1030

Method	Iterative Tagging			Freeform Tagging		
	BS	ECE-M	SC	BS	ECE-M	SC
LUQ	14.5	21.5	56.8	14.5	21.5	56.8
LoVeC-GRPO	5.7	2.5	57.0	6.0	8.2	63.1
Fact-Checking with GPT-4o + Evidence						
LoVeC-SFT	9.1	15.2	51.1	8.9	15.1	58.8
LoVeC-DPO	6.0	5.0	60.4	6.3	5.4	62.1
Fact-Checking with Llama3-8B + Evidence						
LoVeC-SFT	8.2	9.0	49.6	8.3	9.5	58.3
LoVeC-DPO	7.2	9.8	58.0	7.1	7.8	60.4

1042

1043

1044

1045

1046

1047 Table 10: Comparison of WildHallu results for LUQ, GRPO-log, GRPO-linear, GRPO-quadratic. All
1048 values are presented as percentages.

1049

Method	Iterative Tagging			Freeform Tagging		
	BS	ECE-M	SC	BS	ECE-M	SC
LUQ	14.5	21.5	56.8	14.5	21.5	56.8
GRPO-log	5.7	2.5	57.0	6.0	8.2	63.1
GRPO-quadratic	7.0	8.7	55.1	7.3	9.3	62.3
GRPO-linear	8.5	10.8	54.3	8.2	10.4	59.8

1056

1057

1058

1059

1060

1061 Table 11: Sentence-level iterative tagging results using Gemma-2-9B-It. The top three results
1062 outperforming LUQ are highlighted in **cyan**, with deeper shades indicating better performance. All
1063 values are presented as percentages.

Method	WildHallu			Bios			PopQA		
	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑
Literature SOTA									
luq	11.9	16.3	50.0	12.2	15.5	69.2	13.6	15.1	62.6
Our Methods									
Vanilla	22.5	26.3	28.9	24.5	28.8	35.5	24.0	27.7	23.7
p(true)	19.3	22.8	25.4	21.0	25.0	31.0	21.5	24.5	26.0
Verb-Conf	18.5	19.2	35.1	18.0	19.0	39.5	19.5	20.0	36.2
Self-Cons	13.4	17.7	43.2	13.0	17.0	53.0	13.5	16.5	48.5
Our Methods									
LoVeC-SFT	8.0	12.2	36.1	18.8	25.1	54.9	25.8	32.6	37.1
LoVeC-GRPO	7.3	5.6	52.2	10.7	11.1	72.4	13.1	18.1	64.2
LoVeC-DPO	4.1	1.3	51.8	7.5	7.3	75.2	11.6	13.2	65.3

1078

1079

1080

1081

1082 Table 12: Passage-level iterative tagging results using Gemma-2-9B-It. The top three results outper-
1083 forming LUQ are highlighted in [cyan](#), with deeper shades indicating better performance. All values
1084 are presented as percentages.

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

Method	WildHallu			Bios			PopQA		
	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑
Literature SOTA									
LUQ	6.3	14.1	61.2	6.8	14.2	81.6	9.2	11.8	73.8
Baseline Methods									
Vanilla	19.3	23.1	35.5	21.6	29.4	43.1	21.4	28.1	33.6
p(true)	17.8	20.3	28.7	19.6	24.2	33.8	20.4	23.7	30.2
Verb-Conf	16.3	17.1	34.6	17.5	17.9	35.7	18.4	18.8	32.3
Self-Cons	12.2	15.4	48.9	12.9	16.1	58.1	13.4	15.2	54.4
Our Methods									
LoVeC-SFT	6.5	12.1	31.9	16.2	25.6	55.6	23.6	32.8	38.3
LoVeC-GRPO	2.9	3.6	64.4	3.4	5.7	82.5	8.6	7.5	74.3
LoVeC-DPO	2.5	2.9	65.9	4.6	7.8	84.3	9.0	13.2	75.4

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120 Table 13: Sentence-level free-form tagging results using Gemma-2-9B-It. The top three results
1121 outperforming LUQ are highlighted in [cyan](#), with deeper shades indicating better performance. All
1122 values are presented as percentages.

