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“a DSLR photo of the Imperial State 
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“a DSLR photo of a candelabra with 
many candles on a red velvet tablecloth”

“a zoomed out DSLR photo of a 3d model 
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“a zoomed out DSLR photo of a recliner chair” “a DSLR photo of a pigeon reading a book”“a bald eagle carved out of wood” “a ceramic lion”

Figure 1: 3D assets generated by our proposed TeT-Splatting.

Abstract

3D representation is essential to the significant advance of 3D generation with 2D
diffusion priors. As a flexible representation, NeRF has been first adopted for 3D
representation. With density-based volumetric rendering, it however suffers both
intensive computational overhead and inaccurate mesh extraction. Using a signed
distance field and Marching Tetrahedra, DMTet allows for precise mesh extraction
and real-time rendering but is limited in handling large topological changes in
meshes, leading to optimization challenges. Alternatively, 3D Gaussian Splatting
(3DGS) is favored in both training and rendering efficiency while falling short in
mesh extraction. In this work, we introduce a novel 3D representation, Tetrahedron
Splatting (TeT-Splatting), that supports easy convergence during optimization,
precise mesh extraction, and real-time rendering simultaneously. This is achieved
by integrating surface-based volumetric rendering within a structured tetrahedral
grid while preserving the desired ability of precise mesh extraction, and a tile-based
differentiable tetrahedron rasterizer. Furthermore, we incorporate eikonal and
normal consistency regularization terms for the signed distance field to improve
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generation quality and stability. Critically, our representation can be trained without
mesh extraction, making the optimization process easier to converge. Our TeT-
Splatting can be readily integrated in existing 3D generation pipelines, along with
polygonal mesh for texture optimization. Extensive experiments show that our TeT-
Splatting strikes a superior tradeoff among convergence speed, render efficiency,
and mesh quality as compared to previous alternatives under varying 3D generation
settings.

1 Introduction

Table 1: Comparison of different representations for 3D generation.

Representation NeRF [28] 3DGS [13] DMTet [40] TeT-Splatting (Ours)
Precise mesh extraction ✓ ✓
Easy convergence ✓ ✓ ✓
Real-time rendering ✓ ✓ ✓
Representative DreamFusion [32], DreamGaussion [46], Fantasia3D [3], Oursmethod Magic3D [18] GSGEN [5] RichDreamer [34]

Automatic 3D content generation is revolutionizing fields such as virtual reality, augmented reality,
video games, and industrial design. This technology can significantly enhance user experiences and
streamline creative processes for reducing time demands and simplifying the complexities associated
with creating high-quality 3D assets.

3D representations (e.g., Neural Radiance Field [28] (NeRF)) play an essential role in recent advance-
ments in 3D generation, along with the Score Distillation Sampling (SDS) technique objective [32]
for exploiting off-the-shelf 2D diffusion models [11, 37, 38, 1]. Although serving as a pioneer
representation, NeRF is significantly limited due to its intensive computational demands, particularly
when paired with high-resolution 2D diffusion models. Moreover, its density-based volumetric
rendering struggles with accurate mesh extraction, which is crucial for practical applications.

By utilizing a signed distance field and Marching Tetrahedra for differentiable mesh extraction,
DMTet [40] enables efficient high-resolution rendering and precise mesh extraction, overcoming the
limitations of the NeRF approach. In cases, it becomes a favored choice [18, 33, 3]. However, DMTet
is limited in its ability to handle large topological changes in meshes, as it can only backpropagate to
the zero-level set of the signed distance field, constraining its geometry convergence during optimiza-
tion. As a workaround, a two-stage 3D generation pipeline has been adopted that initially utilizes
NeRF for rapid geometry convergence and then transitions to DMTet for detailed refinement [18].
However, transitioning from NeRF to DMTet often results in a degradation of quality, as the strengths
of each representation are not fully leveraged throughout the entire optimization process.

Alternatively, recent methods have introduced 3D Gaussian Splatting [13] (3DGS) into the optimiza-
tion process, significantly enhancing efficiency. For example, DreamGaussian [46] utilizes 3DGS
but acknowledges that meshes directly generated from 3DGS can be blurry, and the mesh extraction
process often results in unsatisfactory surfaces with visible holes [45]. Moreover, the text-to-3D
process with 3DGS suffers from instability due to its unstructured nature and the densification process.

In this work, we introduce TeT-Splatting, a novel all-round 3D representation that integrates surface-
based volumetric rendering into the tetrahedral grid, while preserving precise mesh extraction through
Marching Tetrahedra. It supports easy convergence during optimization, precise mesh extraction,
and real-time rendering simultaneously, enabling high-fidelity 3D generation effectively (Figure 1).
Drawing inspiration from 3DGS [13], we design a tile-based fast differentiable rasterizer for real-
time rendering, efficiently handling the alpha-blending of projected 2D splats from 3D tetrahedra.
These splats are blended based on opacity values derived from the signed distance field within each
tetrahedron as in NeuS [49]. To further increase efficiency, we include a pre-filtering process to
remove nearly transparent tetrahedra, reducing the number of tetrahedra necessary for splatting.
Moreover, we introduce eikonal and normal consistency regularization terms to refine the signed
distance field, which helps stabilize the optimization process and prevents the common issue of debris
in the optimization with DMTet. In Table 1 we compare the features of different 3D representations.
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Our contributions are fourfold: (i) Introducing a novel 3D representation, TeT-Splatting, that inte-
grates synergistically volumetric rendering into a tetrahedral grid; (ii) Designing a fast differentiable
rasterizer for tetrahedra; (iii) Forming a generic two-stage 3D generation pipeline that initially lever-
ages TeT-Splatting for geometry optimization, and then transitions it to polygonal mesh for texturing;
(iv) Extensive evaluations demonstrating the superior tradeoff of our method among easy convergence,
real-time rendering, and precise mesh extraction over alternative representations (InstantNGP [29],
DMTet [40], and 3DGS [13]) under a variety of settings with different diffusion priors.

