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ABSTRACT

End-to-end image/video codecs are getting competitive compared to traditional
compression techniques that have been developed through decades of manual en-
gineering efforts. These trainable codecs have many advantages over traditional
techniques such as easy adaptation on perceptual distortion metrics and high per-
formance on specific domains thanks to their learning ability. However, state of
the art neural codecs do not take advantage of vector quantization technique and
existence of gradient of entropy in decoding device. In this research, we propose
some theoretical insights about these two properties (quantization and entropy
gradient), and show that this can improve the performances of many off-the-shelf
codecs. First, we prove that non-uniform quantization map on neural codec’s la-
tent is not necessary. Thus, we improve the performance by using a predefined
optimal uniform vector quantization map. Secondly, we theoretically show that
gradient of entropy (available at decoder side) is correlated with the gradient of
the reconstruction error (which is not available at decoder side). Thus, we use the
former as a proxy in order to improve the compression performance. According to
our results, we save between 2-4% of rate for the same quality with this proposal,
for various pre-trained methods.

1 INTRODUCTION

Lossy Image and video compression is a fundamental task in image processing which has become
crucial in the time of pandemic and increasing video streaming volume. Thanks to the community’s
decades long efforts, traditional methods (e.g. VVC) have reached current state of the art rate-
distortion (RD) performance and dominate current codecs market. Recently, end-to-end trainable
deep models have emerged with promising RD performances by learning the informative latents
and modeling the latent distribution. Even though deep learning based models clearly exceed many
traditional techniques and surpass human capability for some general computer vision tasks, they are
only almost on par with the best traditional image compressing methods when trained to optimized
the peak signal-to-noise ratio (PSNR) according to our knowledge.

End-to-end deep compression methods are generally rate-distortion autoencoders (Habibian et al.,
2019), where the latents are optimized using a rate-distortion loss function. For perceptual friendly
compression, distortion based on a perceptual metric can also be used in the loss function (Blau &
Michaeli, 2019). These methods can be seen as a special case of Variational Autoencoder (VAE)
models as described in (Kingma & Welling, 2013), where the approximate posterior distribution is
a uniform distribution centered on the encoder’s outputs (latents) at training time and has a fixed
variance output distribution and trainable priors (Theis et al., 2017; Ballé et al., 2017). It was shown
that minimizing the evidence lower bound (ELBO) of this special VAE is equivalent to minimizing
jointly the mean square error (MSE) of the reconstruction and the entropy of latents w.r.t the priors
(Ballé et al., 2018). All proposed models differ mainly by the modelling of priors: using either
fully-factorized (Ballé et al., 2017), zero-mean gaussian (Ballé et al., 2018), gaussian (Minnen et al.,
2018; Minnen & Singh, 2020) or mixture of gaussian (Cheng et al., 2020), where some methods
predict the priors using an autoregressive schema (Minnen et al., 2018; Minnen & Singh, 2020;
Cheng et al., 2020; Xie et al., 2021; He et al., 2021) and some improve the priors by global and local
context modeling (Qian et al., 2021; Kim et al., 2022). These neural image codecs were extended to
the video compression domain by using two VAEs, one for encoding motion information, another
one for encoding residual information in end-to-end video compression (Lu et al., 2019; Agustsson
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et al., 2020; Ladune & Philippe, 2022; Yılmaz & Tekalp, 2021; Pourreza & Cohen, 2021; Li et al.,
2021; 2022)

An important step in the building of a neural codec is the quantization of the latent before the entropy
coding. All mentioned prior state of the art models use fixed bin-width uniform Scalar Quantization
(SQ). Even though Vector Quantization (VQ) is theoretically better (Gersho & Gray, 2012), very
limited VQ attempt was done on neural codecs such as in (Agustsson et al., 2017; Zhu et al., 2022).
However, VQ does not seem to bring improvement over SQ, which can be explained by various
reasons. First, VQ introduces extra trainable parameters to be learned: the codeword centroids.
Learning these parameters jointly with all model parameters can introduce additional complexity at
training time. Second, since quantization is non-differentiable, a relaxation strategy (Bengio et al.,
2013; Agustsson et al., 2017; Zhu et al., 2022) needs to be used at training time, and the continuous
relaxation of VQ is less efficient than SQ one.

One of the main principle in general compression is to exploit all information available at the de-
coder to reconstruct the data. However, even though the gradients of the entropy w.r.t latents are
available at decoder side, this information remains unused so far in the literature. Some similar
work in the literature have tried to improve the performance of codec, for example by using spe-
cific parameterization (Balcilar et al., 2022), or computationally heavy finetuning solutions (Yang
et al., 2020; Guo et al., 2021), either partially (Campos et al., 2019; Lu et al., 2020) or entirely (van
Rozendaal et al., 2021). However, all these methods ignore the gradients of the entropy.

In this paper, we propose two original contributions to leverage the properties of the learned latent
representation for compression. First, we prove that non-uniform quantization over learned latents is
not necessary, even for VQ, contrarily to the usual case. Thus, in order to use the theoretical power
of VQ, we propose to apply uniform VQ map over the latents. Since the optimal uniform VQ map is
known up to some certain dimensions, we do not need to optimize these quantization centers. This
contribution can be applied even without re-training the model if the original model is trained for
uniform SQ which is often the case for neural codecs.

Second, we apply Karush–Kuhn–Tucker (KKT) conditions on the neural codec which has not been
done to the best of our knowledge. These conditions show that the gradient of the reconstruction
error (unavailable at decoder side) is actually correlated with the gradient of entropy (available
at decoder side) w.r.t latents. This motivates us to use the available gradient as a proxy for the
unavailable gradient in order to improve the performance of the neural codecs without re-training.
Our two contributions are generic enough (they do not depend on the encoder-decoder architecture)
to bring a rate saving of 2− 4% at same quality on several neural codecs architectures.

2 PROBLEM STATEMENT AND STATE OF THE ART

In this section, we recall the basic principles of neural compression, including the training, inference
and quantization steps. For an input color image x ∈ Rn×n×3 to be compressed (the image can be
considered square without any loss of generality), the neural codec learns a non-linear encoder
ga(x;ϕ), parameterized by the weights ϕ. The output of the encoder, y ∈ Rm×m×o, is called
the main embedding (or main latents) of the image. The latent representation is then quantized as
ỹ = Q(y) to obtain the main codes of the image (the dequantization block ŷ = Q−1(ỹ) is used to
obtain reconstructed main latents ŷ at decoding side 1).

The decompressed image x̂ ∈ Rn×n×3 is obtained by the learned deep decoder with x̂ = gs(ŷ; θ).
The neural codec is learned so as to minimize two objectives simultaneously, namely the distor-
tion between x and x̂, and the length of the bitstream ỹ. The codes are encoded into a bitstream
in a lossless manner by any entropy encoder such as range asymmetric numeral systems (RANS)
Duda (2009). RANS needs probability mass function (PMF) of each code, and this information is
also learned at training time. Since RANS is asymptotically optimal, the lower bound of bitlength
according to Shanon’s entropy theorem can be used instead of experimental bitlength from RANS
in order to make bitlength objective differentiable. Thus, neural codecs use the entropy model to
learn the PMF of each codes under determined quantization that allows us to know lower bound of
bitlength.

