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Abstract

Few-shot learning has been a big challenge for
many classification tasks, where the final clas-
sifier is trained only with a few examples. This
problem amplifies when we apply the few-shot
setup to recognising named entity from differ-
ent domains, i.e., few-shot domain adaption for
NER. In this paper, we present a simple yet
effective MAML-based NER model that can ef-
fectively leverage the task hardness information
to improve the adaptability of the learnt model
in the few-shot setting. Experimental results on
biomedical datasets show that our model can
achieve significant performance improvement
over the recently published MetaNER model.

1 Introduction

To assist clinicians in their decision making, infor-
mation needs to be extracted correctly and appro-
priately from patients’ data such as Electronic Med-
ical Records (EMRs). This paper focuses on one
of the key tasks in this extraction process, named
entity recognition (NER), specifically, biomedical
named entity recognition (BioNER). Correct recog-
nition of biomedical named entities (NEs) can lead
to a reliable detection/extraction system, providing
a comprehensive picture of the patient’s health to
assist medical practitioners.

An optimal BioNER method should be robust
enough to perform well on unseen tasks across dif-
ferent domains in a lower-resource setting, as anno-
tating medical texts is extremely expensive, requir-
ing medical expertise. Existing BioNER methods
could struggle with this setting, as they are based
on powerful structures such as BILSTM-CRF (Xu
et al., 2019, 2018) or deep transformer (Lee et al.,
2019; Alsentzer et al., 2019). Those structures of-
ten have numerous trainable parameters and require
a large training dataset, and consequently, this im-
pedes the model’s generalizability and adaptability
to new tasks with very limited training samples,

preventing it from achieving good result outside of
the corpus and domain it was trained on.

A potential solution is to inject the prior “ex-
perience” to the adaptation process. Few works
have explored this area such as Li et al. (2020a)
and Li et al. (2020b), where the former followed
the optimization meta-learning strategy by (Finn
etal., 2017) and the latter introduced a feature critic
module similar to the work of Li et al. (2019).

Furthermore, it is sub-optimal to assume tasks
are equally important (i.e., randomly sample tasks)
in learning the meta model in meta training (Yao
et al., 2021), particularly when the number of train-
ing tasks in small. Indeed, the importance/hardness
of BioNER tasks can vary significantly, as shown
in Table 1. While some tasks might contain NEs,
many tasks do not (e.g., the last row in Table 1), and
hence, contribute little to learning the NER model.
Meanwhile, the task difficulty ties not only to the
number of entities in the task but also to the length
of those entities. Therefore, we argue that bioNER
tasks sampled in meta training should be treated
differently accroding to their hardness in order to
improve learning efficiency and the model perfor-
mance. To bridge the gap, we present a simple but
effective way of incorporating task hardness into
a meta-learning framework for BioNER tasks. We
show that our task hardness driven meta learning
approach for BioNER outperforms recently pub-
lished meta-learning based NER methods.

2 Related Works

For meta learning in NER tasks, both Li et al.
(2020a) and Li et al. (2020b) seek a robust represen-
tation for the sequence labeling function BiLSTM-
CRF by applying the meta-learning framework
(Finn et al., 2017), and the latter further includes
an auxiliary network to promote adversarial learn-
ing during the training process. However, dif-
ferent tasks can have different level of hardness
which both works have not yet addressed. Exist-



Example

Score

Stimulation of human neutrophils with [chemoattractants] [FMLP] or [platelet activating factor (PAF)] results in different but overlapping functional responses. | 0.46
Of even more interest, [IkappaBalpha] overexpression inhibited the production of [matrix metalloproteinases 1 and 3] while not affecting their tissue inhibitor.
...more durable inhibition of HIV - 1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone.

Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes.

The difference between the effects of the two dose levels of Z.