2 Related work

3D representation Since the introduction of Neural Radiance Field (NeRF) [28], NeRF has
become a foundational technique in the field of 3D reconstruction. It employs volumetric rendering
to enable 3D optimization with only 2D supervision. Despite its significance, NeRF faces major
issues, such as slow rendering speeds and high memory usage. To address these problems, several
research[43, 39, 29, 2, 13] have developed novel variants of the radiance field, focusing on faster
training and rendering and using less computing resources. Diverging from the path of NeRF,
DMTet [40] has introduced an approach based on Marching Tetrahedra and surface rendering by
differentiable rasterization [14], offering much faster rendering speed. Recently, 3D Gaussian
Splatting [13] (3DGS) has unified NeRF-like alpha-blending with tile-based rasterization, achieving
high performance in both quality and rendering speed. In this paper, our proposed TeT-Splatting
takes inspiration from the structured tetrahedral grid in DMTet [40] and incorporates tile-based
rasterization from 3DGS [13], utilizing tetrahedra for splatting. TeT-Splatting achieves high converge
and rendering speed while preserving precise mesh extraction through Marching Tetrahedra.

3D generation The data-driven 2D diffusion models [11, 37, 38, 1] have demonstrated unprece-
dented success in image generation. However, the transition to direct 3D generation [31, 12, 10,
24, 8, 58, 6, 52, 19, 15, 45] faces formidable challenges, as this research line often fails to gener-
ate high-quality 3D assets limited by the lack of training data. To circumvent these issues, some
works [20, 41, 23, 42, 21, 25, 50] train 2D diffusion models to make them have 3D awareness.
However, discrete and sparse 2D images still cannot offer sufficient 3D information. In this context,
DreamFusion [32] first introduced score distillation sampling (SDS) loss to leverage 2D diffusion
priors for 3D generation. Subsequent studies [47, 57, 59, 54, 51, 17, 26, 44, 48] have aimed to
improve the SDS loss, enhancing both the fidelity and stability of 3D generation. Moreover, several
efforts [55, 5, 56, 4, 16, 42, 34, 22] have been made to improve the quality and multi-view consistency
of 3D models by integrating a wider array of diffusion priors. Despite these advancements, some
methods are hindered by the significant computational demands due to the usage of NeRF [28],
which limits the effective use of high-resolution diffusion priors. Additionally, other mesh-based
models [3, 16, 34] encounter issues with instability and slow convergence due to the nature of surface
rendering. By contrast, our TeT-Splatting facilitates the use of high-resolution diffusion priors and
ensures efficient updates, thanks to its volumetric rendering and tile-based differentiable rasterizer.

3 TeT-Splatting

3.1 Deformable tetrahedral grid

In this section, we will start with an introduction to the deformable tetrahedral grid, which is the
geometric primitive for the proposed representation. The deformable tetrahedral grid is first employed
in DefTet [7] and then extended in DMTet [40] to approximate the implicit surface by assigning each
vertex an SDF value. Specifically, this structure considers a tetrahedral mesh composed of N vertices
and K tetrahedra, denoted as (VT , T ), where VT = {vn|n ∈ 1, . . . , N} signifies the positions of
vertices, and T = {tk|k ∈ 1, . . . ,K}, with each tk representing the indices (ak, bk, ck, dk) of four
vertices (vak

,vbk ,vck ,vdk
) that form a tetrahedron. Utilizing the SDF value associated with each

vertex vn, denoted by fn, a signed distance field is established by interpolating the SDF values within
each tetrahedron. DMTet [40] has developed a method for mesh extraction from the tetrahedral grid
by assigning one or two triangles to each tetrahedron that intersects the zero-level set of the signed
distance field, known as Marching Tetrahedra (MT). Employing a differentiable triangular rasterizer,
it attains a remarkable rendering speed while maintaining minimal memory consumption.
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Figure 2: Left: An overview of TeT-Splatting. To produce the final renderings, we first pre-filter
and remove nearly transparent tetrahedra, then project the remaining ones into 2D splats. These are
blended based on opacity values derived from the SDF values at specific pixel intersections. Right:
TeT-Splatting for 3D generation. We employ TeT-Splatting in the initial stage of the 3D generation
pipeline and subsequently transition it to polygonal mesh for texture optimization.

