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ABSTRACT

We propose preventive learning as the first framework to guarantee Deep Neural
Network (DNN) solution feasibility for optimization problems with linear con-
straints without post-processing, upon satisfying a mild condition on constraint
calibration. Without loss of generality, we focus on problems with only inequality
constraints. We systematically calibrate the inequality constraints used in train-
ing, thereby anticipating DNN prediction errors and ensuring the obtained solu-
tions remain feasible. We characterize the calibration rate and a critical DNN size,
based on which we can directly construct a DNN with provable solution feasibil-
ity guarantee. We further propose an Adversarial-Sample Aware training algo-
rithm to improve its optimality performance. We apply the framework to develop
DeepOPF+ for solving essential DC optimal power flow problems in grid oper-
ation. Simulation results over IEEE test cases show that it outperforms existing
strong DNN baselines in ensuring 100% feasibility and attaining consistent opti-
mality loss (<0.19%) and speedup (up to×228) in both light-load and heavy-load
regimes, as compared to a state-of-the-art solver. We also apply our framework to
a non-convex problem and show its performance advantage over existing schemes.

1 INTRODUCTION

Recently, there have been increasing interests in employing neural networks, including deep neural
networks (DNN), to solve constrained optimization problems in various problem domains, espe-
cially those needed to be solved repeatedly in real-time. The idea behind these machine learning
approaches is to leverage the universal approximation capability of DNNs (Hornik et al., 1989;
Leshno et al., 1993) to learn the mapping between the input parameters to the solution of an op-
timization problem. Then one can directly pass the input parameters through the trained DNN to
obtain a quality solution much faster than iterative solvers. For example, researchers have developed
DNN schemes to solve essential optimal power flow problems in grid operation with sub-percentage
optimality loss and several orders of magnitude speedup as compared to conventional solvers (Pan
et al., 2020a;b; Donti et al., 2021; Chatzos et al., 2020; Lei et al., 2020). Similarly, DNN schemes
also obtain desirable results for real-time power control and beam-forming design (Sun et al., 2018;
Xia et al., 2019) problems in wireless communication in a fraction of time used by existing solvers.
Despite these promising results, however, a major criticism of DNN and machine learning schemes
is that they usually cannot guarantee the solution feasibility with respect to all the inequality and
equality constraints of the optimization problem (Zhao et al., 2020; Pan et al., 2020b). This is due to
the inherent neural network prediction errors. Existing works address the feasibility concern mainly
by incorporating the constraints violation (e.g., a Lagrangian relaxation to compute constraint vi-
olation with Lagrangian multipliers) into the loss function to guide THE DNN training. These
endeavors, while generating great insights to the DNN design and working to some extent in case
studies, can not guarantee the solution feasibility without resorting to expensive post-processing
procedures, e.g., feeding the DNN solution as a warm start point into an iterative solver to obtain
a feasible solution. See Sec. 2 for more discussions. To date, it remains a largely open issue of
ensuring DNN solution (output of DNN) feasibility for constrained optimization problems.
In this paper, we address this challenge for general Optimization Problems with Linear (inequality)
Constraints (OPLC) with varying problem inputs and fixed objective/constraints parameters. Since
linear equality constraints can be exploited to reduce the number of decision variables without losing
optimality (and removed), it suffices to focus on problems with inequality constraints. Our idea is
to train DNN in a preventive manner to ensure the resulting solutions remain feasible even with
prediction errors, thus avoiding the need of post-processing. We make the following contributions:
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B After formulating OPLC in Sec. 3, we propose preventive learning as the first framework to
ensure the DNN solution feasibility for OPLC without post-processing in Sec. 4. We systematically
calibrate inequality constraints used in DNN training, thereby anticipating prediction errors and
ensuring the resulting DNN solutions (outputs of the DNN) remain feasible.

B We characterize the calibration rate allowed in Sec. 4.1, i.e., the rate of adjusting (reducing)
constraints limits that represents the room for (prediction) errors without violating constraints, and
a sufficient DNN size for ensuring DNN solution feasibility in Sec. 4.2. We then directly construct
a DNN with provably guaranteed solution feasibility.

B Observing the feasibility-guaranteed DNN may not achieve strong optimality result, in Sec. 4.3,
we propose an adversarial training algorithm, called Adversarial-Sample Aware algorithm to further
improve its optimality without sacrificing feasibility guarantee and derive its performance guarantee.
B We apply the framework to design a DNN scheme, DeepOPF+, to solve DC optimal power
flow (DC-OPF) problems in grid operation. Simulation results over IEEE 30/118/300-bus test cases
show that it outperforms existing strong DNN baselines in ensuring 100% feasibility and attaining
consistent optimality loss (<0.19%) and speedup (up to ×228) in both light-load and heavy-load
regimes, as compared to a state-of-the-art solver. We also apply our framework to a non-convex
problem and show its performance advantage over existing schemes.

