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ABSTRACT

Text-to-image diffusion-based generative models have the stunning ability to generate
photo-realistic images and achieve state-of-the-art low FID scores on challenging image
generation benchmarks. However, one of the primary failure modes of these text-to-image
generative models is in composing attributes, objects, and their associated relationships
accurately into an image. In our paper, we investigate this compositionality-based failure
mode and highlight that imperfect text conditioning with CLIP text-encoder is one of the
primary reasons behind the inability of these models to generate high-fidelity compositional
scenes. In particular, we show that (i) there exists an optimal text-embedding space that can
generate highly coherent compositional scenes showing that the output space of the CLIP
text-encoder is sub-optimal, and (ii) the final token embeddings in CLIP are erroneous as
they often include attention contributions from unrelated tokens in compositional prompts.
Our main finding shows that the best compositional improvements can be achieved (without
harming the model’s FID score) by fine-tuning only a simple and parameter-efficient linear
projection on CLIP’s representation space in Stable-Diffusion variants using a small set
of compositional image-text pairs. This result demonstrates that the sub-optimality of the
CLIP’s output space is a major error source. We also show that re-weighting the erroneous
attention contributions in CLIP can lead to slightly improved compositional performances.

1 INTRODUCTION

Text-to-image diffusion-based generative models (Rombach et al., 2021; Podell et al., 2023; Ramesh et al.,
2021; Saharia et al., 2022) have achieved photo-realistic image generation capabilities on user-defined text
prompts. However recent works (Huang et al., 2023) have designed compositionality benchmarks to show
that these text-to-image models have low fidelity to simple compositionality prompts such as those consisting
of attributes, objects, and their associated relations (e.g., “a red book and a yellow vase’). This hinders the
use of these generative models in various creative scenarios where the end-user wants to generate a scene
where the composition is derived from words (and their relationships) in the prompt.

Existing works (Chefer et al., 2023a; Feng et al., 2023; Agarwal et al., 2023; Wang et al., 2023) propose
various ways to improve compositionality in text-to-image models. These works primarily rely on modifying
the cross-attention maps by leveraging bounding box annotations and performing a small optimization in
the latent space during inference. Recent methods based on fine-tuning (Huang et al., 2023) the UNet also
lead to improved compositonality. Despite the progress, the core reasons behind compositionality failures in
text-to-image models remain unclear. Understanding these reasons helps designing effective methods that can
augment text-to-image models with improved compositional capabilities.

In our paper, we investigate possible reasons behind compositionality failures in text-to-image generative
models. We identify two sources of errors: (i) We observe that output token embeddings in CLIP have
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Figure 1: Overview of our analysis and proposed methods. The figure identifies two sources of errors in
Stable Diffusion’s inability to generate compositional prompts: (i) erroneous attention contribution in CLIP
(minor) and (ii) sub-optimal CLIP text embedding (major). We propose a window-based linear projection
(WiCLP), applying linear projection to a token’s surrounding window to enhance embeddings.

significant attention contributions from irrelevant tokens, thereby introducing errors in generation. We then
compare the internal attention contributions in CLIP for compositional prompts to the TS5 text-encoder which
has been shown to display strong compositional capabilities in DeepFloyd'. We quantitatively find that the TS
text-encoder displays significantly lesser erroneous attention contributions than CLIP, highlighting a potential
reason towards its improved compositionality. (ii) Sub-optimality of CLIP output space on compositional
prompts: We observe that optimizing the text embeddings, while utilizing a frozen Stable-Diffusion UNet,
effectively generates images with compositional scenes. We find out that there exists a text-embedding space
capable of generating highly coherent images with compositional scenes for various attributes (e.g., color,
texture, shape) which highlights that the existing CLIP output space is sub-optimal. These results indicate
that the output space of the CLIP text-encoder could be further improved to enable text-to-image models to
generate more accurate compositional scenes.

Leveraging our observations on the deficiencies of the CLIP output space, we show that we can improve
the output space of the CLIP text-encoder to better align with the optimal space by applying a simple linear
projection on top of CLIP (see Figure 1). This leads to stronger compositional performances. In particular,
we propose Window-based Compositional Linear Projection (WiCLP), a lightweight fine-tuning method that
significantly improves the model’s performance on compositional prompts, yielding results comparable to
existing baselines (see Figure 2). Moreover, it preserves the model’s clean accuracy, as evidenced by a low
FID on clean prompts, offering a parameter and speed-efficient solution. We also show that reweighting the
erroneous attention contributions in CLIP can lead to improved compositional performances, however, the
improvements often lag behind WiCLP.