However, a particular limitation of the MT is that only the parameters associated with tetrahedra
intersecting the zero-level set of the signed distance field can be updated during optimization. This
restriction poses challenges in managing large topological changes and often causes the optimization
to stuck in the undesired shape in the early stage. In contrast, NeRF is less affected by such instability
thanks to its volumetric nature. Many prior works [18, 33] have employed NeRF in 3D generation.
These works typically adopt a two-stage pipeline that starts with the volumetric representation to
swiftly achieve a coarse model with low-resolution diffusion priors and then transitions to a polygonal
mesh for further refinement with high-resolution diffusion priors. However, these approaches are
often hindered by the slow optimization and inaccurate geometry brought by volume rendering. The
inaccurate geometry would lead to obvious degradation after mesh extraction.

3.2 Differentiable tetrahedron splatting

In this work, we present a unified representation that combines the precise mesh extraction via the
tetrahedral grid and the efficient optimization of volumetric rendering. Inspired by 3D Gaussian
Splatting [13] (3DGS), we also integrate the tile-based rasterizer into our framework to facilitate
real-time rendering. 3DGS enhances rendering efficiency through rasterization and ensures efficient
optimization via alpha-blending by projecting 3D Gaussians to 2D splats followed by fast alpha-
blending. However, 3DGS relies on unstructured 3D Gaussians as rendering primitives, necessitating
carefully designed densification processes and learning rates to manage the highly noisy SDS loss. In
contrast, the tetrahedral grid is structured while its vertices can only deform in a local region and are
connected with neighbors to form tetrahedra. We explore treating tetrahedron as rendering primitive
of the splatting process to perform alpha-blending. Moreover, we can directly extract polygonal mesh
through Marching Tetrahedra from the tetrahedral grid, while the mesh extracted [46] from 3DGS
may result in an unsatisfactory surface with visible holes.

Next, we will elaborate on how we realize differentiable tetrahedron splatting through alpha-blending.
Consider a pixel on the image plane, along with its corresponding ray in 3D space. To perform
alpha-blending, we need first determine the intersected tetrahedra between the ray and the tetrahedral
grid. For a single tetrahedron t with vertices (va,vb,vc,vd) and SDF values (fa, fb, fc, fd), we
can project the vertices onto the image plane, resulting in four overlapped triangles that form a 2D
tetrahedron splat. Intersection with the tetrahedron t is equal to the intersection with the four triangles.
The position and SDF value of an intersection point can be calculated using barycentric coordinates
(see Appendix A for details). Different from 3DGS [13], we consider the opacity of tetrahedra instead
of Gaussians. Note that a ray can only have two intersection points with a tetrahedron, we denote
their SDF values as fprev and fnext in depth order. Then the opacity of the tetrahedron t can be derived

4



Optimization progress

0 iter 100 iter 200 iter 500 iter 1500 iter 2000 iter 2500 iter 3000 iter

T
eT

-S
pl

at
tin

g
D

M
T

et
T

eT
-S

pl
at

tin
g

 (M
T

)

Latent code Normal

1000 iter

Figure 3: Normal map comparison during optimization of 3D generation. We utilize DMTet
and TeT-Splatting as 3D representations in the geometry modeling stage of the RichDreamer [34].
The first two rows show normal maps obtained from DMTet and TeT-Splatting during optimization.
TeT-Splatting achieves more stable and smooth optimization, while DMTet becomes fragmented
initially and gets stuck in an undesirable shape. The third row shows the normal maps of meshes
extracted from the signed distance field of TeT-Splatting via Marching Tetrahedra [40] (MT). As
optimization progresses, TeT-Splatting’s behavior aligns with rendering through MT.

in NeuS [49] manner:

α = max

(
Φs(fprev)− Φs(fnext)

Φs(fprev)
, 0

)
, (1)

where Φs(x) = (1 + e−sx)
−1 , and the s value controls the steepness of the conversion. Following

Voxurf [53], we update s manually for each iteration i: s = i/sratio + sstart. The final normal map N ,
depth map D and opacity map O are derived by alpha-blending N sequentially ordered tetrahedra
from front to back:

{N ,D,O} =
∑
i∈N

Tiαi{ni, zi, 1}, Ti =

i−1∏
j=1

(1− αj), (2)

where n denotes the per-tetrahedron normal and zi denotes the average depths of four vertices.
Pre-filtering To conserve computational resources, the tetrahedra with low opacity will be filtered.
Depending on different intersection points, the opacity of a tetrahedron can take different values.
We can establish the upper bound of the opacity, denoted as αmax, by replacing sprev and snext in
Eq. 1 with the maximum and minimum SDF values of four vertices. Tetrahedra with αmax less than
a predefined threshold Tf = 1

255 are filtered to ensure that only tetrahedra with significant enough
contribution to the alpha-blending are included in the subsequent splatting process.

Per-tetrahedron normal As discussed in Section 3.1, the tetrahedral grid establishes a signed
distance field by interpolating the SDF values within each tetrahedron. This interpolation is a linear
combination of the SDF values of four vertices. Correspondingly, the barycentric coordinates of an
arbitrary point with respect to the four vertices of the tetrahedron exhibit a linear correlation with
its spatial position. This ensures that the gradient g of the SDF within the tetrahedron results in a
constant vector (see Appendix A for details). The normal vector n of the tetrahedron is thus obtained
by normalizing this gradient.