1The dequantization stage is sometimes skipped in practice since it can be done inside the first linear oper-
ation of the decoder.
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Current state of the art neural codecs use the hyperprior entropy model, where the side embedding
(or side latents) z ∈ Rt×t×s is learned by another deep neural network by z = ha(y; Φ). The
side embeddings are quantized as z̃ = Q(z) to obtain side codes z̃ followed by dequantization
ẑ = Q−1(z̃) to obtain the reconstructed side latents ẑ. The main motivation is to remove from
the side information any image structure that would be left in the main latent representation y.
The hyperprior entropy model first obtains probability density function (PDF) of each scalar latent,
assuming it follows a Gaussian distribution where the parameters are obtained by another deep
network such as µ,σ = hs(ẑ; Θ)) 2. Thus, the hyperprior model’s prediction can be defined by
pŷijk

(.) := N (.|µijk,σijk). The PMF of latent code P (ỹijk) can be written under determined
quantization as a function of pŷijk

(.). Using this PMFs, the lower bound of the main codes’ bitlength
can be defined by −log(ph(ŷ; ẑ,Θ)) := −

∑
ijk log(P (ỹijk)). The Factorized entropy model

learns the PDF for each t× t slice of latent defined as pẑ:,:,s
(.). This PDF is enough to have PMF of

side codes P (ẑijk) under determined quantization. Thus, the lower bound of side codes’ bitlength
can be defined by −log(pf (ẑ; Ψ)) := −

∑
ijk log(P (z̃ijk)).

In this setting, the deep encoder (ga(.;ϕ)), the deep decoder (gs(.; θ)), the hyperprior entropy
ph(.; ẑ,Θ) (composed of the deep hyperprior encoder (ha(.; Φ)), the deep hyperprior decoder
(hs(.; Θ)), and the factorized entropy model pf (.; Ψ)) are the trainable blocks implemented by neu-
ral networks. The optimal values of the parameters ϕ, θ,Φ,Θ and Ψ are found by minimizing
following loss function that train sample x comes from distribution of training dataset px .

L = E
x∼px

[−log(pf (ẑ; Ψ))− log(ph(ŷ; ẑ,Θ)) + λd(x, x̂)] , (1)

where d(., .) is a distortion measure between the original and the reconstructed image (for example
the mean square error). The rate term is sum of the lower bound of bitlength of side information
(−log(pf (ẑ; Ψ))) and main information (−log(ph(ŷ; ẑ,Θ))). Hyperparameter λ controls the trade-
off between the rate (r) and distortion (d) terms.

After the training phase, the learned codec can be used at the encoder and decoder side. The image
is transformed to first obtain z̃ and that information is processed by RANS encoder using factorized
entropy’s PMF table. Then, ỹ is computed and encoded using RANS with hyperprior entropy’s
PMF table, obtained by z̃. At the receiver side, first z̃ is decoded by RANS decoder using factorized
entropy’s PMF table. Using z̃ into the hyperprior model, the PMF table of ỹ can be computed.
Finally, ỹ is decoded from the bitstream, leading to the reconstructed image using dequantization
and deep decoder.

Both quantization step Q(.) and its counterpart dequantization Q−1(.) need to be applied for main
and side information. In addition, both factorized and hyperprior entropy models should know the
determined quantization technique to determine the used PMF. To the best of our knowledge, all
current methods implement quantization as a 1-bin width uniform Scalar Quantization (SQ). This
quantization step is implemented by element-wise nearest integer rounding Q(x) = round(x) and
its dequantization Q−1(x) = x. Thus, the PMF of ỹijk ∈ R can be calculated by P (ỹijk) =∫ ŷijk+0.5

ŷijk−0.5
pŷijk

(x)dx where pŷijk
(.) is the PDF of latent ŷijk learnt by entropy model 3. Since

the nearest integer rounding operation has non-informative gradients, continuous relaxation must be
applied at training as Q(x) = x + ϵ, where ϵ is randomly sampled from the uniform distribution
ϵ ∼ U(−0.5, 0.5).
However, for the Vector Quantization (VQ) case, latents can be packed into v-dimensional vector
u ∈ Rv and each u is assigned to a single code. Quantization centers Cj ∈ Rv, j = 1 . . .M
are learned by entropy model. Quantization step thus amounts to finding nearest center’s index
as Q(x) = argmini ||x− Ci||, while dequantization returns the quanta center as Q−1(i) = Ci

where i ∈ {1 . . .M}. In this case, there are M different quantization centers, and M unique codes.
Since argmin operator applies hard assignment, it has non-informative gradients and continuous
relaxation must also be applied during training. This is generally achieved by softmax operator

2In autoregressive prediction, they are predicted step by step using the previous main latents in a sense of
being previous part of the local neighborhood by µi, σi = hs(ẑ, ŷ<i; Θ)

3Entropy model can alternatively learn cumulative distribution function CDF, σŷijk (x) instead of PDF and
calculate PMF by P (ỹijk) = σŷijk (ŷijk + 0.5)− σŷijk (ŷijk − 0.5)
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(a) (b) (c)

Figure 1: a) f(.) transforms non-uniform quantization map to uniform map. b) Uniform SQ grids
on 2D c) Optimal uniform VQ grids on 2D.

that assigns all codes to the latent vector with different probabilities, depending on the distances
to the centers. These probabilities are used by the entropy model to learn the PMF of each quanta
center (codes), and also for dequantization which is the expectation of quanta centers under these
probabilities during training.

3 UNIFORM VECTOR QUANTIZATION

Vector quantization (VQ) is theoretically optimal than SQ even if the dimensions are i.i.d (Gersho,
1982), but so far it could not perform significantly better than uniform SQ in neural codecs. The
reasons could be that (i) VQ learns non-uniform quantization center over the neural codec’s latents
which is doubly necessary, (ii) the convergence of these centers might encounter training difficulties
and can take longer training time whereas in uniform quantization, the quantization centers are
predefined and fixed and (iii) since the dequantization of VQ averages these variable quantization
centers in training phase, the reconstructed latents in training phase may be far away from their
hard assignment values (values in test phase). This mismatch can be higher than mismatch between
nearest integer rounding and its continuous relaxation by additive uniform noise.

Here we improve the performance of vector quantization in neural codec by proposing uniform
vector quantization. Our main motivation is to use VQ with uniform grid is based on the sufficiency
of uniform SQ among all SQs in the neural codec that we state in the following theorem.

Theorem 1. If a neural codec has an encoder block ga : Rn×n×3 → Rm×m×o, an decoder block
gs : Rm×m×o → Rn×n×3 and it needs non-uniform SQ map for the optimal rate-distortion per-
formance, there exists another neural codec that gives the same rate-distortion performance with
1-bin width uniform SQ (nearest integer rounding quantization) whose encoder block is f ◦ ga and
decoder block is gs ◦ f−1 where f : Rm×m×o → Rm×m×o is an invertible transformation.

The proof can be found in Appendix A and is based on modelling the one-dimensional quantizer
using a memoryless monotonically increasing nonlinearity followed by a uniform fixed-point quan-
tizer as in (Bennett, 1948). We show that an invertible function that can be implemented by neural
networks can transform borders and grid centers of the non-uniform quantization map to the uniform
quantization map. A simple illustration of this is shown in Figure 1(a). According to Theorem 1
neural codecs with nearest integer rounding quantization is fine among all scalar quantizations as
long as it is enough expressive, that its encoder has invertible layers at the bottom of the encoder
block and also the inverse of this layers should be at the beginning of the decoder block. Most of the
neural codecs do not have invertible blocks, but since the decoder is almost inverse of the encoder
(in a sense that it is able to revert back image with negligible distortion) and usually they are enough
deep with millions of parameters, we can assume that they are enough expressive. The advantage of
using invertible layers between less powerful encoder and decoder block were experimentally found
recently in (Shukor et al., 2022). Also, the sufficiency of uniform quantization in neural codecs was
discussed in (Ballé et al., 2021). Our theorem verifies these two prior contributions.

