Learning Human Preferences without Interaction for
Cooperative AI: A Hybrid Offline-Online Approach

Haitong Ma Haoran Yu
Shanghai Jiao Tong University Shanghai Jiao Tong University
Shanghai Innovation Institute Shanghai, China
Shanghai, China harayn4@gmail.com

mahaitong@sjtu.edu.cn

Haobo Fu Shuai Li*
Tencent Al Lab Shanghai Jiao Tong University
Shenzhen, China Shanghai Innovation Institute
haobofu@tencent.com Shanghai, China

shuaili8@sjtu.edu.cn

Abstract

Reinforcement learning (RL) for collaborative agents capable of cooperating with
humans to accomplish tasks has long been a central goal in the RL. community.
While prior approaches have made progress in adapting collaborative agents to
diverse human partners, they often focus solely on optimizing task performance
and overlook human preferences—despite the fact that such preferences often
diverge from the reward-maximization objective of the environment. Addressing
this discrepancy poses significant challenges: humans typically provide only a
small amount of offline, preference-related feedback and are unable to engage
in online interactions, resulting in a distributional mismatch between the agent’s
online learning process and the offline human data. To tackle this, we formulate
the problem as an online&of fline reinforcement learning problem that jointly
integrates online generalization and offline preference learning, entirely under an
offline training regime. We propose a simple yet effective training framework built
upon existing RL algorithms that alternates between offline preference learning
and online generalization recovery, ensuring the stability and alignment of both
learning objectives. We evaluate our approach on a benchmark built upon the
Overcooked environment—a standard environment for human-agent collabora-
tion—and demonstrate remarkable performance across diverse preference styles
and cooperative scenarios.

1 Introduction

Humans often exhibit diverse behaviors when performing the same task, driven by individual pref-
erences. Prior work refers to these variations as preference styles [Pugh et al., 2016, |Cully and
Demiris, 2017, Mao et al.l [2024]]. In multi-agent cooperative settings—especially multiplayer
games—designing agents that can adapt to a wide range of human preferences has become a growing
focus in reinforcement learning (RL) [Klien et al.| 2004} Yuan et al., [2023| [Dafoe et al., [2021]]. To
avoid the cost of human-in-the-loop training, recent research frames this challenge as an ad hoc
team play [Stone et al.,2010] or a Zero-Shot Coordination (ZSC) problem [Hu et al.| 2020, Mirsky
et al., |2022]]. However, ZSC methods typically optimize only for environment rewards, ignoring

*corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

user-specific preferences, and thus often produce behaviors misaligned with individual styles [Yu
et al.} 2023 [Liu et al.;,|2025]]. For instance, in Overcooked [Carroll et al., 2019]], a human player may
prefer cooking potatoes, while an agent trained solely for reward maximization might independently
cook tomatoes—resulting in poor coordination despite high task performance. Moreover, ZSC
assumes no prior knowledge of human behavior, limiting adaptation to preference-driven dynamics.
With the rise of multiplayer gaming, the assumption that human users are fully unobservable is
becoming outdated. Many games now allow players to express stylistic preferences through post-hoc
feedback—most notably the “like” mechanism, where users endorse teammates after a match. These
liked trajectories implicitly reflect human preferences and are widely available in real-world games
such as League of Legends, Honor of Kings, and Brawl Stars, offering a scalable and lightweight
source of preference-aligned data. This enables the training of cooperative agents that not only
perform effectively but also adapt to diverse human styles.

Importantly, in many real-world games such as 5v5 matches in League of Legends, it is impractical
to model or simulate the behavior of teammates and opponents. Therefore, our setting focuses on
learning solely from the decisions of cooperative agents recorded in offline trajectories, without relying
on access to or simulation of other players’ strategies. We formulate this as a novel online&of fline
RL problem under three assumptions: (1) access to an environment that supports online interaction,
(2) availability of a policy pool for training the cooperative agent, and (3) a small set of offline
trajectories reflecting human preferences. The objective is to train a cooperative agent that both
generalizes to unseen human partners and aligns with preferences expressed in the offline data. Unlike
prior RL problems that combine online and offline learning, our setting introduces a new challenge:
balancing zero-shot generalization with preference alignment. Learning proceeds in two distinct
modes—online interaction for generalization and fully offline optimization for preference adaptation.
The online&of fline RL problem introduces several unique difficulties:

Challenge 1: Limited preference data and no human interaction. The number of labeled
preference trajectories is small, and the agent cannot interact with the target humans online. If
humans are modeled as part of the environment, this leads to unknown transition dynamics. Existing
methods typically learn a reward model from limited data and optimize it online [Wirth et al.,|2017,
Arora and Doshi, [2021]], which is infeasible here. Fully offline methods also struggle in this low-data
regime—direct imitation on a few labeled trajectories often overfits and fails.

Challenge 2: Objective mismatch between generalization and preference alignment. Offline
preference data reflect distributions that differ from those of reward-maximizing agents. Optimizing
for alignment can therefore harm generalization across diverse human partners. Existing approaches,
including offline preference methods [Lee et al., 2021} |Liu et al., [2025| |Abdelkareem et al., 2022]]
and ZSC methods like HSP [Yu et al.l 2023|] and MEP [Zhao et al., [2023]], do not explicitly address
this trade-off.

To address the aforementioned challenges, we draw inspiration from the pretraining and supervised
fine-tuning (SFT) paradigm widely adopted in natural language processing (NLP) [Devlin et al.|
2019} Radford et al.l 2019, [Raffel et al., 2020]. We propose a three-stage hybrid framework that
integrates online generalization training with offline imitation on preference-labeled trajectories.
Conceptually, the online training phase mirrors language model pretraining, while offline imitation
corresponds to downstream SFT. We observe that applying online generalization recovery after offline
imitation allows the pretrained agent to retain part of the learned preferences. Building upon this
insight, we introduce a training strategy—Epoch-wise Alternation Recovery (EAR)—which alternates
between 1-epoch lightweight behavior cloning and generalization recovery. This strategy enables
cooperative agents to maintain strong generalization capabilities while effectively incorporating
human preferences. To evaluate the ability for the online&of fline RL problem, we further develop
a dedicated benchmark based on the Overcooked environment. Extensive experiments demonstrate
the effectiveness of our approach, showing consistent improvements over competitive baselines across
multiple evaluation metrics.

2 Related work

2.1 Online generalization ability learning

In game Al, effective cooperation requires agents to generalize across diverse human partners,
adapting to various strategies while completing tasks. This challenge mirrors that of language models,

which achieve adaptability through large-scale pretraining on diverse data [Devlin et al.,2019| Radford
et al., 2019} |Raffel et al.,2020]. In reinforcement learning, this generalization challenge is formalized
as the ZSC problem, where agents aim to maximize returns when paired with unseen partners. The
FCP framework [Strouse et al., [2021]] uses policy pool to expose agents to diverse behaviors during
training, while MEP [Zhao et al.| [2023]] extends this through entropy-maximized policy diversification.
HSP [[Yu et al., [2023]] further enhances robustness by modeling human preferences as biased. While
these ZSC methods improve generalization, they largely overlook preference learning—the ability to
adapt to user-specific preferences. As a result, agents trained only for ZSC problem may struggle in
personalized human-agent interactions.

