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Figure 1. We present DevilSight, which reconstruct 3DGS human avatar with fine-grained dynamic details from monocular video. Our
approach utilizes a video generative model to “see in the darkness”, generating a human video from alternative perspective. This enables
us to capture high-frequency details from the input view while mitigating potential artifacts in unseen regions.

Abstract

We present a novel framework to reconstruct human
avatars from monocular videos. Recent approaches have
struggled either to capture the fine-grained dynamic de-
tails from the input or to generate plausible details at novel
viewpoints, which mainly stem from the limited represen-
tational capacity of the avatar model and insufficient ob-
servational data. To overcome these challenges, we pro-
pose to leverage the advanced video generative model, Hu-
man4DiT, to generate the human motions from alternative
perspective as an additional supervision signal. This ap-
proach not only enriches the details in previously unseen
regions but also effectively regularizes the avatar repre-
sentation to mitigate artifacts. Furthermore, we introduce
two complementary strategies to enhance video generation:
To ensure consistent reproduction of human motion, we in-
ject the physical identity into the model through video fine-
tuning. For higher-resolution outputs with finer details, a
patch-based denoising algorithm is employed. Experimen-
tal results demonstrate that our method outperforms recent
state-of-the-art approaches and validate the effectiveness of
our proposed strategies.

1. Introduction

Reconstructing high-fidelity and dynamically detailed hu-
man avatars holds significant value across a wide range of
applications, including gaming, VR/AR technologies, and
the movie industry. However, despite notable advancements
in human avatar reconstruction methods [6, 32, 33, 36, 49,
65, 90, 91] utilizing multi-view inputs, it still remains a
challenge to create an avatar with high-realistic texture de-
tails and dynamic fidelity from monocular video.

Previous approaches represent the human avatar with re-
spect to deformable human templates [40, 46], in terms
of structured latent codes [50] or implicit 3D representa-
tions [10, 14, 16, 17, 25, 75]. By constructing avatars
in a canonical pose, these approaches align multi-frame
observations into a unified 3D space and leverage pose-
conditioned neural networks to interpolate dynamic details
through spatial smoothness priors. While this framework
ensures multi-view consistency, it struggles to recover high-
frequency details due to limited cross-view correlation in
the input frames and the required fusion operation. Further-
more, the strong reliance on the naked body template limits
its applicability in scenarios involving loose clothing.

Recently, generative models [7, 57, 76] show the poten-



tial to “imagine” previously unseen content from text or im-
ages. Moreover, some works [37, 39, 63] achieve the gener-
ation and reconstruction of 3D objects by adding camera
control. Based on these generative models, many meth-
ods [2, 13, 22, 23, 28, 41] leverage generative priors to
enhance 3D reconstruction by score distillation sampling
(SDS) [52] or explicitly generating multi-view images as
pseudo ground truths. While these methods have achieved
high-quality 3D static scene reconstruction from sparse-
view inputs, reconstructing dynamic sequences remains a
significant challenge. This difficulty primarily arises from
generating video while maintaining the identity consistency
across time and viewpoints. In this paper, we propose
leveraging Human4DiT [59] to generate an identical mo-
tion sequence from an alternative perspective, thereby pro-
viding supplementary supervision signals for reconstruc-
tion. Recent advancements have demonstrated the impres-
sive capability of diffusion transformers (DiT) [47] to in-
corporate control signals from various dimensions. Specif-
ically designed to produce spatio-temporally coherent hu-
man videos, Human4DiT supplies the view and temporal
consistency priors essential to our approach. In practice, we
choose to generate only one video from the back view, for
its efficiency and effectiveness to address the majority of
unseen regions.

Nevertheless, directly generating the back-view video
using Human4DiT presents challenges in accurately repro-
ducing human motions that are physically consistent with
the input video. This limitation arises because the genera-
tion is conditioned on an identity embedding extracted from
a single reference image, which is insufficient to encapsu-
late the dynamic characteristics inherent to human identity.
Consequently, generative models pretrained exclusively on
such embeddings also struggle to accurately reproduce the
motion. Drawing inspiration from DreamBooth [58], we
propose Physical Identity Inversion through model finetun-
ing, enabling video generation that aligns with the physical
motion present in the input video. To prevent overfitting and
maintain view consistency priors, we have meticulously de-
signed our fine-tuning strategy and carefully selected the
parameters involved. Moreover, in order to bridge the res-
olution gap between captured and generated videos and to
mitigate potential artifacts arising from this difference [83],
we have developed an innovative algorithm that effectively
doubles the resolution of generated videos. Given that DiT-
based models are constrained to denoising at fixed resolu-
tion, the algorithm involves generating videos by partition-
ing them into patches. Benefiting from these technical de-
signs, our method achieves superior reconstruction quality
compared to previous state-of-the-art methods.

