
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GS4: GENERALIZABLE SPARSE SPLATTING SEMAN-
TIC SLAM

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional SLAM algorithms excel at camera tracking, but typically produce in-
complete and low-resolution maps that are not tightly integrated with semantics
prediction. Recent work integrates Gaussian Splatting (GS) into SLAM to enable
dense, photorealistic 3D mapping, yet existing GS-based SLAM methods require
per-scene optimization that is slow and consumes an excessive number of Gaus-
sians. We present GS4, the first generalizable GS-based semantic SLAM system.
Compared with prior approaches, GS4 runs 10× faster, uses 10× fewer Gaussians,
and achieves state-of-the-art performance across color, depth, semantic mapping
and camera tracking. From an RGB-D video stream, GS4 incrementally builds
and updates a set of 3D Gaussians using a feed-forward network. First, the Gaus-
sian Prediction Model estimates a sparse set of Gaussian parameters from input
frame, which integrates both color and semantic prediction with the same back-
bone. Then, the Gaussian Refinement Network merges new Gaussians with the ex-
isting set while avoiding redundancy. Finally, we propose to optimize GS for only
1-5 iterations that corrects drift and floaters when significant pose changes are de-
tected. Experiments on the real-world ScanNet benchmark demonstrate state-of-
the-art semantic SLAM performance, with strong generalization capability shown
through zero-shot transfer to the NYUv2 and TUM RGB-D datasets.

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a long-standing challenge in computer vision,
aiming to reconstruct a 3D map of an environment while simultaneously estimating camera poses
from a video stream. Semantic visual SLAM extends this goal by producing dense maps enriched
with semantic labels, enabling applications in autonomous driving, AR/VR, and robotics. By com-
bining geometric reconstruction with object-level understanding, semantic SLAM provides rich 3D
spatial and semantic information that allows robots and other systems to navigate and interact with
their surroundings more effectively.

Traditional visual SLAM systems consist of several independent components, including keypoint
detection, feature matching, and bundle adjustment (Mur-Artal et al., 2015; Mur-Artal & Tardós,
2017; Campos et al., 2021) Their scene representations are typically low-resolution voxels, which
limit geometric detail. Thus, although these systems generally provide accurate camera localization,
they struggle to generate dense, high-quality 3D maps, which are required for robotics applications
such as mobile manipulation. Recent advances in differentiable rendering (Mildenhall et al., 2020;
Kerbl et al., 2023a) introduces new options for scene representation in visual SLAM. For exam-
ple, neural scene representations such as Neural Radiance Fields (NeRF) (Mildenhall et al., 2020)
have been successfully adopted in SLAM frameworks (Sucar et al., 2021; Zhu et al., 2022b; Johari
et al., 2023); however, NeRF requires hours of per-scene optimization, making it computationally
expensive and forcing a trade-off between reconstruction quality and training cost.

Recently, 3D Gaussians have emerged as a powerful 3D scene representation, offering fast, differ-
entiable, and high-quality rendering capabilities (Kerbl et al., 2023b). Leveraging these advantages,
Gaussian-based representations have proven highly effective for SLAM systems (Keetha et al., 2024;
Matsuki et al., 2024). However, existing approaches still rely on test-time, gradient-based optimiza-
tion to estimate 3D Gaussians for each scene independently, which is computationally expensive and
unsuitable for real-time applications. In addition, these methods depend on heuristic Gaussian den-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of PSNR with respect to num-
ber of Gaussians across Gaussian Splatting SLAM
algorithms (over an average of 2, 680 frames in the
6 testing scenes of ScanNet). Our method achieves
state-of-the-art performance with much fewer Gaus-
sians. GS Num represents the number of 3D Gaus-
sians in the scene after mapping is complete.

Figure 2: A radar chart comparing rendering met-
rics. We normalize each metric independently, values
closer to the outer edge indicate better performance.

sification and pruning strategies (Kerbl et al., 2023b), often producing overly dense representations
that fail to scale to large, real-world environments.

In this paper, we propose GS4 (Generalizable Sparse Splatting Semantic SLAM), the first generaliz-
able Gaussian-splatting–based SLAM system, which directly predicts 3D semantic Gaussians using
a learned feed-forward network, eliminating the need for expensive per-scene optimization. By in-
tegrating an image recognition backbone, GS4 jointly reconstructs geometry, color, and semantic
labels of the environment without relying on any external semantic-segmentation modules.

GS4 begins with the Gaussian Prediction Model that infers a sparse set of 3D semantic Gaussians
from each incoming RGB-D frame in a feed-forward manner. Next, the Gaussian Refinement Net-
work integrates these newly predicted Gaussians with the evolving 3D map, replacing the hand-
crafted heuristics traditionally used for Gaussian densification and pruning. This learned refinement
strategy yields a compact representation with an order-of-magnitude fewer Gaussians than compet-
ing methods. Finally, after the global localization (bundle adjustment) step from the camera tracking
module updates camera poses and Gaussian locations, we perform a lightweight few-iteration (only
1∼5) optimization of Gaussian parameters to preserve rendering fidelity and mitigate the “floater”
artifacts common in feed-forward GS approaches.

We demonstrate that GS4 achieves state-of-the-art performance across all key metrics in localiza-
tion, mapping, and segmentation on the real-world benchmark ScanNet (Fig. 2), while using only
∼ 10% of Gaussians compared to prior GS SLAM methods (Fig. 1). Furthermore, we highlight
the generalization capability of our system via zero-shot transfer to the NYUv2 and TUM RGB-
D datasets, which, to the best of our knowledge, is the first demonstration of zero-shot semantic
SLAM generalization in a modern neural SLAM system.