Relationship between DMTet and TeT-Splatting During optimization, DMTet employs Marching
Tetrahedra to extract polygonal mesh from the tetrahedral grid and subsequently renders through
triangular rasterization [14]. Consequently, only a limited number of tetrahedra are involved in each
single rendering process. In contrast, TeT-Splatting employs volumetric rendering, which allows all
visible tetrahedra within the view frustum that have sufficient weight in alpha-blending to contribute to
the final renderings. Moreover, the rendering process in TeT-Splatting is fully differentiable, enabling
a single optimization step to influence a significantly larger number of parameters compared to DMTet.
Figure 3 presents a comparative analysis of convergence speeds between DMTet and TeT-Splatting
within the same Text-to-3D pipeline. As observed, TeT-Splatting achieves rapid convergence, whereas
DMTet exhibits slower topological changes and gets stuck in an undesirable shape. Furthermore,
as the inverse standard deviation s in Eq. 1 increases, the curve of Φs(x) becomes steeper, causing
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α to approach 1 under conditions that sprev > 0 and snext < 0 and to approach 0 otherwise. This
behavior (Figure 3) aligns with the rendering process of DMTet [40] through Marching Tetrahedra,
where only the tetrahedra intersecting the zero-level set of the signed distance field are visible.

3.3 Fast differentiable rasterizer for tetrahedra

We implement a tile-based differentiable rasterizer for tetrahedra with custom CUDA kernel building
upon the framework of 3DGS [13]. Similarly, we begin by dividing the screen into tiles and culling
tetrahedra that do not overlap with the view frustum. We then replicate the tetrahedra based on the
number of tiles they overlap and sort them by their tile ID and the average depth of each tetrahedron’s
vertices, using a fast GPU radix sort [27]. Note that the per-tile sorting in 3DGS is not equivalent
to per-pixel ordering. Differently, we maintain a short resorting window [36] of size Nw for each
pixel to re-sort the primitives based on the results of per-tile sorting using the insertion sort. Due to
the structured nature of the tetrahedral grid, we find that the sorting error is almost eliminated with a
window size of 5 under a grid resolution of 256. The operations after re-sorting for alpha-blending
are the same as in 3DGS, except for the computation of α, which we have already given in Eq. 1.

4 3D generation with TeT-Splatting

In this section, we introduce our 3D generation pipeline and discuss various settings, aiming at
validating the effectiveness of TeT-Splatting in 3D generation. As shown in Figure 2, our pipeline
is divided into two stages: first get a detailed geometry with TeT-Splatting and then transition to
polygonal mesh through Marching Tetrahedra [40] for texture optimization. We begin by describing
our overall 3D model (Section 4.1), and then detail the regularizations (Section 4.2) and diffusion
priors (Section 4.3) used in our experiments.

4.1 3D modeling

Geometry stage We employ a hash grid [29] Φg with parameter Θg to encode the signed distance
field and deformation which allows each vertex in a tetrahedral grid to deform in a certain range.
Φg is initialized to a spherical shape. Given a randomly sampled camera, our tetrahedron rasterizer
produces renderings of the normal map, depth map, and opacity map.

Texture stage Given the well-optimized signed distance field from the geometry stage, we convert it
into a polygonal mesh through Marching Tetrahedra. To texture the polygonal mesh, we employ the
physically based rendering (PBR) pipeline proposed by Nvdiffrec [30]. Please refer to [30, 9, 34] for
details. We use another hash grid Φt with parameter Θt to encode the spatially varying materials of
the surface: albedo, roughness, metallic, and bump. Finally, given a specific environment lighting
and a randomly sampled camera, we can obtain the renderings of the albedo map and PBR map.

4.2 Regularization

Eikonal loss To ensure a proper signed distance field, we employ an eikonal term that regularizes
the SDF gradient g in each tetrahedron: Leik =

∑
k (∥gk∥2 − 1)

2.

Normal consistency loss Inspired by the normal consistency loss for triangle meshes, we
adapt this approach to tetrahedra. While we have designed a per-tetrahedron normal, we project
these tetrahedral normals onto vertices and enhance the consistency of the signed distance field
by regularizing the cosine similarity between normals of adjacent vertices connected by edges:
Lnc =

∑
i (1− cos (nei1 ,nei2)), where ei1 and ei2 represent the vertices forming edge ei.

4.3 Diffusion priors

To validate the capability of TeT-Splatting for 3D generation, we employ two types of diffusion priors:
the vanilla RGB-based diffusion priors and the rich diffusion priors proposed in RichDreamer [34].

Vanilla RGB-based diffusion priors Vanilla RGB-based diffusion models represent diffu-
sion models that can generate RGB images from a given prompt. For both geometry and tex-
ture stages, we utilize SDS loss to leverage 2D diffusion priors from Stable Diffusion [37]:
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Figure 4: Qualitative comparison on 3D generation using vanilla RGB-based diffusion priors. We
present visual comparisons of the rendered RGB maps and color maps from various 3D generation
methods. The methods, arranged from left to right, are: Magic3D, Fantasia3D, DreamGaussian, and
Ours. The comparison is conducted across two tasks, text-to-3D and image-to-3D, with results shown
from top to bottom, respectively. Additionally, for each method, we provide the training time and the
rendering speed (FPS) for the first stage of the process.