Here we report the fabrication of single-molecule transistors based on individual C60 molecules connected to gold electrodes. 0.18
The contractile effects of [oxytocin], prostaglandin F2 alpha and their combined use on human pregnant myometrium were studied in vitro.
Transcriptional activation of the [proopiomelanocortin gene] by [cyclic AMP-responsive element binding protein].

In one case study, Bramson et al.

She was monitored for one more day and then discharged with instructions to discontinue her diet pills 0.01
The Raf/Ras/ERK/MAPK pathway is known to be involved in NGF-induced outgrowth
Our analysis reveals that the oviduct is lined, along its entire length, by a monolayered epithelium comprised of squamous-type cells.

Table 1: Examples of task hardness scores (computed from our method) for three tasks during the meta-training
procedure, The score is based on a scale from 0 to 1, the higher the score, the more challenging the task is. The NEs

are put in brackets with red color for each sentence.

ing meta learning works deal with task hardness
via 1) actively ranking the tasks in term of diffi-
culty level (Yao et al., 2021; Zhou et al., 2020;
Liu et al., 2020; Achille et al., 2019); 2) design-
ing an adaptive task scheduler (Yao et al., 2021);
or 3) relying on generative approaches to quantify
the uncertainties of tasks Kaddour et al. (2020);
Nguyen et al. (2021). To our knowledge, we are
the first to incorporate the concept of task hardness
into meta-learning NER for Biomedical tasks.

3 BioNER with Task Hardness

Problem Setup Given a set of biomedical corpora
from multiple source domains (e.g., Drug, Gene,
Species, etc), and let p(7") be the underline distri-
bution of tasks, i.e., recognising biomedical named
entities from different domains. We aim to meta-
learn a sequence labelling function b : X — !
from a set of tasks sampled from p(7) so that it
can be generalised to a new task T sampled from
an unseen target domain (e.g., Disease). The la-
belling function h contains 1) a sentence encoder
parameterized with 6 (e.g., BILSTM-CNN) that
captures the contextual information about words,
and 2) a tag decoder parameterized with ¢ (e.g.,
CRF) that assigns the entity tags to these words?.
Thus, the learning objective is to search for the op-
timal ®* = {0, ¢} from the source domains with
a bi-level optimization framework commonly used
in meta-learning. Finally, this optimal ®* should
minimise the risk of transferring h from the source
domains to a new task 7~ from the target domain.

Task Generation To optimize for ©®* with
stochastic optimization, one first need to sample
from p(7), i.e., task generation. Each BioNER
task 7; in our setting is divided into a support set

X consists of a set of sentences, while ) indicates the
sequence label sets corresponding to these sentences.

>We consider the BIO tagging schema containing three
labels: B-Begin, I-Inside, and O-Outside.

7% and a query set 7'1Q with 7;° N 7'ZQ = (). Both
7;5 and 7;Q contain only K sentences respectively
sampled from the same domain, and K can be as
small as 5 or 10. Different from Li et al. (2020b),
we are interested in the scenarios where there are
a small handful of annotated sentences from the
target domain. Mimicking the same few-shot set-
ting in meta training has been shown to reduce the
PAC-Bayesian meta-learning error bound (Ding
et al., 2021). Meanwhile, randomly sampling 7;
from all the source domains will then allow us to
learn a good initialization of @* that can be quickly
adapted to a new unseen task, similar to (Li et al.,
2020a). We further consider the imbalance issue
caused by the NER few-shot setting. As shown in
table 2, the majority of the sentences in the biomed-
ical corpora does not contain any entities. Thus,
it is highly likely that the K randomly-sampled
sentences contain no entity, which can result in a
biased sequence labeller that always predict “O” in
the adaption phrase. To avoid this issue, we choose
sentences in 7;° to be those contains at least one
biomedical entity, which is shown to be effective.