2.2 Offline preference learning

Offline preference learning has gained increasing attention, particularly in natural language pro-
cessing (NLP). Direct Preference Optimization (DPO) [Raffel et al., |2020] reframes reinforcement
learning with human feedback (RLHF) [[Achiam et al., 2023, [Wang et al., [2024b] as a fully offline
supervised objective, encouraging models to prefer higher-quality responses. Kullback-Leibler Target
Optimization (KTO) [Hu and Hongl 2013|] further advanced this by removing the need for explicit
preference pairs, while Inverse Preference Optimization (IPO) [Azar et al.| [2024]] enhanced DPO’s
stability by refining its objective to mitigate overfitting. These methods are well-suited for large
language models, which retain strong capabilities even after offline fine-tuning. In traditional RL,
preference alignment has focused on two offline paradigms: offline imitation learning [[Torabi et al.,
2018}, [Kumar et al.,|2020, [Prudencio et al., 2023]], which directly learns from offline trajectories, and
preference-based approaches like offline PBRL [[Wirth et al., 2017} [Lee et al., 2021, |/Abdelkareem
et al., 2022]] and IRL [Ho and Ermon, {2016/ [Fu et al., 2017, |Arora and Doshil [2021]], which aim to
train a reward function from labeled data. However, both methods require large amounts of offline
data, making them unsuitable for online&of fline problem with limited data.

2.3 Online RL combined with offline data

The proposed problem requires combining online generalization with offline preference learning—a
setting only partially addressed in prior RL research. Existing approaches can be grouped into three
categories. The first incorporates offline data into online training via shared replay buffers to improve
sample efficiency and reduce interaction costs [Song et al., [2022, Ball et al., 2023|]. The second,
offline-to-online RL [Nakamoto et al., 2023| Zhang et al.| 2023, [Wang et al., 2023, pretrains on
large offline datasets and then fine-tunes online using techniques such as balanced sampling [[Lee
et al.,[2022} |Guo et al., [2023]] and adaptive conservatism [Kostrikov et al., 2021, |[Nakamoto et al.|
2023]] to mitigate distributional shift [Prudencio et al., 2023} [Levine et al.,|2020} |/Andres et al., 2025].
The third, online-to-offline RL [Liu et al.,2025]], begins with online training for task performance
and then uses limited human feedback to fit reward models for alignment. However, these methods
typically assume access to either large-scale offline data or online human interaction—assumptions
that do not hold in our setting. In contrast, our multi-agent setting prohibits online interaction with
users and offers only a small set of positive-only preference data, necessitating new solutions tailored
to this constrained regime.

3 Preliminaries

3.1 Decentralized Markov Decision Process

A general n-player multi-agent game can be modeled as a Decentralized Markov Decision Process
(Dec-MDP) [Bernstein et al., 2002, [Wang et al., 2024a], defined by the tuple (S, A, p, T, r,). Here,
S is the state space, A = A; X - -+ X A, is the joint action space, and p is the initial state distribution.
The transition function T'(s’ | s, a) defines the probability of reaching s’ from (s, a), and (s, a)
is the shared reward. The discount factor v € [0, 1) determines the weight of future rewards. Let
m = {m,..., 7, } denote the joint policy, where each 7;(a’ | s) specifies the action distribution
for agent i. At each timestep ¢, agents act independently: ai ~ m;(- | s;), yielding a joint action
ay = {a},...,al'}.

3.1.1 Cooperative agent generalization and policy pool

In cooperative multi-agent settings, agents must coordinate their behaviors through a joint policy
to maximize the cumulative return. In the ZSC problem, given a set of previously unseen human

policies 7w = {7,...,m,_1}, the objective is to learn a cooperative agent 7 that can effectively
collaborate with these human partners to complete tasks and optimize the overall reward. This
cooperative objective is referred to as the generalization target.

oo
A _H t A H
max Jo(m?,) = m%‘XESt’atNﬂ-A lZ’y R(ss,a;, ay)] ,)
s T =0
where s; denotes the environment state at timestep ¢, and a; = {a;,a?,...,al} is the joint action
taken by all n agents. The subset af’ = {a},a?,...,a? '} represents the actions taken by the n—1

unknown human policies, and a;* is the action taken by the cooperative agent 7 at timestep t.

Since directly obtaining the true distribution of human policies Py is often infeasible, prior works
[Strouse et al.l 2021} [Yu et al., 2023| [Zhao et al., [2023|] typically resort to constructing a policy
pool—a collection of agents with diverse behaviors—to approximate this distribution, denoted as
Py. The cooperative agent is then trained to collaborate with agents sampled from this policy pool,
enabling it to generalize to unseen human partners drawn from the true distribution. Under this
approximation, the generalization objective can be rewritten as:

ma Jy(r*,w) = max B g, [J(r,)] @

where the policy pool acts as a surrogate for diverse human partners. During training, we follow
the setting introduced in HSP [[Yu et al., 2023|], where the cooperative agent interacts online with
agents sampled from the policy pool. The collected trajectories are then used to update the agent
using MAPPO [Yu et al., 2022] as the underlying reinforcement learning algorithm.

3.2 Post-match “like” assumption and preference learning objective

We assume a post-match “like” mechanism, where after each game episode, a human user may
provide positive feedback (a “like”) to one of the cooperative agents if its behavior aligns with their
preferences. Accordingly, for each user h, we can collect a small set of positively labeled trajectories,

N
i T h

denoted as {{(si, a%)} 1 }i:1, where T is the trajectory length and NV}, is the number of liked

trajectories. Each (s%, a}) pair represents an action at state s} that was endorsed by h.

Given only these sparse, user-specific demonstrations, we define the preference learning objective as

the task of imitating the behaviors favored by the user. Formally, for a cooperative policy , the goal
is to maximize the likelihood of the user-approved behavior:

Ny, T
max Jp(rh) = maxzzlogﬁ(ai | 1), S
4 T oim1 =

which corresponds to standard behavioral cloning over a limited set of positively labeled trajectories.

Crucially, although these trajectories are obtained through direct interaction with user h, the user is
not available during training. Thus, the learning process must proceed entirely offline, relying solely
on this small collection of feedback for preference learning.

4 Method

Our approach is inspired by the pretraining—SFT paradigm widely used in NLP, which bears a
structural resemblance to our cooperative RL setting: generalization with a policy pool parallels large-
scale self-supervised pretraining, while offline preference learning from user-approved trajectories
resembles SFT on task-specific data.

Building on this insight, we propose a three-stage framework (Figure[I): (1) Pretraining with a policy
pool to acquire generalizable cooperative behavior; (2) Preference learning with recovery, where
offline behavior cloning on human-preferred trajectories is followed by generalization recovery to
mitigate performance degradation; (3) Epoch-wise alternation recovery, which incrementally refines
preference alignment by interleaving imitation and recovery in successive epochs.

