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ABSTRACT

Deep learning-based image restoration has achieved significant success. However,
when addressing real-world degradations, model performance is limited by the
quality of ground-truth images in datasets due to practical constraints in data ac-
quisition. To address this limitation, we propose a novel framework that enhances
existing ground truth images to provide higher-quality supervision for real-world
restoration. Our framework generates perceptually enhanced ground truth variants
using super-resolution, and employs a conditional frequency mask generator to
produce adaptive frequency masks. These masks guide the optimal fusion of fre-
quency components from the original ground truth and its super-resolved variants
to yield enhanced ground truth images. This frequency-domain mixup preserves
the semantic consistency of the original content while selectively enriching per-
ceptual details, preventing hallucinated artifacts that could compromise fidelity.
The enhanced ground truth images are used to train a lightweight output refine-
ment network that can be seamlessly integrated with existing restoration models.
Extensive experiments demonstrate that our approach consistently improves the
quality of restored images. We further validate the effectiveness of both supervision
enhancement and output refinement through user studies. We will publicly release
our code, enhanced images and model weights to support reproducibility.

1 INTRODUCTION

Image restoration has achieved remarkable progress through supervised training on paired low-quality
and ground truth images using deep neural networks. Across various degradation types, a range of
architectures (Zhang et al., 2017; Kupyn et al., 2018; Liang et al., 2021; Chen et al., 2022; Zamir
et al., 2022; Guo et al., 2024b) and learning strategies (Lehtinen et al., 2018; Ulyanov et al., 2018;
Yoo et al., 2020; Zhang et al., 2022; Wu et al., 2024a) have been proposed to align restored outputs
closely with ground truth images. Recently, the focus has shifted toward improving perceptual quality
of the restored outputs, leveraging advances in generative models to produce visually compelling
results (Wang et al., 2024; Lin et al., 2024; Yu et al., 2024; Wu et al., 2024c).

Despite these advances, in real-world image restoration where acquiring ideal reference images
is inherently difficult due to practical constraints in data acquisition, improving perceptual quality
remains a significant challenge. Many existing datasets rely on indirect ways to construct ground
truth images. For instance, in deblurring datasets (Nah et al., 2017; Shen et al., 2019; Nah et al.,
2019), ground truth images are selected from video sequences, which often contain slight camera
shake or object movements, limiting the image sharpness. Likewise, in denoising datasets (Nam et al.,
2016; Abdelhamed et al., 2018; Xu et al., 2018), ground truth images are constructed by averaging
multiple noisy captures, often resulting in blurred references. As a result, models trained on such
suboptimal ground truth images inevitably tend to inherit those imperfections, limiting their ability to
achieve high-quality restoration.

To address this limitation, we propose a novel supervision enhancement framework designed to im-
prove the perceptual quality of suboptimal ground truth images. The proposed framework consists of
two main components: (1) super-resolution using a one-step diffusion model to generate perceptually
enhanced ground truth variants, and (2) frequency-domain mixup to produce the final enhanced
ground truth images. For the frequency-domain mixup, we introduce a conditional frequency mask
generator that adaptively produces masks to guide the optimal fusion of frequency components from
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GoPro LQ GoPro GT Enhanced GT

Figure 1: Images and their corresponding edge maps (left) and quality scores measured by
KonIQ++ (Su et al., 2021) (right) for the GoPro (Nah et al., 2017) training set. Our enhanced
ground truth images exhibit better sharpness and achieves higher quality scores.

the original ground truth image and its super-resolved variants. As illustrated in Figure 1, the resulting
enhanced ground truth images provide clearer details and higher perceptual quality than original.

Building upon the enhanced ground truth images, we design a lightweight output refinement network
that can be seamlessly integrated into a wide range of pretrained restoration models without requiring
architectural changes or retraining. Experiments show that the refinement network consistently
improves the quality of restored images, benefiting from the enhanced supervision provided by
our framework. Moreover, the network exhibits strong robustness in out-of-distribution scenarios,
effectively removing residual degradations that remain after initial restoration. User studies further
confirm the superior quality of both the enhanced ground truth images and the refinement outputs.

In summary, our key contributions are organized as follows:

• We identify the limitations of conventional ground truth images as a critical bottleneck in
real-world image restoration, and propose a supervision enhancement framework based on
frequency-domain mixup of an original ground truth image and its super-resolved variants.
This design preserves semantic fidelity while enriching perceptual details, resulting in more
reliable supervisory signals.

• We introduce a lightweight refinement network that is trained solely on the original and
enhanced ground truth images, requiring no additional annotations. The module is model-
agnostic, seamlessly integrating with arbitrary restoration backbones without architec-
tural modifications or retraining, and is empirically shown to be robust even under out-of-
distribution degradations.

• We validate our approach through extensive experiments and user studies, demonstrating
consistent improvements in both enhanced ground truth quality and restored image fidelity.

2 RELATED WORKS

With the rise of deep learning, traditional image restoration methods have largely been replaced by
data-driven approaches trained on paired low-quality and ground truth images. A wide range of
architectures has been proposed, including Convolutional Neural Networks (Dong et al., 2014; Zhang
et al., 2017; Chen et al., 2022), Transformer-based models (Zamir et al., 2020; Liang et al., 2021;
Zamir et al., 2022), Generative Adversarial Networks (Ledig et al., 2017; Kupyn et al., 2018), and
more recently, state-space models such as Mamba (Guo et al., 2024b;a). These models have typically
been trained to maximize metrics such as PSNR and SSIM, which quantify the pixel-wise similarity
to the original ground truth images. While these approaches achieve high performance on standard
benchmarks, their outputs often lack perceptual realism of high-quality images.

Recently, there is a growing interest in enhancing the perceptual quality of restored images. This has
been particularly prominent in image super-resolution, demonstrating significant advancements in
generating visually plausible high-frequency details (Xia et al., 2023; Delbracio & Milanfar, 2023;
Wang et al., 2024; Lin et al., 2024; Yu et al., 2024; Wu et al., 2024c). This trend extends to broader
restoration tasks, such as deblurring and denoising, where diffusion models have been leveraged to
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enhance perceptual quality (Ohayon et al., 2021; Kawar et al., 2022; Luo et al., 2023; Zhu et al.,
2023; Yue et al., 2024; Liu et al., 2025). While these methods effectively enhance perceptual quality,
they often incur significant inference overhead and, more critically, risk hallucinating details or
textures absent in the ground truth. In contrast, our approach aims to enhance perceptual quality
while preserving the semantics of the original content by our novel frequency mixup strategy. To
assess the perceptual quality of restored images, we employ a combination of deep-learning based
image quality assessments (Ke et al., 2021; Yang et al., 2022; Chen et al., 2024a; Zhang et al., 2023),
and emerging Vision-Language Model-based methods (Wu et al., 2025; Li et al., 2025).

3 SUPERVISION ENHANCEMENT FRAMEWORK

In this section, we introduce our supervision enhancement framework, which improves the perceptual
quality of ground truth images in existing datasets to provide better supervision for image restoration
tasks. The framework consists of two main components: (1) super-resolution using a one-step
diffusion model to generate perceptually enhanced ground truth variants, and (2) combining these
variants with the original ground truth image through frequency-domain mixup using masks generated
by a conditional frequency mask generator. Figure 2 (a) illustrates an overview of our framework.