In summary, our contributions are as follows:

• We propose GS4, the first generalizable Gaussian splatting semantic SLAM approach
on monocular RGB-D sequences. Results showed that GS4 obtains state-of-the-art on
real ScanNet scenes and also zero-shot generalizes to the real NYUv2 and TUM RGB-
D datasets without any fine-tuning.

• Our proposed Gaussian refinement network effectively merges Gaussians from different
frames into a 3D representation, while significantly reducing the number of Gaussians re-
quired to represent a scene to only 10%− 25% of prior work.

• Our proposed few-iteration Gaussian optimization significantly improves reconstruction
quality with a small additional computational cost.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Traditional SLAM: Early visual SLAM methods (Mur-Artal et al., 2015) demonstrated robust lo-
calization through effective keypoint detection and matching, which resulted in sparse 3D recon-
structions. While these approaches provided reliable localization, the sparse nature of the recon-
structed maps limited their utility in applications requiring detailed 3D maps. To address this issue,
dense visual SLAM (Kerl et al., 2013; Czarnowski et al., 2020) focused on constructing detailed
maps to support applications like augmented reality (AR) and robotics. Prior methods (Canelhas
et al., 2013; Dai et al., 2017b; Newcombe et al., 2011; Bylow et al., 2013; Whelan et al., 2013;
Prisacariu et al., 2017) employ representations based on Signed Distance Fields (SDF), rather than
relying on sparse representations such as point clouds or grids. However, these approaches often
suffer from over-smoothed reconstruction, failing to capture fine details crucial for certain tasks.

NeRF-based SLAM: Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) gained popular-
ity as a 3D scene representation due to its ability to generate accurate and dense reconstructions.
NeRF employs Multi-Layer Perceptron (MLP) to encode scene information and performs volume
rendering by querying opacity and color along pixel rays. Methods such as iMAP (Sucar et al.,
2021), NICE-SLAM (Zhu et al., 2022b), and ESLAM (Johari et al., 2023) incorporate this implicit
scene representation into SLAM, leveraging NeRF’s high-fidelity reconstructions to improve both
localization and mapping. DNS-SLAM (Li et al., 2023) further incorporates semantic information
into the framework. However, the volumentric rendering process in NeRF is costly, often requiring
trade-offs such as limiting the number of pixels during rendering, These trade-offs, while improving
efficiency, may compromise the system’s accuracy in both localization and mapping.

GS-based SLAM: 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023b) employs splatting raster-
ization instead of ray marching. This approach iterates over 3D Gaussian primitives rather than
marching along rays, resulting in a more expressive and efficient representation capable of capturing
high-fidelity 3D scenes with significantly faster rendering speed. Hence, GS-based SLAM sys-
tems achieve improved accuracy and speed in dense scene reconstruction. SplaTAM (Keetha et al.,
2023) introduces silhouette-guided rendering to support structured map expansion, enabling efficient
dense visual SLAM. Gaussian Splatting SLAM (Matsuki et al., 2024) integrates novel Gaussian in-
sertion and pruning strategies, while GS-ICP SLAM (Ha et al., 2024) and RTG-SLAM (Peng et al.,
2024) combine ICP with 3DGS to achieve both higher speed and superior map quality. Expanding
upon these advancements, SGS-SLAM (Li et al., 2024), OVO-SLAM (Martins et al., 2024), and
SemGauss-SLAM (Zhu et al., 2025) extend 3D Gaussian representations to include semantic scene
understanding. However, existing GS-based SLAM methods employ per-scene optimization, requir-
ing iterative refinement of Gaussians initialized from keyframes through rendering supervision. As
a result, they all rely on additional segmentation models to predict semantic labels for each image,
creating computational overhead.

Feed-forward Models for GS: Recent research has introduced feed-forward approaches for scene-
level 3DGS reconstruction using generalizable models (Charatan et al., 2024; Chen et al., 2024;
Liu et al., 2025). Unlike previous methods, GS-LRM (Zhang et al., 2024) avoids specialized 3D
structural designs, instead using a transformer to achieve state-of-the-art results. However, to the
best of our knowledge, feed-forward models have been applied on a small number of images and
have not yet been introduced in GS-based semantic SLAM approaches with thousands of frames.

3 METHODS

In this section, we describe our proposed SLAM approach. We first provide a brief overview of
Gaussian Splatting, then detail our Gaussian prediction network and Gaussian refinement network.
Finally, we explain how these networks are utilized within the entire SLAM system.

3.1 GAUSSIAN SPLATTING

We represent a 3D map using a set of anisotropic 3D Gaussians. Each Gaussian Gi is characterized
by RGB color ci ∈ R3, center position µi ∈ R3, scale si ∈ R3, quaternion ri ∈ R4, opacity oi ∈ R
and semantic class vector vclass

i ∈ RN , where N is the number of classes.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Overview of the SLAM System. At each timestep, the system receives an RGB-D frame as
input. The tracking system performs local camera tracking and global localization to determine the current
frame’s pose and correct previous pose errors. Our 3D mapping process comprises three main components: 1)
Gaussian Prediction (Sec 3.2.1): Utilizing the current frame’s RGB-D data, the Gaussian Prediction Model
estimates the parameters and semantic labels for all Gaussians in the current frame; 2) Gaussian Refinement
(Sec 3.2.2): Both newly added Gaussians and those in the existing semantic 3D map are refined using the
Gaussian Refinement Network to ensure that the combined set of Gaussians accurately represents the scene. A
covisibility check ensures that only non-overlapping Gaussians are integrated into the existing 3D map. Post-
refinement, the transparent Gaussians are pruned; 3) Few-Iteration Gaussian Optimization (Sec 3.3.2): If
significant pose corrections happen, few-iteration Gaussian optimization is performed to update the 3D map’s
Gaussians, ensuring consistency with the revised camera poses. (Best viewed in color)

The rendering process is defined as:

Qp =
∑
i∈N

qiαi

i−1∏
j=1

(1− αj),

where Qp is a quantity of a pixel p to be rendered, which can be color, depth or semantic label,
and qi is that quantity of the i-th 3D Gaussian, while αi is its visibility, computed from opacity and
covariance parameters (determined by rotation and scale). Following Keetha et al. (2024), We also
render a silhouette image to determine visibility Sp =

∑
i∈N αi

∏i−1
j=1(1− αj).