This framework enables the agent to internalize user preferences without compromising its ability to
coordinate with unseen partners. We describe each stage in detail below.

Policy pool | . [1] Pretrain initialization -~ -] C00per‘a’iive
- v agen
Online recovery &

E Epoch-wise

Alternation —_—————

Generalization (0 Trajs for
<> | evaluation

S s | ranra :
|("132)‘11ke’ tr‘aj;} :\

|
|
|
|
Biased style /

Trade-off 4—:

(/ ____________________________ | 2N
: :.& _ Post-match|'like' rating R ° :

- L . i |
: C) 8] online interaction - I
| . User |
\ Normal scenarios //

Figure 1: The online&of fline RL problem and three-stage approach

4.1 Pretrain: generalization prior for cooperative agents

Our pretraining stage corresponds to the online interaction phase described in Section[3.1.1} Specifi-
cally, the cooperative agent interacts with a diverse policy pool consisting of previously deployed
agents and is optimized using the MAPPO algorithm. This process aims to enable the agent to
adapt to various human proxies while ensuring task completion. While conceptually similar to the
pretrain-and-SFT paradigm in NLP, our setting in Game Al differs in several key aspects. Pretraining
aims to enhance the model’s generalization ability, but cooperative agents typically have significantly
fewer parameters than language models, making their training less stable. Moreover, since the
objective of preference learning is often misaligned with that of environment reward maximization,
offline preference learning frequently causes a notable drop in generalization performance—referred
to as “unlearning” [[Kumar et al.| [2020, [Kostrikov et al., [2022].

Despite these challenges, pretraining is crucial. Applying preference learning to a randomly ini-
tialized agent with limited user data leads to severe overfitting. To analyze this empirically, we
compare a pretrained agent and a randomly initialized agent by performing behavior cloning to
convergence on a small number of offline trajectories from three distinct preference styles. After
that, both agents undergo a generalization recovery phase via online interaction with the policy
pool. As shown in Figure[2] the blue curve represents the agent’s average environment return when
cooperating with partners from the policy pool. The results indicate that achieving comparable
performance without pretraining requires substantially more training. Furthermore, when evaluated
under specific preference styles, agents trained from scratch often fail to recover the generalization
performance of their pretrained counterparts, even after extensive optimization. This suggests that,
for smaller models, pretraining not only enhances data efficiency but also prevents irreversible loss of
generalization. Overfitting to user preferences from scratch may impair the agent’s ability to exhibit
broadly cooperative behavior.

4.2 Preference learning with recovery: empirical analysis of the conflict between offline
behavioral cloning and online generalization

To simultaneously pursue preference learning convergence and preserve generalization ability (i.e.,
maintaining performance comparable to the agent initialized from pretraining), as shown in Algo-
rithm [I|the second stage of our algorithm first performs offline behavior cloning on human-preferred
trajectories, followed by a generalization recovery phase to mitigate potential performance degrada-
tion. Although the optimization objectives of these two procedures are not entirely consistent, our
experiments in this section demonstrate that such a two-step design helps achieve a better balance
between preference learning and generalization preservation.

—— Return, w/o Pretrain -== Return, w Pretrain Accuracy, w/o Pretrain Accuracy, w Pretrain ===+ Original Pretrain
Style A Style B Style C

on Policy Pool

ent R

0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Episodes Episodes Episodes

Figure 2: Recovery dynamics after behavior cloning. Dashed lines indicate pretrained agents, while
solid lines indicate agents trained from scratch (no pretraining). Blue curves represent the average
environment return over the policy pool, and curves represent the action accuracy of the same
pretrained agent evaluated on three distinct preference datasets (“like” datasets). Horizontal dotted
lines denote the initial performance of the pretrained agent.

To better understand the optimization dynamics between preference learning and generalization, we
further analyze their interaction using the same experimental setup described earlier. In addition to
environment return, we also track the agent’s action agreement accuracy on the “liked” trajectories,
which indicates how well the agent maintains alignment with user preferences throughout training.

As illustrated in Figure |2} we visualize the trade-off using both metrics. We observe that when a well-
generalized cooperative agent is trained to convergence on the preference dataset, its environment
return can drop by one-third or more when evaluated with the policy pool. In contrast, recovering
generalization is considerably slower, as the agent must relearn how to cooperate with diverse partners
across a range of game situations.

Empirically, fully recovering generalization often requires tens of thousands episodes of online
training. Moreover, this recovery process can partially degrade the agent’s preference learning
performance. Interestingly, after the recovery phase, the agent does not entirely forget its prior
alignment. Its accuracy on the “liked” trajectories remains higher than that of the initial pretrained
agent, indicating that some preference information is retained. We observe a similar phenomenon
under lightweight preference learning: even with only one epoch of behavioral cloning, the agent
retains partial preference learning after the recovery phase. Detailed results are presented in appendix
[Al This observation motivates the third stage of our approach—an alternating training strategy that
consistently interleaves preference learning with generalization recovery to achieve a stable and
effective integration of both objectives.

4.3 Epoch-wise alternation recovery

Based on the above observations, we propose epoch-wise alternation recovery, where each round
consists of one epoch of BC followed by generalization recovery. This strategy allows for further
improving preference alignment while preserving generalization.

Building on the three stages of our approach, we outline a practical training algorithm (see Algo-
rithm [T)). Starting from a pretrained agent that has converged on the policy pool (Lines [3), we first
record its average environment return as the generalization baseline. In the second stage, we perform
sufficient behavior cloning on the preference trajectories until convergence and record the correspond-
ing accuracy on the offline dataset (Line {}{5). We then recover the agent’s generalization ability
to match that of the original pretrained agent. In the third stage, we apply epoch-wise alternation
recovery—repeating one epoch of BC followed by recovery—until the preference accuracy reaches
the level obtained after full convergence in the second stage (Lines [6HI0).

This epoch-wise alternation cycle is repeated until either the preference accuracy recovers to the level
achieved in the second stage or a predefined maximum number of iterations is reached. By adopting
this shallow and incremental training scheme, we enable gradual improvement in both generalization
and preference alignment, while maintaining overall training stability.

Algorithm 1 Epoch-wise alternation recovery

1: Input: Policy pool {frf j]‘/il, offline preference data D, environment &, initial agent 7;
2: Output: Well-trained cooperative agent 7;
3: Train 7 with {#f}; record average return rg.,; # Stage |
4: BC train 7 on D until convergence; record accuracy 7; # Stage 2
5: Recover 7 with policy pool on £ until avg. return > 4., or budget exhausted;
6: repeat # Stage 3: epoch-wise alternation recovery
7: Train 7 on D for 1 epoch BC;
8: Recover 7 with policy pool on £ until avg. return > 7., or budget exhausted;
9: Evaluate accuracy 7¢y, 0n D;
10: until 7¢y,» > 1 or budget exhausted;
11: return Final policy 7

5 Experiments

In this section, we aim to answer the following research questions through the experimental evalua-
tions: (1) Can the 3-stage approach effectively align the cooperative agent’s behavior with that of a
target human proxy, producing the desired interaction style? (2) Beyond the specific human proxy
used for preference learning, does the aligned agent retain its ability to collaborate effectively with
other unseen human proxies? (3) Is the epoch-wise alternation recovery necessary, and how does it
influence the agent? Can the this stage be completed within a limited training budget?