As shown in the experiments, our method achieves high-
fidelity human reconstruction with dynamic details and
supports dynamically consistent image synthesis at novel

views. In summary, our contributions are:
• We propose a novel framework for high-fidelity dynamic

human-centric reconstruction from monocular video,
which leverage the capability of video generative model
to complement the unseen perspective.

• We introduce Physical Identity Inversion through model
fine-tuning, effectively embedding personalized visual
and physical identity into the model, thereby enabling
accurate generation of identical human motions from the
rear-view perspective.

• We present a patch-based denoising strategy for super-
resolution video generation, effectively bridging the res-
olution gap between input and generated videos. This ap-
proach enables the subsequent reconstructed avatar model
to render images with consistent granularity across vary-
ing viewpoints.

2. Related Work

2.1. Neural Rendering for Human Reconstruction

Neural rendering, as it effectively bridging the 3D assets
with 2D images, has emerged as a powerful technique for
reconstructing human figures directly from images. Many
approaches served this problem as reconstructing the hu-
man avatar by leveraging shape priors [36, 49, 50, 65, 75]
from parametric human body templates [40, 46] or learning
the skinning fields according to the skeletons [8, 31, 61, 62].
The human dynamics is then decomposed into rigid motions
driven by skeletons and non-rigid deformations predicted
by a pose-conditioned neural network. On the other hand,
this strategy unifies appearance information from different
frames into a common 3D space, facilitating avatar creation
and synthesis under novel views and novel poses. How-
ever, the quality of the reconstructed avatar is constrained
by the ability to translate low-frequency pose parameters
into high-frequency dynamic details. PoseVocab [32] de-
composed the pose latent vector into per-joint embeddings
for richer pose encoding. SLRF [90, 91] divide the entire
radiance field into smaller local radiance fields, enabling
better representativeness for local body part. Animatable
Gaussians [33] and MeshAvatar [6] represented the pose
parameters as the corresponding SMPL position map and
employed the powerful 2D networks to encode it, achieving
the SOTA in reconstructing the details.

Due to the high costs associated with studio-based multi-
view data capture, several studies [21, 48, 61, 82] have ex-
plored reconstructing humans from monocular images or
videos. Single-view scenarios are particularly challeng-
ing because inevitable errors in estimated poses can de-
grade 3D correspondences across frames. To address this
issue, some research has focused on error correction net-
works [25, 75], while others have utilized trainable pose
parameters [10, 24]. Recently, 3DGS is incorporated to fur-



ther improve the training and inference efficiency [14, 16,
17, 27, 30, 42, 45, 51, 53, 60, 74, 93]. Nevertheless, in or-
der to stabilize the rendering quality in novel view, which
is invisible from input, these methods usually constrained
the complexity of the pose-conditioned networks. This lim-
itation may hinder the accurate reconstruction of dynamic
details observed in the input images. In contrast, our ap-
proach regularize the avatar representation using the priors
from generative models, facilitating both reconstruction and
novel view synthesis.

2.2. Generative Prior for Human Avatars

With the development of generative models [4, 7, 11, 57, 68,
76], more and more methods [2, 13, 22, 23, 28, 29, 41, 73]
seek to inject human priors from large models into human
avatar reconstruction. They mainly leverage the power of
generative models to iteratively optimize 3D representa-
tions. For example, some methods employ score distilla-
tion sampling (SDS) loss [52] to optimize 3D representa-
tions conditioned on text prompt [18, 20, 22, 28, 29, 35,
41, 69, 78], skeletons [19, 38, 64, 84], and densepose [86],
normal maps. However, textual descriptions and 2D pose
maps inherently lack precision in representing fine-grained
geometric and texture details. Moreover, SDS primarily
optimizes 3D parameters by enforcing distributional con-
straints, which can lead to issues such as oversaturation and
excessive smoothing. Although some methods [3] alleviate
the above problems by using variational score distillation
(VSD) loss [72], the computational cost is higher.