In the following subsection we make connection between the space tessellation and uniform VQ.
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(a) (b) (c)

Figure 2: RD performances of different volume uniform SQ, regular hexagon Hex-Quant and trun-
cated octahedron Oct-Quant grid. a) Uniform source is sampled from U(−4, 4) and zoom-in where
the grid volume is unitary. b) Different Gaussian sources. c) RD plot of unitary volume grids for
Gaussian sources.

3.1 SPACE TESSELLATION GRIDS

We propose uniform vector quantization based on the space tessellation in the latent space of neural
codes, where the predefined shape covers the entire high dimensional space. Thus, the quantization
grids are fixed instead of learning it. The nearest integer quantization grid in 1D is equivalent to unit
square grid in 2D, as shown in Figure 1(b) for zero-mean Gaussian source, however it might not be
the best partition of the space with uniform grids, thus using nearest integer quantization (i.e square
grids in 2D) directly in the neural codec might not yield better RD performance. Following remark
shows the existence of entropy constrained optimal space tesellation and can be used for uniform
vector quantization.
Remark 1. VQ constraints with uniform grid produces the optimal space tessellation which refers
to a pattern of v-dimensional shapes that fit perfectly together without any gaps and have minimum
inertia. The optimal shapes are regular hexagon for 2D, truncated octohedron for 3D and polytope
D4 in 4D case (Gersho, 1979).

The above remark shows that instead of learning the grids centre and optimal partition, we can use
the optimal space tessellation grids at the corresponding dimensions. In this paper our proposal for
2D space is to use regular hexagon grid that has unitary volume as shown in Figure 1(c). Theoret-
ical advantage of space tessellation grid compared to the nearest integer quantization is shown for
uniform distribution in Appendix B. We also represent the simulation results under uniform and
Gaussian sources in Figure 2a-b. Figure 2c shows RD performance of unitary grids under differ-
ent zero-mean Gaussian source is particularly important. Because the main information in modern
neural codec is zero mean different scale Gaussian distribution and quantized with unitary grids.
Figure 2c shows that when the scale parameter of Gaussian increases, it approximates the theoreti-
cal known RD performance of uniform source. Now we show that how our proposed uniform vector
quantization can be applied in the off-the-shelf neural codec without re-training.

3.2 UNIFORM VQ WITH OFF-THE-SELF NEURAL CODEC

Let y ∈ Rm×m×o be the latents of the deep encoder, v be the dimension where the optimal space
tessellation is performed, c(i) ∈ Rv, i = 1 . . .M be the M grid centers of the v-dimensional shape
and c

(i)
j ∈ R is the scalar value on j-th dimension of the center c(i). In order to quantize the latents,

we reshape the latents y into pseudo v-dimensional latents such that y ∈ Rm×m×o → y̌ ∈ Rb×v ,
where b = m.n.o

v . The quantization is performed by assigning the nearest neighbours grid centers,
as ỹj = Q(y̌j) = argmini ||y̌j − c(i)||, where ỹj ∈ {1 . . .M}, j = 1 . . . b are the codes to be
encoded into bitstream. In practice, instead of reshaping all latents together into v dimension, we
can reshape the latents whose learned PDFs are the same (i.e coming from the same distribution).
This approaches does not have significantly different results but needs smaller PMF table to be kept
in decoding device.

To encode the codes (ỹ) into bit-stream, we cannot use the off-the-shelf neural codec’s 1D entropy
model’s PMF calculation, as our latents are v-dimensional latents and domain is different. To this
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end, we propose to create the PMF by integrating the pseudo-v dimensional PDF (
∏v

j=1 pc(i)
j
(uj))

inside the grid G whose center is located on c(i):

P (c(i)) =

∫
G+c(i)

 v∏
j=1

p
c
(i)
j
(uj)

 du (2)

Here P (c(i)) is the PMF of i-th symbol in the dictionary and p
c
(i)
j

: R→ R is PDF of corresponding
latent, learned by entropy model in the baseline model. Since there is no closed form solution of
integral of multi dimensional Gaussian distribution over hexagonal and truncated octahedron domain
(Savaux & Le Magoarou, 2020), we use numeric solvers to approximate the solution of equation 2.
We can reach numeric solution for main codes PMFs where p

c
(i)
j
(.) is the Gaussian distribution

and also non-parametric p
c
(i)
j
(.) for side code’s PMF. In Appendix E, we show how to calculate

equation 2 for hexagonal domain. Another way to calculate those integral by monte-carlo simulation
for known PDFs p

c
(i)
j
(.) before deployment which we use it for truncated octahedron domain.

4 FORGOTTEN INFORMATION: GRADIENT OF ENTROPY

In this section, we describe how the gradients of the entropy in the receiver side is used to improve
the reconstruction performance. When receiver decodes side latent, it can also know the gradients
of side entropy w.r.t side latent. After decoding main latent, it can also compute the gradients of
main entropy w.r.t main latent. Since these gradients are only available after decoding the latent
codes, they seem not useful in the first sight. This could be the reason why so far these gradients
are never used in test phase. Here, we propose to use the gradients through the analysis of Karush-
Kuhn-Tucker conditions, and we claim that first gradient is correlated with gradient of main entropy
w.r.t side latent and the second one is correlated with gradient of reconstruction error w.r.t main
latent. Thus, using the first one as in its correlated gradient, we can decrease the bitlength of main
information and using the second one as in its correlated gradient, we can decrease the reconstruction
error.

We can see the neural codec’s loss function in equation 1 as an unconstrained multi-objectives
optimization problem, where the objectives are minimum bitlength of side information, minimum
bitlength of main information and minimum reconstruction error. The optimal solution of multi-
objective problem is called Pareto Optimal which is a solution where no objective can be made
better off without making at least one objective worse off (Miettinen, 2012). The following remark
shows a useful property of a solution of unconstrained multi-objective optimization problems.
Remark 2. A solution of the multi-objective optimization problem is Pareto Optimal, if and only
if it satisfies Karush–Kuhn–Tucker (KKT) conditions. More specifically, in unconstrained multi-
objective optimization problems case, if the aim of the problem is w∗ = argminw(

∑
i αi.Li(w));

where αi ≥ 0,
∑

αi = 1 and Li is the i-th objective to be minimized, the solution w∗ is Pareto
Optimal if and only if it satisfies the following (Désidéri, 2012).∑

i

αi∇wLi(w
∗)) = 0.

In plain words, this shows that on the optimal solution point, all forces driven by gradients cancel
each other out and the solution reaches saddle point. This property is used to test the optimality of
the candidate solutions. This remark is also valid for end-to-end compression models. Following
theorem shows how to use KKT conditions for the end-to-end image compression models.
Theorem 2. An end-to-end compression model optimized with λ trade-off is Pareto Optimal, if and
only if the following two conditions are met.

Ex∼px [∇ẑ(−log(pf (ẑ; Ψ))) +∇ẑ(−log(ph(ŷ; ẑ,Θ)))] = 0 (3)

Ex∼px [∇ŷ(−log(ph(ŷ; ẑ,Θ))) + λ∇ŷ(d(x, gs(ŷ; θ)))] = 0 (4)

The proof can be found in Appendix C. It is straight-forward, but the result of this theorem is sig-
nificant. One can interpret the theorem that if the existed end-to-end models is optimal (atleast
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in terms of training performance, not in terms of compressing performance), gradient of side in-
formation’s entropy w.r.t side latents ∇ẑ(−log(pf (ẑ; Ψ))) and gradient of main information’s en-
tropy w.r.t side latents ∇ẑ(−log(ph(ŷ; ẑ,Θ))) cancel themselves out in expectation. It is the
same for the second condition as well. We can claim that main information’s entropy w.r.t main
latents ∇ŷ(−log(ph(ŷ; ẑ,Θ))) and weighted gradient of reconstruction error w.r.t main latents
λ∇ŷ(d(x, gs(ŷ; θ))) cancels themselves out in expectation.