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Method	WildHallu			Bios			PopQA		
	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑
Literature SOTA									
LUQ	11.9	16.3	50.0	12.2	15.5	69.2	13.6	15.1	62.6
Our Methods									
LoVeC-SFT	7.3	11.6	57.2	11.5	17.8	70.6	19.4	26.3	50.4
LoVeC-GRPO	4.3	4.6	56.1	8.3	3.7	72.6	8.5	8.9	63.5
LoVeC-DPO	4.5	2.2	55.2	6.6	4.2	70.3	9.5	8.2	66.6

1120 Table 14: Passage-level free-form tagging results using Gemma-2-9B-It. The top three results
1121 outperforming LUQ are highlighted in [cyan](#), with deeper shades indicating better performance. All
1122 values are presented as percentages.

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Method	WildHallu			Bios			PopQA		
	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑	BS↓	ECE-M↓	SC↑
Literature SOTA									
LUQ	6.3	14.1	61.2	6.8	14.2	81.6	9.2	11.8	73.8
Our Methods									
LoVeC-SFT	6.0	11.7	52.3	8.3	17.6	73.9	16.0	25.7	55.8
LoVeC-GRPO	3.3	4.0	66.3	3.8	4.7	83.6	6.2	4.3	78.2
LoVeC-DPO	2.7	3.2	65.4	3.1	4.6	83.9	6.1	7.9	77.4

1134 **F SHOULD THE MODEL SEE PREVIOUSLY TAGGED LABELS?**
1135

1136 Our iterative tagging protocol conditions each sentence’s confidence on all previously tagged (sen-
1137 tence, score) pairs. A natural concern is whether this *sequential conditioning* introduces bias. We
1138 therefore ablate visibility of prior scores and compare against the default setting where the model
1139 does see them.

1140
1141 **Setup.** We keep the model (Llama3-8B-Instruct), data split (WildHallu), verifier, and decoding
1142 identical to the main iterative tagging experiments and only change the input format:

1143 **Original (with prior scores):** $\{s_1, c_1, s_2\} \rightarrow c_2$, **No previous scores:** $\{s_1, s_2\} \rightarrow c_2$.
1144

1145 Concretely, at step i the Original setting conditions on $(q, (s_1, c_1), \dots, (s_{i-1}, c_{i-1}), s_i)$ (Eq. (5)
1146 in the main paper), whereas the No-Previous-Scores variant conditions on (q, s_{i-1}, s_i) but *omits*
1147 $\{c_1, \dots, c_{i-1}\}$. All other details follow the iterative tagging evaluation in the main text.

Setting	Method	BS \downarrow	ECE-M \downarrow	SC \uparrow
Original	LoVeC-GRPO	5.7	2.5	57.0
No Previous Scores	LoVeC-GRPO	8.1	4.4	43.0
Original	LoVeC-DPO	6.0	5.0	60.4
No Previous Scores	LoVeC-DPO	7.2	6.2	52.3

1148
1149 Table 15: Effect of hiding previous confidence labels in iterative tagging.
1150

1151 **Findings.** Hiding previously tagged labels degrades all metrics for both training schemes. Our
1152 hypothesis is that the prior score acts as a local calibration anchor that helps the model focus its
1153 uncertainty estimate on the *current* sentence rather than implicitly re-evaluating the **entire prefix**.
1154 Removing that anchor consistently harms calibration with a stronger effect under GRPO.

1155 These results provide *no* evidence that sequential conditioning introduces a harmful bias. On the
1156 contrary, allowing the model to see previously tagged labels yields materially better calibration and
1157 discrimination. We therefore recommend *including* prior scores for iterative tagging; the No-Previous-
1158 Scores variant remains a viable ablation, but it incurs substantial performance loss.

1159 **G DO WE NEED REGRESSION LOSS IN SFT?**

1160 We evaluate whether using a regression loss to SFT improves confidence estimation under our iterative
1161 tagging protocol (We use **Llama-3-8B-Instruct** on **WildHallu** as example).

1162
1163 Table 16: **SFT vs. SFT-regression under iterative tagging.** Lower is better for BS/ECE-M; higher
1164 is better for AUROC.
1165

Model	BS \downarrow	ECE-M \downarrow	SP \uparrow
LoVeC-SFT	9.1	15.2	51.1
LoVeC-SFT-regression	12.9	19.8	47.1

1166
1167 **Findings.** Using the regression loss *hurts* across all metrics. Therefore, under our setting, **vanilla**
1168 **SFT** is preferable. A plausible cause is that the regression target encourages absolute score mimicry
1169 that is misaligned with the iterative tagging objective, which prioritizes well-calibrated, locally
1170 contextualized confidence on the current sentence.

