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Abstract

Shear viscosity calculation from molecular dynamics simulations demands long
equilibration times and extensive statistical averaging to achieve convergence. We
address this challenge by presenting a direct automatic-differentiation method to
compute shear viscosity from differentiable molecular dynamics simulations. Our
approach differentiates microscopic shear stress with respect to applied shear rate,
but crucially identifies a characteristic timescale τα that defines a stable window for
reliable gradient computation. We demonstrate that τα marks the onset of chaotic
divergence in stress dynamics and corresponds to the timescale where stress auto-
correlations decay by > 90%, providing both theoretical justification and physical
insight. Through systematic validation on Weeks-Chandler-Andersen systems
across multiple realizations, our method yields viscosity estimates (1.92± 0.38)
that agree with Green-Kubo predictions (2.24± 0.24) within statistical uncertainty,
while circumventing the noise accumulation inherent in long-time correlation ap-
proaches. The identified stability window concept establishes a general framework
for extracting transport properties from differentiable simulations of chaotic sys-
tems before gradient explosion occurs, with promising applications to thermal
conductivity and diffusion coefficients. This work provides a principled solu-
tion to gradient instability in differentiable physics, enabling reliable parameter
optimization and property prediction in complex molecular systems.

1 Introduction

Differentiable simulation has emerged as a transformative paradigm in scientific machine learning, en-
abling end-to-end gradient-based optimization of physical parameters Innes et al. [2019], Rackauckas
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et al. [2020], discovery of governing equations Ingraham et al. [2018], Cranmer [2023], and design of
control policies for complex systems Toussaint et al. [2018], Sanchez-Gonzalez et al. [2020]. Modern
differentiable physics engines such as JAX-MD Schoenholz and Cubuk [2020], Brax Freeman and
et al. [2021], and DiffTaichi Hu et al. [2019] have demonstrated remarkable success in learning
interatomic potentials Unke et al. [2021], Gangan et al. [2025], Doerr et al. [2021], Thölke and
De Fabritiis [2022], Thölke et al. [2024], Batzner et al. [2022] and optimizing material properties
through end-to-end differentiable workflows.

However, a fundamental challenge arises when applying automatic differentiation to chaotic physical
systems. Backpropagation through chaotic dynamical systems is well known to suffer from gradient
explosion or vanishing due to exponential sensitivity to initial conditions Lea et al. [2000], Wolf
et al. [1985]. Many systems of scientific interest—including potential fine-tuning for atomistic
simulation Gangan et al. [2025], non-equilibrium molecular dynamics J Evans and P Morriss [2007],
and long-time material behavior Allen and Tildesley [2017]—exhibit this extreme sensitivity charac-
terized by positive Lyapunov exponents. Recent work has highlighted how this chaotic sensitivity
causes gradients to explode or vanish exponentially when backpropagating through extended simu-
lation trajectories Lea et al. [2000], Metz et al. [2021], fundamentally limiting the applicability of
gradient-based methods to short-time dynamics.

Existing mitigation strategies for gradient instability in chaotic systems include gradient clipping Pas-
canu et al. [2013], truncated backpropagation, and least-squares shadowing techniques Wang et al.
[2014], Ni and Wang [2017], Blonigan and Wang [2018], but these approaches often sacrifice either
physical accuracy or computational efficiency. The challenge becomes particularly acute for transport
property estimation, where physically meaningful quantities like viscosity, thermal conductivity, and
diffusion coefficients emerge only from long-time correlations Green [1954], Kubo [1957].

Classical approaches for computing transport coefficients rely on well-established methods: the
Green–Kubo formalism applied to equilibrium MD simulations Green [1954] computes properties
from autocorrelation functions of microscopic fluxes, while non-equilibrium molecular dynam-
ics Evans and Morriss [1984] directly applies perturbations and measures the response. Both methods
require careful statistical analysis and selection of integration windows to avoid noise accumulation.
While differentiable simulations have successfully leveraged automatic differentiation for force
field optimization Gangan et al. [2025], direct gradient-based estimation of transport properties via
differentiable MD remains largely unexplored due to chaos-induced instability, despite its potential
for enabling rapid property screening and inverse design.