Due to the inherent limitations of SDS loss, subsequent
works [1, 2, 5, 13, 23] avoid using it and instead explic-
itly leverage generative models [57, 63, 88]. These ap-
proaches typically generate multi-view images or videos
using a pretrained large model, followed by direct 3D re-
construction and optimization. Human-related priors are
learned from 2D structures and conditions (e.g., rendered
skeletons or surface normals). Similarly, HumanSplat [43]
generates multi-view features within latent space and recon-
structs the human body through feature aggregation. Recent
approaches [34, 44, 77, 80, 87] extends these strategies to
video-to-4D generation. However, the absence of explicit
3D structural modeling exacerbates inherent temporal and
view inconsistencies in 2D generative models, often lead-
ing to flat or blurry results. L4GM [56] and GVFDiffu-
sion [85] directly synthesize 4D content conditioned on the
given video frames. Despite this, they primarily handle sim-
ple skinning-like motions and fail to capture complex dy-
namic details. Preserving the human identity while recov-
ering fine-grained motions remains a significant challenge.

Our task formulation is similar to WonderHuman [73],
as both leverage generative priors to reconstruct dynamic
3D human avatar from a monocular video. WonderHuman
optimize 3D human with SDS loss in both canonical and

observation spaces to ensure visual consistency. However,
due to the oversaturation and excessive smoothing caused
by SDS, the generated invisible regions lack fine details and
exhibit noticeable inconsistencies.

2.3. Identity Adaptation

Maintaining identity consistency is crucial in digital hu-
mans, particularly when handling complex textures and dy-
namic movements. Most methods [15, 66, 79, 92] use a
single reference image as input and design a reference net-
work to embed the image into the backbone model. How-
ever, this approach demands a substantial amount of data for
training and is computationally expensive. In addition, IP-
Adapter [81] designs an effective and lightweight adapter
to enable image prompt for pre-trained text-to-image diffu-
sion models. Specifically, IP-Adapter modifies the cross-
attention mechanism by separating cross-attention layers
for text and image features. By freezing most parameters,
image prompt can be learned by training only the image
cross-attention layers. DreamBooth [58] can fine-tune the
generative model using a few reference images, ensuring
identity consistency. In details, DreamBooth fine-tunes a
pretrained diffusion model to link a unique identifier to a
specific subject, allowing it to be seamlessly embedded into
different scenes. VideoComposer [67] directly concatenates
the reference image with noise to achieve identity injection.

3. Method
3.1. Overview

Given a monocular sequence of human motions with the
corresponding human poses, which could be estimated us-
ing existing tools [9, 70], our task is to reconstruct a
high-fidelity 3DGS avatar of this subject. High-frequency
dynamic details often necessitate a trade-off between ac-
curate input-view reconstruction and generalizable novel
view synthesis. To address this, we propose leveraging
advanced video generative models to generate additional
videos from alternate perspectives as pseudo-supervision.
This approach could effectively regularize the 3D repre-
sentation from overfitting. However, generating a video
that replicates human motions from an alternative view-
point presents significant challenges. It requires preserv-
ing the individual’s identity both visually and physically,
ensuring that distinctive features and movement character-
istics remain consistent across perspectives. Additionally,
video generative models often face computational memory
constraints that limit their output to low-resolution videos,
typically below 1080p. It is crucial to bridge resolution gap
between generated video and input video, to maintain visual
fidelity and meet quality expectations. We propose physi-
cal identity inversion (Sec. 3.3) through model finetuning
and super-resolution generation (Sec. 3.4) to tackle these



Figure 2. Overview of our method. Our method leverages priors from Human4DiT to enable robust monocular avatar reconstruction. It
comprises three key components: (a) fine-tuning the model for personalized content generation, (b) generating consistent rear-view motion
with superresolution, and (c) reconstructing 3DGS avatars using pseudo multi-view data.

challenges, respectively. An overview of our method is pre-
sented in Fig. 2.

3.2. Preliminaries

Expressive 3DGS Avatar Representation. 3D Gaussian
Splatting [26] is a 3D point-based representation for effi-
cient and realistic rendering. It’s represented by a set of 3D
Gaussians, each of which is parameterized by its 3D center
position µ, a covariance matrix Σ, opacity α and color c,
and distributed as:

f(x|µ,Σ) ∝ exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (1)

e-() where the covariance matrix is further parameterized by
a rotation quaternion q and a 3D scaling vector s practically.