Bilevel Optimization Following Li et al. (2020b,
2019), we also include a domain classifier as a critic
network to regularize the meta-learning process
and promote domain generalization. This critic
network, parameterized by w, consists of a fully
connected layer used to predict which domain a
sentence in a task 7; belongs to. The classification
function f will henceforth be used to represent
the composition of the sentence encoder network
and the critic network. The overall meta-learning
objective is

Li= L (h(8,0), T) + ML (F(0,0).T), ()
where \ control the trade-off between the two loss
functions. In meta-training time, we first generate
a batch of task from p(7), and for each 7;, we train
the model on 7;5 then validate the performance on
7;Q using our learning objective. Consequently,



Corpora Entity No. Unique % sentences
Type Tokens with NEs
NCBI (Dogan et al., 2014) Disease 12,128 55
BC5CDR (Li et al., 2016) Disease 23, 068 59
BC5CDR (Li et al., 2016) Drug 23, 068 65
BC4CHEMD (Krallinger et al., 2015) Drug 114,837 48
JNLPBA (Collier and Kim, 2004) Gene 25, 046 81
BC2GM (Smith et al., 2008) Gene 50, 864 51
LINNAEUS (Gerner et al., 2010) Species 34, 396 13
S800 (Pafilis et al., 2013) Species 205, 26 30

Table 2: Biomedical corpora used in our experiments
(Habibi et al., 2017; Lee et al., 2019; Zhu et al., 2018).

we gather the gradients from each 7; in the current
batch of task and make the update to the parame-
ters, finishing one iteration of the training process.
This procedure runs until no further improvement
can be made. The full meta-learning algorithm is
summarized in Algorithm 1 and 2 in the appendix.

Task Hardness We develop a simple but effec-
tive way of computing NER task hardness based
on the losses. Each task is re-weighted according
to the hardness while being used in the gradient
update. Specifically, we define the task difficulty
T = {+Y, 7? ,7} for task 7; with its correspond-
ing objective values as

Li

0 B Elab ﬁqls
Vi = Y= o Vi :
2L > L]

=5 ©)
where {~?, 7? .7} represent the task hardness
scores to update parameters {6, ¢, w}, respectively.
By incorporating task hardness into the optimiza-
tion process, MetaBioNER would gradually shift
the focus to more challenging tasks rather than
the ones that contribute little to no learning value,
e.g., a task that contains short sentences without
biomedical named entities, as multiplying the hard-
ness score with the corresponding gradient value
will force the gradient update to zero for those sen-
tences. Table 1 shows how our learning algorithm
ranks the contribution of each task towards the gra-
dient update.

4 Experimental Results

Datasets We used the pre-processed version of
those benchmark corpora used by BioBERT (Lee
et al., 2019), which are publicly available at
BioBERT’s github website®. They are shown in Ta-
ble 2. They are from four domains, Disease, Drug,
Gene and Species, each of which will be used as
the target domain. Rather than the general pre-
trained GloVe embeddings, we used BioWordVec
embeddings with with 200 dimensions (Chen et al.,
2018; Yijia et al., 2019), which is pre-trained based
on both PubMed database and clinical notes from

*https://github.com/dmis-lab/biobert

MIMIC-III. serves the purpose of the project well.

Experimental Settings & Baselines To analyze
the generalization ability of the learning framework
under a low-resource setting, we considered the
following experimental settings:

* The size of supporting set K: We used K €
{5,10,20,50,100}, since annotating medical
corpora is both expensive and time consuming,
requiring much domain expertise.

» Heterogeneous adaptation: Following Li et al.
(2020b), we considered the more hard task, i.e.,
heterogeneous adaptation that assumes each do-
main has a domain-specific decoder ¢ and only
the sentence encoder 0 is shared across domain
and meta-learned. In other words, ¢ is randomly
initialised in meta testing for each corpus in the
target domain and only @ is adapted.

We implemented two variants of our
MetaBioNER and compared them with MetaNER
(Li et al., 2020b) and its variant without feature
critic network.