1171 **H DOES OUR TRAINING INDUCE REWARD HACKING?**

1172
1173 **Setup.** We evaluate generations from Llama-3 on the WildHallu benchmark and compare RL-tuned
1174 models to non-RL baselines (Vanilla, SFT). We track four simple but sensitive diagnostics:

1188 Table 17: Generation statistics on LLAMA-3 for *WildHallu*. Higher is better for Factuality, Semantic
 1189 Diversity, and Vocabulary Richness.

1190

Model	Word Count	Factuality	Semantic Diversity	Vocabulary Richness
Vanilla	134.29	0.72	0.5688	0.5732
SFT	132.31	0.73	0.5370	0.5738
GRPO	130.62	0.73	0.5691	0.5670
DPO	133.50	0.74	0.5403	0.5338

1196

1197

- *Word Count* (avg. tokens per output) to detect length hacking.
- *Factuality* (same estimator as in the main results) to ensure truthfulness is not traded away.
- *Semantic Diversity*, computed as the mean embedding cosine *dissimilarity* across outputs:

$$1202 \quad \text{SemDiv} = 1 - \frac{2}{n(n-1)} \sum_{i < j} \cos(\mathbf{e}_i, \mathbf{e}_j)$$

1203 where \mathbf{e}_i is the embedding of the i -th sentence within the model’s generated paragraph.

1204

- *Vocabulary Richness*, measured by the type–token ratio (TTR): $\text{TTR} = \frac{\#\text{unique tokens}}{\#\text{tokens}}$.

1205 We compute sentence embeddings with `all-MiniLM-L6-v2` using SentenceTransformers
 1206 (Reimers & Gurevych, 2019) and calculate TTR with `nltk`.¹

1207 **Findings.** RL methods are comparable to baselines on length and factuality and do not reduce
 1208 semantic diversity or vocabulary richness (Table 17). We additionally audited 100 samples per RL
 1209 method and found no systematic repetition loops, prompt copying, or template collapse.

1210 Therefore, under our setup, we observe no evidence of reward hacking. While these diagnostics are
 1211 proxies, they provide a simple, reproducible check that complements the main metrics.

1212

I NUMERICAL CONSISTENCY

1213 We investigate the probability distribution over decoded confidence tokens to assess whether models
 1214 have learned to internalize the ordinal structure of the confidence scale. Ideally, a well-calibrated
 1215 model should rank numerical confidence tokens in an order that reflects their semantic meaning—
 1216 placing higher probabilities on larger values (*e.g.*, 10 over 9, 9 over 8, etc.) when expressing
 1217 high certainty.

1218 To probe this behavior, we deliberately select some factually correct statements. We then inspect
 1219 the top 15 tokens with the highest decoding probabilities. As shown in the following two cases, *all*
 1220 *models correctly assign the most probable token as 10*, reflecting high confidence. However, the
 1221 surrounding distributions reveal key differences.

1222 The GRPO-trained model displays a **near-perfect ordinal alignment**: tokens are ranked in descending
 1223 order from 10 down to 0, without the presence of extraneous symbols or irrelevant content. This
 1224 indicates that GRPO not only learns to express high confidence but also internalizes the structure of
 1225 the confidence scale. In contrast, the DPO model also shows partial ordinal structure, but includes
 1226 non-numeric or unrelated tokens among its top predictions. We attribute this to DPO’s lack of explicit
 1227 format control, whereas GRPO incorporates a format penalty during training to discourage malformed
 1228 outputs.

1229 SFT, although it outputs 10 as the most likely token, fails to preserve any consistent ordinal pattern in
 1230 the rest of the distribution—*e.g.*, lower-confidence values like 0 or 1 may appear above intermediate
 1231 values. This suggests that SFT does not effectively capture the ordinal relationship between confidence
 1232 scores, which may contribute to its weaker calibration performance.

1233 More interestingly, such trend holds when the model is uncertain about their output. It demonstrates
 1234 a desired concave ranking centered at the most probable token. For example in Figure 6, for GRPO,

1241

¹Exact preprocessing: lowercasing, basic punctuation stripping, and whitespace tokenization.

1242 Tag on Factually Correct Output

Query:

In a paragraph, could you tell me what you know about King's College, Cambridge?