∇ΘLSDS = E
[
ω(t)(ϵϕ(I; y, t)− ϵ) ∂z∂I

∂I
∂Θ

]
, where ω(t) is a weighting function, z denotes the

VAE latent code, and ϵϕ(N ; y, t) represents the noise estimated by the UNet ϵϕ.

Rich diffusion priors The sole use of vanilla diffusion priors often leads to issues such as multi-face
Janus problem, domain gap between image diffusion model and normal map while using normal
maps as input of diffusion models, and inaccuracies in material decomposition. To this end, we
utilize the rich diffusion priors proposed in RichDreamer [34] to handle high-fidelity 3D generation.
Specifically, for geometry optimization, we combine a vanilla Stable Diffusion with a Normal-Depth
diffusion model, which generates multi-view normal and depth maps from a given text prompt,
represented as: LSDS = LSD

SDS-Normal + LND
SDS-ND. For texture optimization, we combine a vanilla SD

with a Depth-conditioned Albedo diffusion model, capable of producing multi-view albedo maps
from a given text prompt, represented as: LSDS = LSD

SDS-RGB + LAlbedo
SDS-Albedo.

In summary, the final loss function for the geometry stage is defined as: Lgeo = LSDS + λeikLeik +
λncLnc. For the texture stage, the loss function simplifies to: Ltex = LSDS.

5 Experiment

In this section, we assess the efficacy of TeT-Splatting across two distinct tasks: 3D generation
employing vanilla RGB-based diffusion priors and text-to-3D with rich diffusion priors. In Section 5.1,
a qualitative evaluation of 3D generation for both text-to-3D and image-to-3D modalities is conducted
to demonstrate the superiority of TeT-Splatting relative to other representations. To substantiate TeT-
Splatting’s proficiency in handling high-fidelity generations, we conduct experiments with advanced
rich diffusion priors in Section 5.2. Section 5.3 encompasses a series of ablation studies aimed at
validating the representation and pipeline. The details of implementation and experimental setting
can be found in the Appendix B.
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5.1 Results with vanilla RGB-based diffusion priors

Magic3D DreamGaussian Ours
Before After Before After Before After

Input

Figure 5: Visualization of normal maps before and after mesh exportation. Note that the normal maps
of DreamGaussian [46] are derived from its depth maps.

Focusing on illustrating the effectiveness of the proposed representation, we primarily compare to
three competitors: Magic3D [18], Fantasia3D [3] and DreamGaussian [46]. All these competitors
employ a two-stage optimization pipeline and leverage Stable Diffusion with SDS loss, but utilize
three different representative 3D representations in their initial stages: Instant-NGP [29] (a fast
version of NeRF), DMTet [40], and 3DGS [13], respectively. We adapt the diffusion priors of all
methods to Stable Zero-1-to-3 [20] for a fair comparison in the image-to-3D task, adding an identical
MSE alignment loss. The qualitative evaluations, as shown in Figure 4, illustrate our method’s
ability to generate more detailed and compact meshes in a relatively short time. In Figure 4, we also
report the rendering speed (FPS) of the first stage, at a rendering resolution of 512x512. Although
TeT-Splatting operates at a lower FPS compared to DMTet (Fantasia3D) and 3DGS (DreamGaussian),
it still achieves real-time rendering. Importantly, this lower FPS does not adversely affect the overall
generation process, as the primary bottleneck in generation speed lies with the diffusion model.

We also conduct a comparison of the mesh extraction with Magic3D and DreamGaussian, visualized
in Figure 5. It reveals that the meshes extracted from Magic3D often do not faithfully replicate the
geometries from the first stage due to the imprecise threshold for converting densities to SDF values,
and the extracted mesh in DreamGaussian can result in unsatisfactory surfaces with visible holes. In
contrast, our method maintains high quality with negligible degradation after mesh extraction.

5.2 Results with rich diffusion priors
“a DSLR photo of a porcelain dragon”

“a DSLR photo of a cup full of pens and pencils”

“a DSLR photo of a turtle standing on its hind legs, wearing a top hat”

ProlificDreamer MVDream RichDreamer Ours
11 hours 1 hour 2 hours 1.5 hours

Figure 6: Qualitative comparison on Text-to-3D with rich diffusion priors. We also report the total
training time of each method.
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TeT-Splatting

Bear Eagle Piano Tarantula Typewriter

Figure 7: Normal map comparison between DMTet [40] and TeT-Splatting in the early training
iterations.

“a DSLR photo of a barbecue grill cookingsausages and burger patties”

“a DSLR photo of a barbecue grill cookingsausages and burger patties”

Figure 8: Visualization of the rendered normal, albedo, and PBR map from the generated 3D assets
in the second stage.

Our approach is also compatible with state-of-the-art diffusion priors. In this part, we evaluate
TeT-Splatting on the text-to-3D task, equipped with rich diffusion priors from RichDreamer [34].
A key distinction between our approach and RichDreamer is the use of TeT-Splatting as the 3D
representation during the geometry stage. We evaluate our method against two SOTA competitors,
ProlificDreamer [51] and RichDreamer [34]. As illustrated in Figure 6, our method is capable of
handling high-fidelity 3D generation, achieving superior geometric quality with considerably reduced
generation times compared to these competitors.