In this work, we address this challenge by developing a principled framework for transport property
estimation that exploits the finite-time stability of chaotic systems. Specifically, we focus on shear
viscosity computation and demonstrate that by identifying a characteristic Lyapunov-like timescale
τα, one can extract accurate viscosity estimates before gradient explosion undermines the computa-
tion. This approach bridges the gap between classical molecular simulation methods and modern
differentiable programming paradigms, providing both theoretical insight into the stability limits of
differentiable chaotic systems and a practical method for reliable transport property estimation.

Our contributions are as follows:

• We develop a direct gradient-based method for viscosity estimation using automatic differ-
entiation of atomistic simulations that circumvents traditional correlation-based approaches.

• We establish the theoretical foundation linking gradient explosion to chaotic sensitivity in
stress dynamics and identify a characteristic stability timescale τα that provides a principled
cutoff for reliable computation.

• We demonstrate that viscosity estimates computed within this stability window match
Green–Kubo predictions while avoiding long-time noise accumulation.

• We provide a general framework for identifying optimal time windows in differentiable
simulations of chaotic systems, with broad implications for other transport coefficients and
scientific machine learning applications involving long-time dynamics.
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2 Methods

2.1 Differentiable MD Framework

We implement differentiable molecular dynamics using SLLOD equations Lees and Edwards [1972]
with Nosé–Hoover thermostat [Nosé, 1984, Hoover, 1985] to model homogeneous shear flow. The
system consists of N particles interacting via the Weeks–Chandler–Andersen (WCA) potential Weeks
et al. [1971]: U(r) = 4ϵ[(σ/r)12 − (σ/r)6] + ϵ for r ≤ 21/6σ, zero otherwise.

The governing equations are:

ṙi = pi/mi + γ̇yix̂, ṗi = Fi − γ̇py,ix̂− ξpi, ξ̇ =
1

Q

[∑
i

p2
i

mi
− 3NkBT

]
(1)

where Fi = −∇riU , ξ is the thermostat variable, and Q = 1.0 is the thermostat mass.

Simulation parameters: N = 256, ρ = 0.8442, T = 0.722 (reduced units), ∆t = 0.005, periodic
boundaries. Equilibration: 10,000 timesteps. For validation: minimal N = 2 system with analytical
comparison.

2.2 Automatic Differentiation Approach

Viscosity is computed as η = dσxy/dγ̇ where the microscopic stress is:

σxy =
1

V

 N∑
i=1

px,ipy,i
mi

+
∑
i<j

rx,ijFy,ij

 (2)

We implement the full MD loop in JAX-MD Schoenholz and Cubuk [2020] and apply forward-mode
automatic differentiation (jax.jacfwd) to compute dσxy/dγ̇ exactly through all timesteps. This
avoids finite-difference noise but remains sensitive to chaotic divergence.

2.3 Stability Window Identification

To identify the optimal extraction window, we simulate trajectory pairs at zero shear and infinitesimal
shear γ̇ = 10−8 with random initial configurations. The exponential divergence of stress differences
reveals a characteristic Lyapunov-like timescale τα marking the stability boundary. We correlate this
with stress autocorrelation decay to establish the physical significance of the stability window.

3 Results

3.1 Minimal System Validation

We validate our AD implementation using a two-particle system with analytical comparison (see
Appendix). Specifically, we derive the functional form of the gradient analytically when unrolled
through the simulation which is used to validate the automatic differentiation. Table 1 shows
reasonable agreement between analytical and AD gradients for both kinetic and total stress (both
kinetic and potential) contributions, confirming implementation correctness before applying to larger
systems where analytical solutions are intractable.

Step Analytical (KE) AD (KE) Analytical (Total) AD (Total)
0 0 0 0 0
1 4.028× 10−6 4.029× 10−6 0.00915 0.00846
2 0.00890 0.00846 0.0167 0.0171

Table 1: Analytical vs AD gradients for kinetic-energy (KE) and total stress contributions.

3.2 Chaotic Stress Dynamics and Stability Timescale

Figure 1(a) demonstrates chaotic sensitivity in a 256-particle system by comparing stress evolution
under zero shear (blue) and infinitesimal shear γ̇ = 10−8 (red). The inset shows exponential
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Figure 1: (a) Stress trajectories for zero (blue) and infinitesimal (red) shear rates. Inset: exponential
stress divergence. (b) Ensemble-averaged divergence ± 1 SD (grey) with exponential fit (red)
yielding τα (vertical line). Inset: viscosity from AD (blue) and divergence scaling (black) show
similar patterns.

divergence of stress differences (black line), confirming chaotic dynamics with linear growth on
semi-log scale.