2 RELATED WORK

There have been active studies in employing machine learning models, including DNNs, to solve
constrained optimizations directly (Kotary et al., 2021b; Pan et al., 2019; 2020b; Zhou et al., 2022;
Guha et al., 2019; Zamzam & Baker, 2020; Fioretto et al., 2020; Dobbe et al., 2019; Sanseverino
et al., 2016; Elmachtoub & Grigas, 2022; Huang et al., 2021; Huang & Chen, 2021), obtaining
close-to-optimal solution much faster than conventional iterative solvers. However, these schemes
usually cannot guarantee solution feasibility w.r.t. constraints due to inherent prediction errors.

Some existing works tackle the feasibility concern by incorporating the constraints violation in DNN
training (Pan et al., 2020a; Donti et al., 2021). In (Nellikkath & Chatzivasileiadis, 2021; 2022),
physics-informed neural networks are applied to predict solutions while incorporating the KKT con-
ditions of optimizations during training. These approaches, while attaining insightful performance
in case studies, do not provide solution feasibility guarantee and may resort to expensive projec-
tion procedure (Pan et al., 2020b) or post-processing equivalent projection layers (Amos & Kolter,
2017; Agrawal et al., 2019) to recover feasibility. A gradient-based violation correction is proposed
in (Donti et al., 2021). Though a feasible solution can be recovered for linear constraints, it can be
computationally inefficient and may not converge for general optimizations. A DNN scheme apply-
ing gauge function that maps a point in an l1-norm unit ball to the (sub)-optimal solution is proposed
in (Li et al., 2022). However, its feasibility enforcement is achieved from a computationally expen-
sive interior-point finder program. There is also a line of work (Ferrari, 2009; ul Abdeen et al., 2022;
Qin et al., 2019; Limanond & Si, 1998) focusing on verifying whether the output of a given DNN
satisfies a set of requirements/constraints. However, these approaches are only used for evaluation
and not capable of obtaining a DNN with feasibility-guarantee and strong optimality. To our best
knowledge, this work is the first to guarantee DNN solution feasibility without post-processing.

Some techniques used in our study (for constrained problems) are related to those for verifying DNN
accuracy against input perturbations for unconstrained classification (Sheikholeslami et al., 2020).
Our work also significantly differs from (Zhao et al., 2020) in we can provably guarantee DNN
solution feasibility for OPLC and develop a new learning algorithm to improve solution optimality.

3 OPTIMIZATION PROBLEMS WITH LINEAR CONSTRAINTS (OPLC)
We focus on the standard OPLC formulated as (Faı́sca et al., 2007):

min f(x,θ) s.t. gj(x,θ) , aTj x+ bTj θ ≤ ej , j ∈ E , (1)

var. xk ≤ xk ≤ x̄k, k = 1, . . . , N. (2)

x ∈ RN are the decision variables, E is the set of inequality constraints, and θ ∈ D are the OPLC
inputs. Convex polytope D = {θ ∈ RM |Aθθ ≤ bθ,∃x : (1), (2) hold} is specified by matrix Aθ
and vector bθ such that ∀θ ∈ D, OPLC in (1)-(2) admits a unique optimum.1 The OPLC objective
f is a general convex/non-convex function. For ease of presentation, we use gj(x, θ) to denote

1Our approach is also applicable to non-unique solution and unbounded x. See Appendix A for a discussion.
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Figure 1: Overview of the preventive learning framework to solve OPLC. The calibration rate is
first obtained. The sufficient DNN size in ensuring universal feasibility is then determined, and
a DNN model can be constructed directly with universal feasibility guarantee in this step. With
the determined calibration rate and sufficient DNN size, a DNN model with enhanced optimality
without sacrificing feasibility is obtained using the Adversarial-Sample Aware algorithm.

aTj x + bTj θ.2 We assume that each gj(x, θ) ≤ ej is active for at least one combination of θ ∈ D
and x satisfying (2) without loss of generality (otherwise gj is unnecessary and can be removed). We
note that linear equality constraints can be exploited (and removed) to reduce the number of decision
variables without losing optimality as discussed in Appendix B, it suffices to focus on OPLC with
inequality constraints as formulated in (1)-(2).

The OPLC in (1)-(2) has wide applications in various engineering domains, e.g., DC-OPF problems
in power systems (Pan et al., 2019) and model-predictive control problems in control systems (Be-
mporad et al., 2000). While many numerical solvers, e.g., those based on interior-point methods (Ye
& Tse, 1989), can be applied to obtain its solution, the time complexity can be significant and lim-
its their practical applications especially considering the problem input uncertainty under various
scenarios. The observation that opens the door for DNN scheme development lies in that solving
OPLC is equivalent to learning the mapping from input θ to optimal solution x∗(θ) (Pan et al.,
2020a; Bemporad & Filippi, 2006). Thus, one can leverage the universal approximation capability
of DNNs (Hornik et al., 1989; Leshno et al., 1993) to learn the input-solution mapping and apply the
trained DNN to obtain the optimal solution for any θ ∈ D with significantly lower time complexity.
See a concrete example in (Pan et al., 2020b). While DNN schemes achieve promising speedup
and optimality performance, a fundamental challenge lies in ensuring solution feasibility, which is
nontrivial due to inherent DNN prediction errors. In the following, we propose preventive learning
as the first framework to tackle this issue and design DNN schemes for solving OPLC in (1)-(2).