Fine-tuning a subset of components of the diffusion model can result in an increase in the FID score for clean
prompts. While fine-tuning only a linear projection partially mitigates this, we find that applying it over all
the time steps results in an increase in FID. To mitigate this, we introduce SWITCH-OFF where we only apply
WiCLP during the initial steps of generation, switching it off for the remaining steps. This enables the model

'https://huggingface.co/DeepFloyd/IF-I-M-v1.0
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Figure 2: Qualitative comparison between CLP and WiCLP vs the baselines.

to obtain a coherent compositional scene in early steps (crucial for compositional prompts) while retaining
clean accuracy on surrounding prompts, as the generation in final steps is guided by the original text-encoder
not the augmented one that maps to the optimized space.

In summary, our contributions are as follows:

* We perform an in-depth analysis of the reasons behind compositionality failures in open-source
text-to-image generative models, highlighting two reasons for them.

* Leveraging our observations, we propose WiCLP for Stable Diffusion v-1.4 and v-2 which can
augment the models with improved compositionality while preserving their clean accuracy on
surrounding prompts. We observe improvements of 16.18%, 15.15%, and 9.51% on SD v1.4 and
14.35%, 11.14%, and 6% on SD v2 in VQA scores (Huang et al., 2023) across color, texture, and
shape datasets, respectively. Our method achieves competitive VQA scores compared to other
baselines, while demonstrating superior FID on clean prompts, requiring fewer parameters for
optimization, and enabling fast inference.

Overall, our paper provides quantitative evidence elucidating the compositional challenges within text-to-
image models and strong baselines to mitigate such issues.

2 BACKGROUND

Compositionality in Text-to-Image Generative Models. A recent work Huang et al. (2023) introduces a
benchmark for testing compositionality in text-to-image models showing the susceptibility of open-source text-
to-image models on simple compositional prompts. In addition, the authors also propose a fine-tuning baseline
to augment text-to-image models with improved compositionality. The compositionality issue can also be
addressed at inference time by modifying the cross-attention maps leveraging hand-crafted loss functions and
bounding boxes generated from a language model (Chefer et al., 2023a; Feng et al., 2023; Agarwal et al.,
2023; Wang et al., 2023; Nie et al., 2024; Lian et al., 2023; Liu et al., 2022a). However, Huang et al. (2023)
show that a data-driven and fine-tuning approach is more suitable towards improving compositionality.

Interpretability of Text-to-Image Generative Models. There have been recent efforts to interpret text-
to-image models like Stable Diffusion. DAAM (Tang et al., 2023; Hertz et al., 2022) studies the generation
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process in diffusion models by analyzing cross-attention maps between text tokens and image pixels, high-
lighting their semantic precision. Basu et al. (2023) use causal tracing to understand how knowledge is stored
in models like Stable Diffusion v1 while Rezaei et al. (2024) propose a mechanistic approach to localize
knowledge in cross-attention layers of various text-to-image models. Chefer et al. (2023b) explore concept
decomposition in diffusion models.

2.1 TEXT-TO-IMAGE DIFFUSION MODELS: TRAINING AND INFERENCE

In diffusion models, noise is added to the data following a Markov chain across multiple time-steps ¢ € [0, T7].
Starting from an initial random real image x( along with its caption ¢, (xg,¢) ~ D, the noisy image at
time-step ¢ is defined as x; = \/a:xo + /(1 — ar)e. The denoising network denoted by € (x¢, ¢, ) is
pre-trained to denoise the noisy image x; to obtain x;_;. For better training efficiency, the noising along
with the denoising operation occurs in a latent space defined by z = £(x), where £ is an encoder such as
VQ-VAE (van den Oord et al., 2017). Usually, the conditional input ¢ to the denoising network €y(.) is a
text-embedding of the caption c through a text-encoder ¢ = v, (c). The pre-training objective for diffusion
models can be defined as follows:

£(6) = Bisp.oppicr [le — el e, )]

where 6 is the set of learnable parameters in the UNet €y. During inference, where the objective is to
synthesize an image given a text-embedding ¢, a random Gaussian noise zg ~ N(0, I) is iteratively denoised
for a fixed range of time-steps to produce the final image.

2.2 COMPOSITIONALITY EVALUATION METRICS

We focus on the disentangled BLIP-Visual Question Answering (referred to as VQA for simplicity) score
proposed by Huang et al. (2023) as a key metric for evaluating image quality. The VQA score measures how
accurately an image captures the compositional elements described in the prompt, offering a closer correlation
with human judgment compared to metrics like CLIP-Score (Hessel et al., 2021).