Additionally, we present visualizations of the normal maps from early training iterations in Figure 7.
The results from RichDreamer are fragmented at the early iterations due to the use of DMTet, which
may harm subsequent optimization and slow convergence. In contrast, TeT-Splatting demonstrates
rapid and smooth convergence. We employ the same quantitative evaluation method as RichDreamer
to assess the quality of geometry and texture.

In Table 2, we report the Geometry CLIP [35] score and Appearance CLIP score. Notably, Rich-
Dreamer’s prompt list, comprising 113 objects used for scoring, is not publicly available. Conse-
quently, we calculate our scores using an alternative set of prompts (see Appendix B for details).
Our method outperforms RichDreamer in terms of CLIP scores and significantly reduces the time
required for geometry optimization (40 min vs 70 min).

In Figure 8, we present the decomposed albedo maps of generated 3D assets. Guided by the
Depth-conditioned Albedo diffusion model, we achieve natural albedo maps.

5.3 Ablation

Under the settings of rich diffusion priors [34], we conduct ablation studies to evaluate our method.
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Figure 9: Ablation studies on eikonal loss, normal consistency loss and the resolution of the
tetrahedral grid.

Table 2: CLIP score comparison. Results marked with “*” are taken from RichDreamer [34]. Since
RichDreamer [34] did not release their prompt list (113 objects), we use our own prompt list (183
objects) for evaluation. See Appendix B for more details.

Prolificdreamer [51] MVDream [42] RichDreamer [34] RichDreamer [34] Ours
Geometry CLIP score ↑ 23.3818* 24.8003* 25.8820* 23.0143 23.1641
Appearance CLIP score ↑ 31.8022* 28.7331* 31.7099* 29.2198 29.4197

Eikonal loss We assess the role of eikonal loss in 3D generation by comparing 3D assets generated
with and without it, illustrated in Figure 9a. Models created without eikonal loss tend to develop into
undesirable shapes. This issue arises because the SDF values rapidly reach extreme levels and get
trapped in local minima when eikonal loss is not applied.

Normal consistency loss Additionally, we assess the importance of normal consistency loss. Fig-
ure 9b demonstrates that applying normal consistency loss results in more compact models. This loss
can act as a smoothing prior that helps prevent the surface of the model from becoming fragmented.

Tetrahedral grid resolution We investigate the effects of tetrahedral grid resolution on model
performance by conducting experiments at resolutions of 128 and 256. Higher resolution yields more
detailed geometries, as shown in Figure 9c.

6 Limitations

TeT-Splatting struggles with modeling high-frequency features, such as texture, because it uses
tetrahedra as rendering primitives, which limits the final output by the resolution of the tetrahedral
grid. Therefore, we transition it to a polygonal mesh for enhanced texture optimization. The rendering
speed of our implemented rasterizer, although operating in real-time, is slower than that of 3DGS.
Additionally, using only a pre-filter operation might not fully leverage TeT-Splatting’s potential in
rendering quality and speed. A similar densification process as in 3DGS could improve this, which
we leave for future work.

7 Conclusion

In this study, we introduce Tetrahedron Splatting (TeT-Splatting), a novel all-round 3D representation
that integrates volumetric rendering within a structured tetrahedral grid while preserving precise
mesh extraction through Marching Tetrahedra. Equipped with newly designed tile-based fast differ-
entiable tetrahedron rasterizer, TeT-Splatting achieves real-time rendering. As showcase, we integrate
TeT-Splatting in common 3D generation pipeline with polygonal mesh for texture optimization.
Extensive experiments under varying 3D generation settings demonstrate TeT-Splatting’s superiority
in producing high-fidelity 3D content compared to other 3D representations.
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A More implementation details of TeT-Splatting

In this section, we provide additional implementation details about the tetrahedron splatting process.
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A.1 Barycentric coordinates

Recall that projecting a single tetrahedron, encompassing four vertices va,vb,vc,vd ∈ R3 along with
their SDF values fa, fb, fc, fd ∈ R, onto a 2D plane results in an array of 2D vectors v′

a,v
′
b,v

′
c,v

′
d ∈

R2 representing the coordinates of these vertices on the image plane.

Given a pixel p with coordinate v′
p ∈ R2, its barycentric coordinates u′, v′ ∈ R with repsect to

a triangle (v′
a,v

′
b,v

′
c) satisfy v′

p = (1 − u′ − v′)v′
a + u′v′

b + v′v′
c. We can apply the following

equations to derive the barycentric coordinates u′, v′:

[
v′
a v′

b v′
c

1 1 1

][
1− u′ − v′

u′

v′

]
=

[
v′
p

1

]
, (3)

⇒

[
1− u′ − v′

u′

v′

]
=

[
v′
a v′

b v′
c

1 1 1

]−1 [
v′
p

1

]
. (4)

If u′, v′ ∈ [0, 1], the pixel p is considered inside the triangle.