3.2 GAUSSIAN PREDICTION AND REFINEMENT

Our proposed Gaussian prediction network (Fig. 3) takes RGB-D images as input and predicts 3D
Gaussian parameters. Importantly, the backbone generates features that can predict semantic labels
(e.g. trained from 2D segmentation tasks), enabling the rendering of photometric, geometric, and
semantic views. Next, the Gaussian refinement network processes Gaussians predicted from a new
frame and learns to merge them with the 3D scene representation computed from prior frames.

3.2.1 BACKBONE FOR GAUSSIAN PREDICTION

We train a transformer model to regress 3D GS parameters from an image with a known camera pose
(from tracking, described in Sec. 3.3.1), while simultaneously assigning semantic labels to these 3D
Gaussians. We start with a pre-trained 2D image segmentation model such as Mask2Former (Cheng
et al., 2022) or AutoFocusFormer (Ziwen et al., 2023), which encodes an image into encoder tokens
f l
enc and decoder tokens f l

dec (from their image decoder) at several progressively downsampled
levels l = 1, . . . , L, with L = 4 usually. We concatenate an RGB image I ∈ RH×W×3 and a depth
image D ∈ RH×W×1 resulting in a 4-channel feature map that is fed into the model:

{f l
enci , f

l
deci}i=1:Ntoken = Backbone([I,D])

where Ntoken denotes the total number of prediction tokens per image. The variable l represents
the network level at which Gaussians are predicted. If the second level is chosen, the feature map
usually has a spatial resolution of H/8×W/8, resulting in Ntoken = HW/64 tokens per image.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Processing Prediction Tokens with Transformer. Given the selected prediction level, we concate-
nate the encoder features fenci and decoder features fdeci for each token i, and process the resulting
tokens using local-attention transformer layers in the image space to obtain the final fi features for
the i-th token, integrating information from both the encoder and decoder.

Decoding Prediction Tokens to Gaussians. Each output token’s features, fi, from the transformer
layers are decoded into Gaussian parameters using Multi-Layer Perceptron (MLP):

{∆xi,∆yi,∆di,∆ci, si, ri, oi} = MLP(fi),

Here, ∆xi and ∆yi represent the offsets from the 2D position (xi, yi) of the token fi in the image
space, while ∆di is the offset for the noisy depth di obtained from the depth image. These offsets
are added to the original values, which are then backprojected into 3D space using the intrinsic and
extrinsic parameters of the camera, yielding the 3D center position µi. Similarly, ∆ci represents the
offset for the RGB values, obtained from the downsampled image, where each token corresponds
to a single pixel. Adding the offset to this value yields the final RGB color for each Gaussian.
Besides Gaussian parameters, the mask decoder head in the segmentation model predicts token-level
semantic segmentation label vector vclass

i for the input image, which we then assign to the associated
Gaussian. Finally, each Gaussian is assigned the final feature vector fi of its corresponding token
for the subsequent Gaussian refinement stage.

To supervise the prediction of semantic segmentation, we follow the setup in Mask2Former (Cheng
et al., 2022). We denote the corresponding segmentation loss by Lseg . In addition, we render images
at M supervision views—comprising the current input view and randomly selected novel views that
overlap with the current input—using the predicted Gaussians from the current input, and minimize
RGB-D and semantic rendering loss. For novel view supervision, we focus solely on areas visible
in the input view, ensuring that the optimization process focuses on regions consistently observed
across both input and novel views. We explain the loss functions used during training below.

RGB Rendering Loss. Following previous work Zhang et al. (2024); Ziwen et al. (2024),
we use a combination of the Mean Squared Error (MSE) loss and Perceptual loss: Lrgb =
1
M

∑M
v=1 (MSE (Igtv , Iprev ) + λ · PER (Igtv , Iprev )) , where λ is the weight for the perceptual loss.

Depth Rendering Loss. For depth images, we use L1 loss: Ld = 1
M

∑M
v=1 L1 (D

gt
v , Dpre

v ) .

Semantic Rendering Loss. For semantic rendering, we use the cross entropy loss: LSem =
1
M

∑M
v=1 Cross Entropy

(
Semgt

v , Sempre
v

)
. where the rendered semantic image has N channels,

each corresponding to a different semantic category.

Overall Training Loss. Our total loss comprises multiple rendering losses and the segmentation
loss Lseg: L = λrgb · Lrgb + λd · Ld + λSem · LSem + Lseg , where we use λrgb = 1.0, λd = 1.0
and λSem = 0.1.

3.2.2 GAUSSIAN REFINEMENT NETWORK

The previous subsection predicts Gaussian parameters from a single frame. In our SLAM system,
as new frames arrive, we insert Gaussians from the frame into unmapped regions of the current 3D
reconstruction. We perform co-visibility, which involves rendering a silhouette image for the new
frame to identify the regions where new Gaussians should be inserted. To ensure that the combined
set of Gaussians accurately represents the scene, we propose a novel Gaussian Refinement Network
to refine both the existing Gaussians in the 3D map and the newly added ones, enabling their effective
merging. The input to the network includes the features fi and 3D positions µi ∈ R3 of all Gaussians
from the 3D map that are visible in the new frame, as well as Gaussians from the new frame. We
process these using several local-attention transformer layers with 3D neighborhoods in the world
coordinate system to fuse and update the features for each Gaussian. Subsequently, MLP layers
predict updates ∆ci ∈ R3, ∆si ∈ R3, ∆ri ∈ R4 and ∆oi ∈ R for each Gaussian. These updates
refine the Gaussians to accurately render both current and previous views. To supervise the network,
we render the current view along with previous overlapping views. The total training loss is:

Lmerge = λrgb · Lrgb + λd · Ld + λSem · LSem (1)

where we use λrgb = 1.0, λd = 1.0 and λSem = 0.1. After Gaussian refinement, we prune
Gaussians whose updated opacity falls below 0.005, effectively removing those that have become

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

unimportant after merging. These merging-pruning steps lead to a significantly reduced number of
Gaussians in the final 3D map with little performance impact.