3.1 ENHANCING PERCEPTUAL QUALITY WITH IMAGE SUPER-RESOLUTION

Recent Image super-resolution (ISR) models have shown remarkable capability in improving percep-
tual quality. These models are trained using a combination of reconstruction and regularization losses,
where the regularization term is crucial in learning natural image distributions and improving output
quality. Typically, ISR models are trained to align the distribution of generated samples q(x̂) with the
distribution of high-quality real images p(xH), by minimizing the Kullback-Leibler divergence:

DKL(q(x̂)||p(xH)). (1)

Typically, the distribution p(xH) is acquired from datasets with genuinely high-quality images, such
as DIV2K (Agustsson & Timofte, 2017) or LSDIR (Li et al., 2023), or by leveraging the high-quality
image manifold of large-scale pre-trained diffusion models. As a result, ISR models trained on this
regularization effectively generate super-resolved outputs x̂ of high perceptual quality.

Leveraging this capability, we adopt an one-step diffusion ISR model (Wu et al., 2024b) to enhance
the suboptimal ground truth images. Specifically, each original ground truth image IGT

0 is first
upsampled using bicubic interpolation with N multiple scale factors.w The diffusion-based ISR
model is then applied to these upsampled images, and the outputs are downsampled back to the
original resolution, yielding a set of perceptually improved ground truth variants {IGT

i }Ni=1.

3.2 FREQUENCY-DOMAIN MIXUP

Although image super-resolution (ISR) can enhance the perceptual quality of ground truth images,
the generative nature of ISR models often introduces undesirable distortion in both semantics and
photometric attributes. To alleviate these issues, we construct enhanced ground truth images by
integrating the original ground truth with multiple super-resolved variants. A naive pixel-wise fusion
in the spatial domain is problematic, since it effectively amounts to selecting or averaging pixel
intensities across images, making it difficult to preserve high-level semantic structures and frequently
introducing unrealistic artifacts. In contrast, we propose an adaptive frequency mixup, which provides
fine-grained control by preserving essential low-frequency components in the original image while
selectively incorporating perceptually richer high-frequency details from the super-resolved variants.
This frequency-domain formulation is particularly suitable for image restoration tasks because it
naturally harmonizes images with differing photometric characteristics, yielding more stable and
visually coherent results than spatial-domain alternatives.

To facilitate optimal frequency fusion, we introduce a Conditional Frequency Mask Generator. As
illustrated in the Figure 2 (b), given a set of input images {IGT

i }Ni=0, where i = 0 denotes the
original ground truth and i = 1, . . . , N denote its super-resolved variants, the mask generator outputs
frequency masks Mi by combining a set of predefined ring-shaped Gaussian basis masks {Rb}Bb=1,
and predicted coefficients for each basis.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Conditional 
Frequency Mask 

Generator 
<latexit sha1_base64="FANLOZKzsx6ksCsUXJ0g6gyvRpc=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiQi1WXRjcsK9gFtKJPJpB06mYSZG7GE4sZfceNCEbd+hTv/xkmbhbYeuHA45x4u9/iJ4Boc59taWl5ZXVsvbZQ3t7Z3du29/ZaOU0VZk8YiVh2faCa4ZE3gIFgnUYxEvmBtf3Sd++17pjSP5R2ME+ZFZCB5yCkBI/Xtwx6wB8hoLAOeK3iCe8LEA9K3K07VmQIvErcgFVSg0be/ekFM04hJoIJo3XWdBLyMKOBUsEm5l2qWEDoiA9Y1VJKIaS+bvjDBJ0YJcBgrMxLwVP2dyEik9TjyzWZEYKjnvVz8z+umEF56GZdJCkzS2aEwFRhinPeBA64YBTE2hFBlOqCYDokiFExrZVOCO//yImmdVd1atXZ7XqlfFXWU0BE6RqfIRReojm5QAzURRY/oGb2iN+vJerHerY/Z6pJVZA7QH1ifP5MBl40=</latexit>

condition ω

🔥

One-step 
Di9usion ISR

❄

FFT

<latexit sha1_base64="FANLOZKzsx6ksCsUXJ0g6gyvRpc=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovgqiQi1WXRjcsK9gFtKJPJpB06mYSZG7GE4sZfceNCEbd+hTv/xkmbhbYeuHA45x4u9/iJ4Boc59taWl5ZXVsvbZQ3t7Z3du29/ZaOU0VZk8YiVh2faCa4ZE3gIFgnUYxEvmBtf3Sd++17pjSP5R2ME+ZFZCB5yCkBI/Xtwx6wB8hoLAOeK3iCe8LEA9K3K07VmQIvErcgFVSg0be/ekFM04hJoIJo3XWdBLyMKOBUsEm5l2qWEDoiA9Y1VJKIaS+bvjDBJ0YJcBgrMxLwVP2dyEik9TjyzWZEYKjnvVz8z+umEF56GZdJCkzS2aEwFRhinPeBA64YBTE2hFBlOqCYDokiFExrZVOCO//yImmdVd1atXZ7XqlfFXWU0BE6RqfIRReojm5QAzURRY/oGb2iN+vJerHerY/Z6pJVZA7QH1ifP5MBl40=</latexit>

condition ω

C
oncatenate

N
AFBlock

AvgPool

FC
 layer

x4 x2

Softm
ax

Mask Coe9icients

(a) Supervision Enhancement Framework

(b) Conditional Frequency Mask Generator

<latexit sha1_base64="YpjsXoD21MoXBXC4Mz7hGbB0zak=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiFy9CRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxLBtXHdL6ewsrq2vlHcLG1t7+zulfcPWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsYX8/89iMqzWP5YCYJ+hEdSh5yRo2V7m/7vF+uuFV3DvKXeDmpQI5Gv/zZG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWGVAwljZkobM1Z8TGY20nkSB7YyoGellbyb+53VTE176GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsv/yWts6pXq9buziv1qzyOIhzBMZyCBxdQhxtoQBMYDOEJXuDVEc6z8+a8L1oLTj5zCL/gfHwDIqCNuA==</latexit>

Mi

Frequency Mixup

: Downsample
: Upsample

…

Mask 
construction

: Predefined masks

<latexit sha1_base64="YpjsXoD21MoXBXC4Mz7hGbB0zak=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiFy9CRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxLBtXHdL6ewsrq2vlHcLG1t7+zulfcPWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsYX8/89iMqzWP5YCYJ+hEdSh5yRo2V7m/7vF+uuFV3DvKXeDmpQI5Gv/zZG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWGVAwljZkobM1Z8TGY20nkSB7YyoGellbyb+53VTE176GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsv/yWts6pXq9buziv1qzyOIhzBMZyCBxdQhxtoQBMYDOEJXuDVEc6z8+a8L1oLTj5zCL/gfHwDIqCNuA==</latexit>

Mi
<latexit sha1_base64="XaBdkFo7rkJ1gA5wZqHUXHHnbzU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx7jIw9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx9cxvP6LSPJYPZpKgH9Gh5CFn1Fjp/q4f9MsVt+rOQf4SLycVyNHolz97g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZITqwxIGCtb0pC5+nMio5HWkyiwnRE1I73szcT/vG5qwks/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlv6R1VvVq1drteaV+lcdRhCM4hlPw4ALqcAMNaAKDITzBC7w6wnl23pz3RWvByWcO4Recj28foo22</latexit>

Rb

<latexit sha1_base64="AT1m0d4Qlewbd7B9JxjJZfAgSXA="></latexit>

ci,b = g(IGT
0 , ω)

<latexit sha1_base64="UcB6usEnLCU5SUBFeLFEumZVAtg="></latexit>

Mi = softmaxi

( B∑

b=1

ci,bRb

)

<latexit sha1_base64="2c+CO7PQBpGysAASq7UX98Kn3vw="></latexit>

F→1
( N∑

i=0

Mi → F(IGT
i )