4 PREVENTIVE LEARNING FOR SOLVING OPLC
We propose a preventive learning framework to develop DNN schemes for solving OPLC in (1)-(2).
We calibrate inequality constraints used in DNN training, thereby anticipating prediction errors and
ensuring the resulting DNN solutions remain feasible. See Fig. 2 for illustrations.

First, in Sec. 4.1, we determine the maximum calibration rate for inequality constraints, so that
solutions from a preventively-trained DNN using the calibrated constraints respect the original con-
straints for all possible inputs. Here we refer the output of the DNN as the DNN solution.

Second, in Sec. 4.2, we determine a sufficient DNN size so that with preventive learning there exists
a DNN whose worst-case violation on calibrated constraints is smaller than the maximum calibration
rate, thus ensuring DNN solution feasibility, i.e., DNN’s output always satisfies (1)-(2) for any input.
We construct a provable feasibility-guaranteed DNN model, namely DNN-FG, as shown in Fig. 1.

Third, observing DNN-FG may not achieve strong optimality performance, in Sec. 4.3, we propose
an adversarial Adversarial-Sample Aware training algorithm to further improve DNN’s optimality
without sacrificing feasibility guarantee, obtaining an optimality-enhanced DNN as shown in Fig. 1.

4.1 INEQUALITY CONSTRAINT CALIBRATION RATE

We calibrate each inequality limit gj(x,θ) ≤ ej , j ∈ E by a calibration rate ηj ≥ 0:3

gj(x,θ) ≤ êj =

{
ej (1− ηj) , if ej ≥ 0;

ej (1 + ηj) , otherwise.
(3)

2Multiple scalars bTj θ, j ∈ E are correlated via θ. Studying varying aj, bj , ej is also a promising future work.
3For gj with ej = 0, one can add an auxiliary constant ẽj 6= 0 such that gj(x,θ) + ẽj ≤ ẽj for the design and
formulation consistency. The choice of ẽj can be problem dependent. For example, in our simulation, ẽj is
set as the maximum slack bus generation for its lower bound limit in OPF discussed in Appendix L.
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Figure 2: Left: solution of DNN trained with de-
fault OPLC ground-truth can be infeasible due to
inevitable prediction errors.Right: solution of DNN
trained with calibrated OPLC ground-truth ensures
universal feasibility even with prediction errors.

However, an inappropriate calibration rate
could lead to poor performance of DNN. If
one adjusts the limits too much, some input
θ ∈ D will become infeasible under the cali-
brated constraints and hence lead to poor gen-
eralization of the preventively-trained DNN.
To this end, we solve the following bi-level
optimization to obtain the maximum calibra-
tion rate, such that the calibrated feasibility set
of x can still support the input region, i.e., the
OPLC in (1)-(2) with a reduced feasible set
has a solution for any θ ∈ D.
min
θ∈D

max
x,νc

νc (4)

s.t. (1), (2)

νc ≤ (ej − gj(θ,x))/|ej |, ∀j ∈ E . (5)

(1)-(2) enforce the feasibility of x for input θ ∈ D. (5) represents the maximum element-wise least
redundancy among all constraints, i.e., the maximum constraint calibration rate. Therefore, solving
(4)-(5) gives the maximum allowed calibration rate for all inequality constraints and θ ∈ D.
It is challenging to solve the above bi-level problem exactly. We apply the following procedure to
obtain a lower bound of its optimal objective in polynomial time. See Appendix C for details.

Step 1. Reformulate the bi-level problem (4)-(5) to an equivalent single-level one by replacing
the inner problem with its KKT conditions (Boyd & Vandenberghe, 2004).
Step 2. Transform the single-level optimization problem into a MILP by replacing the bi-
linear equality constraints (comes from the complementary slackness in KKT conditions) with
equivalent mixed-integer linear inequality constraints.
Step 3. Solve the MILP using the branch-and-bound algorithm (Lawler & Wood, 1966). Let
the obtained objective value be ∆ ≥ 0 from the primal constraint (1) and constraint (5).

Remark: (i) the branch-and-bound algorithm returns ∆ (lower bound of the maximum calibration
rate νc∗) with a polynomial time complexity of O((M + 4|E|+ 5N)2.5) (Vaidya, 1989), where M
and N are the dimensions of the input and decision variables, and |E| is the number of constraints.
(ii) ∆ is a lower bound to the maximum calibration rate as the algorithm may not solve the MILP
exactly (by relaxing (some of) the integer variables). Such a lower bound still guarantees that the
input region is supported. (iii) If ∆ = 0, reducing the feasibility set may lead to no feasible solution
for some inputs. (iv) If ∆ > 0, we can obtain a DNN with provably solution feasibility guarantee as
shown in Sec. 4.2. (v) After solving (4)-(5), we set each ηj in (3) to be ∆, such uniform constraints
calibration forms the outer bound of the minimum supporting calibration region. See Appendix D
for a discussion; (vi) we observe that the branch-and-bound algorithm can actually return the exact
optimal νc∗ in less than 20 mins for numerical examples studied in Sec. 6.

4.2 SUFFICIENT DNN SIZE FOR ENSURING FEASIBILITY

In this subsection, we first model DNN with ReLU activations. Then, we introduce a method to
determine the sufficient DNN size for guaranteeing solution feasibility.