2.3 DATASET COLLECTION

We utilize the T2I-CompBench dataset (Huang et al., 2023), focusing on three key categories: color, texture,
and shape, with a total of 1,000 prompts across both training and evaluation sets. T2I-CompBench is a well-
established and widely recognized dataset (Esser et al., 2024). This dataset provides distinct training and
evaluation splits for each category, enabling a structured approach to assessing performance. To generate
high-quality images, we use three generative models: SD 1.4 (Rombach et al., 2021), DeepFloyd, and SynGen
(Rassin et al., 2024), creating 100 samples per prompt with SD 1.4, 60 with DeepFloyd, and 50 with SynGen.
This ensures a wide variety of generated images, leveraging each model’s strengths. For each prompt, we
combined all 210 samples from the three models and selected the top 30 with the highest VQA scores,
ensuring the final dataset consisted of images that most accurately reflected the prompts.

3 SOURCE (I) : ERRONEOUS ATTENTION CONTRIBUTIONS IN CLIP

In this section, we leverage attention contributions (Elhage et al., 2021; Dar et al., 2023) to analyze the
text-embeddings of compositional prompts in the CLIP text-encoder (which is commonly used in many
text-to-image models) and compare them with T5-text encoder of DeepFloyd, a model which results in
stronger compositionality. Many of the compositional prompts from Huang et al. (2023) have a decomposable
template of the form a; o; + a; o;, where a;, a; are attributes (e.g., “black”, “matted”) while o;, o; describe
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the more accurate performance of T5. across 780 prompts of color dataset and 582 prompts of
texture dataset.
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objects (e.g., “car”, “bag”). We use attention contributions to understand how the text-embeddings of the
compositional tokens (e.g., a;, a;, 0;, 0;) are formed for both TS5 and CLIP over the layers of these models.

The attention mechanism in layer ¢ of a transformer consists of four weight matrices
Wy, Wy, Wi, W, (Vaswani et al,, 2017). Each of these weight matrices is divided into H heads de-
noted by W, W, Wl e R Wl e R¥*? for all h € [H|. Note that dj, is the dimension of the
internal token embeddings. We omit ¢ for simplicity, but each layer has its own attention matrices. These
matrices are applied on the token embeddings of the output of layer £ — 1, denoted by X; for token j in that
layer. We denote by qu, k? , and v? the projection of X; on query, key, and value matrices of the h-th head of
layer ¢. More precisely,

h _ = tirh h _ = virh h _ = 1irh
q; zijq, kj =x; W', \z =x; W

The contribution of token j to token ¢ in layer ¢, denoted by cont;_;, is computed as follows:

H
cont; ; = Z attn?, j V? wh
h=1 2
where attnﬁ ; 1s the attention weight of token i to j in the h-th head of layer £. Specifically,
h

vy,

Notably, cont; ; is a significant metric that quantifies the contribution of a token j to the norm of a token ¢
at layer ¢. We employ this metric to identify layers in which important tokens highly attend to unintended
tokens, or lowly attend to infended ones. We refer to Appendix C.1 for more details on attention contribution.

n

attn}’ = SOFTMAX
i=1

3.1 KEY FINDING: T5 HAS LESS ERRONEOUS ATTENTION CONTRIBUTIONS THAN CLIP

We refer to Figure 3 that visualizes attention contribution of both TS and CLIP text-encoder in the last layer
(¢ = 11) for the prompt ”a green bench and a red car”. Ideally, the attention mechanism should guide the token
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“car” to focus more on “red” than “green”, but in the last layer of the CLIP text-encoder, “car” significantly
attends to “green”. In contrast, TS shows a more consistent attention pattern, with “red” contributing more to
the token “’car” and “’green” contributing more to the token “bench”.

We further conduct an extensive analysis on specific types of prompts, consisting of 780 prompts of color
dataset and 582 prompts of texture dataset, each structured as “a; o1 and as 05.” For each prompt, we obtain
attention contributions in all layers and count the number of layers where unintended attention contributions
occur. In the CLIP text-encoder, unintended attention occurs when o5 attends more to a; than as. For T3, it
occurs when o attends more to a; than as, or 01 attends more to ay than a;. Figure 4 provides a quantitative
comparison of unintended attention across various prompts between the CLIP text-encoder and T5. The T5
model demonstrates improved performance on our metric compared to the CLIP text-encoder, reinforcing the
hypothesis that erroneous attention mechanisms in CLIP may contribute to its weaker compositionality in
text-to-image models. This aligns with the general observation that pretrained text-to-image models using the
TS text-encoder tend to exhibit superior compositionality. Additional details can be found in Appendix C.4.
Further experiments with other text-encoders are also reported in Appendix C.3.