)
<latexit sha1_base64="6ZJPCvovV0fEp/t3G/kIxDsCS98=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokItVl0YW6q9AXNLFMppN26OTBzI1YQjb+ihsXirj1M9z5N07bLLT1wIXDOfdy7z1eLLgCy/o2CkvLK6trxfXSxubW9o65u9dSUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xtdTfz2A5OKR2EDxjFzAzIIuc8pAS31zAOs4QwJpLfZfeoAe4T0upFlPbNsVawp8CKxc1JGOeo988vpRzQJWAhUEKW6thWDmxIJnAqWlZxEsZjQERmwrqYhCZhy0+kDGT7WSh/7kdQVAp6qvydSEig1DjzdGRAYqnlvIv7ndRPwL9yUh3ECLKSzRX4iMER4kgbuc8koiLEmhEqub8V0SCShoDMr6RDs+ZcXSeu0Ylcr1buzcu0yj6OIDtEROkE2Okc1dIPqqIkoytAzekVvxpPxYrwbH7PWgpHP7KM/MD5/AOK2lgA=</latexit>

ÎGT

<latexit sha1_base64="KuZfYM9pywB+B3z7vPgjoKB+Vgk=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRKR6rLoQt1V6AvaGCbTSTt08mDmRgxD/BU3LhRx64e482+cPhbaeuDC4Zx7ufceP+FMgm1/G4WV1bX1jeJmaWt7Z3fP3D9oyzgVhLZIzGPR9bGknEW0BQw47SaC4tDntOOPryZ+54EKyeKoCVlC3RAPIxYwgkFLnllWt/m96gN9BHXdzHNP2blnVuyqPYW1TJw5qaA5Gp751R/EJA1pBIRjKXuOnYCrsABGOM1L/VTSBJMxHtKephEOqXTV9PjcOtbKwApioSsCa6r+nlA4lDILfd0ZYhjJRW8i/uf1UgguXMWiJAUakdmiIOUWxNYkCWvABCXAM00wEUzfapERFpiAzqukQ3AWX14m7dOqU6vW7s4q9ct5HEV0iI7QCXLQOaqjG9RALURQhp7RK3oznowX4934mLUWjPlMGf2B8fkDZ6qVRg==</latexit>

IGT
0

<latexit sha1_base64="KuZfYM9pywB+B3z7vPgjoKB+Vgk=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRKR6rLoQt1V6AvaGCbTSTt08mDmRgxD/BU3LhRx64e482+cPhbaeuDC4Zx7ufceP+FMgm1/G4WV1bX1jeJmaWt7Z3fP3D9oyzgVhLZIzGPR9bGknEW0BQw47SaC4tDntOOPryZ+54EKyeKoCVlC3RAPIxYwgkFLnllWt/m96gN9BHXdzHNP2blnVuyqPYW1TJw5qaA5Gp751R/EJA1pBIRjKXuOnYCrsABGOM1L/VTSBJMxHtKephEOqXTV9PjcOtbKwApioSsCa6r+nlA4lDILfd0ZYhjJRW8i/uf1UgguXMWiJAUakdmiIOUWxNYkCWvABCXAM00wEUzfapERFpiAzqukQ3AWX14m7dOqU6vW7s4q9ct5HEV0iI7QCXLQOaqjG9RALURQhp7RK3oznowX4934mLUWjPlMGf2B8fkDZ6qVRg==</latexit>

IGT
0

<latexit sha1_base64="KjMwGZmXhYes7tEDGBVMI6Gc71M=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRKR6rLoQt1V6AvaGCbTSTt08mDmRgxD/BU3LhRx64e482+cPhbaeuDC4Zx7ufceP+FMgm1/G4WV1bX1jeJmaWt7Z3fP3D9oyzgVhLZIzGPR9bGknEW0BQw47SaC4tDntOOPryZ+54EKyeKoCVlC3RAPIxYwgkFLnllWt/m96gN9BHXdzHNPsdwzK3bVnsJaJs6cVNAcDc/86g9ikoY0AsKxlD3HTsBVWAAjnOalfippgskYD2lP0wiHVLpqenxuHWtlYAWx0BWBNVV/TygcSpmFvu4MMYzkojcR//N6KQQXrmJRkgKNyGxRkHILYmuShDVgghLgmSaYCKZvtcgIC0xA51XSITiLLy+T9mnVqVVrd2eV+uU8jiI6REfoBDnoHNXRDWqgFiIoQ8/oFb0ZT8aL8W58zFoLxnymjP7A+PwBvkeVfw==</latexit>

IGT
i

Figure 2: Overview of our framework. (a) The supervision enhancement framework produces
enhanced ground truth images by fusing frequency components from the original ground truth
IGT
0 and its super-resolved variants IGT

i using adaptive frequency masks Mi. (b) The conditional
frequency mask generator constructs Mi by combining predefined masks Rb weighted with predicted
coefficients ci,b, followed by a softmax function.

The design of our ring-shaped Gaussian basis masks is crucial for two reasons. First, the ring-shaped
structure enables precise control from low to high frequencies in a band-wise manner. Second, the
Gaussian shape ensures smooth transitions between frequencies, unlike discrete masks that introduce
sharp boundaries, causing training instability and visual artifacts.

Specifically, each basis mask Rb ∈ RH×W is defined as:

(Rb)h,w = exp
(
−(d(h,w)− µb)

2/2σ2
b

)
, for 1 ≤ h ≤ H, 1 ≤ w ≤ W, (2)

where d(h,w) denotes the ℓ2-distance from the frequency-domain center (DC component), and µb, σb

represent the Gaussian parameters of the b-th mask.

Given the original ground truth image IGT
0 and the conditional parameter λ that adjusts the weight

between the original and its variants, a mask coefficient prediction network g predicts coefficients
ci,b ∈ R as follows:

ci,b = g(IGT
0 , λ). (3)

Internally, g augments the RGB input with its FFT representation, enabling joint use of spatial and
frequency-domain information for mask coefficient prediction.

Then, the adaptive frequency masks Mi are computed by combining these bases using predicted
coefficients:

Mi = softmaxi

( B∑

b=1

ci,bRb

)
, (4)

where the softmax operation ensures masks sum to one,
∑N

i=0 Mi(h,w) = 1,∀(h,w).

Finally, the enhanced ground truth image ÎGT is constructed by fusing frequency components of the
original ground truth IGT

0 and its super-resolved variants {IGT
i }Ni=1 through frequency-domain mixup:

ÎGT = F−1
( N∑

i=0

Mi ⊙F(IGT
i )

)
, (5)
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where F and F−1 denote Fourier and inverse Fourier transforms, respectively, and ⊙ represents
element-wise multiplication.

3.3 OPTIMIZATION

To predict the mask coefficients for optimal frequency fusion, we train the network g, which predicts
coefficients for each basis, with a composite loss that balances semantic integrity and perceptual
quality.