Figure 3: Correlation between
gradients of the entropy and
the reconstruction error with re-
spect to the main latents before
quantization.

If these conditions were valid for every single image, given test
image’s available gradient would be negative of unavailable gra-
dient, thus they would have −1 correlation coefficient. However,
these conditions are valid in average of images in train set and
cannot guarantee the correlation for every single test image. On
the other hand, we can still assume that since the train set some-
how represents the test image, at least these two gradients are
correlated in test image, even though they are not exact negative
of themselves. This assumption is validated for different neural
codecs with different test set, and presented in Appendix D and
section 5. The scatter plot of a sample image’s gradient of main
latents and its correlated one are shown on Figure 3. These gradi-
ents were calculated on a neural codec described in Minnen et al.
(2018) and implemented in Bégaint et al. (2020). According to
our test on widespread neural codecs, we have found quite strong
correlation on main latent’s gradient (between −0.1 to −0.5), but
weak correlation (between−0.15 to 0.1) on side latent’s gradient.

Latent Shift wrt Gradients. By definition of gradient based op-
timization, ẑ needs to take a step in negative direction of∇ẑ(−log(ph(ŷ; ẑ,Θ))) in order to decrease
main information bitlength −log(ph(ŷ; ẑ,Θ). However∇ẑ(−log(ph(ŷ; ẑ,Θ))) is not available be-
fore decoding ŷ in decoding device, but at least the correlated gradient ∇ẑ(−log(pf (ẑ; Ψ))) is
known after decoding ẑ. We claim that there is a real number step size ρ∗f that decrease the bitlength
of main information such that

−log(ph(ŷ; ẑ,Θ) ≥ −log(ph(ŷ; ẑ+ ρ∗f∇ẑ(−log(pf (ẑ; Ψ)))),Θ),

ρ∗f can be obtained by brutal force out of handful candidates or any optimization method to find
optimal one such that;

ρ∗f = argmin
ρf

(−log(ph(ŷ; ẑ+ ρf∇ẑ(−log(pf (ẑ; Ψ)))),Θ)). (5)

For the second condition, ŷ needs to take a step in negative direction of ∇ŷ(d(x, gs(ŷ; θ))) in
order to decrease reconstruction error d(x, gs(ŷ; θ)). Since∇ŷ(d(x, gs(ŷ; θ))) is never available in
decoding device, but at least the correlated gradient∇ŷ(−log(ph(ŷ; ẑ,Θ))) is known after decoding
ŷ and ẑ. We claim that there is a real number step size ρ∗h that decrease the reconstruction error such
that

d(x, gs(ŷ; θ)) ≥ d(x, gs(ŷ + ρ∗h∇ŷ(−log(ph(ŷ; ẑ,Θ))); θ)),

ρ∗h can be found by brute-force search out of handful candidates or any optimization method to find
optimal one such that;

ρ∗h = argmin
ρh

(d(x, gs(ŷ + ρh∇ŷ(−log(ph(ŷ; ẑ,Θ))); θ))). (6)

In summary, our proposal can be seen as shifting the side latent by ẑ← ẑ+ρ∗f∇ẑ(−log(pf (ẑ; Ψ)))

after decoding ẑ and shifting the main latent by ŷ← ŷ+ ρ∗h∇ŷ(−log(ph(ŷ; ẑ,Θ))) after decoding
ŷ while the best step sizes ρ∗f , ρ

∗
h ∈ R are to be found in encoding time and added to the bitstream

explicitly with fixed bitlength. It is noted that during the encoding, the main latents ŷ are encoded
wrt entropy model predicted by the shifted side latent. We show that the shifted side latents short-
ens the main information’s bitlength and shifted main latents results in the better reconstruction
performance.
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5 EXPERIMENTAL RESULTS

We use CompressAI library (Bégaint et al., 2020) to test our contributions on 4 pre-trained neural
image codecs named bmshj2018-factorized in Ballé et al. (2017), mbt2018-mean and mbt2018
in Minnen et al. (2018), cheng2020-attn in Cheng et al. (2020), and 2 additional pre-trained codec
named invcompress in Xie et al. (2021) and DCVC-intra in Li et al. (2022) with all intra mode and
two neural video codec named SSF in Agustsson et al. (2020) and DCVC in Li et al. (2022). For
the evaluation, we use Kodak dataset (Kodak) and Clic-2021 Challenge’s Professional dataset (CLI).
The codecs are taken off the shelf and are not retrained. The rate is calculated from the final length of
the compressed data and RGB PSNR is used for distortion. We asses the performance using the bd-
rate (Bjontegaard, 2001) on the rate range used in compressAI: 0.1bpp to 1.6bpp for image codecs
and 0.03bpp to 0.35bpp for video codecs. We report our uniform VQ proposals under the name of
Hex-Quant for regular hexagonal. We denote by Latent Shift the gradient based improvement and
Join the results using both methods.

Table 1: Average BD-Rate gains of our proposals for different baseline image codecs on 2 image
datasets.

Baseline Codec Kodak Test Set Clic-2021 Test Set

Hex-Quant. Latent Shift Join Hex-Quant. Latent Shift Join
bmshj2018-factorized -0.62% -0.49% -1.08% -1.78% -0.69% -2.26%
mbt2018-mean -0.88% -1.27% -2.24% -0.76% -1.21% -2.03%
mbt2018 -0.55% -1.44% -1.98% -0.66% -1.71% -2.33%
cheng2020-attn -0.16% -0.46% -0.73% -0.32% -0.72% -1.15%
InvCompress -0.21% -0.55% -0.82% -0.52% -0.63% -1.12%
DCVC-intra mode -0.97% -0.30% -1.28% -1.22% -0.11% -1.44%

Results on Image Codecs: In Table 1, we show the results of the methods for different datasets
and codecs. Since our two proposals are orthogonal to each other, the gain of the joined methods is
almost the sum of the two. However, after uniform VQ, the reconstructed latents change compare to
uniform SQ, thus, gradients wrt this latents change as well. This variation creates slightly different
results compared to Latent Shift only, thus Join results are not the exact sum. Since uniform VQ’s
reconstructed latent is much more closer to the latents before quantization, nearly in all cases, Latent
Shift with uniform VQ gives better contribution than only Latent Shift.

The bd-rate (gain in %) compared to mbt2018-mean for different quality is shown in Figure 4a on
the Kodak dataset. Even though our proposal has a 2.24% gain, the gain on lower quality (thus lower
rate) is bigger (3.5%). More detailed results of the gain w.r.t. to reconstruction quality are shown in
Appendix F. According to our tests, since the side latent’s correlation’s is weaker, the most important
gain of Latent Shift comes from the gradient of the main latent. The analysis of the source of the
gain of Latent Shift and its performance against some alternatives are presented in Appendix D.

Table 2: Average BD-Rate of our proposals for SSF and DCVC video codecs on UVG dataset and
Bunny video in low-delay configuration. Join refers using Oct-Quant and Latent Shift.