During testing time, we introduce a threshold U to manage the uncertainty of each Gaussian. Once
a Gaussian has been updated U times by the refinement network, we consider its uncertainty suffi-
ciently reduced and exclude them from further updates. We set U = 8 in our experiments.

3.3 THE SLAM SYSTEM

An overview of the system is summarized in Fig. 3. The system always maintains a set of 3D
Gaussians representing the entire scene. For each new RGB-D image, the Gaussian prediction
network predicts 3D Gaussian parameters, which can be rendered into high-fidelity color, depth,
and semantic images. The Gaussian refinement network refines both the existing Gaussians in the
3D map and the newly added ones to accurately render both current and previous views. During
testing, we occasionally run few-iteration test-time optimization and refine 3D Gaussians in the map
to reflect camera pose updates from loop closure and bundle adjustment in the tracking module.

3.3.1 TRACKING AND GLOBAL BUNDLE ADJUSTMENT

For camera tacking in our SLAM system, we adopt a tracker used in GO-SLAM (Zhang et al.,
2023) which is an enhanced version of DROID-SLAM’s tracking module (Teed & Deng, 2021).
It first predicts motion in every frame. In local camera tracking, a keyframe is initialized when
sufficient motion is detected, and loop closure (LC) is performed. Meanwhile, global localization
performs full bundle adjustment (BA) for real-time global refinement once the system contains more
than 25 keyframes. Both LC and BA help address the problem of accumulated errors and drift that
can occur during the localization process.

3.3.2 FEW-ITERATION GAUSSIAN OPTIMIZATION

Loop closure and bundle adjustment are essential components in SLAM systems, employed to cor-
rect accumulated drift and adjust the camera poses of previous frames. However, these adjustments
can cause Gaussians inserted based on earlier, uncorrected poses to misalign with the scene, leading
to inaccurate rendering and mapping. It is crucial to implement a mechanism that updates the Gaus-
sians in the 3D map following pose corrections. To address this issue, we propose using rendering-
based optimization to update the Gaussian parameters µi ∈ R3, S ∈ R3, Q ∈ R4 and oi ∈ R with
only a few iterations. We render RGB-D images for the top-k frames, selected based on significant
pose changes. This approach maintains the consistency of the 3D map with updated camera poses.
To enhance the efficiency of this optimization, we employ the batch rendering technique from Ye
et al. (2024). We omit semantic image rendering to improve system efficiency. For few-iteration
optimization, we add a SSIM term to the RGB loss, following Kerbl et al. (2023b):

Lopt =
1

M

M∑
i′=1

(
λrgb ·

(
(1−λ)·L1

(
Igti′ , I

pre
i′

)
+λ

(
1−SSIM(Igti′ , I

pre
i′ )

)
+λd ·L1(Dgt

i′ , D
pre
i′ )

)
(2)

where λ is set to 0.2 for all experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Settings. We train our Gaussian prediction and refinement networks entirely on RGB-D
videos from the real ScanNet datasets We exclude the six standard SLAM test scenarios and use all
remaining training and validation scenes, supervising with 20 common semantic classes. We adopt
AutoFocusFormer (Ziwen et al., 2023) as the backbone for both Mask2Former and Gaussian pre-
diction, using the second stage of the backbone as the prediction stage. Additionally, we experiment
with Swin Transformer (Liu et al., 2021) as an alternative backbone. The detailed results are pro-
vided in the appendix. Following the low-to-high resolution curriculum of (Ziwen et al., 2024), we
train the Gaussian prediction network in three stages with input resolutions of 256×256, 480×480,
and 640×480. In the first two stages, images are resized such that the shorter side is 256 or 480
pixels and then center-cropped to a square. For the refinement network, which processes multiple

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

consecutive frames, we adopt a progressive training schedule: beginning with two frames, then four,
and finally eight.

Datasets. During testing, we evaluate our method on six real-world scenes on ScanNet (Dai et al.,
2017a). Additionally, we perform zero-shot experiments on real scenes from NYUv2 (Nathan Sil-
berman & Fergus, 2012) and TUM RGB-D (Sturm et al., 2012a).

Metrics. We use PSNR, Depth-L1 (Zhu et al., 2022a), SSIM (Wang et al., 2004), and LPIPS (Zhang
et al., 2018) to evaluate the reconstruction and rendering quality. We additionally report recon-
struction metrics such as Accuracy, Completion, Completion Ratio (<7cm) and F1 (<7cm) in the
appendix. For GS-based SLAM methods, we also report the number of Gaussians. For semantic
segmentation, we report the mean Intersection over Union (mIoU). To evaluate the accuracy of the
camera pose, we adopt the average absolute trajectory error (ATE RMSE) (Sturm et al., 2012b).