* MetaNER acts as the major baseline. It is the
latest and most related work to ours, showing
the state-of-the-art performance. We followed
the parameter settings that the authors detailed
in their paper and tried to replicate the model
based on our understandings. We validated our
implementation by comparing its performance to
the multi-tasking method used in MetaNER.

* MetaNER w/o critic excludes the feature critic
network used in MetaNER, which indeed degen-
erate to MAML. We used the same parameter
settings as those in MetaNER.

* MetaBioNER uses similar parameter settings to
MetaNER, except that we re-calibrate the update
of {0, ¢,w} using equation (2), and weigh the
gradient update based on the task hardness scores
in meta training. *

* MetaBioNER-NEs makes use of clean sen-
tences, each of which contains at least one
biomedical entity. Its other parameter settings
as the same as MetaBioNER without task hard-
ness.

Note that corpora from the target domain are
unseen by the meta learner in the meta-training
phase. For instance, if the “Disease” domain is
treated as the target domain for adaptation, we only
perform meta-learning for ©* using the remaining

4 As second-order gradients cannot be obtained for the re-
current neural net unit; thus, we use both first-order approxima-
tions (Nichol et al., 2018) and implicit gradients (Rajeswaran
et al., 2019) to perform the update to {0, ¢, w}


https://github.com/dmis-lab/biobert

Disease Drug Gene Species Overall
NCBI BC5CDR | BC5SCDR  BC4CHEMD | JNLPBA BC2GM | LINNAEUS  S800

. | MetaNER 0.2729 0.2171 0.5784 0.2212 0.2175 0.2443 0.1214 0.1516 | 0.2530
3 | MetaNER w/o critic | 0.2750 0.2327 0.6136 0.2347 0.2535 0.2374 0.1262 0.2216 | 0.2744
% | MetaBioNER 0.3001 0.2698 0.6102 0.2464 0.3687 0.3326 0.1753 0.2840 | 0.3234
‘" | MetaBioNER-NEs 0.2825 0.2530 0.5517 0.2571 0.3776 0.3573 0.1557 0.2615 | 0.3121
» | MetaNER 0.3330 0.3688 0.6659 0.3360 0.3374 0.3265 0.3038 0.3164 | 0.3735
_:8 MetaNER w/o critic | 0.3785 0.3689 0.6880 0.3261 0.3394 0.3171 0.3441 0.2675 | 0.3787
< | MetaBioNER 0.3953 0.4178 0.6798 0.4227 0.4790 0.4489 0.2939 0.3703 | 0.4385
— | MetaBioNER-NEs 0.4386 0.4222 0.6605 0.3933 0.4371 0.4086 0.2474 0.3225 | 0.4163
» | MetaNER 0.4612 0.4722 0.7301 0.4383 0.4167 0.3926 0.4952 0.2977 | 0.4630
é MetaNER w/o critic | 0.4746 0.5115 0.6979 0.4200 0.3783 0.3680 0.5309 0.4173 | 0.4748
< | MetaBioNER 0.5631 0.5529 0.7472 0.4935 0.5466 0.5114 0.3657 0.4432 | 0.5280
| MetaBioNER-NEs 0.5540 0.5098 0.7305 0.4694 0.5375 0.5097 0.4843 0.5205 | 0.5394
» | MetaNER 0.5731 0.6106 0.7478 0.5082 0.5337 0.5058 0.6125 0.3607 | 0.5565
2 | MetaNER w/o critic | 0.5890 0.6052 0.7364 0.4788 0.4681 0.4540 0.6493 0.4040 | 0.5481
& | MetaBioNER 0.6250 0.5939 0.7737 0.5728 0.5666 0.5442 0.6369 0.5855 | 0.6123
‘» | MetaBioNER-NEs 0.6208 0.5847 0.7612 0.5781 0.6146 0.6016 0.6373 0.5445 | 0.6179
% | MetaNER 0.6005 0.6484 0.7975 0.5852 0.4993 0.4747 0.6581 0.3854 | 0.5811
g MetaNER w/o critic | 0.5637 0.6447 0.7943 0.5904 0.5257 0.4985 0.6880 0.4159 | 0.5902
o | MetaBioNER 0.6433 0.6489 0.7822 0.6395 0.6210 0.6064 0.6268 0.5416 | 0.6387
= | MetaBioNER-NEs 0.6699 0.6531 0.7773 0.6093 0.6338 0.6163 0.5956 0.5755 | 0.6413