The rendering is conducted by splatting these 3D Gaus-
sians onto the 2D plane, where the color of each pixel
is computed by composition of the Gaussians overlap-
ping on it. Following recent advancements on human
avatars [16, 33], we represent the avatar as 2D Gaussian
map, and utilize UNet U to produce the Gaussian maps un-
der different poses. Specifically, the Gaussian points are an-
chored onto the SMPL template by orthogonally projecting
the canonical mesh to the front plane and back plane. Each
active pixel corresponds to a 3D Gaussian point. Given any
human pose Θ = {θi}Ji=1, these points could be deformed
using the transformation matrix from LBS, and other Gaus-
sian attributes are acquired by feeding the front-back pro-
jected posed position map [6, 33] Pf ,Pb to UNet:

Gf (Θ),Gb(Θ)← U(Pf (Θ),Pb(Θ)), (2)

where G = (∆µ,q, s, α, c) consists of a pose-dependent
point offset ∆µ to model non-rigid deformations.

Human4DiT. Human4DiT [59] is a DiT-based [47]
approach for generating high-quality, 360-degree human
videos with spatio-temporal coherence from a single im-
age. By leveraging a hierarchical structure and the strength
of DiT in capturing global features, it enables the synthe-
sis of videos with strong 3D consistency. Specifically, Hu-
man4DiT proposes a hierarchical 4D transformer architec-
ture that factorizes self-attention across views, time steps,
and spatial dimensions. To enable precise control, dedicated
modules are designed to embed camera parameters, tem-
poral information, human motion, and identity. Addition-
ally, Human4DiT collects large-scale multi-dimensional
datasets, including 2D videos, multi-view videos, 3D data,
and 4D data. By employing a multi-dimensional training
strategy, the model effectively leverages these diverse data
to enhance the generalization ability.

Human4DiT iteratively denoises a gaussian noise ϵ to
obtain a clean latent representation z, which is then passed
through a decoder to generate the final output. During train-
ing, the model is trained to predict the applied noise from
the noisy latent zt:

Ldiffusion = Ezt,cref ,cΘ,ϵ,t

(
∥ϵ− ϵθ (zt, cref , cΘ, t)∥22

)
(3)

where ϵθ represents the denoising transformer, t represents
the timesteps, and cref and cΘ represent the conditions of
identity reference and human poses, respectively.

3.3. Physical Identity Inversion by Finetuning

In Human4DiT, the human identity is injected to the net-
work through a CLIP [54] embedding cref extracted from
a reference image. This approach has several limitations.



Figure 3. Freeview Rendering of our reconstructed subjects from THuman4.0 and Mono2K. By leveraging the priors from Hu-
man4DiT, we not only accurately reconstruct dynamic details from the monocular input but also supports novel view synthesis with
equivalent quality. Zoom in to see more details.

On the one hand, the embedding conflates visual patterns
from both the human subject and the background, leading
to insufficient emphasis on the human identity. On the other
hand, since the embedding is based on a single image, it
provides an incomplete representation of the human iden-
tity, inadequately capturing the complex physical properties
necessary for high-quality generation.

To overcome these limitations, we inject the human iden-
tity by fine-tuning the model using input video data. Specif-
ically, we define a unique, learnable embedding, cid, initial-

ized from the CLIP embedding corresponding to the human
subject, which enables a richer representation of identity be-
yond the constraints of a single-image reference. The fine-
tuning is performed using the reconstruction loss analogous
to Equation 3. Additionally, to preserve capability to gen-
erate multi-view consistent video, we alternate tuning the
model between the input video and the multi-view dataset
from Human4DiT. Notably, only the attention layers condi-
tioned on identity are fine-tuned.



Table 1. Quantitative comparisons on input view reconstruction and novel view synthesis with HumanNeRF [75], GaussianAvatar [16]
and AnimatableGaussians (AG for short) [33]. The best and the second best are highlighted in bold and underlined fonts, respectively.

Dataset Method Input View Novel View 1 Novel View 2

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

TH
um

an
4.