5.1 Environment and human proxy with different preferences

Following prior works [Strouse et al.| 2021 [Yu et al. [2023| |[Zhao et al.l |2023]], we adopt the
Overcooked environment [Carroll et al., 2019] to simulate two-player cooperation. In this setting,
a cooperative agent and a human proxy must coordinate to complete cooking tasks within a time
limit. Agents perform actions such as moving, picking up, and delivering ingredients to prepare
and serve soups. Success depends on coordination rather than individual skill—agents that perform
well in self-play may still fail to collaborate effectively with a human proxy. More details about the
environment will be shown in appendix

To simulate user preferences, we follow the framework used in HSP and ZSC-Eval, modeling
preferences as latent preference reward functions that deviate from the environment-defined reward.
As human preferences are typically event-centric, we induce stylistic diversity by assigning biased
weights to specific gameplay events. Formally, we define the reward class as:

R ={Ry : Ru(s,a1,a2) = ¢(s,a1,a2) "w, |w|oo < Cmax}, %)

where ¢(s, a1, a2) denotes features of state-action pairs and w encodes preference bias. A sampled
reward R,, induces a human proxy policy by reaching a Nash equilibrium via self-play with a standard
cooperative agent, yielding a partner policy with consistent, biased preferences.

5.2 Benchmark, baselines, evaluation protocols

Benchmark. Following the assumptions in HSP [Yu et al.;|2023]], we construct a set of [V biased
reward functions { R}, }Y ;. For each R!,, we train a policy pair (7}, 7%) via self-play to reach a
Nash equilibrium. Each pair is used to generate two trajectories, yielding a 2N -sized offline dataset.
To define human preferences, we randomly sample three biased reward functions from { R} and
use each to evaluate all trajectories. For each sampled function, we retain the trajectories whose
biased return reaches at least 80% of the maximum return under that preference, and treat them
as liked trajectories. The corresponding human-side policies {7} in these trajectories serve as
test-time collaborators for evaluating the cooperative agent. To better simulate the diversity of human
preferences, we employ multiple stylistically similar human proxies to introduce behavioral variability.
For both pretraining and recovery, we adopt the same policy pool as used in the FCP [Strouse et al.|
2021], which comprises suboptimal checkpoints from self-play under a neutral reward. This ensures
that preference adaptation arises purely from the offline trajectories. We conduct experiments on two
Overcooked layouts (Coordination Ring, Many Orders), with detailed layout configurations provided

in Appendix B] For each setting, results are averaged over three runs with different random seeds to
ensure robustness. Hyperparameter details are provided in Appendix [C]

Baselines We denote the benchmark-provided golden trajectories as Offline Trajs. We compare
the proposed method against the following baselines commonly used in preference-aware multi-agent
reinforcement learning: (1) Behavior Cloning (BC) [Torabi et al. 2018]], which directly trains
an agent via behavior cloning on the offline preference trajectories without any pretraining; (2)
ZSC (Pretrain) [Strouse et al., 2021]], where a generalizable cooperative agent is trained using
FCP, a representative ZSC method. To control for the effect of implicit preference alignment
during pretraining, we intentionally select a sub-optimal checkpoint; (3) BC on Pretrained Agent
(Pretrain + BC), which initializes the agent with the FCP-pretrained agent and further fine-tunes it
using behavior cloning on the offline preference data; (4) BC and Recovery on Pretrained Agent
(Pretrain + BC + Recover), which first applies behavior cloning on the FCP-pretrained agent and
subsequently performs online generalization recovery using interaction with a diverse policy pool.

Evaluation protocols. The evaluation focuses on the cooperative agent’s performance when paired
with human proxies in rollouts. We propose two metrics aligned with our dual objectives of task
competence and preference learning:

* Environment Return. This metric evaluates the agent’s task completion capability in the Over-
cooked environment, quantified by the total number of successfully delivered soups. Specifically,
EnvReturn = 20 X Ngelivered> Where Ngelivered denotes the number of completed deliveries.

* Preference Score. This metric measures the agent’s alignment with human preferences, modeled
as event-centric rewards. Each preference model assigns biased weights to key gameplay events
such as picking up ingredients, cooking, or delivering dishes. The preference score is computed as:

PreferenceScore = Z freq(e;) - score(e;),

7
where e; denotes the i-th event type, freq(e;) its observed frequency, and score(e;) the corre-

sponding reward weight determined by the preference function R,,. Detailed event definitions and
scoring schemes are provided in Appendix [B]

5.3 Preference learning performance (RQ1)

The main experimental results are summarized in Table|[T]
The two metrics respectively evaluate the agent’s general-

Offline trajs

ization capability and its alignment with user preferences oo
given limited supervision. The results highlight the im- - cenes tiackease) .
portance of pretraining: agents trained purely via BC on a preference learing

small offline dataset often fail to complete tasks effectively.
Likewise, ZSC-based methods trained without access to
preference-specific data tend to exhibit generic behavior
styles and struggle to coordinate efficiently with human
agents whose actions deviate from those seen in the policy
pool. Simply fine-tuning a pretrained agent via BC results
in unstable performance, with some preference styles lead-
ing to degraded task execution. This further emphasizes Figure 3: UMAP visualization for event-
the necessity of incorporating a recovery phase to restore .nt vectors from Style A. The centers
generalization. In addition, we conducted supplemen- ¢ hree clusters are denoted as black
tary experiments with diversity-oriented ZSC approaches edges.

(MEP [Zhao et al., 2023]] and TrajDi [Lupu et al., 2021]),

which primarily enhance policy pool diversity without leveraging offline preference data. Their
relatively weaker performance on our benchmark further highlights the necessity of incorporating
offline preference learning. Detailed results are provided in Appendix [F}

At the behavioral level, we further analyze the agent’s stylistic alignment by computing event-count
vectors from trajectories generated by the offline dataset, the pretrained cooperative agent, and our
method. We then apply UMAP for dimensionality reduction and visualization. As shown in Figure 3]
trajectories generated by our method (points) are closer to those in the offline dataset (red

Table 1: Performance across different preference styles. Each method is evaluated using Preference
Score (1) and Environment Return (7). Results are reported on the layout Coordination Ring; results
on Many Orders are provided in Appendix D}