Baselines. We compare our method against several state-of-the-art approaches: NeRF-based
SLAM methods, including NICE-SLAM (Zhu et al., 2022a), GO-SLAM (Zhang et al., 2023), and
Point-SLAM (Sandström et al., 2023); the semantic NeRF-based SLAM method DNS-SLAM (Li
et al., 2023); 3D Gaussian-based SLAM methods such as SplaTAM (Keetha et al., 2024), RTG-
SLAM (Peng et al., 2024), and GS-ICP SLAM (Ha et al., 2024); and semantic 3D Gaussian-based
SLAM methods, including SGS-SLAM (Li et al., 2024) and OVO-Gaussian-SLAM (Martins et al.,
2024). DNS-SLAM, SGS-SLAM and OVO-Gaussian-SLAM are the only semantic SLAM methods
available for comparison since the code is not available for other semantic SLAM approaches. Note
that SGS-SLAM (Li et al., 2024) and DNS-SLAM (Li et al., 2023) employ test-time optimization
using ground truth semantic labels on the test set. SGS-SLAM has been shown to outperform all
other existing semantic SLAM methods (Zhu et al., 2024; Li et al., 2023). To ensure a fair compar-
ison and simulating SLAM applications in real-world scenarios where ground truth semantic labels
are unavailable, we trained a 2D segmentation model using a Swin backbone (Liu et al., 2021) with
Mask2Former (Cheng et al., 2022) on ScanNet, following the same training strategy as our model,
and used predicted semantic labels to supervise SGS-SLAM.

4.2 RESULTS

Rendering and Reconstruction Performance. In Table 1, we evaluate the rendering and recon-
struction performance of our method on ScanNet. This is a difficult task compared to the syn-
thetic data where neural RGB-D SLAM methods usually show strong results, because inevitably
inaccurate ground truth camera poses and depths make optimization much harder than completely
clean synthetic datasets. Compared to existing dense neural RGB-D SLAM methods, our approach
achieves state-of-the-art performance on PSNR, SSIM, and Depth L1 metrics. Specifically, our
method surpasses the runner-up, DNS-SLAM (Li et al., 2023), by 3.8 dB in PSNR (a 18.6% per-
cent improvement). Furthermore, our approach utilizes approximately 10x fewer Gaussians than the
baselines. This efficiency highlights the effectiveness of our method in achieving high-quality scene
representation with reduced computational complexity.

In Table 1, we ran our method with 240×320 input to compare against GO-SLAM which shares the
same tracking method as ours but renders at the same low resolution. GS4 maintains the same PSNR
and depth prediction quality as its high resolution version and significantly outperforms GO-SLAM
across all metrics.

Fig. 4 shows visual results of RGB and depth rendering. Our method demonstrates superior perfor-
mance than other GS-SLAM methods. Notably, sometimes the depth maps of our approach even
turn out to be better than the noisy ground truth depth inputs. For instance, in the first two columns,
our method delivers a more contiguous and complete rendering of the bicycle tires. Similarly, in the
middle two columns, we reconstruct the chair’s backrest nearly entirely, whereas the GT depth data
lacks this detail.

Semantic Performance. In Table 2, we present both 2D rendering and 3D mean Intersection over
Union (mIoU) scores across the six ScanNet test scenes. For 3D mIoU evaluation, we first align the
reconstructed map with the ground-truth mesh and then use 3D neighborhood voting to assign pre-
dicted labels. Our method outperforms the previous runner-up, OVO-Gaussian-SLAM, by 19.52%
in 3D mIoU. In terms of 2D mIoU, our method surpasses the state-of-the-art semantic Nerf-based
SLAM approach, DNS-SLAM, by 17.01%. Qualitative comparisons are included in the appendix.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Rendering Performance on ScanNet. Values are averaged across the test scenes. Best
results are highlighted as first , second . GS Num represents the number of 3D Gaussians included
in the scene after mapping is complete.

Res Method PSNR↑ SSIM↑ LPIPS↓ Depth L1↓ GS Num↓
NICE-SLAM 17.54 0.621 0.548 - -
Point-SLAM 19.82 0.751 0.514 - -
DNS SLAM 20.46 0.932 0.209 6.75 -
SplaTAM 18.99 0.702 0.364 7.21 2466k

640× 480 RTG SLAM 12.75 0.372 0.761 97.56 1229k
GS-ICP SLAM 14.73 0.645 0.684 103.31 2565k
SGS SLAM 15.89 0.594 0.615 11.83 2114k
GS4 (Ours, AFF, 1 iter) 22.61 0.850 0.335 6.55 356k
GS4 (Ours, AFF, 5 iters) 24.26 0.879 0.304 4.98 245k

GO-SLAM 18.21 0.657 0.553 18.14 -
320× 240 GS4 (Ours, AFF, 1 iter) 22.50 0.885 0.238 6.04 172k

GS4 (Ours, AFF, 5 iters) 24.02 0.915 0.201 5.05 130k

G
S-

IC
P

SL
A

M
Sp

la
TA

M
SG

S
SL

A
M

G
S4

(O
ur

s)
G

ro
un

d
Tr

ut
h

scene0000 scene0169 scene0207

Figure 4: Renderings on ScanNet. Our method, GS4, renders color & depth for views with fidelity
significantly better than all approaches.

Tracking Performance. Table 3 shows the tracking results. Our method uses the same tracking
algorithm as GO-SLAM, which is significantly better than other GS-based SLAM methods.

Runtime Comparison. Table 4 presents a runtime comparison of our method against the baselines
at the 640× 480 resolution, conducted on an Nvidia RTX TITAN. FPS is calculated by dividing the
total number of frames by the total time to represent the overall system performance. While GS-ICP
SLAM is faster than ours, its rendering and tracking performance is significantly worse (Table 1 and
3). Our approach is 12x faster than SplaTAM and 17x faster than SGS-SLAM and DNS-SLAM.

Table 2: Semantic Performance across ScanNet Test Scenes

Methods DNS SLAM SGS SLAM OVO-Gaussian-SLAM GS4 (Ours, AFF, 1 iter) GS4 (Ours, AFF, 5 iters)

mIoU(2D) 46.03 37.20 % 63.04 62.36
mIoU(3D) % 18.87 32.58 52.10 51.89

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Tracking Performance on ScanNet Test Scenes. The average values are reported. GS4
uses the same tracking algorithm as GO-SLAM hence the numbers are almost the same.