The reconstruction loss is a ℓ2-loss that enforces consistency with the the original ground truth IGT
0 :

Lrecon = ∥ÎGT − IGT
0 ∥22. (6)

The perceptual loss is defined by a combination of multiple no-reference IQA metrics that evalu-
ates perceptual quality of images (e.g., MUSIQ (Ke et al., 2021), MANIQA (Yang et al., 2022),
TOPIQ (Chen et al., 2024a)), denoted as IQAk(·):

Lpercep = −
∑

k

IQAk(Î
GT). (7)

The final training loss combines these two terms, with their relative weights controlled by λ ∈ [0, 1]:

L = (1− λ)Lrecon + λLpercep. (8)

4 OUTPUT REFINEMENT NETWORK

We demonstrate the effectiveness of our enhanced ground truth images by training a lightweight
Output Refinement Network (ORNet) to improve the outputs of existing restoration models. While
training a full restoration network from scratch using low-quality inputs and enhanced ground truth
images is possible, we observe that many state-of-the-art models are already well-optimized for
original ground truth images. Therefore, we propose an efficient strategy that builds on top of a fixed,
pre-trained restoration model Rϕ. Specifically, we introduce a modular output refinement network
Rθ, which is trained to refine the output of Rϕ. The overall image restoration is formulated as:

Î = Rθ(Rϕ(I
LQ), λ), (9)

where ILQ is the low-quality input image, λ is a parameter to control the level of perceptual enhance-
ment, and Î is the final restoration output.

Since the pre-trained image restoration model Rϕ produces outputs close to the original ground truth
(i.e., Rϕ(I

LQ) ≈ IGT
0 ), we train Rθ to map the IGT

0 , which resembles the output of Rϕ, toward the
enhanced ground truth ÎGT generated by our framework. The training objective for Rθ is given by:

L = ∥Î − ÎGT∥22 ≈ ∥Rθ(I
GT
0 , λ)− ÎGT∥22. (10)

This refinement strategy is model-agnostic, allowing it to be flexibly applied on top of various
low-level vision models without architectural modifications. We demonstrate the effectiveness and
versatility of this approach through extensive experiments.

5 EXPERIMENTS

In this section, we evaluate the perceptual quality of both the enhanced ground truth images, produced
by our supervision enhancement framework, and the outputs of our refinement network, through
comprehensive quantitative and qualitative experiments. In addition, we conduct user studies to
assess the perceptual validity of both the enhanced ground truth and the refined outputs.

5.1 EXPERIMENTAL SETTINGS

Implementation Details For the supervision enhancement framework, we adopt OSEDiff (Wu
et al., 2024b) as the super-resolution network. We generate three super-resolved ground truth variants
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Table 1: Evaluation on the GoPro deblurring test set.

Perceptual Quality Metrics VLM-based Metrics
Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑ VisualQuality-R1↑ Q-Insight↑
Restormer (Zamir et al., 2022) 45.05 0.5265 0.3346 1.5264 4.1246 3.4000
NAFNet (Chen et al., 2022) 45.33 0.5346 0.3368 1.5542 4.1539 3.4262
ResShift (Yue et al., 2024) 44.30 0.4934 0.3127 1.4090 3.9105 3.3480
IR-SDE (Luo et al., 2023) 46.13 0.5336 0.3410 1.6140 3.9735 3.3619
DiffIR (Xia et al., 2023) 46.00 0.5366 0.3412 1.5820 4.1544 3.4269
HI-Diff (Chen et al., 2024b) 45.86 0.5337 0.3398 1.5576 4.1554 3.4207

AdaRevD (Mao et al., 2024) 45.49 0.5363 0.3393 1.5660 4.1737 3.4386
+ ORNet (Ours) 64.25 0.5916 0.4880 2.4291 4.1952 3.5206

FFTformer (Kong et al., 2023) 46.47 0.5420 0.3456 1.6130 4.0942 3.4569
+ ORNet (Ours) 64.57 0.5949 0.4924 2.4664 4.1995 3.5278

Table 2: Evaluation on the SIDD denoising test set.

Perceptual Quality Metrics VLM-based Metrics
Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑ VisualQuality-R1↑ Q-Insight↑
AP-BSN (Lee et al., 2022) 20.17 0.3613 0.1977 1.0556 1.0170 1.5496
MIRNet-v2 (Zamir et al., 2020) 22.18 0.3770 0.2402 1.1855 1.0484 1.6197
Restormer (Zamir et al., 2022) 22.55 0.3839 0.2439 1.2190 1.0653 1.6620

Xformer (Chen et al., 2024b) 22.57 0.3828 0.2472 1.2040 1.0759 1.6710
+ ORNet (Ours) 35.68 0.4310 0.3710 1.9510 1.3228 2.1227

NAFNet (Chen et al., 2022) 22.73 0.3937 0.2458 1.2189 1.0826 1.7060
+ ORNet (Ours) 35.87 0.4380 0.3776 1.9591 1.3513 2.1584

using scale factors of 2, 3, and 4. The number of predefined masks, B, for constructing the final
mask is set to 25. Visualizations of these basis masks are provided in the Appendix A.1. Both the
mask coefficient prediction network g and the output refinement network (ORNet) are built using
NAFBlocks, following the architectural design of NAFNet (Chen et al., 2022). Specifically, g consists
of 4 NAFBlocks and 2 FC layers, while ORNet is built as a U-Net architecture of 4 encoder blocks, 1
middle block, and 4 decoder blocks. λ is set to 0.3 during evaluation. Additional evaluation results
for different λ values are presented in the Appendix.

Training Details We train two core networks: the mask coefficient prediction network g and
ORNet, using a combined dataset of GoPro (Nah et al., 2017) and SIDD (Abdelhamed et al., 2018).
Both g and ORNet are trained for 100K iterations with a batch size of 8, using random 512× 512
crops. AdamW (Loshchilov & Hutter, 2019) optimizer with cosine annealing learning rate scheduler
is used. The initial learning rate is 1 × 10−4 for g, and 3 × 10−4 for ORNet. The parameter λ is
uniformly sampled from [0, 1] during training to support learning of diverse enhancement levels.

Evaluation Setup We evaluate under two regimes, in-distribution (ID) and out-of-distribution
(OOD). The ID regime corresponds to standard restoration setups with their provided GT images,
while the OOD regime is constructed by applying additional synthetic degradations (e.g., blur, noise)
to test robustness. In ID, the GT images are themselves suboptimal. Reference-based metrics such
as PSNR, SSIM, and LPIPS (Zhang et al., 2018) measure pixel- or feature-level similarity to the
given GTs; however, when the GTs themselves are imperfect, these scores no longer provide a valid
assessment of true restoration quality. For example, a higher PSNR against those suboptimal GTs
does not necessarily indicate better restoration, and vice versa. Therefore, for experiments under ID
regime, we report only no-reference perceptual metrics, MUSIQ (Ke et al., 2021), MANIQA (Yang
et al., 2022), TOPIQ (Chen et al., 2024a), LIQE (Zhang et al., 2023), together with two recent
VLM-based IQA measures (VisualQuality-R1 (Wu et al., 2025), Q-Insight (Li et al., 2025)), which
better reflect human perception. In OOD, restored outputs are often far worse than even the original
GT. Here the GT, though imperfect, serves as a valid reference for fidelity. Thus, we complement
the perceptual metrics with reference-based measures (PSNR, SSIM, LPIPS (Zhang et al., 2018))
computed against both the original and enhanced GTs, providing a comprehensive view of fidelity as
well as perceptual quality.
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Table 3: Evaluation on an OOD environment, where an additional Gaussian blur (σ = 2.5) is applied
to the blurry input images of the GoPro test set.

Original GT Enhanced GT Perceptual Quality Metrics
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑
FFTFormer (Kong et al., 2023) 24.56 0.7532 0.4714 23.68 0.7224 0.5441 22.3812 0.2284 0.1832 1.0108
+ORNet (Ours) 24.58 0.7670 0.3429 23.81 0.7405 0.3777 42.9131 0.2638 0.2646 1.0656

Table 4: Evaluation on an OOD environment, where an additional white noise (σ = 9) is applied to
the blurry input images of the GoPro test set.