Table 3: Average performance (F1 Scores) of the heterogeneous domain adaptation for BioNER. The best perfor-
mance is in boldface and the second best is underlined. All settings results are averaged from 20 distinct samples,
e.g., 5-shots score of MetaNER for NCBI corpus are averaged from 20 samples with each sample having 5 distinct
sentences used as 7: to optimize for the model initialized with parameters set learnt under MetaNER framework.

source domains “Drug”, “Gene”, “Species”. We
report the average F1 scores of five random runs of
each method considered. More detailed settings to
reproduce this work can be found in the appendix.

Results Table 3 presents the NER performance
of our MetaBioNER, MetaNER and their variants
under the heterogeneous adaptation setting. We
have the following observations:

* MetaNER w/o critics v.s. MetaNER: The per-
formance gap between MetaNER w/o critics and
MetaNER is negligible in most cases. This could
imply that learning a good feature-critic network,
(i.e., a domain classifier), needs more training
samples in meta training than what we have in
our experiments. Li et al. (2020b) assumed the
support set in each iteration contains all sentences
in the selected source domains in meta training.

* MetaNER v.s. MetaBioNER: By simply includ-
ing the task hardness in the gradient update,
MetaBioNER achieves a significant performance
improvement over MetaNER with an average of
4—5% improvement in terms of F1 score. In mul-
tiple cases (e.g., INLPBA 5 shots, BC2GM 10
shots, S800 100 shots, etc), the performance gain
of MetaBioNER goes up to 15% in terms of F1-
score. This comparison demonstrates that using
the task hardness to differentiate the importance
of each task in the gradient update is beneficial,
contributing largely to the NER performance.

* MetaBioNER v.s. MetaBioNER-NEs: Both
MetaBioNER and MetaBioNER-NEs work well
in our experiments, outperforming the strong

baseline with a large margin. MetaBioNER re-
weights the gradient update based on the task
difficulty and MetaBioNER-NE:s trains the meta
learner exclusively on only sentences containing
NEs. It is not surprising to see both approaches
perform similarly when K is large, as the task
hardness basically tries to automatically down-
weight tasks with sentences containing less or no
NEs in a dynamic fashion based on the loss.

e It is interesting that both MetaBioNER and
MetaBioNER-NEs performs worse than
MetaNER w/o critic on the LINNAEUS cor-
pus. The statistics in Table 2 show that 87%
(table 2) of its sentences contains no NEs. Both
MetaBioNER and MetaBioNER-NEs simply
toss out those sentences implicitly and explicitly
respectively during training, which can attribute
to the performance loss.

5 Conclusion

We have proposed a simple yet effective method
that can effectively leverage the task hardness in-
formation to improve the effectiveness of the learnt
model in the few-shot NER settings. Experiments
on biomedical corpora have shown that the se-
quence labelling function derived from our tech-
niques have achieved substantial performance im-
provements compared to current baselines. As fu-
ture work, we will further investigate task hardness
strategies in the NLP settings, and apply the idea
to other sequence labelling architectures, e.g., deep
transformers.
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Algorithm 1 MetaBioNER

Algorithm 2 Support and query loss for 7;

Require: p(7) from source domains
Require: «, 3, A hyper-parameters
Require: m tasks batch size