To quantify the characteristic timescale, we simulate ensembles of 10 trajectories each at zero and
infinitesimal shear rates. Figure 1(b) shows mean absolute divergence growing exponentially over six
orders of magnitude before saturation. Exponential fitting yields λα and the characteristic timescale
τα = 1/λα = 85.47 ± 3.11 × 10−5 timesteps. The inset confirms that AD-computed viscosity
exhibits similar growth-plateau-explosion behavior as trajectory divergence, validating our gradient
computation approach.

3.3 Viscosity Convergence and Physical Interpretation

Figure 2 demonstrates that τα provides an optimal extraction window where AD viscosity estimates
agree with Green-Kubo (GK) predictions while avoiding noise accumulation.
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Figure 2: (a) AD viscosity (blue band) vs GK estimate (grey band) at τα (red line). (b) Stress
autocorrelation function decay with τα marking > 90% decorrelation.

At τα, GK yields η = 2.24± 0.24 (consistent with literature Hartkamp et al. [2013]) while AD gives
η = 1.92± 0.38, representing agreement within statistical uncertainty. This confirms that τα defines
a stable window for viscosity extraction before gradient explosion.

Crucially, τα coincides with physical decorrelation timescales. Figure 2(b) shows the stress time
correlation function (TCF) decays by > 90% before τα (red line), beyond which correlations saturate
and noise dominates. This connection between chaotic divergence and correlation decay provides
physical insight into why the stability window works: gradients remain meaningful while stress
correlations carry transport information, but become unreliable once correlations are lost to noise.
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4 Conclusions

We present a direct gradient-based method for viscosity estimation from differentiable MD that
addresses gradient explosion in chaotic systems. By identifying a Lyapunov-like stability timescale
τα, we extract viscosity estimates (η = 1.92 ± 0.38) matching Green-Kubo predictions (η =
2.24±0.24) before chaos-induced instability. Crucially, τα coincides with > 90% stress decorrelation
decay, providing physical insight into the stability window. This framework enables gradient-based
computation of transport properties from chaotic systems, with broad implications for differentiable
physics and materials design applications requiring end-to-end optimization of transport phenomena.

5 Limitations and Future Work

Our approach exhibits ±20% uncertainty due to chaotic sensitivity and 2-3× computational overhead
from gradient storage. The method is limited to short-time dynamics within the stability window and
currently validated only on WCA systems. Dependence on differentiable simulation infrastructure
may restrict applicability to complex force fields. Future work will explore gradient stabilization
techniques (least-squares shadowing, ensemble methods) to extend the stability window, validate
on realistic materials (water, polymers, ionic systems), and demonstrate the framework for other
transport coefficients such as thermal conductivity, and heat capacity. Theoretical development should
establish rigorous connections between Lyapunov timescales and transport property convergence,
ultimately enabling reliable differentiable transport property estimation for materials discovery.
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Appendix A SLLOD Equations with Nosé–Hoover Thermostat

Appendix A.1 Equations of Motion

In this appendix, we describe the governing equations for simulating shear flow in molecular dynamics
using the SLLOD formulation with a Nosé–Hoover thermostat, the numerical integration scheme
employed, and the procedure for computing viscosity gradients via automatic differentiation.

Appendix A.2 Equations of Motion

The SLLOD equations extend Newtonian dynamics to model homogeneous shear flow while main-
taining constant temperature through a Nosé-Hoover thermostat. For particle i:

ṙi =
pi

mi
+ γ̇ yi x̂, (3)

ṗi = Fi − γ̇ py,i x̂− ξ pi, (4)

ξ̇ =
1

Q

[
N∑
i=1

p2
i

mi
− 3NkBT

]
. (5)

Here:

• ri = (xi, yi, zi): particle position vector.
• pi = (px,i, py,i, pz,i): particle momentum relative to streaming velocity.
• mi: mass of particle i.
• γ̇: imposed shear rate.
• yi: y-coordinate of particle i.
• x̂: unit vector in x-direction.
• Fi: interparticle force on particle i, Fi = −∇riU .
• ξ: Nosé–Hoover thermostat variable controlling kinetic temperature.
• Q: thermostat mass parameter.
• N : total number of particles.
• kB : Boltzmann constant.
• T : target (controlled) temperature.