Original GT Enhanced GT Perceptual Quality Metrics
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑
FFTFormer (Kong et al., 2023) 24.35 0.5867 0.4463 23.83 0.5713 0.4751 30.1430 0.4517 0.2655 1.1819
+ORNet (Ours) 24.41 0.6179 0.4070 23.97 0.6057 0.4233 41.8760 0.4699 0.3188 1.4321

5.2 RESULTS

5.2.1 IN-DISTRIBUTION QUANTITATIVE RESULTS

Table 1 and Table 2 report the quantitative results on the GoPro deblurring and SIDD denoising
datasets, respectively. As ORNet is model agnostic, we apply it on top of representative base
models from two restoration tasks. For image deblurring, we integrate ORNet into AdaRevD (Mao
et al., 2024) and FFTformer (Kong et al., 2023); for image denoising, we use NAFNet (Chen et al.,
2022) and Xformer (Zhang et al., 2024). We compare against diverse state-of-the-art methods,
including Restormer (Zamir et al., 2022), ResShift (Yue et al., 2024), IR-SDE (Luo et al., 2023),
DiffIR (Xia et al., 2023), HIDiff (Chen et al., 2024b) for deblurring, and AP-BSN (Lee et al., 2022),
MIRNet-v2 (Zamir et al., 2020), Restormer for denoising.

Models trained with ℓ1 or ℓ2-loss and diffusion-based models exhibit comparable performance in
terms of both no-reference and VLM-based scores. This suggests that the restoration quality of
existing models is upper-bounded by the quality of the original ground truth. In contrast, our method
leverages an enhanced ground truth, thereby achieving a significant improvement in perceptual quality.
We note that reference-based metrics are invalid for evaluation, as there are two different ground
truths: the original and the enhanced.

5.2.2 OUT-OF-DISTRIBUTION QUANTITATIVE RESULTS

To evaluate the generalization performance of our refinement network, we conduct experiments in
out-of-distribution (OOD) settings. These are constructed by augmenting the inputs of the GoPro
test set (Nah et al., 2017) with additional, unseen degradations: one set with Gaussian blur and
another with white noise. We posit that existing state-of-the-art deblurring model FFTformer (Kong
et al., 2023) overfit to the specific degradation characteristics of their GoPro training data, causing
their performance to degrade sharply in such OOD conditions. In contrast, our ORNet is not trained
for a specific degradation; it robustly enhances the output of any given restoration model. As
demonstrated in Tables 3 and 4, applying ORNet leads to a substantial increase in perceptual quality.
Simultaneously, reference-based metrics improve against both the original GT and our enhanced GT,
which validates that ORNet also effectively preserves semantic details. Additional analysis of the
generalization performance of our ORNet is provided in Appendix B.3.

5.2.3 QUALITATIVE RESULTS

We present qualitative results highlighting two key aspects of our approach: (1) the enhanced ground
truth images generated by our supervision framework, and (2) the restoration outputs refined by
ORNet. As shown in Figure 3, our enhanced GT preserves the semantic content of the original GT
while providing sharper and more perceptually pleasing details. In Figures 4 and 5, we compare
restored outputs on the GoPro and SIDD datasets. When combined with existing restoration models,
ORNet consistently improves perceptual quality in fine details such as the cracks between stones in
Figure 4 and the sharpness of text and edges in Figure 5, yielding outputs with sharper and cleaner
details than those in the original GTs.
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GoPro GT Enhanced GT

Figure 3: Visualization of enhanced ground truth. Our enhanced GT not only exhibits sharper text and
superior perceptual quality but also maintains semantic consistency. Zoom in for better visualizaiton.

GoPro LQ

IR-SDE ResShift DiffIR

FFTformer Ours Original GT

GoPro LQ

IR-SDE ResShift DiffIR

FFTformer Ours Original GT

Figure 4: Qualitative comparison of state-of-the-art deblurring methods, including ours (ORNet
applied to FFTformer), on the GoPro dataset. Our method significantly improves the visual quality of
the deblurred image. Zoom in for better visualization.

SIDD LQ AP-BSN MIRNet Xformer NAFNet Ours Original GT

Figure 5: Qualitative comparison of state-of-the-art denoising methods, including ours (ORNet
applied to NAFNet), on the SIDD dataset. Our method significantly improves the visual quality of
the denoised image. Zoom in for better visualization.
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Figure 6: Our enhanced GT images demonstrate significantly improved blur and noise levels, assessed
with KonIQ++ (Su et al., 2021). Histograms compare low quality (LQ), ground truth (GT), and
enhanced GT images from GoPro (Nah et al., 2017) and SIDD (Abdelhamed et al., 2018) datasets.

5.3 ANALYSIS

KonIQ++ analysis Figure 6 shows the results of our supervision enhancement framework. We
assess the quality of images using KonIQ++ (Su et al., 2021) blur level (↓) and noise level (↓). We
observe that the ground truth (GT) images in the GoPro (Nah et al., 2017) dataset, captured using
single high-shutter-speed frames from action cameras, tend to be relatively noisy. In addition, the
GT images in the SIDD (Abdelhamed et al., 2018) dataset exhibit high blur scores, indicating that
the averaging process used to obtain GT images introduces blurriness. Our enhancement framework
effectively improves the quality of such suboptimal GT images, reducing both blur and noise.

Figure 7: User study results. Participants con-
sistently preferred our enhanced GT and OR-
Net outputs to the baselines.

User Study We conduct two user studies to evalu-
ate the perceptual quality of our supervision enhance-
ment and output refinement network. Both studies
involve 70 participants, each presented with 25 ran-
domly sampled images from the GoPro dataset. For
supervision enhancement, participants are asked to
compare the original ground truth (baseline) and en-
hanced ground truth (ours), based on how well each
image appears to restore the low-quality input. For
the output refinement network, participants evaluate
which output, FFTformer (baseline) or FFTformer
+ ORNet (ours), provides a better restoration of the
low-quality input. As shown in Figure 7, both our
enhanced ground truth images and refinement outputs
received significantly higher preference scores.

Table 5: Parameters and MACs of the restora-
tion networks and output refinement network.

Architecture Params. (M) MACs (G)

AdaRev 68.0 1386
FFTformer 14.9 525
NAFNet 115.9 254
Xformer 25.1 571

ORNet (Ours) 4.5 20

Efficiency Comparisons Table 5 summarizes the
number of parameters and multiply-accumulate oper-
ations (MACs) of our refinement network and exist-
ing restoration networks. The numbers are calculated
with an input of 512×512. Our refinement network
(ORNet) is significantly lightweight compared to the
base restoration models. This efficiency allows our
method to be easily integrated into existing architec-
tures without incurring a computational overhead.

6 CONCLUSION

We introduce a novel supervision enhancement framework that addresses the critical limitation of
suboptimal ground truth images in real-world image restoration. By generating perceptually superior
GT variants via super-resolution and optimally fusing them with original GTs in the frequency
domain using adaptive masks, we achieve enhanced supervision targets. Comprehensive evaluations,
including user studies and diverse metrics, confirm that our method successfully balances fidelity
with significantly improved perceptual quality. This enhanced supervision then enables the training
of a lightweight, model-agnostic refinement network, which can seamlessly integrate with existing
restoration models to further boost their output. We emphasize that our framework offers a practical
path toward higher-fidelity and more visually compelling results in real-world restoration scenarios.
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Appendix
Beyond the Ground Truth:

Enhanced Supervision for Image Restoration

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25

Figure S.1: Visualization of the predefined masks R1-R25. It demonstrates denser partitioning in the
low-frequency domain and broader partitioning in the high-frequency domain.

Figure S.2: The details of the NAFBlock.