4.2.1 DNN MODEL REPRESENTATION.

We employ a DNN with Nhid hidden layers (depth) and Nneu neurons in each hidden layer (width),
using multi-layer feed-forward neural network structure with ReLU activation function to approxi-
mate the input-solution mapping for OPLC, which is defined as:

h0 = θ, hi = σ (Wihi−1 + bi) , i = 1, . . . , Nhid,

h̃ = σ (WohNhid + bo − x) + x, x̂ = −σ
(
x̄− h̃

)
+ x̄.

(6)

θ is the DNN input and hi is the output of the i-th layer. Wi and bi are the i-th layer’s weight matrix
and bias. σ(x) = max(x, 0) is the ReLU activation, taking element-wise max operation over the
input vector. h̃ enforces output feasibility w.r.t. the lower bounds in (2) while final output x̂ further
satisfies upper bounds. Here we present the last two clamp-equivalent actions as (6) for further DNN
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analysis. To better include the DNN equations in our designed optimization to analysis DNN’s worst
case feasibility guarantee performance, we adopt the technique in (Tjeng et al., 2018) to reformulate
the ReLU activations expression in (6). For i = 1, . . . , Nhid, let ĥi denotes Wihi−1 + bi. The
output of neuron with ReLU activation is represented as: for k = 1, . . . , Nneu and i = 1, . . . , Nhid,

ĥki ≤ hki ≤ ĥki − h
min,k
i (1− zki ), (7)

0 ≤ hki ≤ h
max,k
i zki , z

k
i ∈ {0, 1}. (8)

Here we use superscript k to denote the k-th element of a vector. zki are (auxiliary) binary variables
indicating the state of the corresponding neuron, i.e., 1 (resp. 0) indicates activated (resp. non-
activated). We remark that given the value of DNN weights and bias, zki can be determined (zki can
be either 0/1 if ĥki = 0) for each input θ. hmax,k

i /hmin,k
i are the upper/lower bound on the neuron

outputs. See Appendix E.1 for a discussion. With (7)-(8), the input-output relationship in DNN can
be represented with a set of mixed-integer linear inequalities. We discuss how to employ (7)-(8) to
determine the sufficient DNN size in guaranteeing universal feasibility in Sec. 4.2.2. For ease of
representation, we use (W,b) to denote DNN weights and bias in the following.

4.2.2 SUFFICIENT DNN SIZE IN GUARANTEEING UNIVERSAL FEASIBILITY.

As a methodological contribution, we propose an iterative approach to determine the sufficient DNN
size for guaranteeing universal solution feasibility in the input region. The idea is to iteratively verify
whether the worst-case prediction error of the given DNN is within the room of error (maximum
calibration rate), and doubles the DNN’s width (with fixed depth) if not. We outline the design of
the proposed approach below, under the setting where all hidden layers share the same width. Let the
depth and (initial) width of the DNN model beNhid andNneu, respectively. Here we define universal
solution feasibility as that for any input θ ∈ D, the output of DNN always satisfies (1)-(2).

For each iteration, the proposed approach first evaluates the least maximum relative violations among
all constraints for all θ ∈ D for the current DNN model via solving the following bi-level program:

min
W,b

max
θ∈D

νf , s.t. (7)− (8), 1 ≤ i ≤ Nhid, 1 ≤ k ≤ Nneu, (9)

νf = max
j∈E
{(gj(θ, x̂)− êj)/|ej |}, (10)

where (9)-(10) express the outcome of the DNN as a function of input θ. νf is maximum constraints
violation degree among all constraints. Thus, solving (9)-(10) gives the least maximum DNN con-
straint violation over the input region D. We apply gradient descent to solve the above bi-level
optimization problem, see Appendix E for details. Let ρ be the obtained objective value of (9)-(10)
and (Wf ,bf ) be the corresponding DNN parameters, with which we can directly construct a DNN
model. Recall that the determined calibration rate is ∆, the proposed approach then verifies whether
the constructed DNN is sufficient for guaranteeing feasibility by the following proposition.
Proposition 1 Consider the DNN withNhid hidden layers each havingNneu neurons and parameters
(Wf ,bf ). If ρ ≤ ∆, then ∀θ ∈ D, the solution generated by this DNN is feasible w.r.t (1)-(2).

The proof is shown in Appendix F. Proposition 1 states that if ρ ≤ ∆, the worst-case prediction
error of current DNN model is within the maximum calibration rate and hence the current DNN
size is sufficient for guaranteeing universal feasibility; otherwise, it doubles the width of DNN and
moves to the next iteration. Recall that the input-solution mapping for OPLC is continuous. Hence,
there exists a DNN such that universal feasibility of DNN solution is guaranteed given the DNN
size (width) is sufficiently large according to the universal approximation theorem (Hornik, 1991).
See Appendix G for the discussion.4 Details of the procedures are shown in Algorithm 1. After
the initialization of DNN model (line 3-4), the proposed approach repeatedly compare the obtained
maximum constraints violation (ρ) with the calibration rate (∆), doubles the DNN width (line 5-7),
and return the width as N∗neu until ρ ≤ ∆. Thus, we can construct a provable feasibility-guaranteed
DNN model by the proposed approach, namely DNN-FG as shown in Fig. 1.