Method Style A Style B Style C

Pref. Score Env. Return Pref. Score Env. Return Pref. Score Env. Return
Offline Trajs 670.0 225.0 235 121 552 224
Pretrain 111.3+£66 476+1.2 1293 £3.8 60.9 +2.6 188.7+6.2 84.0+34
Pretrain + BC 203.54+39.7 532+128 178.0+£33.7 825420.8 120.7+50.0 34.6+158
BC Only 954 +34.9 13.7 £ 7.1 9774202 31.9+125 4424423 4.6 £6.5
Pretrain + BC + Recover 2243 + 66.0 82.0+242 187.7+18.5 963 +109 252.0+941 109.7+3.8
EAR 2747+ 740 88.6 £31.0 2003+17.0 103.6+94 259.0+99 1103+33

points), indicating better alignment with user preferences. Moreover, by comparing the centroids
of each distribution, we observe a clear shift from the pretrained agent’s behavior (blue points)
toward that of the offline datasets. This directional shift provides additional evidence that our method
effectively integrates stylistic preferences into the cooperative agent’s behavior. More detailed case
analyses are provided in the Appendix [E]

5.4 Generalization ability (RQ2)

Beyond preference learning, we evaluate the
agent’s task performance by measuring its environ-

ment return when cooperating with various style-
specific proxy agents. As shown in Table[I] com-
pared to the agent trained with standard pretraining
alone, our method achieves strong performance
when cooperating with the proxy agents used to
generate the offline trajectories. In certain cases,
such as style B, applying behavior cloning directly

Table 2: Average environment returns (1) across
all human proxy agents 7}, (the N biased human
proxies defined in the benchmark) under differ-
ent methods and preference styles. As the pre-
trained agent is style-agnostic, its performance
is reported only once.

on the pretrained agent also yields competitive per- Preference BC Pretrain + BC EAR
formance. To verify the necessity of the recover Style A S1+23 146436 862+ 126
: y ty Y StyleB 121450 313+97 77.1+25
phase and to more comprehensively evaluate the gyje ¢ 30442 2864198 73.9+85
agent’s generalization ability, we further test the co- -
Pretrain 727+ 0.1

operative agents against benchmark proxy agents
that were not involved in the offline preference

data. The results in Table 2] show that our method maintains generalization ability comparable to the
original ZSC-trained agents, despite being fine-tuned for specific human preferences. In contrast, the
pretraining followed by supervised fine-tuning variants suffer a sharp drop in generalization perfor-
mance. This highlights that our method effectively balances preference alignment and generalization,
and further underscores the necessity of the recovery phase.

5.5 Impact and feasibility of epoch-wise alternation recovery (RQ3)

In this section, we validate the necessity of the
epoch-wise alternation recovery. As shown in
Table [T} compared to the conventional two-stage
approach—-pretraining followed by behavioral
cloning and generalization recovery—our method
achieves higher preference scores. To further ex-
amine the learning dynamics under different train-
ing paradigms, we compare the action accuracy on
the offline “liked” trajectories after recovery. The
comparative results are presented in Table [3] as
consistent with Section4.2} we observe that

Table 3: Action accuracy () of behavior cloning
under different training methods and preference
styles.

Method

Pretrain + BC 0.73 £ 0.02 0.64 = 0.01 0.64 £ 0.01
0.66 £ 0.03 0.59 £0.05 0.63 &= 0.01
0.73 £0.02 0.64 £0.01 0.64 +0.01

Style A Style B Style C

Recover
EAR

applying generalization recovery after fully converged BC can significantly degrade action accuracy
on the “liked” trajectories—by up to 10% under certain preference styles (e.g., A and B). In contrast,
epoch-wise alternation recovery, which interleaves one epoch of BC with a recovery phase, enables
the agent to incrementally restore action accuracy while maintaining generalization capability. No-
tably, for preference styles that suffer greater accuracy drop, this strategy leads to more substantial

improvements in preference scores, highlighting the necessity of epoch-wise alternation recovery in
such scenarios. These results further demonstrate that even parameter-efficient agents can effectively
acquire and retain human preferences when trained through a stable and iterative alternation process.

Table 4: Number of rollouts performed when the EAR algorithm converges under different preference
styles in the Coordination Ring layout (maximum rollout batch = 250).

Max=250 Style A Style B Style C
EAR 204.3 +30.0 188.3+264 205.7+24.6

Regarding algorithmic feasibility, our design ensures that the EAR algorithm exhibits stable conver-
gence in practice. During the epoch-wise alternation recovery phase, training proceeds iteratively,
where each rollout batch contains 200 trajectories, and each trajectory spans 400 environment steps.
This configuration yields approximately 200 x 400 = 8 x 10* steps per batch, with a total environment
interaction budget of 2 x 10° steps throughout the entire training process. At the end of each rollout
batch, we evaluate the cooperative agent’s environment return over the policy pool; if the criterion
is met, preference accuracy is assessed (see Algorithm[I)). We record the number of rollout batches
required for convergence under three distinct preference styles in the Coordination Ring layout, as
summarized in Table [d] The results confirm that the EAR algorithm converges reliably within a
reasonable training budget, demonstrating its practical feasibility.

6 Conclusion and future work

In this paper, motivated by practical demands in the gaming industry, we propose a novel reinforce-
ment learning problem that jointly considers generalization ability and preference alignment. Drawing
inspiration from the pretraining followed by supervised fine-tuning paradigm in NLP, we design
a 3-stage training framework that integrates online generalization learning with offline preference
modeling. Furthermore, we introduce an alternating optimization strategy to stabilize the training
process. Our method is empirically validated through extensive experiments across diverse scenarios,
demonstrating its effectiveness. While current work focuses on the Overcooked environment—which
is representative yet relatively simple—we plan to extend our approach to more complex environments
in the future. Additionally, we aim to explore applications beyond the gaming domain, broadening
the impact and applicability of the online&of fline RL problem.

7 Acknowledgments

The corresponding author Shuai Li is sponsored by CCF-Tencent Open Research Fund.

References

Youssef Abdelkareem, Shady Shehata, and Fakhri Karray. Advances in preference-based reinforce-
ment learning: A review. In 2022 IEEFE international conference on systems, man, and cybernetics
(SMC), pages 2527-2532. IEEE, 2022.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Alain Andres, Lukas Schifer, Stefano V Albrecht, and Javier Del Ser. Using offline data to speed up
reinforcement learning in procedurally generated environments. Neurocomputing, 618:129079,
2025.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297:103500, 2021.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pages
4447-4455. PMLR, 2024.

10

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pages 1577-1594. PMLR,
2023.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819-840, 2002.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel,
and Anca Dragan. On the utility of learning about humans for human-Al coordination. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular
framework. IEEE Transactions on Evolutionary Computation, 22(2):245-259, 2017.

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson, and Thore Graepel.
Cooperative ai: machines must learn to find common ground. Nature, 593(7857):33-36, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171-4186, 2019.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Siyuan Guo, Lixin Zou, Hechang Chen, Bohao Qu, Haotian Chi, Philip S Yu, and Yi Chang. Sample
efficient offline-to-online reinforcement learning. IEEE Transactions on Knowledge and Data
Engineering, 36(3):1299-1310, 2023.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. "other-play " for zero-shot
coordination. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust opti-
mization. Available at Optimization Online, 1(2):9, 2013.