3.2 ZERO-SHOT ATTENTION REWEIGHTING

Inspired by attention mechanism shortcomings of CLIP text-encoder, we aim to improve compositionality
of CLIP-based diffusion models by zero-shot reweighting of the attention maps. Specifically, we apply
a hand-crafted zero-shot manipulation of the attention maps in certain layers of the CLIP text-encoder to
effectively reduce unintended attentions while enhancing meaningful ones. This zero-shot reweighting is
applied to the logits before the SOFTMAX layer in the last three layers of the text-encoder. More precisely, we
compute a matrix M € R™*"™ and add it to the attention logits. For each head h, the new attention values are
computed and then propagated through the subsequent layers of the text encoder:

h h n
"h <q1, 7kj>
attn,” = SOFTMAX —+ M, ;
1. { /*dh 3]

Jj=1

We set the values in M by considering the ideal case where no incorrect attentions occur in the mechanism.
For example, for prompt “a green bench and a red car”, we ensure that the token “car” does not attend to
the token ’green” by assigning a sufficiently large negative value to the corresponding entry in matrix M.
Further details on how we obtain matrix M can be found in Appendix C.2.

Key Results. Applying zero-shot attention reweighting with matrix M on 780 compositional prompts of color
dataset, we achieved a 2.93% improvement in VQA scores. Examples of effective zero-shot reweighting,
demonstrating its impact on mitigating compositionality issues in can be found in Appendix C.2. Although
erroneous attention contributions in the CLIP text-encoder is one source of error, it is not the primary error
source due to modest improvements in compositional accuracy. In the next section, we investigate the
sub-optimality of the output space of CLIP text-encoder, which we find to be a significant source of error.

4  SOURCE (II) : SUB-OPTIMALITY OF CLIP TEXT-ENCODER FOR COMPOSITIONAL
PROMPTS

In this section, we understand if the UNet is capable of generating compositional scenes by optimizing the text-
embeddings that it takes as the conditional input. Given an input prompt ¢ with a particular composition (e.g.,
“a red book and a yellow table”), we utilize our dataset and obtain D, including high-quality compositional
images for prompt c. We then optimize the output text-embedding c as follows:

¢ = argminEy o, o [le = ol e, D))
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Figure 5: Comparative analysis of VQA Scores between CLIP text-embeddings and optimized text-
embeddings using Stable Diffusion v1.4 across color, texture, and shape categories. Results show CLIP text
embeddings achieved scores of 0.3615 for color, 0.4306 for texture, and 0.3619 for shape, while optimized
text embeddings achieved scores of 0.7513 for color, 0.7254 for texture, and 0.58728 for shape.

We then use c* to generate images using the UNet ¢y across different seeds. Figure 5 depicts a few of
generated images using optimized text-embeddings.

Key Results. As seen in Figure 5, we consistently improve VQA scores across a variety of compositional
prompts (i.e., color, texture, and shape). This indicates that CLIP text-encoder does not output the proper text-
embedding suitable for generating compositional scenes. However, that optimized embedding space exists,
highlighting the ability of UNet to generate coherent compositional scenes when a proper text-embedding is
given. This further motivates the idea of improving CLIP output space to mitigate compositionality issues in
text-to-image diffusion models. We refer to Appendix B for other configurations showing that optimizing a
subset of tokens can also effectively improve compositionality.

5 LINEAR PROJECTION ON CLIP: A SIMPLE BASELINE TO IMPROVE
COMPOSITIONALITY IN TEXT-TO-IMAGE GENERATIVE MODELS

In this Section, we provide two baselines CLP and WiCLP that are linear modification of CLIP output to map
that sub-optimal space to an enhanced one, better suited for compositionality.

5.1 CLP: TOKEN-WISE COMPOSITIONAL LINEAR PROJECTION

Given the text-embedding ¢ € R™*4 a5 the output of the text-encoder for prompt ¢, i.e., ¢ = v4(c), we train a
linear projection CLPyy;, : R"*4 — R™*4. This projection includes a matrix W € R4*? and a bias term
b € R, which are applied token-wise to the output text-embeddings of the encoder. More formally, for
¢ € R™*4 including text-embeddings of n tokens ¢y, Ca, - - - , ¢, € RY, CLPyy(c) is obtained by stacking
projected embeddings ¢/, c, - - - , ¢!, where ¢, = WTc; +b.