A.2 Perspective correction

The calculated barycentric coordinates u′, v′ are based on 2D projections and require adjustment
to reflect the original 3D spatial relationships accurately. This adjustment, known as perspective
correction, is necessary because 3D depth information is not preserved in the 2D projection. We
perform this correction using:

u =
u′

zb
(1−u′−v′)

za
+ u′

zb
+ v′

zc

, v =
v′

zc
(1−u′−v′)

za
+ u′

zb
+ v′

zc

, (5)

where z∗ denotes the depth of each vertex. Subsequently, the SDF value and depth of the 3D position
corresponding to this pixel are interpolated:

fp = (1− u− v)fa + ufb + vfc, zp =
1

(1−u′−v′)
za

+ u′

zb
+ v′

zc

. (6)

A.3 Gradient of the SDF value inside a tetrahedron

Consider an arbitrary 3D point vq with SDF value fq inside the tetrahedron (va,vb,vc,vd). We
establish the SDF value fq using the 3D barycentric coordinates u, v, w: fq = (1− u− v − w)fa +
ufb + vfc + wfd. The derivation of u, v, w is similar to 2D case in Section A.1, i.e.,

 va vb vc vd

1 1 1 1


 1− u− v − w

u
v
w

 =

[
vq

1

]
, (7)

⇒

 1− u− v − w
u
v
w

 =

 va vb vc vd

1 1 1 1


−1 [

vq

1

]
. (8)

Therefore, the formula of fq can be expressed by:

fq = [ fa fb fc fd ]

 1− u− v − w
u
v
w

 (9)
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= [ fa fb fc fd ]

 va vb vc vd

1 1 1 1


−1 [

vq

1

]
. (10)

Moreover, the gradient of the SDF value at vq, denoted by g, is straightforwardly derived by
differentiating with respect to vq . This gradient is constant across the tetrahedron:

 g

∗

 =


va

⊤ 1
vb

⊤ 1
vc

⊤ 1
vd

⊤ 1


−1  fa

fb
fc
fd

 . (11)

This results in a constant vector within any tetrahedron, providing a consistent gradient that aids in
precise mesh extractions and surface optimizations.

B More implementation details of 3D generation

In this section, we provide additional implementation details of 3D generation. Note that all experi-
ments are conducted on one NVIDIA RTX A6000 GPU.

B.1 Geometry stage

Unlike 3DGS [13], we separate operations that are repeated across multiple images from different
camera viewpoints within a single training iteration and shift them to the beginning of each iteration,
including the inference of SDF values and deformations for each vertex from the hash grid, pre-
filtering tetrahedra based on their αmax, and calculating the per-tetrahedron normal. These pre-
processed results are then passed to the rasterizer for rendering a batch of images. Moreover, we
implement a coarse-to-fine approach in the pre-filtering process: initially, we establish a tighter
axis-aligned bounding box from the pre-filtered tetrahedral grid in the first round and then resize the
tetrahedral grid based on this bounding box for a second round of pre-filtering, which enhances the
precision of the geometry. For the schedule of the s value in Eq. 1, we set sratio = 5 and sstart = 20,
which allows the curve of Φs(x) to be sufficiently steep at the final of optimization. Additionally, we
set both λeik and λnc to 1000.

B.2 Evaluation with vanilla RGB-based diffusion priors

This part is implemented based on the threestudio codebase [9] using the settings of Fantasia3D [3].
The tetrahedral grid resolution is set to 128, and the batch size is set to 1.

Text-to-3D For the text-to-3D task, we use Stable Diffusion 2.1 base. The geometry is optimized
for 3,000 iterations and the texture for another 1,000 iterations. Following Fantasia3D [3], during the
initial training iterations, we concatenate the rendered normal and depth maps to serve directly as the
latent code for the diffusion models, facilitating rapid convergence to a basic shape. As Magic3D [18]
haven’t released their code, we use the implementation from threestudio. To ensure a fair comparison
with Fantasia3D [3], we also adopt the threestudio implementation.

Image-to-3D In the image-to-3D task, we use Stable Zero-1-to-3 and adapt our pipeline by incor-
porating Φt in the initial stage to encode the materials at the center of each tetrahedron. Specifically,
we start by inferring the materials at the center of each tetrahedron. Next, we compute the per-
tetrahedron PBR color c using the rendering equation for each tetrahedron. This per-tetrahedron PBR
color c is subsequently passed to the rasterizer to perform the alpha-blending for the final output:
C =

∑
i∈N Tiαici. To further refine the output, we introduce an MSE loss that aligns the rendering

color map Cr and opacity map Or at reference view with the provided reference image C̃r and mask
Õr: Lref = λrgb||Cr − C̃r||22 + λmask||Or − Õr||22. We set the loss weights λrgb and λmask to 10,000
and 1,000, respectively. Also, we decrease λeik and sratio to 100 and 2, respectively.
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B.3 Evaluation with rich diffusion priors

This part is implemented based on the RichDreamer [34] codebase using the settings of DMTet [40].
The tetrahedral grid resolution is set to 256 and the batch size is set to 4 for two stages. We optimize
the geometry for 3,000 steps, with the first 1,000 steps using latent code, followed by an additional
2,000 steps for texture optimization. While RichDreamer reports significantly increased stability at a
rendering resolution of 1024, we achieve stable results at a lower resolution of 512. Therefore, we set
our rendering resolution to 512.