Metric NICE-SLAM Point-SLAM DNS-SLAM SplaTAM RTG SLAM GS-ICP SLAM SGS SLAM GO-SLAM GS4 (Ours)

ATE RMSE [cm]↓ 10.70 12.19 48.07 11.88 144.52 NaN 40.97 7.00 6.98

Table 4: Average Runtime on ScanNet Test Scenes

Methods Point-SLAM DNS-SLAM SplaTAM RTG-SLAM GS-ICP SLAM SGS-SLAM GS4 (ours, AFF, 1 iter) GS4 (ours, AFF, 5 iters)

FPS ↑ 0.05 0.18 0.23 1.01 3.62 0.17 2.87 1.92

Zero-shot Experiments. In Table 5, we report quantitative zero-shot results. For NYUv2, the num-
bers are averaged over three scenes, and for TUM-RGBD, they are also averaged over three scenes.
Per-scene results are provided in the appendix. On NYUv2, our method outperforms all other GS-
based SLAM approaches across all rendering metrics while using significantly fewer Gaussians.
Qualitative comparisons are also provided in the appendix. On TUM-RGBD, our method outper-
forms the baselines in terms of SSIM and the number of Gaussians, and closely matches the best
performance in other metrics, despite relying primarily on a feed-forward model trained on ScanNet.

Table 5: Zero-shot Rendering Performance on NYUv2 and TUM-RGBD. Values are averaged
across the test scenes. GS Num represents the number of 3D Gaussians in the scene after mapping.

Dataset Res Method PSNR↑ SSIM↑ LPIPS↓ GS Num↓
SplaTAM 18.86 0.692 0.372 1236k

NYUv2 640× 480 RTG-SLAM 11.84 0.221 0.703 807k
SGS-SLAM 19.32 0.708 0.357 1108k
GS4 (Ours, AFF, 5 iters) 22.09 0.853 0.268 278k

SplaTAM 22.76 0.891 0.182 803k
TUM RGBD 640× 480 RTG-SLAM 19.75 0.769 0.395 198k

SGS-SLAM 22.44 0.876 0.184 735k
GS4 (Ours, AFF, 5 iters) 22.70 0.903 0.191 166k

Ablation Study. We conduct an ablation study using all ScanNet test scenes, as shown in Table 6.
The results demonstrate that both the Gaussian Refinement Network and the Few-Iteration Gaussian
Optimization are critical to the performance of GS4. Additionally, Gaussian pruning significantly
reduces the number of Gaussians without sacrificing accuracy. More results on backbone compar-
isons, reconstruction accuracy and qualitative results are shown in the appendix.

Table 6: Ablation on ScanNet (averaged over test scenes)

Design Choice PSNR [dB]↑ SSIM↑ LPIPS↓ Depth L1↓ mIoU↑ Gs Num↓
GS Prediction 14.91 0.460 0.663 33.14 41.0 133k

+ GS Refinement 16.15 0.556 0.584 29.56 44.68 576k
+ Few-Iter. Optimization (1) 22.66 0.852 0.335 6.41 63.7 680k
+ GS Pruning (Full SLAM) 22.61 0.851 0.335 6.56 63.1 355k

5 CONCLUSION

We present GS4, a novel SLAM system that incrementally constructs and updates a 3D semantic
scene representation from a monocular RGB-D video with a learned generalizable network. Our
novel Gaussian refinement network and few-iteration Gaussian optimization significantly improve
the performance of our approach. Our experiments demonstrate state-of-the-art semantic SLAM
performance on the ScanNet benchmark while running 10x faster and using 10x less Gaussians than
baselines. The model also showed strong generalization capabilities through zero-shot transfer to
the NYUv2 and TUM RGB-D datasets. In future work, we will further improve the computational
speed of GS4 and explore options for a pure RGB-based SLAM approach.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel Cremers. Real-time camera
tracking and 3d reconstruction using signed distance functions. In Robotics: Science and Systems,
volume 2, pp. 2, 2013.

Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez, José MM Montiel, and Juan D Tardós.
Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE
Transactions on Robotics, 37(6):1874–1890, 2021.

Daniel R Canelhas, Todor Stoyanov, and Achim J Lilienthal. Sdf tracker: A parallel algorithm for
on-line pose estimation and scene reconstruction from depth images. In 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 3671–3676. IEEE, 2013.

David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian
splats from image pairs for scalable generalizable 3d reconstruction. In CVPR, 2024.

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
images. arXiv preprint arXiv:2403.14627, 2024.

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In CVPR, 2022.

Jan Czarnowski, Tristan Laidlow, Ronald Clark, and Andrew J Davison. Deepfactors: Real-time
probabilistic dense monocular slam. IEEE Robotics and Automation Letters, 5(2):721–728, 2020.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017a.

Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian Theobalt. Bundle-
fusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration.
ACM Transactions on Graphics (ToG), 36(4):1, 2017b.

Seongbo Ha, Jiung Yeon, and Hyeonwoo Yu. Rgbd gs-icp slam, 2024. URL https://arxiv.
org/abs/2403.12550.

Mohammad Mahdi Johari, Camilla Carta, and François Fleuret. Eslam: Efficient dense slam sys-
tem based on hybrid representation of signed distance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 17408–17419, 2023.

Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track & map 3d gaussians for dense rgb-d
slam. arXiv preprint arXiv:2312.02126, 2023.

Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
Deva Ramanan, and Jonathon Luiten. Splatam: Splat, track & map 3d gaussians for dense rgb-d
slam. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023a.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023b.
URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

Christian Kerl, Jürgen Sturm, and Daniel Cremers. Dense visual slam for rgb-d cameras. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2100–2106. IEEE,
2013.