SSF DCVC
Video Hex-Quant. Oct-Quant. Latent Shift Join Hex-Quant. Oct-Quant. Latent Shift Join

Beauty -1.31% -1.60% -0.13% -1.76% -1.92% -1.97% -0.10% -2.02%
Bosphorus -1.88% -2.29% -0.70% -3.23% -1.23% -1.48% -0.62% -2.05%
Honeybee -1.75% -1.10% -0.88% -2.00% -1.80% -2.13% -0.56% -2.65%
Jockey -1.04% -1.48% -0.06% -1.57% -1.42% -1.32% -0.11% -1.51%

UVG Average -1.31% -1.99% -0.60% -2.70% -1.52% -1.64% -0.41% -2.05%

ReadySteadGo -1.03% -2.00% -1.52% -3.74% -1.29% -1.30% -1.08% -2.35%
ShakeNDry -1.38% -2.83% -0.35% -3.25% -1.55% -1.65% -0.23% -1.92%
YatchRide -1.03% -1.67% -0.14% -1.87% -1.42% -1.61% -0.18% -1.83%

Bunny -1.12% -1.87% -1.31% -3.24% -0.90% -1.02% -1.21% -2.25%

Results on Video Codec: In Table 2, we show the results of the SSF and DCVC video codecs for
different sequences. The SSF (Agustsson et al., 2020) was proposed for low-delay mode: frames are
coded sequentially using the previously reconstructed frame and an intra frame is inserted every 8
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frames (UVG videos are divided into 75 Intra periods). I frame encoding uses the same VAE method,
so our implementation on I frame is the same as the one described above. However, each P frame
consists of motion information and residual information encoded by two different VAE models.
Since the motion information represents only a fraction of the total bitrate (3 − 4%), we apply our
proposal on the residual coding only. When we apply Oct-Quant and Latent Shift together, it gains
2− 2.7% of bitrate for the same quality on UVG dataset on average. Again, the gain at lower rate is
larger (more than 4%) as shown in Figure 4b. More analysis on quantization effects can be found in
Appendix D.

(a) (b) (c)

Figure 4: BD-Rates of our proposals from baseline codecs for different quality. a) mbt2018mean
image codec on Kodak test set b) SSF video codec on UVG test set. c) Correlation between im-
provement on reconstruction quality and correlation of gradients on Clic and Kodak datasets.

Gradients correlation: The Latent Shift’s gain depends on how the gradients are correlated. To
assess this correlation, we show the scatter plot between Latent Shift’s individual gains in dB and
actual correlation coefficient between gradients for all test images and for all quality level in Figure
4c. We found a correlation of −0.76 where this correlation is independent from datasets, recon-
struction quality or model. Since the neural video codec was optimized for the loss of all frames in
a GOP, the gradients’ sum in equation 3 and equation 4 are zero in expectation for both the frames
in the GOP and over the datasets. This smooths the sum of gradients even further and decrease the
correlations compare to the image codecs. It explains why the the correlation of the gradients are
lower and also why Latent Shift’s individual gain is lower in video codecs.

Complexity analysis: We have evaluated the complexity of our proposed over the baseline and the
detailed analysis are presented in Appendix G. Our uniform VQ introduces about 3-5% additional
complexity during encoding and 2% during decoding, and the Latent Shift introduces about 5-10%
additional complexity during encoding and about 1% during decoding over the baseline method.

6 CONCLUSION

In this work, we have proposed two orthogonal methods to improve further the latent representation
of generic compressive variational auto-encoders (VAE). Firstly, we exploit further the remaining
redundancy in the latent during the quantization stage. To do so, we demonstrate that a uniform
VQ method improves a VAE trained using with uniform scalar quantization. Secondly, we exploit
the correlation of the gradient of the entropy and the reconstruction error to improve the latent rep-
resentation. The combination of these two methods improve the latent representation, and bring
significant gains on top of several state-of-the-art compressive auto-encoders, without any need of
retraining. From these results, several improvements can be foreseen. First, the correlation of the
gradients depends on the training set according to the definition of the KKT conditions. However,
even though different models use the same training set and training procedure, their gradients’ corre-
lation coefficient may be different. Thus, it might be interesting to explore the connection of certain
type of model architectures with the correlation of the gradients. Secondly, the uniform VQ process
was applied without retraining. Even though VQ quantization error is lower on average, the maxi-
mum quantization error can be higher. Since the decoder block cannot see that individual high errors
during the training, the model becomes sub-optimal. This can be solved by fine-tuning the decoder
block or the entire model using a continuous relaxation of the uniform VQ grid.
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A PROOF OF THEOREM 1

Proof. Scalar quantization map can be see as n + 1 border values with b0 < b1 < · · · < bn and
n quantization center with c1 < c2 < · · · < cn. Any latent y with bi−1 ≤ y < bi should be
quantized to the point ci. Quantization map can be represented by an ordered set consisting of
all borders and centers such as M = {b0 < c1 < b1 < c2 < b2 < · · · < cn < bn} where
|M| = 2n + 1. When the quantization map is non-uniform, the difference between consecutive
elements in the set are not necessarily equal, i.e. ∃(i, j),Mi − Mi−1 ̸= Mj − Mj−1. Nearest
integer quantization map can be denoted as M(u) = {0.5, 1, 1.5, 2, 2.5, . . . n, n + 0.5} or simply
M(u)

i = 0.5i thus,∀i,M(u)
i −M(u)

i−1 = 0.5. Let’s assume than any arbitrary M is the optimal scalar
quantization map of a neural codec’s latent y obtained by y = ga(x). Since M and M(u) are both
monotonic increasing set, there exists a bijective function f(.) that maps ∀i,Mi to M(u)

i , and f−1(.)

maps M (u)
i to Mi, ∀i. According to universality theorem Hornik et al. (1989), the function f(.) can

be implemented by a multi layer neural network.

Two codecs’ performances are equal if and only if entropy of their latents are equal and their re-
constructions are the same. First, we start by showing that their entropy’s are the same by show-
ing that the corresponding center’s PMF are equal in both space, i.e. ∀i, P (i) = P (u)(i). We
can write the i-th quantization center’s PMF as P (i) =

∫ bi
bi−1

p(y)dy where y is a point in ga’s
output space. Any point y can be transformed to a new space by z = f(y). We can write the
i-th quantization center’s PMF as P (u)(i) =

∫ i+0.5

i−0.5
p(z)dz in this space. We can rewrite it as

P (u)(i) =
∫ f−1(i+0.5)

f−1(i−0.5)
p(f−1(z))df−1(z). Since f−1(i + 0.5) = bi, f−1(i − 0.5) = bi−1 and

f−1(z) = y, we can write ∀i, P (u)(i) =
∫ bi
bi−1

p(y)dy = P (i).

The output of a deep decoder is gs(ci) if the latent y = ga(x) meets bi−1 ≤ y < bi. Any latent
bi−1 ≤ y < bi is mapped to f(bi−1) ≤ f(y) < f(bi) thus i−0.5 ≤ z < i+0.5. The latent z which
lies between i − 0.5 to i + 0.5, can be quantized to i in the new space. Since the decoder applies
gs(f

−1(z)), its output should be gs(f
−1(i)). Since f−1(i) = ci, it gives gs(ci).

B ADVANTAGE OF SPACE TESSELLATION GRID ON QUANTIZATION

When the source has a uniform distribution, quantization using a truncated octahedron gives better
RD performance compared to regular hexagonal grids, and regular hexagonal grid gives better RD
performance than uniform SQ grids (nearest integer rounding). In order to show the superiority of a
method over another in terms of RD performance, it is enough to compare the reconstruction error
at equal bit-rate. Since the equal volume grids have the same probability under uniform distribution,
the rate is equal for the three cases. Since the distributions are identical, we just need to compute
the mean square error for each types of grid at some position, for example the origin for 1D, 2D and
3D cases respectively.

MSE of uniform SQ grid can be written as the integral of square error normalized by the grid size:

MSE(s)(u) =
1

u

∫ u/2

−u/2

x2dx. (7)

It gives MSE(s)(u) = u2/12 ≈ 0.0833u2.