Tagging Input:

King's College, Cambridge is a constituent college of the University of Cambridge, one of the world's oldest and most prestigious universities. <confidence>

Table 18: Example of model’s high confidence output next-token-probability probing.

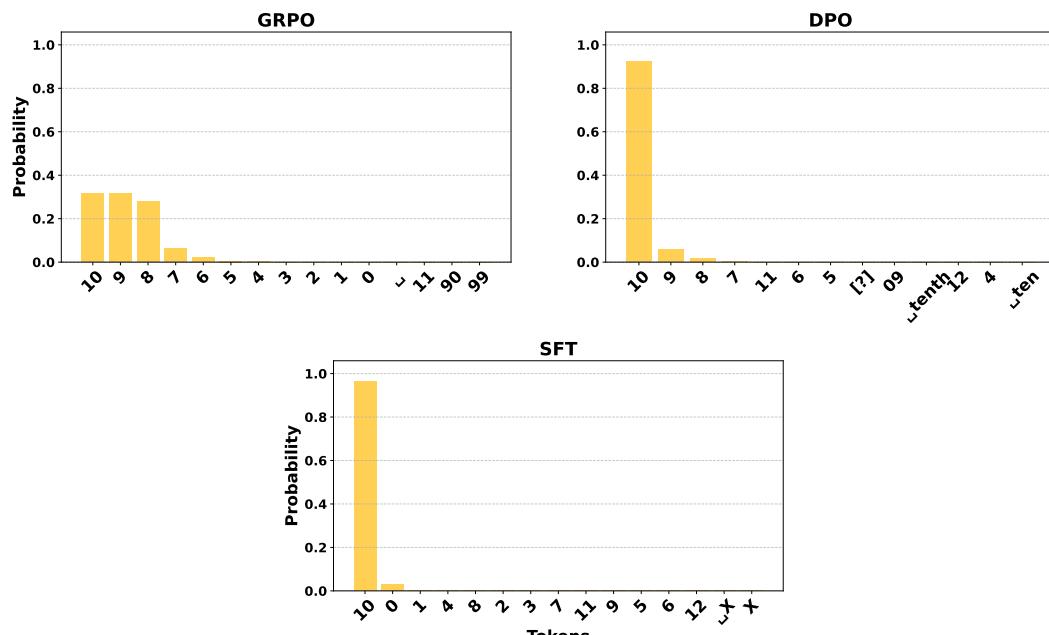


Figure 5: Token probability distributions when the model is confident. The sentence to tag is: “King’s College, Cambridge is a constituent college of the University of Cambridge, one of the world’s oldest and most prestigious universities.”

any confidence score large than it's most probable token 2 is in ascending order, any score smaller in descending order. Again DPO shows similar pattern but with irrelevant tokens, and SFT fails to grasp the order. These findings reinforce the advantage of reinforcement learning in inducing consistent numerical structure and semantic alignment in confidence estimation.

Tag on Factually Incorrect Output

Query:

In a paragraph, could you tell me what you know about MiniGPT4?

Tagging Input:

MiniGPT4 is a lightweight and efficient variant of the popular GPT-4 language model, designed to be more accessible and easier to deploy in resource-constrained environments. <confidence>

Table 19: Example for model’s low confidence output for next-token-probability probing.