Glen Klien, David D Woods, Jeffrey M Bradshaw, Robert R Hoffman, and Paul J Feltovich. Ten
challenges for making automation a" team player" in joint human-agent activity. IEEE Intelligent
Systems, 19(6):91-95, 2004.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. arXiv preprint arXiv:2110.06169, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022. URL fhttps://
openreview.net/forum?id=68n2s9ZJWF8,

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179-1191, 2020.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. arXiv preprint arXiv:2106.05091,
2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic g-ensemble. In Conference on Robot
Learning, pages 1702-1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review. and Perspectives on Open Problems, 5, 2020.

11

https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

Xu Liu, Haobo Fu, Stefano V Albrecht, QIANG FU, and Shuai Li. Online-to-offline RL for agent
alignment. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=ruv3HdK6he.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International conference on machine learning, pages 7204-7213. PMLR, 2021.

Yihuan Mao, Chengjie Wu, Xi Chen, Hao Hu, Ji Jiang, Tianze Zhou, Tangjie Lv, Changjie Fan,
Zhipeng Hu, Yi Wu, Yujing Hu, and Chongjie Zhang. Stylized offline reinforcement learning:
Extracting diverse high-quality behaviors from heterogeneous datasets. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
rnHNDihrIT.

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan,
Peter Stone, and Stefano V. Albrecht. A survey ofnbsp;ad hoc teamwork research. In Multi-
Agent Systems: 19th European Conference, EUMAS 2022, Diisseldorf, Germany, September
14-16, 2022, Proceedings, page 275-293, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN
978-3-031-20613-9. doi: 10.1007/978-3-031-20614-6_16. URL https://doi.org/10.1007/
978-3-031-20614-6_16.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
Advances in Neural Information Processing Systems, 36:62244-62269, 2023.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers Robotics Al, 3:40, 2016. URL https://api.semanticscholar|
org/CorpusID:21713708.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun.
Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718,
2022.

Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc autonomous agent
teams: collaboration without pre-coordination. In Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAT’ 10, page 1504—1509. AAAI Press, 2010.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502-14515, 2021.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song, and
Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforcement
learning. Advances in Neural Information Processing Systems, 36:47081-47104, 2023.

Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, and Weinan

Zhang. Zsc-eval: An evaluation toolkit and benchmark for multi-agent zero-shot coordination.
Advances in Neural Information Processing Systems, 37:47344-47377, 2024a.

12

https://openreview.net/forum?id=ruv3HdK6he
https://openreview.net/forum?id=rnHNDihrIT
https://openreview.net/forum?id=rnHNDihrIT
https://doi.org/10.1007/978-3-031-20614-6_16
https://doi.org/10.1007/978-3-031-20614-6_16
https://api.semanticscholar.org/CorpusID:21713708
https://api.semanticscholar.org/CorpusID:21713708

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment techniques:
RIhf, rlaif, ppo, dpo and more. arXiv preprint arXiv:2407.16216, 2024b.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fiirnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1-46,
2017.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=YVXaxB6L2P1.

Chao Yu, Jiaxuan Gao, Weilin Liu, Botian Xu, Hao Tang, Jiaqi Yang, Yu Wang, and Yi Wu. Learning
zero-shot cooperation with humans, assuming humans are biased. arXiv preprint arXiv:2302.01605,
2023.

Lei Yuan, Zigian Zhang, Lihe Li, Cong Guan, and Yang Yu. A survey of progress on cooperative
multi-agent reinforcement learning in open environment. CoRR, 2023.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforcement
learning. arXiv preprint arXiv:2302.00935, 2023.

Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhonggian Sun, and Wei Yang.
Maximum entropy population-based training for zero-shot human-ai coordination. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pages 6145-6153, 2023.

13

https://openreview.net/forum?id=YVXaxB6L2Pl
https://openreview.net/forum?id=YVXaxB6L2Pl

A Lightweight behavior cloning and online recovery analysis

We further analyze the interplay between lightweight behavior cloning and online recovery. On the
random1 layout, we start with a pretrained agent and conduct 1-epoch behavior cloning on the “liked”
trajectories for each of the three preference styles. This is followed by online recovery using the
policy pool. The corresponding training curves are shown in Figure f]

Style 1) Style 2 Style 3

Env Return|of Original Pretrain W\/\ 220

—— Environment Return 100 —— Environment Return . —— Environment Return
Preference Accuracy Preference Accuracy Preference Accuracy

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Recovering Epi R Re pis

Figure 4: Training curve of online recovery after one epoch of preference behavior cloning. The
blue horizontal line indicates the environment return of the pretrained agent on the policy pool. The
yellow curve shows the agent’s action accuracy on the offline “liked” trajectories during recovery.

Our results reveal that even a minimal application of offline preference learning—namely, a single
round of behavior cloning on a small dataset—can lead to a substantial degradation in generalization
performance, with environment returns dropping by more than one-third. This highlights a clear
inefficiency mismatch between behavior cloning and recovery, where the latter requires thousands of
online interaction episodes to restore the agent’s original performance level.

Interestingly, we observe that after recovery, the agent not only regains its generalization ability
but also retains partial alignment with the offline “liked” trajectories. This indicates that preference
information is not entirely forgotten during recovery, providing empirical support for the effective-
ness of our Epoch-wise Alternation Recovery in reinforcing preference learning while maintaining
generalization.

B Overcooked benchmark details

The Overcooked environment[Carroll et al., 2019] is a widely adopted benchmark for evaluating
cooperative behaviors in reinforcement learning. Inspired by the multiplayer video game Overcooked!,
it simulates a kitchen where two players, each controlling a chef, must coordinate within a confined
space and under time constraints to prepare and deliver soups. Upon successful delivery, both players
receive a shared reward. The primary objective is to maximize the cumulative team reward through
effective collaboration.

To prepare a soup, agents typically follow a multi-step process: (1) collect and place the correct
ingredients into a pot according to the recipe; (2) wait for the soup to cook for a fixed duration; and
(3) serve the cooked soup on a dish and deliver it to the designated location. Each agent operates in a
discrete action space: up, down, left, right, interact, no-op. Beyond learning the mechanics of soup
preparation, agents must also adapt to the behavioral tendencies and preferences of their partners.
High team performance requires precise coordination and mutual understanding between agents.

B.1 Layouts

Our work builds upon the Overcooked version used in the HSP benchmark(Yu et al.| [2023], primarily
focusing on two layouts: Coordination Ring and Many Orders.

As shown in the left part of Figure[5], Coordination Ring features a ring-shaped kitchen layout. The
tightly arranged space facilitates faster soup preparation, with ingredients, serving station, and plates
all located in the bottom-left corner, and two pots positioned in the top-right. The key coordination
challenge in this layout lies in the agents’ movement directions to avoid collisions. The recipe is

14

Coordination Ring Many Orders

20% 20
bbb 20X
bl 10Z

Figure 5: Two layouts in our experiments.

relatively simple—only onion soup is required—and each soup takes 20 time steps to cook, yielding
a reward of 20.