CLIP score We adopt the evaluation process in RichDreamer [34] to calculate CLIP scores using
the CLIP model [35] (vit-g-14). For geometry CLIP scores, we render generated meshes with uniform
albedo and produce 16 different views for each object. The average CLIP scores are computed by
discarding the highest and lowest scores from the provided text prompts. For texture CLIP scores,
textured meshes are rendered. Since RichDreamer has not released the prompt list (113 objects) used
for their metrics, we utilize an alternative list named “prompts_dmtet.txt” (183 objects) available on
their official GitHub repository.

C More results

We present an extensive gallery of visual results in Figure 10-13.

D Discussions on the potential social impacts

The proposed TeT-Splatting method can make it easier for people to enter the animation and related
industries. This can simplify production processes, reduce costs, and allow more people to create
high-quality 3D assets. However, these improvements could also lead to job losses for professionals
who work in traditional roles. To address this, it may be necessary to gradually adjust training
programs and align the workforce with future demands.

Additionally, while our method improves the efficiency of 3D generation, it also carries the biases
present in the foundational models we use. These models can have built-in biases related to race,
gender, and culture, which might appear in the generated content, reinforcing stereotypes. The
easier creation of realistic 3D models also raises concerns about copyright infringement and misuse,
highlighting the need for strong ethical guidelines and regulatory frameworks.
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“a zoomed out DSLR photo of a baby bunny sitting on 
top of a stack of pancakes”

“a DSLR photo of a bear dancing ballet”

“a DSLR photo of a bear dressed in medieval armor” “a beautiful dress made out of garbage bags, on a 
mannequin. Studio lighting, high quality, high resolution”

“a zoomed out DSLR photo of a beautifully carved 
wooden knight chess piece”

“a zoomed out DSLR photo of a blue tulip”

“a brightly colored mushroom growing on a log” “a DSLR photo of a cake covered in colorful frosting with 
a slice being taken out, high resolution”

“a capybara wearing a top hat, low poly” “a DSLR photo of a cauldron full of gold coins”

“a completely destroyed car” “a crocodile playing a drum set”

Figure 10: More results of TeT-Splatting with rich diffusion priors.
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“a DSLR photo of Mont Saint-Michel, France, aerial view” “a ficus planted in a pots”

“a zoomed out DSLR photo of a fresh cinnamon roll 
covered in glaze”

“a DSLR photo of a giant worm emerging from the sand 
in the middle of the desert”

“a hotdog in a tutu skirt” “a llama wearing a suit”

“a DSLR photo of a mug of hot chocolate with whipped 
cream and marshmallows”

“a DSLR photo of a pair of tan cowboy boots, studio 
lighting, product photography”

“a palm tree, low poly 3d model” “a DSLR photo of a plate of fried chicken and waffles 
with maple syrup on them”

“a DSLR photo of a delicious croissant” “a delicious hamburger”

Figure 11: More results of TeT-Splatting with rich diffusion priors.
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“a sliced loaf of fresh bread” “a squirrel dressed like Henry VIII king of England”

“a squirrel dressed up like a Victorian woman” “a DSLR photo of a stack of pancakes covered in maple 
syrup”

“a DSLR photo of a straw basket with a cobra coming out of it” “a tiger karate master”

“a zoomed out DSLR photo of a tiger wearing sunglasses 
and a leather jacket, riding a motorcycle”

“a DSLR photo of a toilet made out of gold”

“a DSLR photo of a red cardinal bird singing” “a zoomed out DSLR photo of a red rotary telephone”

“a DSLR photo of a plush t-rex dinosaur toy, studio 
lighting, high resolution”

“a DSLR photo of a model of the eiffel tower made out of 
toothpicks”

Figure 12: More results of TeT-Splatting with rich diffusion priors.
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“an origami motorcycle” “a DSLR photo of an ornate silver gravy boat sitting on a 
patterned tablecloth”

“a DSLR photo of an unstable rock cairn in the middle of 
a stream”

“banana”

“Coffee cup with many holes” “a zoomed out DSLR photo of miniature schnauzer 
wooden sculpture, high quality studio photo”

“a DSLR photo of a train engine made out of clay” “a DSLR photo of a very cool and trendy pair of sneakers, 
studio lighting”

“an amigurumi bulldozer” “a DSLR photo of an astronaut standing on the surface of 
mars”

“a DSLR photo of an old car overgrown by vines and 
weeds”

“an opulent couch from the palace of Versailles”

Figure 13: More results of TeT-Splatting with rich diffusion priors.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The motivation and contributions of this study are clearly stated in the intro-
duction, with a brief overview of them provided in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of this work in Appendix 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our main theoretical result is the gradient of SDF inside a tetrahedron, which
is proved in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided the detailed design and experimental setting in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our results do not rely on any private data. We provide a link to our project
page, which contains the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details are provided in Appendix A and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report statistically significant following the common practice in this
field.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the generation time in Section 5 and the used GPU resources in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and ensure that our research
strictly conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential societal impacts are discussed in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper of the used assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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