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Abstract

Few-shot learning has been a big challenge for001
many classification tasks, where the final clas-002
sifier is trained only with a few examples. This003
problem amplifies when we apply the few-shot004
setup to recognising named entity from differ-005
ent domains, i.e., few-shot domain adaption for006
NER. In this paper, we present a simple yet007
effective MAML-based NER model that can ef-008
fectively leverage the task hardness information009
to improve the adaptability of the learnt model010
in the few-shot setting. Experimental results on011
biomedical datasets show that our model can012
achieve significant performance improvement013
over the recently published MetaNER model.014

1 Introduction015

To assist clinicians in their decision making, infor-016

mation needs to be extracted correctly and appro-017

priately from patients’ data such as Electronic Med-018

ical Records (EMRs). This paper focuses on one019

of the key tasks in this extraction process, named020

entity recognition (NER), specifically, biomedical021

named entity recognition (BioNER). Correct recog-022

nition of biomedical named entities (NEs) can lead023

to a reliable detection/extraction system, providing024

a comprehensive picture of the patient’s health to025

assist medical practitioners.026

An optimal BioNER method should be robust027

enough to perform well on unseen tasks across dif-028

ferent domains in a lower-resource setting, as anno-029

tating medical texts is extremely expensive, requir-030

ing medical expertise. Existing BioNER methods031

could struggle with this setting, as they are based032

on powerful structures such as BiLSTM-CRF (Xu033

et al., 2019, 2018) or deep transformer (Lee et al.,034

2019; Alsentzer et al., 2019). Those structures of-035

ten have numerous trainable parameters and require036

a large training dataset, and consequently, this im-037

pedes the model’s generalizability and adaptability038

to new tasks with very limited training samples,039

preventing it from achieving good result outside of 040

the corpus and domain it was trained on. 041

A potential solution is to inject the prior “ex- 042

perience” to the adaptation process. Few works 043

have explored this area such as Li et al. (2020a) 044

and Li et al. (2020b), where the former followed 045

the optimization meta-learning strategy by (Finn 046

et al., 2017) and the latter introduced a feature critic 047

module similar to the work of Li et al. (2019). 048

Furthermore, it is sub-optimal to assume tasks 049

are equally important (i.e., randomly sample tasks) 050

in learning the meta model in meta training (Yao 051

et al., 2021), particularly when the number of train- 052

ing tasks in small. Indeed, the importance/hardness 053

of BioNER tasks can vary significantly, as shown 054

in Table 1. While some tasks might contain NEs, 055

many tasks do not (e.g., the last row in Table 1), and 056

hence, contribute little to learning the NER model. 057

Meanwhile, the task difficulty ties not only to the 058

number of entities in the task but also to the length 059

of those entities. Therefore, we argue that bioNER 060

tasks sampled in meta training should be treated 061

differently accroding to their hardness in order to 062

improve learning efficiency and the model perfor- 063

mance. To bridge the gap, we present a simple but 064

effective way of incorporating task hardness into 065

a meta-learning framework for BioNER tasks. We 066

show that our task hardness driven meta learning 067

approach for BioNER outperforms recently pub- 068

lished meta-learning based NER methods. 069

2 Related Works 070

For meta learning in NER tasks, both Li et al. 071

(2020a) and Li et al. (2020b) seek a robust represen- 072

tation for the sequence labeling function BiLSTM- 073

CRF by applying the meta-learning framework 074

(Finn et al., 2017), and the latter further includes 075

an auxiliary network to promote adversarial learn- 076

ing during the training process. However, dif- 077

ferent tasks can have different level of hardness 078

which both works have not yet addressed. Exist- 079

1



Example Score
Stimulation of human neutrophils with [chemoattractants] [FMLP] or [platelet activating factor (PAF)] results in different but overlapping functional responses. 0.46
Of even more interest, [IkappaBalpha] overexpression inhibited the production of [matrix metalloproteinases 1 and 3] while not affecting their tissue inhibitor.
...more durable inhibition of HIV - 1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone.
Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes.
Here we report the fabrication of single-molecule transistors based on individual C60 molecules connected to gold electrodes. 0.18
The contractile effects of [oxytocin], prostaglandin F2 alpha and their combined use on human pregnant myometrium were studied in vitro.
Transcriptional activation of the [proopiomelanocortin gene] by [cyclic AMP-responsive element binding protein].
The difference between the effects of the two dose levels of Z.
She was monitored for one more day and then discharged with instructions to discontinue her diet pills 0.01
The Raf/Ras/ERK/MAPK pathway is known to be involved in NGF-induced outgrowth
Our analysis reveals that the oviduct is lined, along its entire length, by a monolayered epithelium comprised of squamous-type cells.
In one case study, Bramson et al.