We remark that it is challenging to solve the bi-level problem (9)-(10) exactly, i.e., the obtained ρ is
an upper bound of the optimal objective of (9)-(10) in each iteration. Nevertheless, as discussed in
the following proposition, the upper bound is still useful for analyzing universal solution feasibility.
4One can also increase the DNN depth to achieve universal approximation for more degree of freedom in DNN
parameters. In this work, we focus on increasing the DNN width for sufficient DNN learning ability.
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Algorithm 1: Determining Sufficient DNN Size

1: Input: ∆; Initial width N init
neu

2: Output: Determined DNN width: N∗neu
3: Set t = 0; Set N t

neu = N init
neu; Obtain ρ via solving (9)-(10)

4: while ρ ≥ ∆ do
5: Set N t+1

neu = 2×N t
neu; Set t = t+ 1; Solve (9)-(10) and update ρ

6: end while
7: Set N∗neu = N t

neu
8: Return: N∗neu

Proposition 2 Assume ∆ > 0, Algorithm 1 is guaranteed to terminate in a finite number of iter-
ations. At each iteration t, consider the DNN with Nhid hidden layers each having N t

neu neurons,
we can obtain ρ as an upper bound to the optimal objective of (9)-(10) with a time complexity
O((M + |E|+ 2NhidN

t
neu + 4N)2.5). If ρ ≤ ∆, then the DNN with depth Nhid and width N t

neu is suf-
ficient in guaranteeing universal feasibility. Furthermore, one can construct a feasibility-guaranteed
DNN with the obtained DNN parameters (Wf ,bf ) such that for any θ ∈ D, the solution generated
by this DNN is feasible w.r.t. (1)-(2).
Proposition 2 indicates ρ can be obtained in polynomial time. If ρ ≤ ∆, it means the current DNN
size is sufficient to preserve universal solution feasibility in the input region; otherwise, it means the
current DNN size may not be sufficient for the purpose and it needs to double the DNN width.
We also remark that the obtained sufficient DNN size may not be the minimal sufficient one if the
above bi-level optimization problem is not solved exactly. Please refer to Appendix H for detailed
discussions. In our case study in Sec. 6, we observe that the evaluated initial DNN size can always
guarantee universal feasibility without constraints violation, and we hence conduct further simula-
tions with such determined sufficient DNN sizes.

4.3 ADVERSARIAL-SAMPLE AWARE ALGORITHM

While we can directly construct a feasibility-guaranteed DNN (without training) as shown in Propo-
sition 2, it may not achieve strong optimality performance. To this end, we propose an Adversarial-
Sample Aware (ASA) algorithm to further improve the optimality performance. The algorithm lever-
ages the ideas of adversarial learning (Chakraborty et al., 2018) and active learning (Ren et al.,
2021) techniques, which adaptively incorporates adversarial inputs, i.e., the inputs that cause in-
feasible DNN solutions, for pursuing strong optimality result while preserving universal feasibility
guarantee. We outline the algorithm in the following. Denote the initial training set as T 0, contain-
ing randomly-generated input and the corresponding ground-truth obtained by solving the calibrated
OPLC (with calibration rate ∆). The proposed ASA algorithm first pre-trains a DNN model with the
sufficient size determined by the approach discussed in Sec. 4.2.2, using the initial training set T 0

and the following loss function L for each instance as the supervised learning approach:

L =
w1

N
‖x̂− x∗‖22 +

w2

|E|
∑
j∈E

max(gj(x̂,θ)− êj , 0). (11)

We leverage the penalty-based training idea in (11). The first term is the mean square error between
DNN prediction x̂ and the ground-truth x∗ provided by the solver for each input. The second term
is the inequality constraints violation w.r.t calibrated limits êj . w1 and w2 are positive weighting
factors to balance prediction error and penalty. Hence, training DNN by minimizing (11) can pursue
a strong optimality performance as DNN prediction error is also minimized.
However, traditional penalty-based training by only minimizing (11) can not guarantee universal fea-
sibility (Venzke et al., 2020; Pan et al., 2020b). To address this issue, the ASA algorithm repeatedly
updates the DNN model with adversarial samples, anticipating the post-trained DNNs can eliminate
violations around such inputs. Specifically, given current DNN parameters, it finds the worst-case
input θi ∈ D by solving the inner maximization problem of (9)-(10). Let γ be the obtained objec-
tive value. Recall that the calibration rate is ∆. If γ ≤ ∆, the algorithm terminates; otherwise, it
incorporates a subset of samples randomly sampled around θi and solves the calibrated OPLC with
∆, and starts a new round of training. Details of the ASA algorithm are shown in Appendix I. We
highlight the difference between the DNN obtained in Sec. 4.2.2 and that from ASA algorithm as fol-
lows. The former is directly constructed via solving (9)-(10), which guarantees universal feasibility
whilst without considering optimality. In contrast, the latter is expected to enhance optimality while
preserving universal feasibility as both optimality and feasibility are considered during training. We
further provide theoretical guarantee of it in ensuring universal feasibility in the following.
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Proposition 3 Consider a DNN model with Nhid hidden layers each having N∗neu neurons. For
each iteration i, assume such a DNN trained with the ASA algorithm can maintain feasibility at the
constructed neighborhood D̂j = {θ|θj · (1− a) ≤ θ ≤ θj · (1 + a),θ ∈ D} around θj with some
small constant a > 0 for ∀j ≤ i. There exists a constant C such that the algorithm is guaranteed to
ensure universal feasibility as the number of iterations is larger than C.
The proof idea is shown in Appendix J. Proposition 3 indicates that, with the iterations is large
enough, the ASA algorithm can ensure universal feasibility by progressively improving the DNN
performance around each region around worst-case input. It provides a theoretical understanding of
the justifiability of the ASA algorithm. In practice, we can terminate the ASA algorithm whenever the
maximum solution violation is smaller than the inequality calibration rate, which implies universal
feasibility guarantee. We note that the feasibility enforcement in the empirical/heuristic algorithm
achieves strong theoretical grounding while its performance can be affected by the training method
chosen. Nevertheless, as observed in the case study in Appendix M, the ASA algorithm terminates
in at most 52 iterations with 7% calibration rate, showing its efficiency in practical application.