Finally, we solve the following optimization problem on a dataset D including image-caption pairs of
high-quality compositional images:

. 2
Wb = arg minE s, o p.c [||e — €0 (21, CLPw (), 1)]12] .

We then apply CLPyy« 3+ on CLIP text-encoder to obtain improved embeddings.



Under review as a conference paper at ICLR 2025

prompt: ”A bathroom with green tile and a red shower curtain”
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Figure 6: Qualitative results showing the impact of SWITCH-OFF with varying thresholds 7.
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Figure 7: Trade-off between VQA and FID scores with SWITCH-OFF at different thresholds.

5.2 WICLP: WINDOW-BASED COMPOSITIONAL LINEAR PROJECTION

In this section, we propose a more advanced linear projection scheme where the new embedding of a token
is derived by applying a linear projection on that token in conjunction with a set of its adjacent tokens, i.e.,
tokens within a specified window. This method not only leverages the benefits of CLP but also incorporates
the contextual information from neighboring tokens, potentially leading to more precise text-embeddings.

More formally, we train a mapping WiCLPy; : R"*¢ — R"* including a parameter s (indicating window
length), matrix W € R(Zs+1dxd and a bias term b € R?. For text-embeddings ¢ € R"*¢ consisting
of n token embeddings of ¢{, ¢y, - - , ¢, € R?, we obtain WiCLP w,b by stacking projected embeddings
ci,ch, -, cl, where

¢, = W' CONCATENATION ((Cj)i+s ) +b

j=i—s
Similarly, we solve the following optimization problem to train the projection:
. . 2
W, b" = arg min By, 0p,c. |[l€ — €0 (26,1 CLPws (0) D3]

Note that we use s = 2, i.e., window length of 5 in our experiments.

Comparison between CLP and WiCLP. We observe that WiCLP improves over CLP (special case of WiCLP
with s = 0) by incorporating adjacent tokens in addition to the actual token. This approach likely improves
embeddings by mitigating unintended attention from adjacent tokens. For discussion on choosing the window
length (s) in WiCLP, see Appendix D.6.
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Model Color | Texture | Shape
Baseline 0.3765 | 0.4156 | 0.3576
Stable Diffusionv1.4 [ crp | 0.4837 | 0.5312 | 0.4307
WiCLP 0.5383 | 0.5671 | 0.4527
Baseline 0.5065 | 0.4922 | 0.4221
Composable (Liu et al., 2022b) 0.4063 | 0.3645 | 0.3299
Structured (Feng et al., 2022) 0.4990 | 0.4900 | 0.4218
Stable Diffusion v2 Attn-Exct (Chefer et al., 2023a) 0.6400 | 0.5963 | 0.4517
GORS-unbaised (Huang et al., 2023) | 0.6414 | 0.6025 | 0.4546
lcce T 0.6075 | 0.5707 | 0.4567
WiCLP 0.6500 | 0.6036 | 0.4821

Table 1: Quantitative comparison with state-of-the-art and baseline methods across different categories of the
T2I-CompBench dataset

5.3 SWITCH-OFF: TRADE-OFF BETWEEN COMPOSITIONALITY AND CLEAN ACCURACY

Fine-tuning models or adding modules to a base model often results in a degradation of image quality
and an increase in the Fréchet Inception Distance (FID) score. To balance the trade-off between improved
compositionality and the quality of generated images for clean prompts — an important issue in existing work
— inspired by Hertz et al. (2022), we adopt SWITCH-OFF, where we apply the linear projection only during
the initial steps of inference. Specifically, given a time-step threshold 7, for ¢ > 7, we use WiCLPyy~ p=(c),
while for ¢ < 7, we use the unchanged embedding c as the input to the cross-attention layers.

Figure 7 illustrates the trade-off between VQA score and FID on a randomly sampled subset of MS-COCO (Lin
et al., 2014) for different choices of 7. As shown, even a large value of 7 suffices for obtaining high-quality
compositional scenes as the composition of final generated image is primarily formed at early steps. Thus,
choosing a large 7 preserves the model’s improved compositionality while maintaining its clean accuracy.
Setting 7 = 800 offers a competitive VQA score compared to the model where projection is applied at all
time steps, and achieves a competitive FID similar to that of the clean model. Figure 6 depicts a few images
generated using different choices of 7. We refer to Appendix D.5 for more visualizations.