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 BASIS MASKS

In our main paper, Equation (2) defines the b-th ring-shaped Gaussian basis mask Rb using parameters
µb and σb. Here, µb represents the radial distance from the frequency-domain center where the mask
has its peak, and σb indicates the spread of the mask. We construct a total of B = 25 Gaussian
basis masks. The first mask is centered at µ1 = 0 with a standard deviation of σ1 = 0.05. For
b = 1, . . . , B, the peak positions µb are arranged by quadratically spacing values between 0 and√
H2 +W 2/2, where H and W are height and width of the image, yielding denser coverage near the

DC component and sparser placement at higher frequencies. Simultaneously, the spreads σb increase
quadratically from 0.05 up to 0.55, providing narrower rings at low frequencies and broader ones
at high frequencies. This design ensures fine control around the low-frequency region and efficient
coverage of the full frequency range. The all predefined masks are visualized in Figure S.1.

A.2 ARCHITECTURE DETAILS

Figure S.2 shows the details of the NAFBlock, utilized within the frequency mask generator illustrated
in Figure 2 (b). The foundational block structures, including the Simple Gate and Simplified Channel
Attention (SCA), are adopted from the NAFNet architecture (Chen et al., 2022). An additional
Downsample operation, composed of a convolution with a kernel size of 2× 2 and a stride of 2, is
incorporated into this NAFBlock variant. And the proposed output refinement network (ORNet)
consists of the 4 encoder, 1 middle, and 4 decoder blocks, employing the NAFBlock as their
fundamental building unit. The encoder block is same with figure S.2. The middle block does not
incorporate last downsampling operation. The decoder block implements an upsampling instead
of downsampling: it first doubles the channel dimensionality using a 1× 1 convolution, followed
by a pixel shuffle module that doubles both the height and width of the feature maps, following the
NAFNet architecture (Chen et al., 2022).
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GoPro GT Enhanced GT

GoPro GT Enhanced GT

GoPro GT Enhanced GT
Figure S.3: Visualization of enhanced ground truth. Our enhanced GT not only exhibits sharper
text and superior perceptual quality but also maintains semantic consistency. Zoom in for better
visualizaiton.

B ADDITIONAL EXPERIMENTS

B.1 ENAHNCED GT VISUALIZATION

In Figure S.3, we present our additional qualitative results of generated enhanced GTs. Our results
clearly demonstrate superior perceptual quality by effectively removing remaining degradation such
as noise and blur from the original GTs, while maintaining semantic consistency. In Figure S.4, we
compare our supervision enhancement with a simple super-resolved variant. Whereas the super-
resolved variant primarily sharpens details and brightens colors, our method delivers richer perceptual
improvements while preserving both semantic structure and overall color tone.

B.2 ABLATION STUDY ON ENHANCEMENT LEVEL λ

Quantative result Tables S.1, S.2, S.3 and S.4 show the full expanded versions of Tables 1–4 in
the main paper, with different λ values (0.1, 0.3, 0.5, 0.7, and 0.9). A consistent trend observed is
the steady improvement in perceptual quality metric scores as the value of λ increases. However,
as shown in Tables S.1 and S.2, the VLM-based score exhibits a different behavior depending the
dataset. This suggests that for datasets with very low initial quality, such as SIDD, a larger λ leads
to continuous improvement. Conversely, for datasets with relatively higher quality, like GoPro,
excessive enhancement may introduce perceptually adverse artifacts, such as over-saturation and
over-sharpening. Furthermore, in the out-of-distribution (OOD) settings shown in Tables S.3 and S.4,
we observe that an excessively high λ value can degrade reference-based performance against both
the original and enhanced GTs. This appears to be because when λ is too large, the ORNet applies
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Original GT

Enhanced GT (Ours)

SR Variant (x2)

Figure S.4: Comparison of our supervision enhancement with SR (x2) variant. Zoom in for better
visualization of the semantic details and overall color tone.

changes in color tone and further enhancements that go beyond removing the remaining degradations
(blur, noise), resulting in a reference based performance drop. This highlights the importance of
selecting an appropriate λ to achieve a balance between enhancement and fidelity.

User study We conducted a user study to validate the perceptual quality of the output images of
ORNet with different λ values. Following the same protocol as described in the main paper, we
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Table S.1: Full expanded table of Table 1 in the main paper with diverse enhancement levels. The
results are evaluated on the GoPro dataset (Nah et al., 2017) with the settings in the main paper.

Perceptual Quality Metrics VLM-based Metrics
Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑ VisualQuality-R1↑ Q-Insight↑
AdaRevD (Mao et al., 2024) 45.49 0.5363 0.3393 1.5656 4.1737 3.4386
+ ORNet (λ=0.1) 47.42 0.5451 0.3490 1.6256 4.1939 3.4605
+ ORNet (λ=0.3) 64.25 0.5916 0.4880 2.4291 4.1952 3.5206
+ ORNet (λ=0.5) 69.11 0.6161 0.5893 2.9711 4.0686 3.5163
+ ORNet (λ=0.7) 69.72 0.6330 0.6098 3.2308 4.0025 3.5063
+ ORNet (λ=0.9) 69.73 0.6420 0.6195 3.3870 3.9146 3.4838

FFTformer (Kong et al., 2023) 46.47 0.5420 0.3456 1.6131 4.0942 3.4569
+ ORNet (λ=0.1) 48.07 0.5484 0.3537 1.6619 4.2334 3.4764
+ ORNet (λ=0.3) 64.57 0.5949 0.4924 2.4664 4.1995 3.5278
+ ORNet (λ=0.5) 69.18 0.6189 0.5905 2.9944 4.0918 3.5234
+ ORNet (λ=0.7) 69.76 0.6352 0.6104 3.2444 4.0262 3.5162
+ ORNet (λ=0.9) 69.76 0.6440 0.6198 3.3953 3.9600 3.4957

Table S.2: Full expanded table of Table 2 in the main paper with diverse enhancement levels. The
results are evaluated on the SIDD dataset (Abdelhamed et al., 2018) with the same settings as in the
main paper.

Perceptual Quality Metrics VLM-based Metrics
Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑ VisualQuality-R1↑ Q-Insight↑
Xformer (Zhang et al., 2024) 22.57 0.3828 0.2472 1.2040 1.0759 1.6710
+ ORNet (λ=0.1) 26.23 0.3819 0.2738 1.3238 1.1029 1.7972
+ ORNet (λ=0.3) 35.68 0.4310 0.3710 1.9510 1.3228 2.1227
+ ORNet (λ=0.5) 37.53 0.4517 0.3908 2.1195 1.3835 2.1827
+ ORNet (λ=0.7) 37.99 0.4615 0.3968 2.1711 1.3975 2.2157
+ ORNet (λ=0.9) 38.05 0.4661 0.3989 2.1867 1.4262 2.2176

NAFNet (Chen et al., 2022) 22.73 0.3937 0.2458 1.2189 1.0826 1.7060
+ ORNet (λ=0.1) 26.39 0.3917 0.2776 1.3228 1.1224 1.8217
+ ORNet (λ=0.3) 35.87 0.4380 0.3776 1.9591 1.3513 2.1584
+ ORNet (λ=0.5) 37.89 0.4605 0.3977 2.1394 1.4030 2.2269
+ ORNet (λ=0.7) 38.40 0.4709 0.4039 2.1934 1.4321 2.2498
+ ORNet (λ=0.9) 38.46 0.4758 0.4057 2.2088 1.4492 2.2501

Table S.3: Evaluation on an OOD environment of the GoPro test set, where an additional Gaussian
blur (σ = 2.5) is applied to the blurry input images.