5 PERFORMANCE ANALYSIS OF THE PREVENTIVE LEARNING FRAMEWORK

5.1 UNIVERSAL FEASIBILITY GUARANTEE

We provide the following proposition showing that the preventive learning framework generates two
DNN models with universal feasibility guarantees.
Proposition 4 Let ∆, ρ, and γ be the determined maximum calibration rate, the obtained objective
value of (9)-(10) to determine the sufficient DNN size, and the obtained maximum relative violation
of the trained DNN from Adversarial-Sample Aware algorithm following steps in preventive frame-
work, respectively. Assume (i) ∆ > 0, (ii) ρ ≤ ∆, and (iii) γ ≤ ∆. The DNN-FG obtained from
determining sufficient DNN size can provably guarantee universal feasibility and the DNN from ASA
algorithm further improves optimality without sacrificing feasibility guarantee ∀θ ∈ D.
Proposition 4 indicates the DNN model obtained by preventive learning framework is expected to
guarantee the universal solution feasibility, which is verified by simulations in Sec. 6.

5.2 RUN-TIME COMPLEXITY

We present the complexity of the traditional method in solving the optimization problems with linear
constraints. To the best of our knowledge, OPLC in its most general form is NP-hard cannot be
solved in polynomial tie unless P=NP. To better deliver the results here, we consider the specific case
of OPLC, namely the mp-QP problem, with linear constraints and quadratic objective function. We
remark that the complexity of solving mp-QP provides a lower bower for the general OPLC problem.
Under this setting, the DNN based framework has a complexity of O

(
N2
)

whilst the best known
iterative algorithm (Ye & Tse, 1989) requires O

(
N4 + |E|M

)
. This means that the computational

complexity of the proposed framework is lower than that of traditional algorithms. The comparison
results demonstrate the efficiency of the preventive learning framework. See Appendix K for details.

5.3 TRADE-OFF BETWEEN FEASIBILITY AND OPTIMALITY

We remark that to guarantee universal feasibility, the preventive learning framework shrinks the
feasible region used in preparing training data. Therefore, the DNN solution may incur a larger
optimality loss due to the (sub)-optimal training data. It indicates a trade-off between optimality
and feasibility, i.e., larger calibration rate leads to better feasibility but worse optimality. To fur-
ther enhance DNN optimality performance, one can choose a smaller calibration rate than ∆ while
enlarging DNN size for better approximation ability and hence achieve satisfactory optimality and
guarantee universal feasibility simultaneously.

6 APPLICATION IN SOLVING DC-OPF AND NON-CONVEX OPTIMIZATION

6.1 DC-OPF PROBLEM AND DEEPOPF+
DC-OPF is a fundamental problem for modern grid operation. It aims to determine the least-cost
generator output to meet the load in a power network subject to physical and operational constraints.
With the penetration of renewables and flexible load, the system operators need to handle significant
uncertainty in load input during daily operation. They need to solve DC-OPF problem under many
scenarios more frequently and quickly in a short interval, e.g., 1000 scenarios in 5 minutes, to obtain
a stochastically optimized solution for stable and economical operations. However, iterative solvers
may fail to solve a large number of DC-OPF problems for large-scale power networks fast enough
for the purpose.Although recent DNN-based schemes obtain close-to-optimal solution much faster
than conventional methods, they do not guarantee solution feasibility. We design DeepOPF+ by em-
ploying the preventive learning framework to tackle this issue. Consider the DC-OPF formulation:
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min
PG, Φ

∑
i∈G

ci (PGi) s.t. Pmin
G ≤ PG ≤ Pmax

G ,M ·Φ = PG−PD,−Pmax
line ≤ Bline ·Φ ≤ Pmax

line , (12)