6 EXPERIMENTS

Existing Baselines. We evaluate the performance of four methods alongside standard models SD v1.4 and
SD v2. These include Composable Diffusion (Liu et al., 2022b), which addresses concept conjunction and
negation in pretrained diffusion models; Structured Diffusion (Feng et al., 2022), which focuses on attribute
binding; Attn-Exct (Chefer et al., 2023a), which ensures correct attention to all subjects in the prompt; and
GORS (Huang et al., 2023), which fine-tunes Stable Diffusion v2 using a reward function. GORS optimizes
more parameters but underperforms slightly compared to our method, while Attn-Exct requires iterative
optimizations during inference, making it slower than our method, which adds only a linear projection layer.

Training Setup. All of the models are trained using the objective function of diffusion models on color,
texture, and shape datasets. During training, we keep all major components frozen, including the U-Net,
CLIP text-encoder, and VAE encoder and decoder, and only the linear projections are trained. We refer to
Appendix D.1 for details on the training procedure.
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prompt: ”A green bench and a yellow dog”
green bench yellow
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Figure 8: Applying CLP results in more accurate cross-attention maps.

6.1 QUALITATIVE AND QUANTITATIVE EVALUATION

Qualitative Evaluation. Figure 2 presents images generated when applying CLP and WiCLP. When
generating compositional prompts with a baseline model, objects are often missing or attributes are incorrectly
applied. However, with CLP and WiCLP, objects and their corresponding attributes are more accurately
generated. We refer to Appendix D.3 for more visualizations. Figure 8 illustrates cross-attention maps for a
sample prompt. In the base model, attention maps are flawed, with some tokens incorrectly attending to the
wrong pixels. However, with both CLP and WiCLP, objects and attributes more accurately attend to their
respective pixels. For more visualizations, see Appendix D.4.

Quantitative Evaluation. VQA scores of our method and other discussed baselines are provided in Table 1.
As shown, both CLP and WiCLP significantly improve upon the baselines. WiCLP achieves higher VQA
scores compared to other state-of-the-art methods, despite its simplicity. Interestingly, our improved results do
not compromise the model’s general utility. Our method causes a slight increase in FID score on MS-COCO
prompts compared to base models, but this increase is smaller than other baselines—for example, WiCLP
scores 27.40 versus GORS at 30.54. Further FID performance details are available in Appendix D.2.

Human Experiments. We conducted a human evaluation where participants compared images generated by
SD v1.4 and SD v1.4 + WiCLP, selecting the image that best matched the given prompt. The results showed
that in 34.625% of cases, evaluators chose the base model’s image; in 51.875%, they preferred the WiCLP
images; and in 13.50%, they rated both equally. Further details can be found in Appendix D.2.

7 CONCLUSION

Our paper examines potential error sources in text-to-image models for generating images from compositional
prompts. We identify two error sources: (i) A minor error source, where the token embeddings in the
CLIP text-encoder have erroneous attention contributions and (ii) A major error source, where we find the
output space of the CLIP text-encoder to be sub-optimally aligned to the UNet for compositional prompts.
Leveraging our observations, we propose a simple and strong baseline WiCLP which involves fine-tuning a
linear projection on CLIP’s representation space. WiCLP though inherently simple and parameter efficient,
outperforms existing methods on compositional image generation benchmarks and maintains a low FID score
on a broader range of clean prompts. We discuss limitations in Appendix A.

10
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Figure 9: Comparison of VQA scores when optimizing different subsets of tokens for the sample prompt: A
red book and a yellow vase”

A LIMITATIONS

In this paper, we have thoroughly analyzed one of the key reasons why Stable Diffusion struggles to generate
compositional prompts and proposed a lightweight method to mitigate this issue. However, there remains
significant room for improvement in this area. Our approach focuses on improving the text encoder, which
we identified as a major source of error. There are potentially other sources of the issue within the entire
generative model pipeline that need to be explored. Additionally, our method involves a small fine-tuning step
using a simple linear projection. Future work could explore alternative approaches, such as more sophisticated
fine-tuning techniques, advanced attention mechanisms, or hybrid models that integrate multiple strategies.

B OPTIMIZING THE TEXT-EMBEDDINGS OF A SUBSET OF TOKENS

Given ¢ € R™*?, where n refers to the number of tokens and d refers to the dimensionality of the text-
embedding, for the second configuration we only optimize a subset of tokens n’ € n. We refer to this subset
of tokens as ¢’. These tokens correspond to relevant parts of the prompt which govern compositionality (e.g.,
“red book™ and “yellow table” in “A red book and an yellow table”).

c* = argn(lzi/nIEE,tHe —eg(ze, ¢, 1)| |3,

Figure 9 shows the results for the sample prompt ’a red book and a yellow vase”. We considered different
subsets of tokens n: adjectives ("red” and “yellow”), nouns (“book” and "vase™), both nouns and adjectives,
and all tokens in the sentence. The results indicate that optimizing even a few tokens significantly improves
the VQA score. However, optimizing all tokens in the sentence yields the highest score.
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Figure 10: Visualization of attention map and attention contribution for prompt “a green bench and a red car”
over different layers of CLIP. Contribution provides better insight on the attention mechanism.