0 HumanNeRF 30.69 0.9515 0.0841 25.84 0.9438 0.1051 24.97 0.9372 0.1163
GaussianAvatar 31.13 0.9709 0.0820 22.25 0.9533 0.1271 22.02 0.9500 0.1346

AG 34.06 0.9798 0.0554 26.55 0.9588 0.1071 25.65 0.9542 0.1193
Ours 32.97 0.9769 0.0558 26.79 0.9605 0.0995 25.98 0.9560 0.1111

M
on

o2
K HumanNeRF 27.91 0.9315 0.0822 26.02 0.9305 0.0873 25.45 0.9263 0.0941

GaussianAvatar 29.13 0.9729 0.0734 21.26 0.9549 0.1071 20.83 0.9542 0.1121
AG 33.15 0.9807 0.0533 26.29 0.9654 0.0819 25.60 0.9591 0.0972

Ours 32.19 0.9768 0.0614 26.26 0.9670 0.0788 25.73 0.9633 0.0898

3.4. Back-view Generation with Super Resolution

In order to fully capture previously unseen details, we opted
to generate the video from a rear perspective. In particular,
based on the SMPL parameters of the first frame, we de-
rived the new camera extrinsic matrix by rotating the origi-
nal camera 180 degree around the axis passing through the
root position and directed along the global orientation.

Figure 4. Illustration of Super-resolution Generation. At
each diffusion timestep, we partition the image into 9 overlapping
patches. The noises are then predicted independently by patch and
accumulated by weighted sum.

Human4DiT generates images at a standard resolution of
768× 768, which is considerably lower than the typical 2K
resolution or higher found in most images. This discrep-
ancy creates a pronounced resolution gap when transition-
ing from the front view to the back view. To address this, we
instead generate images at twice the original resolution in
both width and height. Enlarging the canvas won’t affect the
decoding because of the shift invariance from VAE decoder.
Consequently, we propose an algorithm that produces larger
latent representations using a smaller, fixed-size diffusion
denoising approach. Specifically, we employ a similar slid-
ing window strategy to maintain spatial consistency in the
generated images, as how other methods preserve temporal
consistency in video generation. As illustrated in Fig. 4, at
each denoising timestep the latent image is partitioned into
nine overlapping patches; noise is predicted independently
for each patch and then merged via a weighted sum. Corre-

spondingly, during model fine-tuning (Sec. 3.3), we incor-
porate randomly cropped videos into the training dataset to
enhance patch-based generation.

After generating the back-view video, we directly treat it
as a real captured video for pseudo supervision.

4. Experiments
Dataset. We evaluated our method using the THuman4.0
dataset [90], a multi-view dataset with a resolution of
1330 × 1150, featuring characters with rich textures and
dynamic details. To assess our method on higher-resolution
images, we collected an additional dataset, named Mono2K,
comprising images at the resolution of 1500 × 2048. For
evaluation, we selected all three sequences (subject00,
subject01 and subject02) from THuman4.0 and two typ-
ical sequences (Mono2K-male and Mono2K-female) from
Mono2K. Each sequence includes manually selected video
clips featuring turning motions to ensure full-body visibil-
ity. For fair comparison in novel view synthesis, we utilized
ground truth SMPL-X poses fitted from multiple views as
input. For methods requiring SMPL poses, we converted
them manually using the official tool [46]. Foreground
masks were obtained using Segment Anything 2 [55].

Baselines. We compared our method with several state-
of-the-art approaches, including HumanNeRF [75], Gaus-
sianAvatar [16], and Animatable Gaussians [33]. Both
GaussianAvatar and Animatable Gaussians are 3DGS-
based methods for constructing human avatars, aiming to
reconstruct dynamic details through 2D UNet architec-
tures. GaussianAvatar is designed for monocular inputs,
while Animatable Gaussians is tailored for multi-view in-
puts. Due to the training efficiency of NeRF-based meth-
ods, when evaluating HumanNeRF on the Mono2K dataset,
we resized the images to 750× 1024.

The comparison is also conducted with state-of-the-
art video-to-4D approaches, L4GM [56] and GVFDiffu-
sion [85], both of which are designed for general objects.



Figure 5. Qualitative Comparisons on input view reconstruction and novel view synthesis. Our approach achieves high-fidelity recon-
struction by leveraging priors from Human4DiT. Zoom in to see more details.

L4GM leverages the generated multi-view videos, whereas
GVFDiffusion adopts a holistic encode–decode paradigm to
directly generate 4D content. All methods are reproduced
using their publicly available codebases.

Metrics. We conducted our evaluation using established
image quality metrics: Peak Signal-to-Noise Ratio (PSNR),
Structure Similarity Index Measure (SSIM) [71] and
Learned Perceptual Image Patch Similarity (LPIPS) [89].
PSNR and SSIM are calculated over the entire image, with
backgrounds set to white, while LPIPS is computed within
the minimal square bounding box compassing the body.