Kunyi Li, Michael Niemeyer, Nassir Navab, and Federico Tombari. Dns slam: Dense neural
semantic-informed slam, 2023. URL https://arxiv.org/abs/2312.00204.

10

https://arxiv.org/abs/2403.12550
https://arxiv.org/abs/2403.12550
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2312.00204


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mingrui Li, Shuhong Liu, Heng Zhou, Guohao Zhu, Na Cheng, Tianchen Deng, and Hongyu Wang.
Sgs-slam: Semantic gaussian splatting for neural dense slam. arXiv preprint arXiv:2402.03246,
2024.

Tianqi Liu, Guangcong Wang, Shoukang Hu, Liao Shen, Xinyi Ye, Yuhang Zang, Zhiguo Cao,
Wei Li, and Ziwei Liu. Mvsgaussian: Fast generalizable gaussian splatting reconstruction from
multi-view stereo. In European Conference on Computer Vision, pp. 37–53. Springer, 2025.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Tomas Berriel Martins, Martin R Oswald, and Javier Civera. Open-vocabulary online semantic
mapping for slam. arXiv preprint arXiv:2411.15043, 2024.

Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and Andrew J. Davison. Gaussian Splatting SLAM.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262, 2017.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accu-
rate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J
Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In 2011 10th IEEE international symposium on
mixed and augmented reality, pp. 127–136. Ieee, 2011.

Zhexi Peng, Tianjia Shao, Liu Yong, Jingke Zhou, Yin Yang, Jingdong Wang, and Kun Zhou. Rtg-
slam: Real-time 3d reconstruction at scale using gaussian splatting. In ACM SIGGRAPH Confer-
ence Proceedings, Denver, CO, United States, July 28 - August 1, 2024, 2024.

Victor Adrian Prisacariu, Olaf Kähler, Stuart Golodetz, Michael Sapienza, Tommaso Cavallari,
Philip HS Torr, and David W Murray. Infinitam v3: A framework for large-scale 3d reconstruction
with loop closure. arXiv preprint arXiv:1708.00783, 2017.

Erik Sandström, Yue Li, Luc Van Gool, and Martin R. Oswald. Point-slam: Dense neural point
cloud-based slam. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of
rgb-d slam systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS),
Oct. 2012a.

Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A bench-
mark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 573–580, 2012b. doi: 10.1109/IROS.2012.6385773.

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. imap: Implicit mapping and po-
sitioning in real-time. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6229–6238, 2021.

Zachary Teed and Jia Deng. DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-
D Cameras. Advances in neural information processing systems, 2021.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.
doi: 10.1109/TIP.2003.819861.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard, and John McDonald. Robust
real-time visual odometry for dense rgb-d mapping. In 2013 IEEE International Conference on
Robotics and Automation, pp. 5724–5731. IEEE, 2013.

Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari,
Jianbo Ye, Jeffrey Hu, Matthew Tancik, and Angjoo Kanazawa. gsplat: An open-source library
for Gaussian splatting. arXiv preprint arXiv:2409.06765, 2024. URL https://arxiv.org/
abs/2409.06765.

Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu.
Gs-lrm: Large reconstruction model for 3d gaussian splatting. European Conference on Computer
Vision, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Youmin Zhang, Fabio Tosi, Stefano Mattoccia, and Matteo Poggi. Go-slam: Global optimization for
consistent 3d instant reconstruction. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2023.

Siting Zhu, Guangming Wang, Hermann Blum, Jiuming Liu, Liang Song, Marc Pollefeys, and
Hesheng Wang. Sni-slam: Semantic neural implicit slam. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21167–21177, 2024.

Siting Zhu, Renjie Qin, Guangming Wang, Jiuming Liu, and Hesheng Wang. Semgauss-slam: Dense
semantic gaussian splatting slam, 2025. URL https://arxiv.org/abs/2403.07494.

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui, Martin R. Os-
wald, and Marc Pollefeys. Nice-slam: Neural implicit scalable encoding for slam. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022a.

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui, Martin R Os-
wald, and Marc Pollefeys. Nice-slam: Neural implicit scalable encoding for slam. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796,
2022b.

Chen Ziwen, Kaushik Patnaik, Shuangfei Zhai, Alvin Wan, Zhile Ren, Alex Schwing, Alex Colburn,
and Li Fuxin. Autofocusformer: Image segmentation off the grid. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yicong Hong, Li Fuxin, and Zexiang Xu.
Long-lrm: Long-sequence large reconstruction model for wide-coverage gaussian splats. arXiv
preprint 2410.12781, 2024.

12

https://arxiv.org/abs/2409.06765
https://arxiv.org/abs/2409.06765
https://arxiv.org/abs/2403.07494


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A MORE EXPERIMENTAL SETUP

For ScanNet, we evaluate on six scenes (scene0000, scene0059, scene0106, scene0169, scene0181,
and scene0207), which are commonly used by other SLAM methods.

B ALTERNATIVE BACKBONE

In Table 7, we present the average rendering metrics across all ScanNet test scenes using different
backbones for the prediction model. It can be seen that our method works effectively with different
backbones.

Table 7: Comparison between Swin and AFF backbones on different metrics.

Backbone PSNR SSIM LPIPS Depth L1 mIoU GS Num

GS4 (Swin, 1 iter) 22.50 0.846 0.356 6.338 64.4 361k
GS4 (AFF, 1 iter) 22.61 0.851 0.335 6.558 63.0 355k

C RECONSTRUCTION RESULTS ON SCANNET

In Table 8, we present the reconstruction metrics on the ScanNet dataset. GS4 outperforms all
baselines in terms of completion and F-score.