C SOURCE (I) : ERRONEOUS ATTENTION CONTRIBUTIONS

C.1 ATTENTION CONTRIBUTION

In this Section, we provide more details on our analysis to quantitatively measure tokens’ contribution to
each other in a layer of attention mechanism. One natural way of doing this analysis is to utilize attention
maps atth ; and aggregate them over heads, however, we observe that this map couldn’t effectively show the
contribution. Attention map does not consider norm of tokens in the previous layer, thus, does not provide
informative knowledge on how each token is formed in the attention mechanism. In fact, as seen in Figure 10,
we cannot obtain much information by looking at these maps while attention contribution clearly shows
amount of norm that comes from each of the attended tokens.

C.2 ZERO-SHOT ATTENTION REWEIGHTING

To fix unintended attentions, we aim to compute a matrix M to be applied across various heads in the last
few layers of CLIP, reducing the effect of wrong attention, leading to more accurate text-embeddings that
are capable of generating high-quality compositional scenes. To avoid unintended attention for prompts of
the form “ajo; + a»03”, we add large negative values to entries Mo, a,, Ma,,a, , and some positive value to
Mo, a, and My, a,, and small negative value to Mo, o,. To find what values to assign to those entries, we
consider a small set of prompts in color dataset (5 prompts in total) and obtain parameters for that matrix to
maximize VQA score. Figure 11 shows few examples of zero-shot modification.

C.3 EXPERIMENTS WITH LLAMA3 8B

We explored the analysis of attention contributions to identify unintended attention in LLaMa3 8B, which
utilizes a more advanced text encoder specifically designed for language modeling and pretrained on large-
scale text corpora. Table 2 reports the rate of unintended attention across prompts in the color and texture
datasets. The results demonstrate that unintended attention occurs less frequently in more advanced text
encoders, further emphasizing the limitations of the CLIP text encoder.
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H color texture

last layer all layers | lastlayer all layers

LLaMa3 0.015 0.081 0.033 0.066
CLIP 0.657 0.187 0.696 0.213

Table 2: Unintended attention rate in LLaMa3 8B vs CLIP. LLaMa3 shows significant less unintended
attentions.

| SDvi4 SDv2 | SDvI4+WiCLP SDv2+WiCLP | GORS
FID Score | 24.33 2327 | 25.40 27.40 | 30.54

Table 3: Comparison of FID scores between the baseline models and WiCLP using SWITCH-OFF with
7 = 800, as well as the GORS approach.

C.4 MODELS WITH TS5 TEXT-ENCODER

We conducted experiments to measure the VQA score on the color dataset for models that use T5 as their
text encoder. DeepFloyd achieved a score of 0.604, which is significantly higher than that of SD-v1.4.
Additionally, DeepFloyd-I-M, which employs a smaller first-stage UNet compared to DeepFloyd, obtained a
score of 0.436, also surpassing the SD-v1.4 score.

D EXPERIMENTS

D.1 TRAINING SETUP

In this section, we present the details of the experiments conducted to evaluate our proposed methods. The
training is performed for 25,000 steps with a batch size of 4. An RTX A5000 GPU is used for training models
based on Stable Diffusion 1.4, while an RTX A6000 GPU is used for models based on Stable Diffusion 2.
We employed the Adam optimizer with a learning rate of 1 x 10~° and utilized a Multi-Step learning rate
scheduler with decays (o = 0.1) at 10,000 and 16,000 steps. For the WiCLP, a window size of 5 was used.
All network parameters were initialized to zero, leveraging the skip connection to ensure that the initial output
matched the CLIP text embeddings. Our implementation is based on the Diffusers” library, utilizing their
modules, models, and checkpoints to build and train our models. This comprehensive setup ensured that our
method was rigorously tested under controlled conditions, providing a robust evaluation of its performance.

D.2 EXTENDED EVALUATION

Human Evaluation We conducted a human evaluation in which participants compared images generated by
SD v1.4 and SD v1.4 + WiCLP, selecting the image that best matched the given prompt (Figure 18). Five
evaluators were presented with 200 randomly selected image pairs, evaluating a total of 1000 image-caption
pairs.