Table 1: Examples of task hardness scores (computed from our method) for three tasks during the meta-training
procedure, The score is based on a scale from 0 to 1, the higher the score, the more challenging the task is. The NEs
are put in brackets with red color for each sentence.

ing meta learning works deal with task hardness080

via 1) actively ranking the tasks in term of diffi-081

culty level (Yao et al., 2021; Zhou et al., 2020;082

Liu et al., 2020; Achille et al., 2019); 2) design-083

ing an adaptive task scheduler (Yao et al., 2021);084

or 3) relying on generative approaches to quantify085

the uncertainties of tasks Kaddour et al. (2020);086

Nguyen et al. (2021). To our knowledge, we are087

the first to incorporate the concept of task hardness088

into meta-learning NER for Biomedical tasks.089

3 BioNER with Task Hardness090

Problem Setup Given a set of biomedical corpora091

from multiple source domains (e.g., Drug, Gene,092

Species, etc), and let p(T ) be the underline distri-093

bution of tasks, i.e., recognising biomedical named094

entities from different domains. We aim to meta-095

learn a sequence labelling function h : X → Y1096

from a set of tasks sampled from p(T ) so that it097

can be generalised to a new task T ′
sampled from098

an unseen target domain (e.g., Disease). The la-099

belling function h contains 1) a sentence encoder100

parameterized with θ (e.g., BiLSTM-CNN) that101

captures the contextual information about words,102

and 2) a tag decoder parameterized with ϕ (e.g.,103

CRF) that assigns the entity tags to these words2.104

Thus, the learning objective is to search for the op-105

timal Θ∗ ≡ {θ,ϕ} from the source domains with106

a bi-level optimization framework commonly used107

in meta-learning. Finally, this optimal Θ∗ should108

minimise the risk of transferring h from the source109

domains to a new task T ′
from the target domain.110

Task Generation To optimize for Θ∗ with111

stochastic optimization, one first need to sample112

from p(T ), i.e., task generation. Each BioNER113

task Ti in our setting is divided into a support set114

1X consists of a set of sentences, while Y indicates the
sequence label sets corresponding to these sentences.

2We consider the BIO tagging schema containing three
labels: B-Begin, I-Inside, and O-Outside.