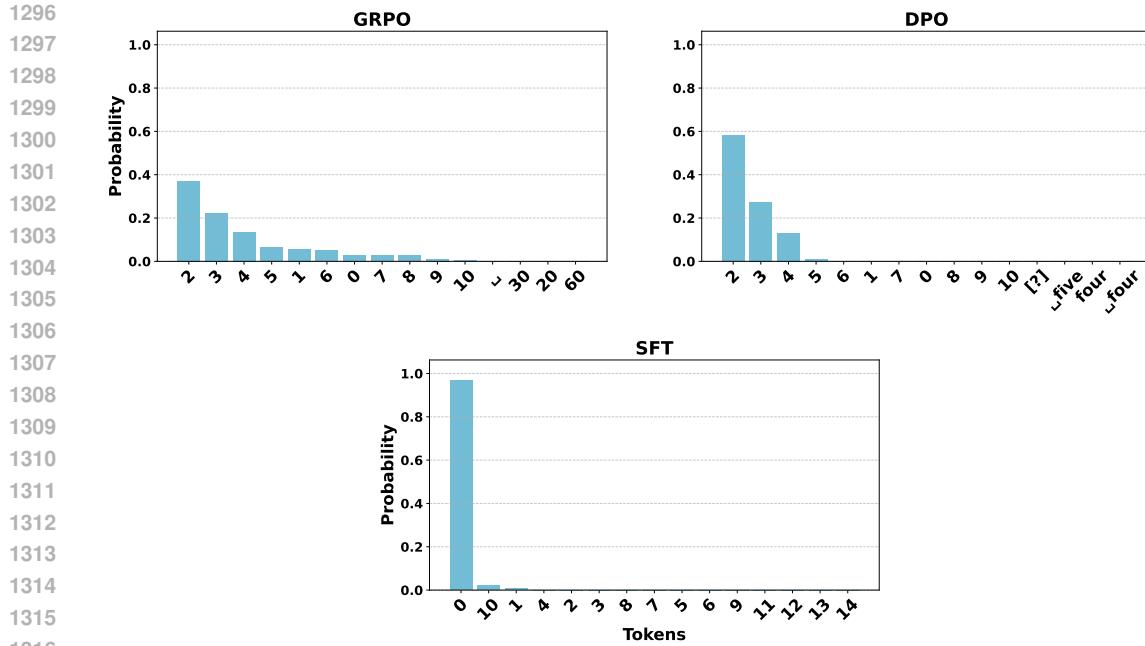


Figure 6: Token probability distributions when the model is uncertain. The sentence to tag is: “MiniGPT4 is a lightweight and efficient variant of the popular GPT-4 language model, designed to be more accessible and easier to deploy in resource-constrained environments.”

J GENERALIZATION TO SHORT-FORM QA

To assess the generalization capability of our method on short-form confidence estimation, we evaluate it on the TriviaQA Joshi et al. (2017) test set. As illustrated in Table 20, our results show that the proposed method performs on par with sampling-based self-consistency baselines, and closely approaches the performance of the current RL-based state-of-the-art, RewardingDoubt.

Notably, both ours method and RewardingDoubt use the same base model, Llama-3-8B-Instruct, and a similar LoRA fine-tuning setup. However, our method is trained on the out-of-domain **Wildhallu** dataset, using only 5.6k examples for a single epoch. In contrast, RewardingDoubt is trained directly on the in-domain TriviaQA dataset, with 174k examples across two epochs. Despite this disparity in domain alignment and data volume, our model achieves a strong approximation to RewardingDoubt’s performance.

These results highlight the robustness and domain-transferability of our approach. We believe this test provides encouraging evidence that our method generalizes well to short-form QA tasks, and has the potential for further gains with in-domain fine-tuning.

Table 20: AUROC and ECE metrics for various methods on short-form QA dataset: Trivia QA. All values are presented as percentages.

Category	Method	AUROC↑	ECE↓
Baselines	Self-Verb	50.0	69.3
	p(true)	60.1	21.1
	Self-Cons	73.4	12.2
Literature SOTA	Rewarding Doubt*	85.9	2.2
Our Methods	LoVeC-SFT	56.3	2.0
	LoVeC-GRPO	69.2	6.3
	LoVeC-DPO	71.2	6.9

1350 **K RUNNING TIME**
 1351

1352 We compare the running time of different confidence estimation methods on **Wildhallu** test set (792
 1353 data points) using Gemma2-9B-It and it's RL fine-tuned model on single A100 80GB. Note that
 1354 Iterative Tagging time counts the generation time of no-confidence facts from the original model. As
 1355 depicted in 7 below, not only do our methods show better calibration, they also runs $10 \sim 20 \times$ faster
 1356 than sampling based methods, including the literature SOTA, LUQ.
 1357

1358 **Why LoVeC is faster.**

1359 1. **Single-pass generation.** Self-verification methods (e.g., LUQ, Self-Consistency) resample
 1360 or decompose outputs and then check them, incurring extra decoding and verifier calls. If L
 1361 is the number of decoded tokens and $k > 1$ the number of samples, the baseline scales like
 1362

1363
$$\underbrace{O(k \cdot L)}_{\text{resampling}} + \underbrace{O(\text{consistency checks})}_{\text{often extra NLI calls}}.$$