Hexagonal grid case: For hexagonal grid, we need to double integrate over the hexagonal domain.
Figure 5a shows an hexagon with a side a length a located at the origin. We also show each side’s
functions in 2D space. We divide the hexagon into two parts for positive and negative y and calculate
the analytic integral for these two region separately. We then normalize the sum of squares by area
of the area of the hexagon, which is 3

√
3a2/2.

MSE(h)(a) =
2

3
√
3a2

(∫ a
√

3
2

0

∫ a− y√
3

−a+ y√
3

x2 + y2

2
dxdy +

∫ 0

−a
√

3
2

∫ a+ y√
3

−a− y√
3

x2 + y2

2
dxdy

)
. (8)
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(a) (b)

Figure 5: a) Regular hexagon and b) Truncated octahedron located at origin.

When we first integrate the positive part of integral over x between −a+ y√
3

and a− y√
3

, followed

by the integral over y between 0 and a
√
3
2 . The integral for the positive region is is then 5

√
3a4

32 . The
same can be done for the negative region, but since the distribution is uniform, it gives the exact
same result, thus we conclude that MSE(h)(a) = 5a2

24 . In order to obtain the same volume for the
grid, hexagon’s area should be u2. Since the hexagon’s area is 3

√
3a2/2 for a side length if a, we

find that a =
√
2u√
3
√
3

. Thus MSE(h)(u) = 5
√
3u2

108 ≈ 0.0801u2.

Truncated octahedron case: For the MSE of the truncated octahedron grid, we need to integrate
the mean square error of each 3 dimension over the truncated octahedron domain. In figure 5b, a
truncated octahedron with a side length of a is shown. The solution can be obtained by integrating
one octant, multiply it by 8 and normalize by its volume which is 8

√
2a3 as follows:

MSE(o)(a)= 8
8
√

2a3

∫ √
2a

0

∫ min(
√

2a,3
√

2a/2−x)
0

∫ min(
√

2a,3
√

2a/2−x−y)
0

(
x2+y2+z2

3

)
dzdydx (9)

First, we integrate over z, y and then x, which gives the solution MSE(o)(a) = 19
48a

2. To com-
pare with the same grid volume, the truncated octahedron should have a volume of u3. Since the
volume is 8

√
2a3 when one side length is a, we can find that a = u

(8
√
2)1/3

, thus MSE(o)(u) =
19

48(8
√
2)2/3

u2 ≈ 0.0785u2.

As a result, MSE(s) ≈ 0.0833u2, MSE(h) ≈ 0.0801u2 and MSE(o) ≈ 0.0785u2, where the
volume of the grid is u. We can thus conclude that ∀u ∈ R+,MSE(o)(u) < MSE(h)(u) <
MSE(s)(u).

C PROOF OF THEOREM 2

Proof. Let us rewrite the end-to-end loss in equation 1 as an unconstrainted multi-objective opti-
mization:

L
2 + λ

= E
x∼px

[
− 1

2 + λ
log(pf (ẑ; Ψ))− 1

2 + λ
log(ph(ŷ; ẑ,Θ)) +

λ

2 + λ
d(x, x̂)

]
.

Where α1 = 1/(2+λ), α2 = 1/(2+λ) and α3 = λ/(2+λ). Since λ > 0,∀i, αi > 0 and
∑

i αi =
1, the set of αis corresponds to an unconstrained multi-objective optimization’s coefficients set.

Since we do not target to update the parameters of the end-to-end model, but just target to adjust
main and side latents ŷ and ẑ, we keep all the parameter fixed, but ŷ and ẑ as variable. Thus, we
can represent side information’s bitlength objective with L1(ẑ) := −log(pf (ẑ; Ψ)), main informa-
tion’s bitlength objective with L2(ŷ, ẑ) := −log(log(ph(ŷ; ẑ,Θ))) and finally distortion objective
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with L3(x, ŷ) := −d(x, gs(ŷ; θ)). With these notations, training the model can be written as an
unconstrained multi objective optimization problem:

ŷ∗, ẑ∗ = argmin
ŷ,ẑ

(Ex∼px [α1L1(ẑ) + α2L2(ŷ, ẑ) + α3L3(x, ŷ)])

This problem has two set of variables to be optimized, and both variables should meet KKT con-
ditions. The variable ẑ is decorrelated from L3(x, ŷ), thus ∇ẑL3(x, ŷ) = 0. We can write KKT
condition for ẑ as follows.

Ex∼px [α1∇ẑL1(ẑ) + α2∇ẑL2(ŷ, ẑ)] = 0.

Since α1 = α2, we obtain the first condition in equation 3 by simply replacing L1(ẑ) and L2(ŷ, ẑ)
with their definitions.

The second variable ŷ does not impact L1(ẑ), thus∇ŷL1(ẑ) = 0. We can write KKT condition for
ŷ as follows.

Ex∼px
[α2∇ŷL2(ŷ, ẑ) + α3∇ŷL3(x, ŷ)] = 0.

If we replace the objectives by their definitions and divide the two-hand side by α2, and since
α3/α2 = λ, we reach the second condition in the theorem in equation 4.

D ABLATION STUDIES

In this section, we present several ablation studies for uniform VQ and latent shifting.

D.1 GAIN ANALYSIS OF LATENT SHIFT

To understand the upper limits of gradient based latent shifting, we use the true gradients in-
stead of proxy one and measure the performance. Simply, we shift the side latents by ẑ ←
ẑ + ρ∗f∇ẑ(−log(ph(ŷ; ẑ,Θ))) after decoding ẑ. Later, we shift the main latent by ŷ ← ŷ +

ρ∗h∇ŷ(d(x, gs(ŷ; θ))) after decoding ŷ. We can see this hypothetical case as if the correlations are
−1. This case is mentioned by True Gradients in the results on Table 3 while our proposal is
Latent Shift. The results are taken with mbt2018-mean image codec on Kodak dataset.

Table 3: Upper limits of the gradient based latent shifting on mbt2018-mean codec.
Only Side Shift Only Main Shift Only Main Shift Main & Side Shift

(BD-Rate) (BD-Psnr) (BD-Rate) (BD-Rate)

True Gradients -1.011% 1.3972 dB -25.139% -26.150%
Latent Shift -0.031% 0.0705 dB -1.270% -1.301%

Figure 6: Histogram of correlation between gra-
dients wrt main latents. The data is taken with
mbt2018-mean image codec on Kodak and Clic
dataset.

According to this results, we can see that even if
the side latent’s gradients were perfectly corre-
lated, our maximum gain would be around 1%.
Since the correlation of gradients wrt the side
latent is weak ( r2 ≈ −0.07), our gain is neg-
ligible. As a consequence, in practice, shift-
ing side latent may not be neglected. On the
other hand, main latents true gradients increase
PSNR by 1.40dB in average which is equiva-
lent of saving around 25% of the bitstream. Our
proposal could increase the PSNR by 0.07dB
in average which is equivalent to saving 1.27%
of the bitstream for the same quality thanks to
the existing correlation between gradients wrt
main latents as shown in Figure 6. The gain is
of course smaller than the upper limit, but sig-
nificant still. Since keeping these gradients are
costly (nearly the same cost of saving image it-
self), searching more effective way of using those gradient is meaningful.
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D.2 LATENT SHIFT VERSUS ALTERNATIVES

In order to show how proposed latent shifting is better than alternatives, we shift the latent in random
direction at encoding time such that ŷ ← ŷ + ϵ(ρh), where ϵ(ρh) ∈ Rm×m×o ∼ N (0, 1) and ρh
is a random seed number to be signalled. The best random seed and gradients, in terms of PSNR
improvement, should be found at encoding time. We generate 1024 random gradient and encode the
best random seed with 10 bits as an extra information. Even though this approach is costly in terms
of computational complexity in encoding time, (it needs 1024 times forward pass), we think this is
a natural baseline to our proposal, and we refer to it as Random Shift.