Many Orders, in contrast, adopts a square-shaped kitchen and introduces greater recipe complexity.
It includes three types of orders: onion, tomato, and a mixed recipe requiring 1 onion and 2 tomatoes.
Each recipe provides a different reward. In this layout, the central coordination challenge is recipe
selection. If the human partner shows a preference for a particular recipe, the cooperative agent is
expected to align with that preference to achieve satisfactory collaboration.

B.2 Events
Following the settings established in HSP, we adopt the same event taxonomy to define key sub-events

within each layout. For both layouts (Coordination Ring and Many Orders), the primary sub-events
and their corresponding event scores are listed as following Table [T2]6]:

Table 5: Event catagories and responding reward weights of Layout Coordination Ring

Event (e;) Event reward weight (score(e;))
Picking up an onion from the onion dispenser -10,0, 10

Picking up a dish from the dish dispenser 0,10

Picking up a ready soup from the pot with a dish -10, 0, 10

Placing an onion into the pot -10, 0, 10

Delivering a soup to the serving area -10,0

Table 6: Event catagories and responding reward weights of Layout Many Orders

Event (¢;) Event reward weight (score(e;))
Picking up an onion from the onion dispenser -10, 0, 10
Picking up a dish from the dish dispenser 0,10
Picking up a tomato from tomato dispenser 0, 10,20
Picking up a soup -5,0,5
Viable placement -10, 0, 10
Optimal placement -10,0
Catastrophic placement 0,10
Placing an onion into the pot -3,0,3
Placing a tomato into the pot -3,0,3
Delivering a soup to the serving area -10,0

15

B.3 Offline ”’like” trajectories

For the offline datasets, we collect trajectories across two layouts and three preference styles, with
the number of trajectories for each combination summarized in Table[7} For each layout-style pair,
we split the trajectories into training and test sets using a 4:1 ratio. In our reported results, action
accuracy refers to performance evaluated on the test set.

Table 7: Number of trajectories in the offline datasets across two layouts and three preference styles.
Each set is split into training and test sets with a 4:1 ratio.

Layout Style A Style B Style C total
Coordination Ring 12 24 20 72
Many Orders 38 14 12 72

C Hyper parameters
n this section, we present the hyperparameters used and compute resources in our experiments.

C.1 Agent architecture

Following the experimental settings in HSP, we adopt a CNN-MLP based architecture for all experi-
ments. The convolutional module consists of three layers with output channels {32, 64, 32}. Each
layer uses a kernel size of 3, padding of 1, and stride of 1. A max pooling layer is applied after the
convolutional block, followed by a two-layer MLP that outputs the final action logits.

C.2 FCP policy pool

To construct the policy pool, we perform self-play training with the objective of maximizing en-
vironment rewards. A total of 6 self-play runs are conducted, and for each run, we select three
checkpoints—initial, middle, and final—resulting in a policy pool containing 18 diverse agents. The
hyperparameters used for the self-play procedure are listed in Table|[§]:

Table 8: Hyperparameters of self-play process

Hyperparameters Values
Entropy coef 0.01
Gradient clip norm 10.0
GAE lambda 0.95
Gamma 0.99
Value loss huber loss
Huber delta 10.0
Mini batch size batch size / mini-batch
Optimizer Adam
Optimizer epsilon le-5
Weight decay 0
Network initialization Orthogonal
Use reward normalization True
Use feature normalization True
Learning rate Se-4
Parallel environment threads 100
Ppo epoch 15
Environment steps 10M
Episode length 400
Reward shaping horizon 100M

16

C.3 Pretraining, recovery, behavior cloning

Since pretraining and online generalization recovery share the same underlying procedure, we adopt
identical hyperparameters for both stages. Additionally, the hyperparameters used for behavior
cloning during preference learning are also summarized in Table 9}

Table 9: Hyperparameters of pretraining, online recovery, behavior cloning.

Hyperparameters Values
BC batch size 32

BC epoch at stage 2 16
Hyperparameters Values
N training threads 1

N rollout threads 200
Entropy coef 0.01
Gradient clip norm 10.0
GAE lambda 0.95
Gamma 0.99
Value loss huber loss
Huber delta 10.0
Mini batch size batch size / mini-batch
Optimizer Adam
Optimizer epsilon le-5
Weight decay 0
Network initialization Orthogonal
Use reward normalization True
Use feature normalization True
Learning rate Se-4
Parallel environment threads 100
Ppo epoch 15
Environment steps 20M
Episode length 400
Reward shaping horizon 100M

D Results on the Many Orders Layout

Table 10: Performance across different preference styles. Each method is evaluated using Preference
Score (1) and Environment Return (7). Results are reported on the layout Many Orders

Method Style A Style B Style C

Pref. Score Env. Return Pref. Score Env. Return Pref. Score Env. Return
Offline Trajs 244.7 203.4 669.3 336.4 1002.5 378.3
Pretrain 1943 +18.0 166.7 +16.0 1242+ 174 125.04+29.7 227.3+92.1 120.2+63.0
Pretrain + BC 1450+ 16.8 1164 +13.8 334.0+45 340.0+22 6163+27.1 337.3+£152
BC Only 86.3+519 628+415 3140+99 3163+11.0 661.3+13.5 363.0 + 8.0
Pretrain + BC + Recover 213.7 +5.7 1787 +4.6 2283 4+44.1 230.3+59.9 390.7+ 1029 217.0+54.3
EAR 212.7+4.5 1783 +42 239.0£53.8 2393 +68.8 3953+117.1 2223 +65.8

17

Table 11: Average environment returns (1) across all benchmark human proxy agents 7} under
different methods and preference styles in layout Many Orders. Since the pretrained agent is style-
agnostic, its performance is reported only once.

Preference BC Pretrain + BC EAR
Style A 33.6 = 21.6 146 + 3.6 146.3 +7.9
Style B 682 +45 86.5 & 3.5 172.3 +26.0
Style C 65.0+29 679 +2.6 195.3 + 21.1
Pretrain 142.0 229

In this section, we present the experimental results on the Many Orders layout. All results are
averaged over three runs with different random seeds. As shown in Table[I0] our proposed method,
EAR, achieves consistent improvements across both metrics compared to standard BC and Recovery
on Pretrained Agent. However, we observe that for certain styles (e.g., Style B and C), simple
behavior cloning can already achieve excellent performance. This is largely due to the fact that
partners in this benchmark exhibit strong adaptability—a favorable condition that is not commonly
observed and has been refuted by results in Style A and the Coordination Ring layout. Overall, our
method demonstrates robust and competitive performance across diverse settings, highlighting its
effectiveness under more realistic and challenging scenarios.

Furthermore, when cooperating with proxy agents that are distinct from the "like" trajectories in the
benchmark, we investigate the generalization capability of collaborative agents. Table|l 1|reveals that
while standard BC leads to overfitting on offline trajectories—resulting in degraded performance on
out-of-distribution scenarios—our method maintains its effectiveness. This finding underscores the
importance of the recovery in enabling generalization.