T S
i and a query set T Q

i with T S
i ∩ T Q

i = ∅. Both 115

T S
i and T Q

i contain only K sentences respectively 116

sampled from the same domain, and K can be as 117

small as 5 or 10. Different from Li et al. (2020b), 118

we are interested in the scenarios where there are 119

a small handful of annotated sentences from the 120

target domain. Mimicking the same few-shot set- 121

ting in meta training has been shown to reduce the 122

PAC-Bayesian meta-learning error bound (Ding 123

et al., 2021). Meanwhile, randomly sampling Ti 124

from all the source domains will then allow us to 125

learn a good initialization of Θ∗ that can be quickly 126

adapted to a new unseen task, similar to (Li et al., 127

2020a). We further consider the imbalance issue 128

caused by the NER few-shot setting. As shown in 129

table 2, the majority of the sentences in the biomed- 130

ical corpora does not contain any entities. Thus, 131

it is highly likely that the K randomly-sampled 132

sentences contain no entity, which can result in a 133

biased sequence labeller that always predict “O” in 134

the adaption phrase. To avoid this issue, we choose 135

sentences in T S
i to be those contains at least one 136

biomedical entity, which is shown to be effective. 137

Bilevel Optimization Following Li et al. (2020b, 138

2019), we also include a domain classifier as a critic 139

network to regularize the meta-learning process 140

and promote domain generalization. This critic 141

network, parameterized by ω, consists of a fully 142

connected layer used to predict which domain a 143

sentence in a task Ti belongs to. The classification 144

function f will henceforth be used to represent 145

the composition of the sentence encoder network 146

and the critic network. The overall meta-learning 147

objective is 148

Li = Llab (h (θ,ϕ) , Ti) + λLcls (f (θ,ω) , Ti) , (1) 149

where λ control the trade-off between the two loss 150

functions. In meta-training time, we first generate 151

a batch of task from p(T ), and for each Ti, we train 152

the model on T S
i then validate the performance on 153

T Q
i using our learning objective. Consequently, 154
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Corpora Entity
Type

No. Unique
Tokens

% sentences
with NEs

NCBI (Doğan et al., 2014) Disease 12, 128 55
BC5CDR (Li et al., 2016) Disease 23, 068 59
BC5CDR (Li et al., 2016) Drug 23, 068 65
BC4CHEMD (Krallinger et al., 2015) Drug 114, 837 48
JNLPBA (Collier and Kim, 2004) Gene 25, 046 81
BC2GM (Smith et al., 2008) Gene 50, 864 51
LINNAEUS (Gerner et al., 2010) Species 34, 396 13
S800 (Pafilis et al., 2013) Species 205, 26 30

Table 2: Biomedical corpora used in our experiments
(Habibi et al., 2017; Lee et al., 2019; Zhu et al., 2018).