Original GT Enhanced GT Perceptual Quality Metrics
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑
FFTFormer 24.5688 0.7532 0.4714 23.6891 0.7224 0.5441 22.3812 0.2284 0.1832 1.0108
+ORNet (λ=0.1) 24.5898 0.7550 0.4592 23.7141 0.7245 0.5310 23.1592 0.2481 0.1843 1.0111
+ORNet (λ=0.3) 24.5774 0.7670 0.3429 23.8124 0.7405 0.3777 42.9131 0.2638 0.2646 1.0656
+ORNet (λ=0.5) 24.5789 0.7742 0.3107 23.8835 0.7500 0.3334 49.6099 0.2689 0.3324 1.2576
+ORNet (λ=0.7) 24.4442 0.7759 0.3042 23.8007 0.7524 0.3253 50.9512 0.2950 0.3487 1.3977
+ORNet (λ=0.9) 24.2407 0.7754 0.3036 23.6454 0.7524 0.3243 51.5943 0.3174 0.3174 1.0656

evaluated three levels of the refinement weight λ ∈ {0.1, 0.3, 0.5}. As shown in Table S.5, the results
indicate that while both λ = 0.3 and λ = 0.5 achieved similarly high preference rates, λ = 0.3
yielded the lowest loss rate.

Qualitative results Figure S.5 visualizes the results of our Ground Truth (GT) enhancement with
varying values of the hyperparameter λ. As λ increases, the perceptual quality may be enhanced, but
this can introduce undesirable artifacts such as altered color tones and semantic changes that deviate
from the original GT. In contrast, an optimally chosen λ effectively removes residual noise and blur,
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Table S.4: Evaluation on an OOD environment of the GoPro test set, where an additional white noise
(σ = 9) is applied to the blurry input images.

Original GT Enhanced GT Perceptual Quality Metrics
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑
FFTFormer 24.3574 0.5867 0.4463 23.8352 0.5713 0.4751 30.1430 0.4517 0.2655 1.1819
+ORNet (λ=0.1) 24.3804 0.5886 0.4438 23.8616 0.5734 0.4720 30.5873 0.4528 0.2664 1.1909
+ORNet (λ=0.3) 24.4088 0.6179 0.4070 23.9693 0.6057 0.4233 41.8760 0.4699 0.3188 1.4321
+ORNet (λ=0.5) 24.4819 0.6771 0.3549 24.1483 0.6671 0.3602 55.2554 0.5204 0.4034 1.8986
+ORNet (λ=0.7) 24.3252 0.6943 0.3372 24.0463 0.6852 0.3397 58.9384 0.5473 0.4212 2.1779
+ORNet (λ=0.9) 24.0224 0.7018 0.3313 23.7722 0.6928 0.3335 60.1486 0.5618 0.4295 2.2923

Table S.5: User study with various λ values. Participants consistently preferred our ORNet outputs to
the baselines.

λ Win (%) Tie (%) Lose (%)

0.1 25.7 56.1 18.1
0.3 67.0 25.5 7.5
0.5 68.5 21.4 10.1

leading to a perceptually improved image while preserving the color and semantic integrity of the
original.

B.3 GENERALIZATION ON OUT-OF-DISTRIBUTION DATASET AND UNSEEN TASK

Quantitative results Furthermore, to evaluate generalization performance, we test our method on
HIDE (Shen et al., 2019) as an out-of-distribution (OOD) deblurring benchmark. We additionally
evaluate it on LOL (Wei et al., 2018), a low-light enhancement benchmark, as an unseen restoration
task. For evaluating low light-enhancement, we adapt our refinement network to Retinexformer (Cai
et al., 2023) and CIDNet (Yan et al., 2025). As shown in Table S.6 and Table S.7, our approach
consistently enhances perceptual quality even for the unknown dataset and task, demonstrating its
strong generalization capabilities.

Qualitative results Figure S.6 presents the qualitative results of our ORNet (λ=0.3) when applied
to the output of CIDNet (Yan et al., 2025) on the LOL low light enhancement dataset (Wei et al.,
2018). Our ORNet effectively enhances the overall quality of the output, resulting in a more visually
appealing image.

B.4 FINE-TUNING RESTORATION MODEL WITH ENHANCED SUPERVISION

Our enhanced supervision can be utilized in various ways, including directly finetuning existing
restoration models. Table S.8 presents these results. The first row, FFTformer, shows the performance
of a model pretrained on the original GoPro dataset. The subsequent row illustrates the results
when our modular refinement network is applied to its output. FFTformer* indicates the results
after finetuning the pretrained FFTformer with our enhanced supervision. All presented results are
obtained with λ = 0.3. We observe that finetuning with our enhanced supervision allows existing
restoration models to achieve high perceptual quality in terms of no-reference metrics, significantly
improving the overall scores. However, this approach has a limitation: each network must be retrained
with its corresponding enhanced supervision. In contrast, our modular refinement network can be
attached to various restoration models as a single, unified module, achieving better scores than direct
finetuning.

B.5 ADDITIONAL ABLATION STUDY ON MASK DESIGN

Figure S.7 presents a comparative analysis of frequency masks generated by three distinct methods:
our conditional frequency mask generator with ring-shaped Gaussian basis, and an element-wise
baseline in frequency domain and spatial domain. Our method generates frequency masks as a
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Original GT λ = 0.3 λ = 0.5 λ = 1.0

Figure S.5: Qualitative comparison of GT enhancement with varying λ values. Excessively large
λ values increase the risk of hallucinations, such as color shifts and semantic deviations from the
original GT. Zoom in for better visualization.

Table S.6: The results are evaluated on the HIDE dataset (Shen et al., 2019) with the same settings as
in the main paper.

No Ref. VLM-based.
Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑ VisualQuality-R1↑ Q-Insight↑
AdaRevD (Mao et al., 2024) 55.91 0.5882 0.4064 2.0823 4.3013 3.4613
+ ORNet (λ=0.1) 58.34 0.5967 0.4211 2.1717 4.3630 3.5226
+ ORNet (λ=0.3) 68.48 0.6282 0.5375 2.6209 4.3341 3.5697
+ ORNet (λ=0.5) 71.70 0.6443 0.6314 2.9715 4.2557 3.5661
+ ORNet (λ=0.7) 72.03 0.6549 0.6409 3.1910 4.1948 3.5494
+ ORNet (λ=0.9) 71.57 0.6493 0.6361 3.2012 4.1217 3.5372

FFTFormer (Kong et al., 2023) 54.42 0.5768 0.3978 2.0440 4.3176 3.4733
+ ORNet (λ=0.1) 57.72 0.5943 0.4125 2.1316 4.3599 3.5229
+ ORNet (λ=0.3) 68.19 0.6256 0.5295 2.5832 4.3351 3.5691
+ ORNet (λ=0.5) 71.42 0.6416 0.6237 2.9388 4.2458 3.5645
+ ORNet (λ=0.7) 71.67 0.6524 0.6329 3.1664 4.1871 3.5476
+ ORNet (λ=0.9) 71.08 0.6461 0.6278 3.1784 4.1332 3.5341

weighted combination of smooth Gaussian basis, promoting spatial coherence. The base mask M0 is
applied to the original ground truth and preserves low-frequency content, while the additional masks
M1, M2, and M3 selectively incorporate high-frequency components from super-resolved variants.
This structured decomposition enables fine-grained and interpretable frequency control across spatial
regions.