TIFA Metric. To provide a more comprehensive evaluation, in addition to the disentangled BLIP-VQA score
proposed by Huang et al. (2023), we also incorporate the TIFA metric (Hu et al., 2023). TIFA (Text-to-Image
Faithfulness Evaluation with Question Answering) is an automated evaluation method that measures how
faithfully a generated image corresponds to its textual input via visual question answering (VQA). It generates

*https://github.com/huggingface/diffusers
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Zero-shot Attention Reweighting

i

Figure 11: Visualization of some images generated with same set of seeds using original text-embeddings
of prompt “a blue car and a brown cow” and text-embeddings that are obtained as the result of zero-shot
reweighting of attention matrix.

multiple question-answer pairs from the text input using a language model, then evaluates image faithfulness
by determining whether existing VQA models can accurately answer these questions based on the image. As
a reference-free metric, TIFA offers fine-grained and interpretable assessments of image quality.

Using TIFA, we observed that SD v1.4 and SD v2 achieved scores of 0.6598 and 0.7735, respectively. Notably,
the scores for WiCLP applied on top of SD v1.4 and SD v2 improved to 0.7462 and 0.8133, respectively,
demonstrating the enhanced performance of our approach.

FID Score Comparison Our method results in a modest increase in FID score on MS-COCO prompts
compared to the base models, as shown in Table 3. However, this increase is less pronounced than in other
baselines—for example, SD v2 + WiCLP scores 27.40, whereas GORS reaches 30.54.

D.3 CLP AND WiCLP VISUALIZATION

In this section, we provide additional visualizations comparing CLP, WiCLP, and baseline models in Figures
14, 15.

D.4 VISUALIZATION OF CROSS-ATTENTIONS

In this section, we provide additional cross-attention map visualizations in Figures 14 and 15.
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D.5 VISUALIZATION OF SWITCH-OFF

In this section, we present more qualitative samples illustrating the effect of SWITCH-OFF at different timestep
thresholds for various prompts in Figures 16 and 17.

D.6 CHOICE OF WINDOW LENGTH IN W1CLP

One might suggest that instead of using token-wise linear projection (CLP) or a window-based linear
projection with a limited window (WiCLP), employing a linear projection that considers all tokens when
finding a better embedding for each token might yield better results. However, our thorough quantitative study
and experiments tested various window sizes for WiCLP. We found that using a window size of 5 achieves
the highest performance.
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SDvl4 CLP SD v2 WiCLP

A blue bowl and
a red train

A blue bench and
a green bowl

A blue backpack and
a red book

A black and white cat
sitting in a green bowl

A brown boat and
a blue cat

A brown book and
ared sheep

A fluffy towel and
a glass cup

A plastic container and
a fluffy teddy bear

Figuk8 12: Caption
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A red apple and
a green train

A red chair and
a gold clock

A red pen and
a blue notebook

A round cookie and
a square container

A wooden floor and
a fluffy rug

The leather jacket and fluffy
scarf keep the cold at bay

Wooden pencil and
a glass plate

A green leaf and
a yellow butterfly

Figuk® 13: Caption
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prompt: ”A blue backpack and a red bench”
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prompt: ”A brown boat and a blue cat”
image ‘ brown boat blue cat
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Projection
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Figure 14: Comparison of cross-attention maps of the U-Net with and without the CLP
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prompt: A green blanket and a blue pillow”
green blanket blue

Baseline

Linear
Projection

prompt: A black cat sitting in a green bowl”
black cat green bowl

A
.-
'

prompt: A bathroom has brown wall and gold counters”
image brown wall gold counters

.-

Figure 15: Comparison of cross-attention maps of the U-Net with and without the CLP
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prompt: ”A red book and a yellow vase”

T = 1000
(No Guidance)

Figure 16: Qualitative results showing thé2mpact of SWITCH-OFF with varying thresholds 7’
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prompt: A metallic watch and a fluffy towel”

prompt: ”A plastic bag and a leather chair

prompt: ”A red bathroom has a white towel on the bar”

) Oy X

prompt: A red cup and a blue suitcase”

(No Guidance) T =400 T =200

Figure 17: Qualitative results showing thé#mpact of SWITCH-OFF with varying thresholds 7’
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Select the image that aligns better with the caption (irrespective of image quality)

Ablue backpack and a red book

I

|
31/200

Figure 18: A sample from the human evaluation study, where participants were presented with a pair of

images and a caption. They were asked to select the image that best represented the caption or choose "both’
if the images equally captured the caption’s meaning.
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