we gather the gradients from each Ti in the current155

batch of task and make the update to the parame-156

ters, finishing one iteration of the training process.157

This procedure runs until no further improvement158

can be made. The full meta-learning algorithm is159

summarized in Algorithm 1 and 2 in the appendix.160

Task Hardness We develop a simple but effec-161

tive way of computing NER task hardness based162

on the losses. Each task is re-weighted according163

to the hardness while being used in the gradient164

update. Specifically, we define the task difficulty165

Γi = {γθi , γ
ϕ
i , γ

ω
i } for task Ti with its correspond-166

ing objective values as167

γθ
i =

Li∑
Lj

; γϕ
i =

Llab
i∑
Llab

j

; γω
i =

Lcls
i∑
Lcls

j

, (2)168

where {γθi , γ
ϕ
i , γ

ω
i } represent the task hardness169

scores to update parameters {θ, ϕ, ω}, respectively.170

By incorporating task hardness into the optimiza-171

tion process, MetaBioNER would gradually shift172

the focus to more challenging tasks rather than173

the ones that contribute little to no learning value,174

e.g., a task that contains short sentences without175

biomedical named entities, as multiplying the hard-176

ness score with the corresponding gradient value177

will force the gradient update to zero for those sen-178

tences. Table 1 shows how our learning algorithm179

ranks the contribution of each task towards the gra-180

dient update.181

4 Experimental Results182

Datasets We used the pre-processed version of183

those benchmark corpora used by BioBERT (Lee184

et al., 2019), which are publicly available at185

BioBERT’s github website3. They are shown in Ta-186

ble 2. They are from four domains, Disease, Drug,187

Gene and Species, each of which will be used as188

the target domain. Rather than the general pre-189

trained GloVe embeddings, we used BioWordVec190

embeddings with with 200 dimensions (Chen et al.,191

2018; Yijia et al., 2019), which is pre-trained based192

on both PubMed database and clinical notes from193

3https://github.com/dmis-lab/biobert

MIMIC-III. serves the purpose of the project well. 194

Experimental Settings & Baselines To analyze 195

the generalization ability of the learning framework 196

under a low-resource setting, we considered the 197

following experimental settings: 198

• The size of supporting set K: We used K ∈ 199

{5, 10, 20, 50, 100}, since annotating medical 200

corpora is both expensive and time consuming, 201

requiring much domain expertise. 202

• Heterogeneous adaptation: Following Li et al. 203

(2020b), we considered the more hard task, i.e., 204

heterogeneous adaptation that assumes each do- 205

main has a domain-specific decoder ϕ and only 206

the sentence encoder θ is shared across domain 207

and meta-learned. In other words, ϕ is randomly 208

initialised in meta testing for each corpus in the 209

target domain and only θ is adapted. 210

We implemented two variants of our 211

MetaBioNER and compared them with MetaNER 212

(Li et al., 2020b) and its variant without feature 213

critic network. 214

• MetaNER acts as the major baseline. It is the 215

latest and most related work to ours, showing 216

the state-of-the-art performance. We followed 217

the parameter settings that the authors detailed 218

in their paper and tried to replicate the model 219

based on our understandings. We validated our 220

implementation by comparing its performance to 221

the multi-tasking method used in MetaNER. 222

• MetaNER w/o critic excludes the feature critic 223

network used in MetaNER, which indeed degen- 224

erate to MAML. We used the same parameter 225

settings as those in MetaNER. 226

• MetaBioNER uses similar parameter settings to 227

MetaNER, except that we re-calibrate the update 228

of {θ, ϕ, ω} using equation (2), and weigh the 229

gradient update based on the task hardness scores 230

in meta training. 4 231

• MetaBioNER-NEs makes use of clean sen- 232

tences, each of which contains at least one 233

biomedical entity. Its other parameter settings 234

as the same as MetaBioNER without task hard- 235

ness. 236

Note that corpora from the target domain are 237

unseen by the meta learner in the meta-training 238

phase. For instance, if the “Disease” domain is 239

treated as the target domain for adaptation, we only 240

perform meta-learning for Θ∗ using the remaining 241

4As second-order gradients cannot be obtained for the re-
current neural net unit; thus, we use both first-order approxima-
tions (Nichol et al., 2018) and implicit gradients (Rajeswaran
et al., 2019) to perform the update to {θ, ϕ, ω}

3

https://github.com/dmis-lab/biobert


Disease Drug Gene Species Overall
NCBI BC5CDR BC5CDR BC4CHEMD JNLPBA BC2GM LINNAEUS S800

5
sh

ot
s MetaNER 0.2729 0.2171 0.5784 0.2212 0.2175 0.2443 0.1214 0.1516 0.2530

MetaNER w/o critic 0.2750 0.2327 0.6136 0.2347 0.2535 0.2374 0.1262 0.2216 0.2744
MetaBioNER 0.3001 0.2698 0.6102 0.2464 0.3687 0.3326 0.1753 0.2840 0.3234
MetaBioNER-NEs 0.2825 0.2530 0.5517 0.2571 0.3776 0.3573 0.1557 0.2615 0.3121

10
sh

ot
s MetaNER 0.3330 0.3688 0.6659 0.3360 0.3374 0.3265 0.3038 0.3164 0.3735

MetaNER w/o critic 0.3785 0.3689 0.6880 0.3261 0.3394 0.3171 0.3441 0.2675 0.3787
MetaBioNER 0.3953 0.4178 0.6798 0.4227 0.4790 0.4489 0.2939 0.3703 0.4385
MetaBioNER-NEs 0.4386 0.4222 0.6605 0.3933 0.4371 0.4086 0.2474 0.3225 0.4163

20
sh

ot
s MetaNER 0.4612 0.4722 0.7301 0.4383 0.4167 0.3926 0.4952 0.2977 0.4630

MetaNER w/o critic 0.4746 0.5115 0.6979 0.4200 0.3783 0.3680 0.5309 0.4173 0.4748
MetaBioNER 0.5631 0.5529 0.7472 0.4935 0.5466 0.5114 0.3657 0.4432 0.5280
MetaBioNER-NEs 0.5540 0.5098 0.7305 0.4694 0.5375 0.5097 0.4843 0.5205 0.5394

50
sh

ot
s MetaNER 0.5731 0.6106 0.7478 0.5082 0.5337 0.5058 0.6125 0.3607 0.5565

MetaNER w/o critic 0.5890 0.6052 0.7364 0.4788 0.4681 0.4540 0.6493 0.4040 0.5481
MetaBioNER 0.6250 0.5939 0.7737 0.5728 0.5666 0.5442 0.6369 0.5855 0.6123
MetaBioNER-NEs 0.6208 0.5847 0.7612 0.5781 0.6146 0.6016 0.6373 0.5445 0.6179