1: Initialize 6, ¢, w

2: while not converge do

3: fori:=1,...,mdo
4: Ti ~p(T)
5: TS, TE =Tist. TSNT2 =0
6: L1295 = algorithm 2
7: Li= L+ L5
8: end for
9: I'v,...,T'y = equation 2
10:

0+ 0—aX WVl
1l: g d—aX, 7Vl
12: W w—ad WVLLE
13: end while

14: return © = (0, ¢)

Require: 7; = (TiS,TiQ) st T2 N 7;Q =0
Require: 0, ¢, w current iteration parameters
Require: [, A hyper-parameters
1: Initialize 0;, ¢, w; with 0, ¢, w
2: for:=1,...,adaptation stgps do
3: ﬁliab :E(h(917¢1)77; )
L = L(f (0i,01), T:")
Li= L+ L5
0; <~ 0; — ﬁVQ,iﬁi
¢i < bi — BV, Li°
wi + wi — BV, L5"
: end for
10: £ = ¢ (h (0:, 61) xriQ)

11: £ :Li(f (ei,wi),TQ)

T
12: return L1 £

Vo Inh

A Appendix

BiLevel Optimization Inspired by the meta-
learning set-up in Li et al. (2019) and Balaji et al.
(2018), MetaBioNER also includes an auxiliary
network, named domain classifier network, to reg-
ularize the meta-learning process and promote do-
main generalization. The learning objective for
the optimization process, similar to that of Li et al.
(2019), can be described as

Li= L (h(0,0), T) +ALP (F (0.0),T) ()
where £'%° (h (0, ¢), T;) denotes the sequence la-
belling cross entropy loss obtained from the con-
text encoder and tag decoder networks for the cur-
rent task 7, replicating the finetuning process; and
the auxiliary classification loss £ (f (0,w), T;)
serves as a regularizer to balance the contribution
of this auxiliary loss to the learnt representations.

The choice of the auxiliary network is vital to a
successful implementation of the learning strategy.
This network needs to satisfy two conditions: 1)
the input is the output of the context encoder; and
2) the output is a non-negative scalar so thatt one
can backpropagate the gradients properly Li et al.
(2019). The purpose of this auxiliary objective is
to introduce a sub-task to the base meta-training,
which regulates the learning process to ensure ag-
nostic representations of ©* are attained to min-
imize the labelling function transfer risk. In our
implementation, this auxiliary network, parame-
terized by w, consists of a fully connected layer
used to predict which domain a sentence in a task
T; belongs to. The classification function f will
henceforth be used to represent the composition
of the context encoder network and the domain

classifier network.

The full meta-learning algorithm is summarized
in Alg. 1 and Alg. 2. It is apparent that the support
set 7;5 and query set 7;Q serve to imitate the fine-
tuning process for the unobserved task T. By train-
ing the labeling function h repeatedly with multiple
tasks under the same constraints faced by the func-
tion during the finetuning process, MetaBioNER
searches for the optimal parameters ©* that will
minimize the transfer risk to tasks from the new
domain. Detailed experimental setups The word
embeddings used are taken directly from BioWord-
Vec without any modifications (Chen et al., 2018;
Yijia et al., 2019). This project uses the method cre-
ated by Woolf (2018) to learn character embedding
from the word embeddings statistics.

For each of the variants that we considered, the
learnt parameters are trained with 10000 iterations
or until convergence. The learning rates « and /3
are set at 1°75, the depth of the BiLSTM is 1 with
a hidden size of 128; the gradient clip is set at 5;
momentum at 0.9; the optimizer is adamW with a
linear learning scheduler. Although MetaNER (Li
et al., 2020b) claims that A = 0.8 yields the best
performance, we use A = 1 as there are no signifi-
cant difference. The size for each task will depend
on the K-shots setting, e.g., if we are interested in
measuring the performance for 5-shots, we will the
support set size and query set size to be both set to
5 during meta-training.