Another alternative would be to use constant gradient for all latents in a given image. Thus, at
encoding time we need to test a large set of values and assume all latents should be shifted by this
number such that ŷ← ŷ+ρh where ρh ∈ R. The best value of ρh should be signaled to the decoder
with 10 bit extra cost. We refer to this as Scalar Shift approach.

Our last alternative does not use gradients directly, but the fact that they may be correlated as prior
knowledge. Particularly, this approach shifts the latent in the opposite direction of the distribution’s
center such that ŷ ← ŷ − ρh sign(ŷ − µ). In hyperprior entropy models, the latent is assumed to
obey a Gaussian distribution. thus, the latent’s entropy gets smaller if it moves towards the center
of the distribution. By shifting the latent in opposite of this direction, the entropy increases. Since
the factorized entropy model does not use Gaussian distribution, we shift the latent to the opposite
direction of zero center means assuming µ = 0 in factorized entropy. The best value of ρh should
be signaled to the decoder with 10 bit extra cost. We refer to this approach as Sign Shift.

Table 4: Average BD-PSNR of Latent Shift and some alternatives.
Baseline Codec Random Shift Scalar Shift Sign Shift Latent Shift

bmshj2018-factorized 0.0002 dB 0.0036 dB 0.0151 dB 0.0297 dB
mbt2018-mean 0.0006 dB 0.0007 dB 0.0339 dB 0.0705 dB

In Table 4, we compare bmshj2018-factorized (lowest correlation between gradients) and
mbt2018-mean (highest correlation between gradients). Since all alternatives need extra 10 bits
signaling cost, we neglect it assume the bitlengths are the same as the baselines, and we report the
BD-PSNR defined in Bjontegaard (2001). These results show that our proposal is significantly bet-
ter than all alternatives. The closest one (Sign Shift) reaches half of Latent Shift’s performance.
The random alternatives could not improve the baseline significantly, even though their encoder is
almost 1000 times computational demanding.

D.3 TRUNCATED OCTAHEDRON VERSUS HEXAGON

Concerning uniform VQ quantizations, either hexagonal grid quantization Hex-Quant or truncated
octahedron grid quantization Hex-Quant give different results. Better quantization leads to the
smaller quantization error on latent and better reconstruction. However, bigger symbol dictionary
is needed (square of SQ’s dictionary size in hexagonal grid). Since the arithmetic encoder has a
fixed bit resolution, it has representation limitations (for 16-bit resolution, the minimum probability
is 1/65536). Thus, in practice, we can assign 1/65536 probability to the symbol whose probability
is lower than 1/65536, what makes encoding less efficient and increase the rate. Another alternative
is to remove those symbols, what increases the quantization error of latents but decreases the rate.
In practice, we have chosen to remove the symbol if its probability is less than 10−7, and we found
out that it always gives better RD performance.

In this ablation study, we analyse further the quantization effects on reconstruction error (PSNR), as
well as the impact of latent quantization error in terms of Signal Noise Ration (SNR) w.r.t. the
rate (under the assumption that arithmetic encoder has infinite bit resolution). To this end, we
do not encode the symbols into bitstream, but calculate the lower bound of bitlength according to
Shanon’s entropy theorem without limits of integer resolution that dictates some certain probabilities
on symbols. We calculate SNR of latents by SNR = −10log10(d(ŷ,y)) where y is latent, ŷ is
reconstructed latent by certain quantization techniques and d(., .) measures MSE error between two
inputs.
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We use mbt2018-mean neural codec in Minnen et al. (2018) on Kodak dataset. Results are presented
in Table 5 and show that Oct-Quant gives lower reconstruction error (higher PSNR improvement)
and lower quantization error over latent (higher SNR improvement) than Hex-Quant for the same
rate. In addition, Oct-Quant saves more bitlength than Hex-Quant for the same reconstruction
quality. Figure 7 compares the performances of Oct-Quant and Hex-Quant to the uniform SQ
baseline, for different rate and reconstruction quality.

Table 5: Performance of Hex-Quant and Oct-Quant compare to uniform SQ.
Quantization BD-PSNR BD-SNR BD-Rate

Hex-Quant 0.0374 dB 0.0600 dB -0.748%
Oct-Quant 0.0480 dB 0.0736 dB -0.957%

(a) (b) (c)

Figure 7: BD-Psnr, BD-Snr and -Bd-Rate performance of Hex-Quant and Oct-Quant compare to the
uniform SQ. In all perspective, Oct-Quant is the best, while Hex-Quant comes for the second.

E NUMERIC PMF CALCULATION FOR HEXAGONAL DOMAIN

In this section, we give some implementation details.

The closed form solution for the integrals of multidimensional known densities over any domain
has very specific solutions, and generally no tractable form (Savaux & Le Magoarou, 2020). That
holds even for Gaussian distribution of dimension 2 on the regular hexagon domain. Thus, there
is no closed form solution of equation 2, where the probabilities are independent Gaussian on the
domain of regular hexagonal. However, we find the solution using the combination of both analytic
and numerical integration as detailed below.

The integral centred around (x, y) of hexagonal domain G for the independent Gaussian distribution
is given by

P (x, y) =

∫
G

N(x, µ1, σ1) ∗N(y, µ2, σ2)dxdy. (10)

For sake of simplicity, let (x, y) = (0, 0) and a be the one side length of the hexagonal. Then, the
integral is defined as

P (x, y) =

∫ a
√

3
2

0

∫ a− y√
3

−a+ y√
3

N(x, µ1, σ1) ∗N(y, µ2, σ2)dxdy+∫ 0

−a
√

3
2

∫ a+ y√
3

−a− y√
3

N(x, µ1, σ1) ∗N(y, µ2, σ2)dxdy, (11)

where the hexagon is divided into lower and upper half parts, and we sum the two integrals. It is
noted that the integral does not admit a closed form solution, but the inner integral has the closed
form and outer integral does not have the analytic solution. The solution of the inner integral in the
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first part is given by∫ a− y√
3

−a+ y√
3

N(x, µ1, σ1)dx =
1

2
erf

(√
2
(−µ1 + x)

2 ∗ σ1

) ∣∣∣∣x=a− y√
3

x=−a− y√
3

(12)

by substituting into equation 11, we obtain:∫ a
√

3
2

0

∫ a− y√
3

−a+ y√
3

N(x, µ1, σ1) ∗N(y, µ2, σ2)dxdy

=

∫ a
√

3
2

0

1

2
erf

(√
2
(−µ1 + x)

2 ∗ σ1

) ∣∣∣∣x=a− y√
3

x=−a− y√
3

∗N(y, µ2, σ2)dy (13)

This is finally solved by the numerical integration4. Similarly, we can also obtain the integral of the
second part.

F ADDITIONAL RESULTS

In this section, we present additional results of gain evaluated over different methods with Kodak
and Clic-2021 dataset. Figure 8-11 shows th BD-rate gain for bmshj2018-factorized in Ballé et al.
(2017), mbt2018-mean and mbt2018 in Minnen et al. (2018) and cheng2020-attn in Cheng et al.
(2020).

(a) (b)

Figure 8: BD-Rates gain of our proposals from bmshj2018-factorized codecs for different quality
a) Kodak test set b) Clic-2021

G COMPLEXITY ANALYSIS

Here we describe the computational complexity of proposed method and provide detailed analysis
of source of the additional computational costs and the run time results of proposals with respect to
the baseline models.

G.1 SOURCE OF COMPLEXITY

The complexity of our proposed method includes encoding and decoding complexity of uniform
VQ, and encoding and decoding complexity of Latent shift, and they are detailed below.