10
0

sh
ot

s MetaNER 0.6005 0.6484 0.7975 0.5852 0.4993 0.4747 0.6581 0.3854 0.5811
MetaNER w/o critic 0.5637 0.6447 0.7943 0.5904 0.5257 0.4985 0.6880 0.4159 0.5902
MetaBioNER 0.6433 0.6489 0.7822 0.6395 0.6210 0.6064 0.6268 0.5416 0.6387
MetaBioNER-NEs 0.6699 0.6531 0.7773 0.6093 0.6338 0.6163 0.5956 0.5755 0.6413

Table 3: Average performance (F1 Scores) of the heterogeneous domain adaptation for BioNER. The best perfor-
mance is in boldface and the second best is underlined. All settings results are averaged from 20 distinct samples,
e.g., 5-shots score of MetaNER for NCBI corpus are averaged from 20 samples with each sample having 5 distinct
sentences used as T ′

tr to optimize for the model initialized with parameters set learnt under MetaNER framework.

source domains “Drug”, “Gene”, “Species”. We242

report the average F1 scores of five random runs of243

each method considered. More detailed settings to244

reproduce this work can be found in the appendix.245

Results Table 3 presents the NER performance246

of our MetaBioNER, MetaNER and their variants247

under the heterogeneous adaptation setting. We248

have the following observations:249

• MetaNER w/o critics v.s. MetaNER: The per-250

formance gap between MetaNER w/o critics and251

MetaNER is negligible in most cases. This could252

imply that learning a good feature-critic network,253

(i.e., a domain classifier), needs more training254

samples in meta training than what we have in255

our experiments. Li et al. (2020b) assumed the256

support set in each iteration contains all sentences257

in the selected source domains in meta training.258

• MetaNER v.s. MetaBioNER: By simply includ-259

ing the task hardness in the gradient update,260

MetaBioNER achieves a significant performance261

improvement over MetaNER with an average of262

4−5% improvement in terms of F1 score. In mul-263

tiple cases (e.g., JNLPBA 5 shots, BC2GM 10264

shots, S800 100 shots, etc), the performance gain265

of MetaBioNER goes up to 15% in terms of F1-266

score. This comparison demonstrates that using267

the task hardness to differentiate the importance268

of each task in the gradient update is beneficial,269

contributing largely to the NER performance.270

• MetaBioNER v.s. MetaBioNER-NEs: Both271

MetaBioNER and MetaBioNER-NEs work well272

in our experiments, outperforming the strong273

baseline with a large margin. MetaBioNER re- 274

weights the gradient update based on the task 275

difficulty and MetaBioNER-NEs trains the meta 276

learner exclusively on only sentences containing 277

NEs. It is not surprising to see both approaches 278

perform similarly when K is large, as the task 279

hardness basically tries to automatically down- 280

weight tasks with sentences containing less or no 281

NEs in a dynamic fashion based on the loss. 282

• It is interesting that both MetaBioNER and 283

MetaBioNER-NEs performs worse than 284

MetaNER w/o critic on the LINNAEUS cor- 285

pus. The statistics in Table 2 show that 87% 286

(table 2) of its sentences contains no NEs. Both 287

MetaBioNER and MetaBioNER-NEs simply 288

toss out those sentences implicitly and explicitly 289

respectively during training, which can attribute 290

to the performance loss. 291

5 Conclusion 292

We have proposed a simple yet effective method 293

that can effectively leverage the task hardness in- 294

formation to improve the effectiveness of the learnt 295

model in the few-shot NER settings. Experiments 296

on biomedical corpora have shown that the se- 297

quence labelling function derived from our tech- 298

niques have achieved substantial performance im- 299

provements compared to current baselines. As fu- 300

ture work, we will further investigate task hardness 301

strategies in the NLP settings, and apply the idea 302

to other sequence labelling architectures, e.g., deep 303

transformers. 304
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Algorithm 1 MetaBioNER
Require: p(T ) from source domains
Require: α, β, λ hyper-parameters
Require: m tasks batch size
1: Initialize θ, ϕ, ω
2: while not converge do
3: for i = 1, . . . ,m do
4: Ti ∼ p(T )
5: T S

i , T Q
i = Ti s.t. T S

i ∩ T Q
i = ∅

6: Llab
i ,Lcls

i = algorithm 2
7: Li = Llab

i + λLcls
i

8: end for
9: Γ1, . . . ,Γm = equation 2

10: θ ← θ − α
∑

i γ
θ
i∇θLi

11: ϕ← ϕ− α
∑

i γ
ϕ
i ∇ϕLlab

i

12: ω ← ω − α
∑

i γ
ω
i ∇ωLcls

i

13: end while
14: return Θ = (θ, ϕ)