Pmin
G ∈ R|B| (resp. Pmax

G ) and Pmax
line ∈ R|K| are the minimum (resp. maximum) generation

limits of generators5 and branch flow limits of the set of transmission lines denoted as K. G,B,
M, Bline, and Φ ∈ R|B| denote the set of generators, buses, bus admittance matrix, line admittance
matrix, and bus phase angles, respectively. The objective is the total generation cost and ci (·) is
the cost function of each generator, which is usually strictly quadratic (Park et al., 1993; tpc, 2018)
from generator’s heat rate curve. Constraints in (12) enforce nodal power balance equations and the
limits on active power generation and branch flow. DC-OPF is hence a quadratic programming and
admits a unique optimal solution w.r.t. load input PD. Analogy to OPLC (1)-(2),

∑
i∈G ci (PGi) is

the objective function f in (1). PD is the problem input θ and (PG,Φ) are the decision variables x.
We apply the proposed preventive-learning framework to design a DNN scheme, named Deep-
OPF+, for solving DC-OPF problems. We refer interested readers to Appendix L for details. De-
note ∆, ρ, and γ as the obtained maximum calibration rate, the obtained objective value of (9)-(10)
to determine sufficient DNN size, and the maximum relative violation of the trained DNN from
Adversarial-Sample Aware algorithm in DeepOPF+ design, respectively. We highlight the feasi-
bility guarantee and computational efficiency of DeepOPF+ in following proposition.

Corollary 1 Consider the DC-OPF problem and DNN model defined in (6). Assume (i) ∆ > 0, (ii)
ρ ≤ ∆, and (iii) γ ≤ ∆, then the DeepOPF+ generates a DNN guarantees universal feasibility
for any PD ∈ D. Suppose the DNN width is the same order of number of bus B, then DeepOPF+
has a smaller computational complexity of O

(
B2
)

compared with that of state-of-the-art iterative
methods O

(
B4
)
, where B is the number of buses.

Corollary 1 says that DeepOPF+ can solve DC-OPF with universal feasibility guarantee at lower
computational complexity compared to conventional iterative solvers,6 as DNNs with width O(B)
can achieve desirable feasibility/optimality. Such an assumption is validated in existing literature
(Pan et al., 2019) and our simulation. To our best knowledge, DeepOPF+ is the first DNN scheme
to solve DC-OPF with solution feasibility guarantee without post-processing. We remark that the
DeepOPF+ design can be easily generalized to other linearized OPF models (Cain et al., 2012;
Yang et al., 2018; Bolognani & Dörfler, 2015) .

6.2 PERFORMANCE EVALUATION OVER IEEE TEST CASES

We evaluate its performance over IEEE 30-/118-/300- bus test cases (tpc, 2018) on the input load
region of [100%, 130%] of the default load covering both the light-load ([100%, 115%]) and heavy-
load ([115%, 130%]) regimes, respectively. We conduct simulations in CentOS 7.6 with a quad-core
(i7-3770@3.40G Hz) CPU and 16GB RAM. We compare DeepOPF+ with five baselines on the
same training/test setting: (i) Pypower: the conventional iterative OPF solver; (ii) DNN-P: A DNN
scheme adapted from (Pan et al., 2019). It learns the load-solution mapping using penalty approach
without constraints calibration and incorporates a projection post processing if the DNN solution is
infeasible; (iii) DNN-D: A penalty-based DNN scheme adapted from (Donti et al., 2021). It includes
a correction step for infeasible solutions in training/testing; (iv) DNN-W: A hybrid method adapted
from (Dong et al., 2020a). It trains a DNN to predict the primal and dual variables as the warm-
start points to the conventional solver; (v) DNN-G: A gauge-function based DNN scheme adapted
from (Li et al., 2022). It enforces solution feasibility by first solving a linear program to find a
feasible interior point, and then constructing the mapping between DNN prediction in an l∞ unit
ball and the optimum. For better evaluation, we implement two DeepOPF+ schemes with different
DNN sizes and calibration rate (3%, 7%) that are all within the maximum allowable one, namely
DeepOPF+-3, and DeepOPF+-7. The detailed designs/results are presented in Appendix M.
We use the following performance metrics: (i) the percentage of the feasible solution obtained by
DNN, (ii) the average relative optimality difference between the objective values obtained by DNN
and Pypower, (iii) the average speedup, i.e., the average running-time ratios of Pypower to DNN-

5PGi = Pmin
Gi

= Pmax
Gi

= 0, ∀i /∈ G, and PDi = 0, ∀i /∈ A, where A denotes the set of load buses.
6We remark that the training of DNN is conducted offline; thus, its complexity is minor as amortized over many
DC-OPF instances, e.g., 1000 scenarios per 5 mins. Meanwhile, the extra cost to solve the new-introduced
programs in our design is also minor observing that existing solvers like Gurobi can solve the problems effi-
ciently, e.g., <20 minutes to solve th MILPs to determine calibration rate and DNN size. Thus, we consider
the run-time complexity of the DNN scheme, which is widely used in existing studies.