 1364

1365 LoVEC produces the answer *and* the confidence in the *same* decoding pass:
 1366

1367
$$O(L) \quad (\text{no resampling, no separate checker}).$$

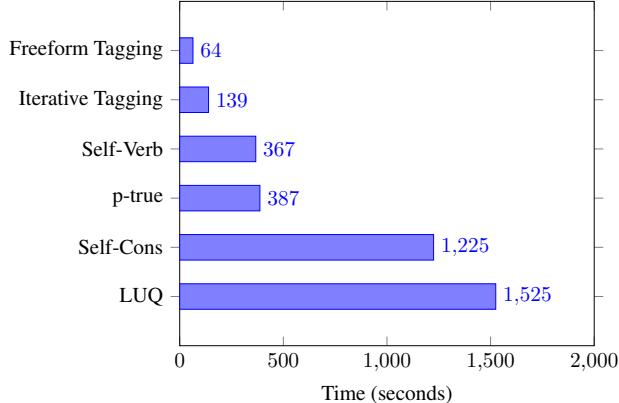
 1368

1369 2. **Efficient iterative tagging.** When the passage is fixed, the model emits only a few confi-
 1370 dence tokens per sentence, with *no* content re-generation. If S is the number of sentences
 1371 (and each gets a small constant number of confidence tokens), the per-iteration cost is
 1372

1373
$$O(S) \quad (\text{tags only}),$$

 1374

1375 whereas self-verification still pays for multiple tag generations and additional checks in each
 1376 iteration.
 1377



1390 Figure 7: Comparison of total processing time (in seconds) for WildHallu test set (792 samples) using
 1391 Gemma2-9B-It on single A100 80GB.
 1392

1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
1405

L CASE STUDY

1406
1407 Table 21: Examples generated by LoVeC-DPO from the health domain. The model's low-confidence
1408 sentences (highlighted in red) indeed correspond to hallucinated or factually incorrect statements.
14091410

Case Study on Health

1411 **Query:**1412 In a paragraph, could you tell me what you know about Stiff Person Syndrome?
14131414 **Model Output:**1415 Stiff Person Syndrome (SPS) is a rare autoimmune neurological disorder characterized by progressive
1416 muscle stiffness and painful spasms, often triggered by stimuli like noise or emotional stress. **<confidence> 8 </confidence>** The condition is caused by a deficiency of dopamine in the brain, leading to
1417 impaired muscle coordination. **<confidence> 4 </confidence>** SPS primarily affects the muscles of
1418 the trunk and limbs, leading to difficulties in movement and posture. **<confidence> 8 </confidence>** It is commonly treated with antibiotics to eliminate the underlying bacterial infection responsible for
1419 the symptoms. **<confidence> 2 </confidence>** Diagnosis often involves detecting antibodies against
1420 glutamic acid decarboxylase (GAD) and conducting electromyography (EMG) tests. **<confidence> 7 </confidence>**
1421 While there is no cure, treatments like benzodiazepines, baclofen, and immunotherapies
1422 can help manage the symptoms effectively. **<confidence> 9 </confidence>**
14231424
1425 Table 22: Examples generated by LoVeC-DPO from the legal domain. The model's low-confidence
1426 sentences (highlighted in red) indeed correspond to hallucinated or factually incorrect statements.
14271428

Case Study on Law

1429 **Query:**1430 In a paragraph, could you tell me what you know about Daubert v. Merrell Dow Pharmaceuticals?
14311432 **Model Output:**1433 The 1993 Supreme Court decision in Daubert v. Merrell Dow Pharmaceuticals established the "Daubert
1434 standard," which guides federal courts in assessing the admissibility of expert scientific testimony.
1435 **<confidence> 9 </confidence>** This standard emphasizes factors such as testability, peer review, error
1436 rates, and general acceptance within the relevant scientific community. **<confidence> 10 </confidence>** Under Daubert,
1437 the role of evaluating expert evidence shifted from the jury to a specialized panel of
1438 scientific advisors appointed by the court. **<confidence> 8 </confidence>** The case arose when plaintiffs
1439 alleged that the drug Bendectin caused birth defects, and the Court held that expert testimony must be
1440 based on scientifically valid reasoning. **<confidence> 9 </confidence>** Following this ruling, all U.S.
1441 states were mandated to adopt the Daubert standard for evaluating expert testimony. **<confidence> 5 </confidence>**
1442 The decision underscored the trial judge's role as a "gatekeeper" in ensuring that any
1443 and all scientific testimony or evidence admitted is not only relevant but also reliable. **<confidence> 10 </confidence>**
1444