E Case analysis

In this section, we provide a behavioral analysis of the agent trained with EAR, focusing on its
coordination patterns under Layout Coordination Ring with Style A, which corresponds to Figure
We compare three types of trajectories: (1) the human-preferred offline trajectory, (2) the generalizable
pretrained agent, and (3) the EAR-trained agent that balances generalization and preference alignment.
The preference vector for Style A is summarized in Table [I2] emphasizing actions such as “picking
up a dish from the dish dispenser” and “picking up an onion from the onion dispenser.” In essence,
the human proxy tends to favor trajectories that include these two operations while completing the
cooperative cooking task.

For each method, we select a representative trajectory and visualize frames sampled every 40 timesteps
from the first 200 steps. As shown in Figure[d] the offline human proxy (top row) primarily stays near
the dish and onion dispensers, focusing on delivering items to the teammate—demonstrating a clear
division of labor consistent with the stated preferences. In contrast, the pretrained agent (middle row),
trained solely for reward maximization, fails to account for such stylistic tendencies. When the pot
is nearly ready, it prematurely moves to pick up a dish for serving, thereby blocking its partner and
disrupting coordination. The EAR-trained agent (bottom row) achieves a more balanced behavior: it
respects the human proxy’s preferred roles while maintaining adaptive flexibility, taking initiative to
fetch dishes when appropriate. This illustrates how EAR effectively reconciles the trade-off between
preference alignment and generalization.

Table 12: Event catagories and responding reward weights of Layout Coordination Ring

Event (¢;) Event reward weight (score(e;))
Picking up an onion from the onion dispenser 10

Picking up a dish from the dish dispenser 10

Picking up a ready soup from the pot with a dish -10

Placing an onion into the pot 0

Delivering a soup to the serving area -10

18

Offline trajs

score: © score: 20 score: 60 score: 80

Pretrain

score: © score: © score: 20 score: 20

EAR

score: © score: © score: 20 score: 60 score: 80 score: 100

Figure 6: . Representative trajectory segments from three agents (offline dataset, pretrained agent,
and EAR-trained agent) under style A in the Coordination Ring layout

Table 13: Performance across different preference styles. Each method is evaluated using Preference
Score (1) and Environment Return (7). Results are reported on the layout Coordination Ring.

Method Style A Style B Style C

Pref. Score Env. Return Pref. Score Env. Return Pref. Score Env. Return
Offline Trajs 670.0 225.0 235 121 552 224
MEP 118.1 £16.6 356462 1143 +34 499+37 2240+120 855+53
TrajDi 1072 +£133 31.1£55 103.5+13.5 394481 2023+172 755+8.3
EAR 274.7 +74.0 88.6 +31.0 200.3+17.0 103.6+-94 259.0+99 1103+3.3

F EAR Compared with Pretraining Methods Focused on Enhancing Diversity

Our approach specifically targets scenarios where a pretrained agent’s generalization fails to adapt to
a user’s unique preferences—a situation commonly observed in both real-world and experimental
settings, especially as environments become more complex (e.g., League of Legends, Honor of Kings,
and Brawl Stars).

We acknowledge that when a biased human agent is unavailable, partner diversity becomes an
important consideration and has been explored in several ZSC studies. However, the key insight of
these diversity-oriented methods lies in maximizing environmental rewards through coordination
with a diverse yet representative set of partners, rather than aligning with user-preference-related
rewards. Consequently, when the biased human proxy’s preferences fall outside the distribution
covered by the pretrained policy pool, simply enlarging the diversity of policies during pretraining
does not effectively resolve the misalignment issue.

To empirically validate this claim, we conducted experiments using two representative ZSC methods
(MEP [Zhao et al [2023]] and TrajDi [Lupu et al [2021]) that explicitly emphasize policy pool
diversity. We selected pretrained checkpoints from ZSC-eval [Wang et al.| 20244 (built upon the
HSP 2023] framework), using three random seeds and a policy pool size of 36—larger than
the pool used in our main experiments. When evaluated against the biased-preference human proxies
in our benchmark. As shown in Table[I3]these methods exhibited significantly weaker performance
compared with EAR.

19

This finding supports our hypothesis that, when user preferences extend beyond the coverage of the
pretrained policy pool, developing methods that leverage a small number of liked trajectories is both
necessary and effective.

G Limitations

While our work demonstrates strong empirical performance, it has some natural limitations. Our
method is relatively simple and could be further enhanced with more sophisticated designs. Addition-
ally, we rely on biased preference proxies to simulate human preferences, which inevitably differ from
real human behavior. We also do not fully exploit the abundant unlabeled trajectories left by human
players, which could provide additional suboptimal data to further improve preference alignment.
Despite these limitations, our approach establishes a solid foundation for learning cooperative agents
that generalize to diverse partners while aligning with human preferences, and it opens promising
directions for future exploration.

H Compute resources
All experiments were conducted on a single NVIDIA GeForce RTX 2080 Ti GPU. Table[T4]reports
the per-run execution time with the number of rollouts set to 200. We focus on the results for the

Many Orders layout under Style A .

Table 14: Compute resources

Methods Execution time (s)
1-epoch Behavior Cloning (BC) 27.1
One round of environment rollouts 5.7
PPO (15 epochs) after one rollout 10.5

20

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims presented in the abstract and introduction accurately reflect
our contributions and scope, as elaborated in Section E}

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

21

Justification: The effectiveness of our method is demonstrated through comprehensive
experiments and analysis.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All hyperparameters are provided in Appendix [C|to support the reproducibility
of our results. We also include the detailed algorithm in Algorithm [T}

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will consider releasing our code with the camera-ready version.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings are described in Section[5.2] and hyperparameter details
are provided in Appendix [C].

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct experiments with three random seeds and report the averaged
results in Table

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed information about the computing resources used is provided in
Appendix [H]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research presented fully complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in Section [6]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve high-risk data or models that could be easily
misused.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external resources used are properly cited and credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

25

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release any new datasets, models, or other research assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The use of LLM:s in this project does not affect the core methodology, scientific
rigor, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Online generalization ability learning
	Offline preference learning
	Online RL combined with offline data

	Preliminaries
	Decentralized Markov Decision Process
	Cooperative agent generalization and policy pool

	Post-match “like” assumption and preference learning objective

	Method
	Pretrain: generalization prior for cooperative agents
	Preference learning with recovery: empirical analysis of the conflict between offline behavioral cloning and online generalization
	Epoch-wise alternation recovery

	Experiments
	Environment and human proxy with different preferences
	Benchmark, baselines, evaluation protocols
	Preference learning performance (RQ1)
	Generalization ability (RQ2)
	Impact and feasibility of epoch-wise alternation recovery (RQ3)

	Conclusion and future work
	Acknowledgments
	Lightweight behavior cloning and online recovery analysis
	Overcooked benchmark details
	Layouts
	Events
	Offline ''like'' trajectories

	Hyper parameters
	Agent architecture
	FCP policy pool
	Pretraining, recovery, behavior cloning

	Results on the Many Orders Layout
	Case analysis
	EAR Compared with Pretraining Methods Focused on Enhancing Diversity
	Limitations
	Compute resources