4.1. Main Results

Fig. 3 showcases our reconstruction results by rendering the
reconstructed subject from different angles of viewpoints.
Our approach demonstrates the capability not only in re-
covering the fine-grained details from the input view, but
also produce plausible rendering quality at novel views.
These results prove the robustness and adaptability of our
approach in complementing missing details and regulariz-
ing dynamic human representations.

4.2. Comparisons

We assess the effectiveness of our approach through eval-
uations on both input view reconstruction and novel view
synthesis. The quantitative results are presented in Tab.

1. As illustrated in Fig. 5, by leveraging priors from a
video generative model, our method significantly outper-
forms other state-of-the-art approaches. Due to its NeRF-
based representation, HumanNeRF cannot accurately re-
cover the fine details from the input, primarily producing
dynamics through skinning. In contrast, both GaussianA-
vatar and Animatable Gaussians demonstrate the superior
representational capabilities of 3DGS for precise recon-
struction. However, they exhibit artifacts in unseen regions,
likely due to the lack of effective regularization for 3DGS,
even though GaussianAvatar was specifically designed for
monocular input. Complementing the back view not only
supplies additional reconstruction details but also regular-
izes the avatar representation, mitigating potential artifacts
and enabling our method to achieve high-fidelity and high-
quality reconstruction.

Moreover, as illustrated in the last example in Fig. 5,
both HumanNeRF and GaussianAvatar are unable to ac-
curately capture certain dynamic phenomena, such as the
fluttering clothes, because their representations are tightly
constrained to the human template. Our approach lever-
ages video generation that rigorously preserves the subject’s
physical identity while ensuring view consistency with the
input, enabling the reconstruction of these intricate dynamic
details. This capability distinguishes our method from prior
approaches, which have struggled to achieve similar results.



Figure 6. Qualitative Comparisons with SOTA video-to-4D
methods. By leveraging both human priors and generative priors,
our method effectively recovers fine-grained dynamic details.

We further compare our method with SOTA video-to-4D
approaches. As shown in Fig. 6, both L4GM and GVFDif-
fusion struggle to reconstruct complex non-rigid dynamics
present in the video. L4GM, due to the absence of human-
body priors, fails to maintain consistent human identity
across viewpoints and timestamps. GVFDiffusion, on the
other hand, fails to encode the full range of motion details
in the input video, leading to generated results that deviate
substantially from the original content. In contrast, our ap-
proach benefits from both 3D human templates and genera-
tive priors, achieving high-fidelity dynamic reconstruction.

4.3. Ablation Study

ID Finetuning. Fig. 7 illustrates the generation results of
different finetuning strategies. (a) Without finetuning, Hu-
man4DiT generates identities with only approximate color
similarity. (b) Fine-tuning only the identity embedding
yields a generally accurate appearance but lacks precision in
details, such as clothing wrinkles, due to insufficient incor-
poration of the subject’s dynamic characteristics. (c) Fine-
tuning along with the Human4DiT model implicitly injects
the physical properties to generate dynamics. This compre-
hensive fine-tuning leads to the most accurate reconstruc-
tion of the human identity, enhancing the quality of subse-
quent back-view video generation.

Super-resolution Generation. Fig. 8 presents the back-
view generation results at different resolutions. As shown in
(b) and (e), the absence of super-resolution leads to blurred

Figure 7. Ablation study on different ID finetuning strategies.

Figure 8. Ablation study on super-resolution generation. (a)(d)
reference image from input view. (b)(e) standard-resolution gen-
eration. (c)(f) super-resolution generation. Zoom in to see details.

clothing wrinkles, as diffusion models struggle to capture
fine-grained local details. In contrast, our super-resolution
approach not only enhances visual clarity and preserves
intricate details but also generates high-resolution images
that are crucial for improving the quality and robustness of
avatar training.

5. Conclusion

We present a novel framework for high-fidelity dynamic
human reconstruction from monocular video. By leverag-
ing video generation to incorporate alternative viewpoints,
our approach not only recovers high-frequency dynamic de-
tails from the input view but also supports novel view syn-
thesis with equivalent quality. Furthermore, we enhance
video generation by employing Physical Identity Inversion
through model fine-tuning in conjunction with patch-based
super-resolution techniques.

Limitations. Our approach is constrained by the cur-
rent capabilities of the avatar model. As a pose-conditioned
network, the avatar representation faces challenges in re-
constructing data with pose-appearance one-to-many issue,
a scenario commonly observed with loose clothing.

Acknowledgement. This paper is supported by Nation-
alKey RD Program of China (2022YFF0902200).
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