The interaction potential U is given by the Weeks–Chandler–Andersen (WCA) potential which is
a purely repulsive potential obtained by truncating and shifting the Lennard-Jones potential at its
minimum, given by

U(r) =

{
4ϵ

[(
σ
r

)12 − (
σ
r

)6]
+ ϵ, r ≤ 21/6σ,

0, r > 21/6σ

where ϵ and σ are the energy and length scale parameters respectively.

Appendix A.3 Numerical Integration

We integrate Eqs. (3)-(5) using a reversible, symplectic velocity Verlet-like scheme adapted for
SLLOD dynamics. This scheme alternates half-step updates for the thermostat and momenta with
full-step position updates, followed by force recalculation. The time-reversibility and symplectic
nature ensure energy and temperature control over long runs.

1. Half-step thermostat update.
2. Half-step momentum update.
3. Position update.
4. Force recomputation.
5. Second half-step momentum update.
6. Second half-step thermostat update.
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Appendix A.4 Gradient Computation

The shear viscosity is defined as:

η =
dσxy

dγ̇
,

where the microscopic shear stress σxy is given by:

σxy =
1

V

 N∑
i=1

px,ipy,i
mi

+
∑
i<j

rx,ijFy,ij

 (6)

We implement the full MD loop in a differentiable framework (JAX-MD) and apply forward-mode
automatic differentiation (jax.jacfwd) with respect to γ̇. This yields the exact derivative of σxy

through all timesteps, enabling direct viscosity computation without finite-difference noise.

In a differentiable MD framework (e.g., JAX-MD), the full simulation loop is implemented as a
differentiable function of γ̇. We then apply forward-mode automatic differentiation (jax.jacfwd)
to backpropagate through all integration steps, computing the total derivative dσxy

dγ̇ exactly (up to
floating-point precision).

By taking mi = 1 in Eq. (6) the stress for a minimal two-particle system at the initial time is

σ0
xy =

2∑
i=1

p0xip
0
yi + 24

2∑
i=1

∑
j>i

(x0
j − x0

i )(2/r
14 − 1/r8)(y0j − y0i ). (7)

where all terms are constant. Thus the derivative with respect to γ̇ is 0. After 1 step the derivative is

dσ1
xy

dγ̇
=

2∑
i=1

−p0yip
1
yidt+

2∑
i=1

24
∑
j>i

(y0j − y0i )dt
[
2/r14 − 1/r8

]
(y1j − y1i ) +

(x1
j − x1

i )
(
−28/r16 + 8/r10

)
(x1

j − x1
i )(y

0
j − y0i )(y

1
j − y1i )dt (8)

where dt is the time step. The first term in Eq. (8) comes from the kinetic component of the stress,
and the second term comes from the interaction component. The derivative after two time steps is

dσ2
xy

dγ̇
=

2∑
i=1

−p0yidt− p1yidt+ 24
∑
j ̸=i

(−28/r15 + 8/r9)(x1
j − x1

i )
2(y0j − y0i )dt

 p2yi

+24

2∑
i=1

p2yi
∑
j ̸=i

(2/r14 − 1/r8)(y0j − y0i )dt

+24

2∑
i=1

∑
j>i

[
(y0j − y1j − p0yjdt)dt− (y0i − y1i − p0yidt)dt

]
(2/r14 − 1/r8)(y2j − y2i )

+24

2∑
i=1

∑
j>i

[
(y0j − y1j − p0yjdt)dt− (y0i − y1i − p0yidt)dt

]
(−28/r16 + 8/r10)(x2

j − x2
i )

2(y2j − y2i ) (9)

9


	Introduction
	Methods
	Differentiable MD Framework
	Automatic Differentiation Approach
	Stability Window Identification

	Results
	Minimal System Validation
	Chaotic Stress Dynamics and Stability Timescale
	Viscosity Convergence and Physical Interpretation

	Conclusions
	Limitations and Future Work
	Acknowledgement
	SLLOD Equations with Nosé–Hoover Thermostat
	Equations of Motion
	Equations of Motion
	Numerical Integration
	Gradient Computation