Iter Example Score
1 After discharge, he was finally given a diagnosis of PCH because a Donath-Landsteiner test was positive. 0.13

The hatcher incubators of both companies were also persistently contaminated with Salmonella livingstone and Salmonella thomasville...

...[gamma CACCC box binding factors] mediate [LCR-gamma] interactions which normally enhance [gamma-globin] and suppress [beta-globin gene]...

Toxicity was very mild with both regimens, although sedation was significantly higher in arm B (p less than 0.001).

This article is part of the Special Issue entitled "Neurodevelopmental Disorders’. 0.34

Nuclear factor-kappaB (NF-kappa B) has been reported to regulate various genes involved in cancer and inflammation.

Construction of block copolymers for the coordinated delivery of [doxorubicin] and [magnetite] nanocubes.

The mice (10 per sex for each dose) was orally administered with neem oil with the doses of 0 (to serve as a control), 177, 533 and 1600 mg/kg/day for 90 days .

The true incidence of nonsteroidal anti-inflammatory drug-induced cystitis in humans must be clarified by prospective clinical trials. 0.22

There was marked QT prolongation greater than 0.55s in 13 patients, bradycardia less than 40 beats/min in 6 patients, dizziness and general fatigue in 1 patient each .

Severe complications developed in four patients.

These findings are consistent with the postulated mechanism for this unusual syndrome: acute diffuse crystallization of uric acid in renal tubules.

450 | Stimulation of human neutrophils with [chemoattractants] [FMLP] or [platelet activating factor (PAF)] results in different but overlapping functional responses. 0.46

Of even more interest, [IkappaBalpha] overexpression inhibited the production of [matrix metalloproteinases 1 and 3] while not affecting their tissue inhibitor.

...more durable inhibition of HIV - 1 replication than was seen with the [NF-kappa B] inhibitors alone or the [anti-Tat sFv intrabodies] alone.

Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes.

Here we report the fabrication of single-molecule transistors based on individual C60 molecules connected to gold electrodes. 0.18

The contractile effects of [oxytocin], prostaglandin F2 alpha and their combined use on human pregnant myometrium were studied in vitro.

Transcriptional activation of the [proopiomelanocortin gene] by [cyclic AMP-responsive element binding protein].

The difference between the effects of the two dose levels of Z.

She was monitored for one more day and then discharged with instructions to discontinue her diet pills 0.01

The Raf/Ras/ERK/MAPK pathway is known to be involved in NGF-induced outgrowth

Our analysis reveals that the oviduct is lined, along its entire length, by a monolayered epithelium comprised of squamous-type cells.

In one case study, Bramson et al.

Table 4: Examples of task hardness scores (computed from our method) for three tasks during the meta-training
procedure, this score was recorded for two separate iterations, 1 and 450. The score is based on a scale from 0 to 1,
the higher the score, the more challenging the task is. The NEs are put in brackets with red color for each sentence.
We can observe that this task hardness ranks all tasks relatively equally in the first few iterations, and as the learning
goes on, tasks that contain more NEs with more words will be given higher weights.

Disease Drug Gene Species Overall
NCBI BC5CDR | BC5SCDR  BC4CHEMD | JNLPBA BC2GM | LINNAEUS S800
Multi-task (Yang et al., 2017) | 0.829622  0.821031 | 0.917411 0.881651 0.754455  0.800032 0.851441 0.729993 | 0.823205
MetaNER (Li et al., 2020b) 0.843734  0.820414 | 0.906567 0.880616 0.752188  0.796445 0.838949 0.764133 | 0.825381

Table 5: MetaNER (Li et al., 2020b) vs. Multi-task (Yang et al., 2017). Performance (F1 Scores) for BioNER tasks
using 100% training data of the target domain corpus to finetune the model. We acknowledge that although Li et al.
(2020Db) presented that MetaNER has on average an f1-score that is 2 — 3% higher than multi-task learning does in
their paper, this might not translate to the performance for the domains we use in this study.