In contrast, the element-wise baseline in frequency domain uses a simple U-Net to directly predict
mask values for each spatial cordinate in frequency domain. Although it exhibits a similar frequency
selection tendency, the resulting masks are spatially inconsistent, often leading to artifacts in the final
enhanced ground truth. Additionally, the element-wise baseline in spatial domain utilizes the same
network designed above with the only modification being that the mixup is performed in the spatial
domain instead of the frequency domain. As shown in Figure S.7, employing element–wise mixup
directly in the frequency and spatial domain leads to unstable mask generation.

These artifacts arise in part from the use of perceptual loss guided by no-reference image quality
assessment (IQA) models, which struggle to detect subtle unnatural distortions. As a result, relying
solely on IQA-based perceptual loss makes it difficult to avoid such inconsistency-induced artifacts.
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Table S.7: The results are evaluated on the LOL dataset (Wei et al., 2018) with the same settings as in
the main paper.

No Ref. VLM-based.
Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑ VisualQuality-R1↑ Q-Insight↑
Retinexformer (Cai et al., 2023) 63.15 0.5870 0.5419 2.8354 3.4400 3.3153
+ ORNet (λ=0.1) 64.28 0.5944 0.5488 2.9363 3.5200 3.4080
+ ORNet (λ=0.3) 72.80 0.6652 0.6435 3.9872 3.5200 3.5047
+ ORNet (λ=0.5) 74.76 0.7043 0.6669 4.4898 3.7667 3.6507
+ ORNet (λ=0.7) 75.18 0.7153 0.6715 4.5909 3.8467 3.7107
+ ORNet (λ=0.9) 75.31 0.7138 0.6735 4.6085 3.7400 3.7067

CIDNet (Yan et al., 2025) 69.51 0.6256 0.6288 3.8336 3.9133 3.6967
+ ORNet (λ=0.1) 70.45 0.6329 0.6366 3.9853 4.0400 3.7447
+ ORNet (λ=0.3) 74.88 0.7035 0.7108 4.7373 3.9000 3.7613
+ ORNet (λ=0.5) 75.77 0.7295 0.7191 4.8546 4.0000 3.7667
+ ORNet (λ=0.7) 75.97 0.7350 0.7183 4.8512 4.0467 3.7760
+ ORNet (λ=0.9) 76.03 0.7324 0.7176 4.8431 4.0267 3.7447

Low Light Input Image CIDNet (Yan et al., 2025) + ORNet Ground Truth

Figure S.6: Qualitative results of our ORNet when applied to the output of CIDNet (Yan et al., 2025)
on the LOL low light enhancement dataset (Wei et al., 2018). Zoom in for better visualization.

Our Gaussian basis constraint allows stable control over frequency content, enabling effective use of
perceptual loss while suppressing artifacts caused by spatial irregularities.

B.6 ABLATION STUDY ON GROUND TRUTH VARIANTS

To generate an enhanced ground truth, we first employ a super-resolution model to create ground truth
variants. For this purpose, we utilize upscale factors of 2, 3, and 4. By applying a frequency mixup
strategy to these diverse ground truth variants, we successfully construct an enhanced ground truth.
As an ablation study, we conduct an experiment with different grount truth variant setting, solely using
upscale factor of 4. Using these 4x variants, we follow our supervision enhancement framework and
output refinement network. The results are presented in Table S.9. As shown, ORNet 4x, representing
the model trained exclusively with the 4 upscale factor, achieved final scores that are marginally
lower than those obtained by the model trained with a mixture of variants. This indicates that the
incorporation of diverse GT variants is beneficial for achieving optimal final enhancement.

B.7 ABLATION ON USING ISR NETWORK INSTEAD OF ORNET

Our output refinement network (ORNet) is trained to refine the output of any existing image restoration
model, which is trained with enhanced supervision. To enhance the output of the restoration model,
we could also directly apply the diffusion based image super-resolution (ISR) model used in our
framework. However, ISR model, which is designed to enhance the perceptual quality, often
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Table S.8: Comparison with our output refinement network (ORNet) and directly finetuning the
restoration model with our enhanced supervision. FFTformer* denotes a model finetuned on the
GoPro training dataset where the original ground truth was replaced with an enhanced ground truth
generated with λ = 0.3, using a pretrained model trained on the original GoPro dataset.

No Ref.
Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑
FFTformer (Kong et al., 2023) 46.47 0.5420 0.3456 1.6130
+ ORNet 64.57 0.5949 0.4924 2.4664

FFTformer* (Kong et al., 2023) 60.54 0.5854 0.4509 2.2359

M0 M1 M2 M3 ÎGT Zoomed

Figure S.7: The top row shows the results when the conditional frequency mask generator is trained
using our method. The second row shows the results when it is trained in an element-wise manner
without ring-shaped Gaussian basis in frequency domain. The bottom row shows the results when it
is trained in an element-wise manner in spatial domain. Mi denotes the generated frequency masks,
and ÎGT represents the enhanced ground truth generated using these masks. Zoom in for better
visualization.

hallucinates details that are not present in the input image when applied directly. Figure S.8 shows the
results of applying the ISR model directly to the output of the restoration model, where the refined
output destroys the textual detail.

B.8 MASK VISUALIZATION ON DIVERSE ENHANCEMENT LEVEL λ

Figure S.7 shows the visualization of the generated masks with different λ values. When λ is small,
the generated masks are mostly focused on M0, dedicated for original ground truth image. As λ
increases, generated masks cover a diverse other ground truth variants.

B.9 TRAINING STABILITY

To assess the training stability of our modular output refinement network (ORNet), we trained the
ORNet with five independent times using distinct random seeds. Following training, each refinement
network was applied to the outputs of a pretrained AdaRevD (Mao et al., 2024) on the GoPro test
dataset. Then, the standard deviation is calculated for each metric with λ = 0.3. The resulting
standard deviations were as follows: PSNR (0.023), SSIM (0.0002), LPIPS (0.0005), DISTS (0.0005),
MUSIQ (0.097), MANIQA (0.0007), TOPIQ (0.001), and LIQE (0.01). The observed standard
deviations for each metric are notably low. This outcome indicates a high degree of stability in our
training procedure for the output refinement network.
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Table S.9: Comparison of our ORNet with only using ground truth variant with upscale factor 4.

Method MUSIQ↑ MANIQA↑ TOPIQ↑ LIQE↑
FFTformer (Kong et al., 2023) 46.47 0.5420 0.3456 1.6131

+ ORNet (λ=0.1) 48.07 0.5484 0.3537 1.6619
+ ORNet (λ=0.3) 64.57 0.5949 0.4924 2.4664
+ ORNet (λ=0.5) 69.18 0.6189 0.5905 2.9944
+ ORNet (λ=0.7) 69.76 0.6352 0.6104 3.2444
+ ORNet (λ=0.9) 69.76 0.6440 0.6198 3.3953

+ ORNet 4x (λ=0.1) 47.86 0.5469 0.3534 1.6511
+ ORNet 4x (λ=0.3) 62.81 0.5509 0.5069 2.1908
+ ORNet 4x (λ=0.5) 67.53 0.5792 0.5738 2.6217
+ ORNet 4x (λ=0.7) 68.15 0.5970 0.5775 2.7956
+ ORNet 4x (λ=0.9) 68.20 0.6051 0.5773 2.8558

Blurry Input Image AdaRevD + OSEDiff + ORNet

Figure S.8: Comparison of applying the ISR model (OSEDiff) directly and using our ORNet to refine
the output of the restoration model (AdaRevD). The ISR model generates details that are not present
in the input image, leading to unrealistic results.

M0

M1

M2

M3

λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

Figure S.9: Frequency masks generated by the proposed controllable frequency mask generator. The
enhancement level is controlled by the input parameter λ.
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