8



Published as a conference paper at ICLR 2023

Table 1: Performance comparison with SOTA DNN schemes in light-load and heavy-load regimes.
Case Scheme Average speedups Feasibility rate (%) Optimality loss (%) Worst-case violation (%)

light-load heavy-load light-load heavy-load light-load heavy-load light-load heavy-load

Case30

DNN-P ×85 ×86 100 88.12 0.02 0.03 0 5.43
DNN-D ×85 ×84 100 93.36 0.02 0.03 0 11.19
DNN-W ×0.90 ×0.86 100 100 0 0 0 0
DNN-G ×24 ×26 100 100 0.13 0.04 0 0

DeepOPF+-3 ×86 ×92 100 100 0.03 0.04 0 0
DeepOPF+-7 ×86 ×93 100 100 0.03 0.09 0 0

Case118

DNN-P ×137 ×125 68.84 54.92 0.17 0.21 19.5 44.8
DNN-D ×138 ×124 73.42 55.37 0.20 0.24 16.69 43.1
DNN-W ×2.08 ×2.26 100 100 0 0 0 0
DNN-G ×26 ×16 100 100 1.29 0.39 0 0

DeepOPF+-3 ×201 ×226 100 100 0.18 0.19 0 0
DeepOPF+-7 ×202 ×228 100 100 0.37 0.41 0 0

Case300

DNN-P ×115 ×98 91.29 78.42 0.06 0.08 261.1 443.0
DNN-D ×115 ×102 91.99 82.92 0.07 0.07 231.6 348.1
DNN-W ×1.04 ×1.08 100 100 0 0 0 0
DNN-G ×2.44 ×2.65 100 100 0.32 0.06 0 0

DeepOPF+-3 ×129 ×136 100 100 0.03 0.03 0 0
DeepOPF+-7 ×130 ×138 100 100 0.10 0.06 0 0

* Feasibility rate and Worst-case violation are the results before post-processing. Feasibility rates (resp Worst-case violation) after post-
processing are 100% (resp 0) for all DNN schemes. We hence report the results before post-processing to better show the advantage of
our design. Speedup and Optimality loss are the results after post-processing of the final obtained feasible solutions.

* The correction step in DNN-D (with 10−3 rate) takes longer time compared with l1-projection in DNN-P, resulting in lower speedups.
* We empirically observe that DNN-G requires more training epochs for satisfactory performance. We report its best results at 500 epochs

for Case118/300 in heavy-load and the results at 400 epochs for the other cases. The training epochs for the other DNN schemes are 200.

based approach for the test instances, respectively. (iv) the worst-case violation rate, i.e., the largest
constraints violation rate of DNN solutions in the entire load domain.

6.2.1 PERFORMANCE COMPARISONS BETWEEN DEEPOPF+ AND EXISTING DNN SCHEMES.
The results are shown in Table 1 with the following observations. First, DeepOPF+ improves over
DNN-P/DNN-D in that it achieves consistent speedups in both light-load and heavy-load regimes.
DNN-P/DNN-D achieves a lower speedup in the heavy-load regime than in the light-load regime as
a large percentage of its solutions are infeasible, and it needs to involve a post-processing procedure
to recover the feasible solutions. Note that though DNN-P/DNN-D may perform well on the test set
in light-load regime with a higher feasibility rate, its worst-case performance over the entire input
domain can be significant, e.g., more than 443% constraints violation for Case300 in the heavy-load
region. In contrast, DeepOPF+ guarantees solution feasibility in both light-load and heavy-load
regimes, eliminating the need for post-processing and hence achieving consistent speedups. Sec-
ond, though the warm-start/interior point based scheme DNN-W/DNN-G ensures the feasibility
of obtained solutions, they suffer low speedups/large optimality loss. As compared, DeepOPF+
achieves noticeably better speedups as avoiding the iterations in conventional solvers. Third, the op-
timality loss of DeepOPF+ is minor and comparable with these of the existing state-of-the-art DNN
schemes, indicating the effectiveness of the proposed Adversarial-Sample Aware training algorithm.
Fourth, we observe that the optimality loss of DeepOPF+ increases with a larger calibration rate,
which is consistent with the trade-off between optimality and calibration rate discussed in Sec. 5.3.
We remark that DC-OPF is an approximation to the original non-convex non-linear AC-OPF in
power grid operation under several simplifications. DC-OPF is widely used for its convexity and
scalability. Expanding the work to AC-OPF is a promising future work as discussed in Appendix B.
Moreover, we apply our framework to a non-convex problem in (Donti et al., 2021) and show its
performance advantage over existing schemes. Detailed design/results are shown in Appendix N.

7 CONCLUDING REMARKS
We propose preventive learning as the first framework to develop DNN schemes to solve OPLC with
solution feasibility guarantee. Given a sufficiently large DNN, we calibrate inequality constraints
used in training, thereby anticipating DNN prediction errors and ensuring the obtained solutions
remain feasible. We propose an Adversarial-Sample Aware training algorithm to improve DNN’s
optimality. We apply the framework to develop DeepOPF+ to solve and DC-OPF problems in grid
operation. Simulations show that it outperforms existing strong DNN baselines in ensuring feasibil-
ity and attaining consistent optimality loss and speedup in both light-load and heavy-load regimes.
We also apply our framework to a non-convex problem and show its performance advantage over
existing schemes. We remark that the proposed scheme can work for large-scale systems because of
the desirable scalability of DNN. Future directions include extending the framework to general non-
linear constrained optimization problems like ACOPF and evaluating its performance over systems
with several thousand buses and realistic loads as discussed in Appendix B.
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