A Appendix452

BiLevel Optimization Inspired by the meta-453

learning set-up in Li et al. (2019) and Balaji et al.454

(2018), MetaBioNER also includes an auxiliary455

network, named domain classifier network, to reg-456

ularize the meta-learning process and promote do-457

main generalization. The learning objective for458

the optimization process, similar to that of Li et al.459

(2019), can be described as460

Li = Llab (h (θ, ϕ) , Ti) + λLcls (f (θ, ω) , Ti) (3)461

where Llab (h (θ, ϕ) , Ti) denotes the sequence la-462

belling cross entropy loss obtained from the con-463

text encoder and tag decoder networks for the cur-464

rent task Ti, replicating the finetuning process; and465

the auxiliary classification loss Lcls (f (θ, ω) , Ti)466

serves as a regularizer to balance the contribution467

of this auxiliary loss to the learnt representations.468

The choice of the auxiliary network is vital to a469

successful implementation of the learning strategy.470

This network needs to satisfy two conditions: 1)471

the input is the output of the context encoder; and472

2) the output is a non-negative scalar so thatt one473

can backpropagate the gradients properly Li et al.474

(2019). The purpose of this auxiliary objective is475

to introduce a sub-task to the base meta-training,476

which regulates the learning process to ensure ag-477

nostic representations of Θ∗ are attained to min-478

imize the labelling function transfer risk. In our479

implementation, this auxiliary network, parame-480

terized by ω, consists of a fully connected layer481

used to predict which domain a sentence in a task482

Ti belongs to. The classification function f will483

henceforth be used to represent the composition484

of the context encoder network and the domain485

Algorithm 2 Support and query loss for Ti
Require: Ti =

(
T S
i , T Q

i

)
s.t. T S

i ∩ T Q
i = ∅

Require: θ, ϕ, ω current iteration parameters
Require: β, λ hyper-parameters
1: Initialize θi, ϕi, ωi with θ, ϕ, ω
2: for i = 1, . . . , adaptation steps do
3: Llab

i = L
(
h (θi, ϕi) , T S

i

)
4: Lcls

i = L
(
f (θi, ωi) , T S

i

)
5: Li = Llab

i + λLcls
i

6: θi ← θi − β∇θiLi

7: ϕi ← ϕi − β∇ϕiL
lab
i

8: ωi ← ωi − β∇ωiLcls
i

9: end for
10: Llab

i = L
(
h (θi, ϕi) , T Q

i

)
11: Lcls

i = L
(
f (θi, ωi) , T Q

i

)
12: return Llab

i ,Lcls
i

classifier network. 486

The full meta-learning algorithm is summarized 487

in Alg. 1 and Alg. 2. It is apparent that the support 488

set T S
i and query set T Q

i serve to imitate the fine- 489

tuning process for the unobserved task T ′
. By train- 490

ing the labeling function h repeatedly with multiple 491

tasks under the same constraints faced by the func- 492

tion during the finetuning process, MetaBioNER 493

searches for the optimal parameters Θ∗ that will 494

minimize the transfer risk to tasks from the new 495

domain. Detailed experimental setups The word 496

embeddings used are taken directly from BioWord- 497

Vec without any modifications (Chen et al., 2018; 498

Yijia et al., 2019). This project uses the method cre- 499

ated by Woolf (2018) to learn character embedding 500

from the word embeddings statistics. 501

For each of the variants that we considered, the 502

learnt parameters are trained with 10000 iterations 503

or until convergence. The learning rates α and β 504

are set at 1e−5, the depth of the BiLSTM is 1 with 505

a hidden size of 128; the gradient clip is set at 5; 506

momentum at 0.9; the optimizer is adamW with a 507

linear learning scheduler. Although MetaNER (Li 508

et al., 2020b) claims that λ = 0.8 yields the best 509

performance, we use λ = 1 as there are no signifi- 510

cant difference. The size for each task will depend 511

on the K-shots setting, e.g., if we are interested in 512

measuring the performance for 5-shots, we will the 513

support set size and query set size to be both set to 514

5 during meta-training. 515
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Iter Example Score
1 After discharge, he was finally given a diagnosis of PCH because a Donath-Landsteiner test was positive. 0.13