1458 **M PROMPTS**
14591460 **M.1 PROMPT FOR SFT AND RL-BASED TUNING:**1461 You are a helpful assistant. Your task is to provide accurate and
1462 informative answers to user queries.
1463

1464 For each sentence in your response:

1465 - Include a confidence score from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
1466 - The score indicates how certain you are that the sentence is factually
1467 correct:
1468 - 0 = very low confidence (likely incorrect)
1469 - 10 = very high confidence (very likely correct)1470 Append the confidence score at the end of each sentence using the format:
1471 <confidence> X </confidence>,
1472 where X is a number from 0 to 10.1473 **M.2 PROMPT FOR P(TRUE):**1474 You are required to determine whether a sentence is factually correct
1475 based on real-world knowledge.
14761477 A context is provided for reference, but your judgment should not be
1478 limited to it.

1479 Respond with 'True' or 'False' only. Do not include any explanations.

1480 Context (for reference): {context}
1481 Sentence: {sentence}

1482 True or False:

1483 **M.3 PROMPT FOR VERBALIZED CONFIDENCE (VC):**1484 You are required to determine whether a sentence is factually correct
1485 based on real-world knowledge.
14861487 A context is provided for reference, but your judgment should not be
1488 limited to it.

1489 For each sentence:

1490 - Assign a confidence score from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
1491 - The score indicates how certain you are that the sentence is factually
1492 correct:
1493 - 0 = very low confidence (likely incorrect)
1494 - 10 = very high confidence (very likely correct)1495 Context (for reference): {context}
1496 Sentence: {sentence}

1497 Confidence:

1500 **M.4 PROMPT FOR FACT-CHECKING:**1501 Your task is to fact-check each of the following sentences.
1502

1503 Each sentence may contain multiple factual claims. For each one:

1504 1. Break down and assess the factual accuracy of each individual detail.
1505 2. Consider names, dates, locations, statistics, events, and attributions
1506 .
1507 3. Assign a numeric **veracity rating** from 0 to 10 based on this scale:1508 0: Completely incorrect - entirely false or misleading.
1509 1-3: Mostly incorrect - several key inaccuracies.
1510 4-6: Partially correct - mix of accurate and inaccurate information.

```

1512 7-9: Mostly correct - generally accurate with minor issues.
1513 10: Completely correct - all facts are verifiably accurate.
1514
1515 Use the following format for your output (do **not** repeat the sentence)
1516 :
1517 **Analysis:** [Your detailed factual analysis]
1518 **Rating:** $[0-10]$
1519
1520 ---
1521 **Example Inputs:***
1522 ### Marie Curie won two Nobel Prizes, one in Physics in 1903 and another
1523 in Chemistry in 1911 for her work on radioactivity.
1524 ### The Great Fire of London occurred in 1666 and destroyed nearly half
1525 of the city's modern skyscrapers.
1526 ### Albert Einstein developed the theory of relativity while working as a
1527 professor at the University of Zurich and received the Nobel Prize
1528 in Physics in 1921 for this work.
1529 ### Mount Everest, located on the border between Nepal and India, is the
1530 second-highest mountain in the world after K2.
1531 **Example Outputs:***
1532 **Analysis:** Marie Curie received the Nobel Prize in Physics in 1903 (
1533     shared with Pierre Curie and Henri Becquerel) and the Nobel Prize in
1534 Chemistry in 1911 for discovering polonium and radium. The statement
1535 is entirely accurate.
1536 **Rating:** $10$
1537 **Analysis:** While the date of the fire is correct, the mention of "
1538     modern skyscrapers" is anachronistic and factually incorrect.
1539     Skyscrapers did not exist in 1666.
1540 **Rating:** $2$
1541 **Analysis:** Einstein did work at the University of Zurich and received
1542     the Nobel Prize in 1921, but it was awarded for his explanation of
1543     the photoelectric effect, not for the theory of relativity.
1544 **Rating:** $6$
1545 **Analysis:** Mount Everest is located between Nepal and the Tibet
1546     Autonomous Region of China, not India. Additionally, it is the
1547     highest mountain in the world, not the second-highest.
1548 **Rating:** $1$
1549 ---
1550 Here is some relevant information for your reference:
1551 {evidence}
1552 ---
1553 Now evaluate the following sentences and output all the results in one go
1554 .
1555 You should only output the analysis and rating for each sentence without
1556     repeating the sentences.:
1557
1558 {sentence}
1559
1560
1561
1562
1563
1564
1565

```