4https://github.com/esa/torchquad
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(a) (b)

Figure 9: BD-Rates gain of our proposals from mbt2018-mean codecs for different quality a) Kodak
test set b) Clic-2021

(a) (b)

Figure 10: BD-Rates gain of our proposals from mbt2018 codecs for different quality a) Kodak test
set b) Clic-2021

G.1.1 ENCODING COMPLEXITY OF UNIFORM VQ

First, we should define our grid centers as codebook such that c(i) ∈ Rv, i = 1 . . .M be the M
grid centers of the v-dimensional shape (e.g hexagonal grids center for v = 2) and PMF of our
v-dimensional grid using learned 1D PMF by equation 2 in the main paper.

The additional steps involved in the encoding time over the baseline approach are as follows:

1. Reshape the latents into pseudo v-dimensional vector y ∈ Rm×m×o → y̌ ∈ Rb×v , where
b = m.n.o

v (before reshaping, the latent can be sorted by their distribution’s σ parameters.
In this way, the latents that belongs to a similar distribution can be dropped into the same
latent vector).

2. Find closest codebook from our initial quantization grids for each b vector such
ỹj=argmini||y̌j − c(i)||, where ỹj ∈ {1 . . .M}, j = 1 . . . b are the codes to be encoded
into bitstream.

In the shared step (with baseline method), ỹj , j = 1 . . . b should be encoded into bitstream by
given PMF. Thus, in encoding time above 2 step’s complexity is the reason for the extra complexity
introduced by our proposed method.
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(a) (b)

Figure 11: BD-Rates gain of our proposals from cheng2020-attn codecs for different quality a)
Kodak test set b) Clic-2021

G.1.2 DECODING COMPLEXITY OF UNIFORM VQ

In decoding time, ỹj , j = 1 . . . b should be decoded from bitstream by provided PMF table. The
source of extra complexity of our method (over the baseline) in the decoding time is the following
two steps:

1. De-quantizate the decoded codes: find the center of selected quanta center such that ȳj =
cỹj , j = 1 . . . b

2. Reshape dequantized latent into the original dimensions such that ȳ ∈ Rb×v → ŷ ∈
Rm×m×o, (if the ordering wrt σ is applied, we need to revert the order back in order to
have the latents in original order)

In shared step (with the baseline method), these dequantized and reshaped latents are fed to the
decoder network.

G.1.3 ENCODING COMPLEXITY OF LATENT SHIFT

In encoding time, the complexity introduced by the Latent Shift are as follows:

1. The calculation of the gradients of the entropy∇ŷ(−log(ph(ŷ; ẑ,Θ)); θ)

2. finding the best step size ρh that maximize the reconstruction quality when the latent is
shifted as ŷ← ŷ + ρ∗h∇ŷ(−log(ph(ŷ; ẑ,Θ)))

It is noted that calculating gradient of the entropy has a negligible complexity, because we do not
need the forward pass and there is closed form solution. When the entropy model uses Gaussian
distribution such as ph(ŷ; ẑ,Θ) := N(ŷ;µ, σ), the gradient of the entropy becomes the derivative
of −log(N(ŷ;µ, σ)) wrt ŷ which has closed form solution, where N(.;µ, σ) is PDF of gaussian
distribution by given fixed µ, σ parameters. However, the second step to find the best step size ρh is
moderately demanding process. In the experiments, we tested 8 different choices for ph and selected
the best one. Thus, it needs 8 forward passes of decoding and calculation of error between input and
reconstruction.

G.1.4 DECODING COMPLEXITY OF LATENT SHIFT

In decoding time, the complexity of decoding the latents from the bitstream is already included in
the decoding step of uniform VQ. So, the decoding complexity of the Latent Shift are: (1) decoding
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a single scalar ρh from bitstream and calculating the gradient entropy wrt latents, which are both
negligible; (2) Shifting the latent by using gradients and decoded step size which is actually adding
two tensor, and it is negligible compared to the decoding complexity of the baseline model.

G.2 RUNTIME COMPLEXITY ANALYSIS

For experimental computational complexity, we run the test on single core of Intel(R) Core(TM) i7-
8850H CPU @ 2.60GHz with preventing multi-thread operations. We measured the computational
time of cheng2020 attn, mbt2018-mean on Kodak dataset and SSF on bunny dataset. In order to
have the same resolution image, we just crop the top-left part of the frames in bunny frame set
which has the same resolution as kodak dataset (512x768). In this way, all methods complexity can
be comparable between each other. The results show average encoding/decoding time in seconds
for the provided lowest bitrate of baseline model and our Hex-Quant, Oct-Quant and Latent Shift.
The reported encoder running times is the duration from the input image is read to the memory to
the producing the bitstream including arithmetic encoder time. It is the same for decoding. The
duration is from the bitstream in the memory to obtain reconstructed image including arithmetic
decoder process. The results are reported in the table 6.

Model Encoding (in secs) Decoding (in secs)
Baseline Hex Quant Oct Quant Latent Shift Baseline Hex Quant Oct Quant Latent Shift

mbt2018-mean 0.5274s 0.5436s 0.5548s 5.5674s 0.7138s 0.7264s 0.7265s) 0.7188s
(+3%) (+5%) (x10.1) (+1.8%) (+1.8%) (+0.7%)

cheng2020 attn 3.4982s 3.5238s 3.5368s 18.5345s 8.3065s 8.3190s 8.3195s 8.3115s
(+0.7%) (+1.1%) (x5.3) (+0.1%) (+0.1%) (+0.06%)

SSF 1.8618s 1.9068s 1.9230s 11.1418s 1.3025s 1.3285s 1.3288s 1.3125s
(+2.4%) (+3.2%) (x6.0) (+1.9%) (+1.9%) (+0.07%)

Table 6: Encoding and decoding running time (in seconds) of the baseline method and our proposed
method (either Hex Quant or Oct quant + latent shift) for the lowest bit-rate model of image and
video codec. The numbers in the bracket indicates the additional complexity introduced by our
method over the baseline.

The main source of additional encoding complexity of Hex-Quant and Oct-Quant is to find the clos-
est codebook. The naive search gives around %20 overhead complexity for 3-dimensional VQ. But
there are algorithms that find nearest quanta center very efficiently as defined in (Agrell et al., 2002;
Conway & Sloane, 1982). We have adapted this solution to our model and decreased additional
cost to 3%-5% in encoding time for mbt2018-mean model. Though cheng2020 attn model is the
most complex model in our studied neural codec, our extra computation cost is almost the same
with mbt2018-mean model (our Hex-Quant and Oct-Quant runtime depends on the resolution of the
latent not the architecture), Hex-Quant and Oct-Quant’s relative overhead is between 1.1%-0.7% in
encoding time.

For SSF, we neglect the I frame compression runtime (because it is the same with mbt2018-mean) but
measured the average runtime for encoding and decoding of P frames which is done by two VAEs,
one for motion information another for residual information. Thus, there are two main information
(main motion and main residual) and our quantization should be done on these latent. It explains
our extra absolute runtime is more than absolute extra runtime in mbt2018-mean. Since the P frame
compression model is more complex than mbt2018-mean, Hex-Quant and Oct-Quant’s extra relative
runtime is between 2.4%-3.2%. Since the differences between dimension of VQ is just reshaping
tensor and number of indices to be found from dictionary in decoding time, the decoding time
extra complexity of Hex-Quant and Oct-Quant is negligible and almost the same with hex and oct
quantization as it can be seen in the table 6

Regarding the Latent Shift, its decoding complexity is less than 1% as it can be seen in Table 6.
However, Latent Shift’s encoding complexity is between 5-10 magnitude of baseline encoding run-
ning time. Almost all complexity comes from finding the best shift step size by brutal force out of 8
candidates.
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