The hatcher incubators of both companies were also persistently contaminated with Salmonella livingstone and Salmonella thomasville...
...[gamma CACCC box binding factors] mediate [LCR-gamma] interactions which normally enhance [gamma-globin] and suppress [beta-globin gene]...
Toxicity was very mild with both regimens, although sedation was significantly higher in arm B (p less than 0.001).
This article is part of the Special Issue entitled ’Neurodevelopmental Disorders’. 0.34
Nuclear factor-kappaB (NF-kappa B) has been reported to regulate various genes involved in cancer and inflammation.
Construction of block copolymers for the coordinated delivery of [doxorubicin] and [magnetite] nanocubes.
The mice (10 per sex for each dose) was orally administered with neem oil with the doses of 0 (to serve as a control), 177, 533 and 1600 mg/kg/day for 90 days .
The true incidence of nonsteroidal anti-inflammatory drug-induced cystitis in humans must be clarified by prospective clinical trials. 0.22
There was marked QT prolongation greater than 0.55s in 13 patients, bradycardia less than 40 beats/min in 6 patients, dizziness and general fatigue in 1 patient each .
Severe complications developed in four patients.
These findings are consistent with the postulated mechanism for this unusual syndrome: acute diffuse crystallization of uric acid in renal tubules.

450 Stimulation of human neutrophils with [chemoattractants] [FMLP] or [platelet activating factor (PAF)] results in different but overlapping functional responses. 0.46
Of even more interest, [IkappaBalpha] overexpression inhibited the production of [matrix metalloproteinases 1 and 3] while not affecting their tissue inhibitor.
...more durable inhibition of HIV - 1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone.
Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes.
Here we report the fabrication of single-molecule transistors based on individual C60 molecules connected to gold electrodes. 0.18
The contractile effects of [oxytocin], prostaglandin F2 alpha and their combined use on human pregnant myometrium were studied in vitro.
Transcriptional activation of the [proopiomelanocortin gene] by [cyclic AMP-responsive element binding protein].
The difference between the effects of the two dose levels of Z.
She was monitored for one more day and then discharged with instructions to discontinue her diet pills 0.01
The Raf/Ras/ERK/MAPK pathway is known to be involved in NGF-induced outgrowth
Our analysis reveals that the oviduct is lined, along its entire length, by a monolayered epithelium comprised of squamous-type cells.
In one case study, Bramson et al.

Table 4: Examples of task hardness scores (computed from our method) for three tasks during the meta-training
procedure, this score was recorded for two separate iterations, 1 and 450. The score is based on a scale from 0 to 1,
the higher the score, the more challenging the task is. The NEs are put in brackets with red color for each sentence.
We can observe that this task hardness ranks all tasks relatively equally in the first few iterations, and as the learning
goes on, tasks that contain more NEs with more words will be given higher weights.

Disease Drug Gene Species Overall
NCBI BC5CDR BC5CDR BC4CHEMD JNLPBA BC2GM LINNAEUS S800

Multi-task (Yang et al., 2017) 0.829622 0.821031 0.917411 0.881651 0.754455 0.800032 0.851441 0.729993 0.823205
MetaNER (Li et al., 2020b) 0.843734 0.820414 0.906567 0.880616 0.752188 0.796445 0.838949 0.764133 0.825381

Table 5: MetaNER (Li et al., 2020b) vs. Multi-task (Yang et al., 2017). Performance (F1 Scores) for BioNER tasks
using 100% training data of the target domain corpus to finetune the model. We acknowledge that although Li et al.
(2020b) presented that MetaNER has on average an f1-score that is 2− 3% higher than multi-task learning does in
their paper, this might not translate to the performance for the domains we use in this study.
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