Methods Acc. ↓ Comp. ↓ Comp. Ratio (<7cm) ↑ F-Score (<7cm) ↑ GS Num↓
SplaTAM 8.10 5.58 76.34 75.95 2466k

RTG-SLAM 99.80 47.44 24.61 16.69 1229k
SGS-SLAM 17.11 13.75 55.01 55.26 2114k

GS4 8.56 3.88 87.34 79.90 295k

Table 8: Reconstruction metrics on ScanNet

D QUALITATIVE COMPARISON FOR SEMANTIC SEGMENTATION.

As illustrated in Fig. 5, our approach achieves superior semantic segmentation accuracy compared to
the SGS-SLAM baseline. For example, in the first column of Fig.5, our semantic rendering provides
a more accurate representation of the desks, chairs, and night tables than SGS-SLAM.

E ZERO-SHOT RESULTS ON NYUV2

Fig. 6 illustrates our zero-shot visualization results on the NYUv2 dataset. Despite our models being
exclusively trained on the ScanNet dataset, our method demonstrates superior performance on the
NYUv2 dataset compared to other GS-based SLAM approaches. In Table 9, we present the quantita-
tive zero-shot results across three scenes from the NYUv2 dataset. Our method outperforms all other
GS-based SLAM approaches on all rendering metrics, while using significantly fewer Gaussians.

F ZERO-SHOT RESULTS ON TUM RGB-D

In Table 10, we present the quantitative zero-shot results across three scenes from the TUM RGB-D
dataset. TUM RGB-D provides ground truth camera trajectories, so we also report tracking per-

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SG
S

SL
A

M
G

S4
(O

ur
s)

G
T

(l
ab

el
s)

G
T

(R
G

B
)

scene0000 scene0169 scene0207

Figure 5: Semantic Renderings on ScanNet. Qualitative comparison on semantic synthesis of our
method and baseline semantic SLAM method SGS-SLAM. Black areas in GT labels denote regions
that are unannotated.

formance. Our method achieves rendering performance comparable to that of all other GS-based
SLAM approaches, while using significantly fewer Gaussians.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Sp
la

TA
M

SG
S

SL
A

M
G

S4
(O

ur
s)

G
T

sudent lounge dining room bedroom

Figure 6: Zero-shot Visualization on NYUv2. Qualitative comparison of our method and other
GS-based SLAM methods.

Table 9: Rendering and Runtime performance on NYUv2 test scenes with 640 × 480 input. GS
Num represents the number of 3D Gaussians included in the scene after mapping is complete. FPS
is conducted on an Nvidia RTX TITAN.

Methods Metrics bedroom student lounge dining room Avg

PSNR↑ 17.99 20.77 17.82 18.86
SSIM↑ 0.692 0.795 0.589 0.692

SplaTAM LPIPS↓ 0.343 0.309 0.465 0.372
GS Num↓ 1529k 1116k 1063k 1236k

PSNR↑ 10.81 12.94 11.76 11.84
SSIM↑ 0.146 0.299 0.217 0.221

RTG-SLAM LPIPS↓ 0.738 0.662 0.709 0.703
GS Num↓ 906k 591k 925k 807k

PSNR↑ 19.66 20.41 17.90 19.32
SSIM↑ 0.754 0.780 0.590 0.708

SGS-SLAM LPIPS↓ 0.289 0.318 0.463 0.357
GS Num↓ 1201k 1074k 1049k 1108k

PSNR↑ 20.86 20.59 22.82 22.09
SSIM↑ 0.870 0.862 0.829 0.854

GS4 (Ours) LPIPS↓ 0.230 0.251 0.322 0.268
GS Num↓ 257k 206k 371k 278k

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 10: Rendering, Tracking, and Runtime performance on TUM RGB-D test scenes with 640×
480 input. GS Num represents the number of 3D Gaussians included in the scene after mapping is
complete. FPS is conducted on an Nvidia RTX TITAN.

Methods Metrics fr1 desk fr2 xyz fr3 office Avg

PSNR↑ 22.07 24.66 21.54 22.76
SSIM↑ 0.857 0.947 0.870 0.891

SplaTAM LPIPS↓ 0.238 0.099 0.210 0.182
ATE RMSE↓ 3.33 1.55 5.28 3.39
GS Num↓ 969k 635k 806k 803k

PSNR↑ 18.49 20.18 20.59 19.75
SSIM↑ 0.715 0.795 0.797 0.769

RTG-SLAM LPIPS↓ 0.438 0.353 0.394 0.395
ATE RMSE↓ 1.66 0.38 1.13 1.06
GS Num↓ 236k 84k 273k 198k

PSNR↑ 22.10 25.61 19.62 22.44
SSIM↑ 0.886 0.946 0.796 0.876

SGS-SLAM LPIPS↓ 0.176 0.097 0.280 0.184
ATE RMSE↓ 3.57 1.29 9.08 4.65
GS Num↓ 808k 695k 701k 735k

PSNR↑ 21.71 23.86 22.54 22.70
SSIM↑ 0.877 0.904 0.890 0.903

GS4 (Ours) LPIPS↓ 0.242 0.154 0.226 0.191
ATE RMSE↓ 1.86 0.63 1.95 1.48
GS Num↓ 175k 87k 190k 166k

16


	Introduction
	Related Work
	Methods
	Gaussian Splatting
	Gaussian Prediction and Refinement
	Backbone for Gaussian Prediction
	Gaussian Refinement Network

	The SLAM System
	Tracking and Global Bundle Adjustment
	Few-Iteration Gaussian Optimization


	Experiments
	Experimental Setup
	Results

	Conclusion
	More Experimental Setup
	Alternative backbone
	Reconstruction Results on ScanNet
	Qualitative Comparison for Semantic Segmentation.
	Zero-Shot Results on NYUv2
	Zero-Shot Results on TUM RGB-D

