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Abstract001

The scaling up of pre-trained large language002
models entails increasing parameters and asso-003
ciated costs, while reducing parameters gener-004
ally leads to a decrease in performance. Form-005
ing large language models into a Mixture006
of Experts (MoE) architecture demonstrates007
promising potential, as it not only reduces008
the tuning requirements of MoE but also al-009
lows for performance improvements. In this010
work, we introduce FREE-MOE, which lever-011
ages the inherent generalization ability of pre-012
trained LLMs across multiple tasks and do-013
mains, implementing weight purification to014
obtain Domain-Specific Subnetwork Experts.015
This method achieves performance improve-016
ments while 1) requiring no additional model017
parameters, and 2) being completely tuning-018
free for the experts. Specifically, we design the019
DOWP algorithm (Domain-Oriented Weight020
Purification Algorithm), which purifies the ir-021
relevant weights in the hidden layers of the pre-022
trained LLM based on the input domain, form-023
ing domain-specific subnetwork experts. Addi-024
tionally, FREE-MOE incorporates a multi-level025
trainable router to integrate DOWP into the pre-026
trained LLM, ensuring that only the most rele-027
vant subnetworks are activated. Findings show028
that the FREE-MOE not only improves the029
model’s adaptability across various domains030
covered in contemporary language generation031
model benchmarks, but can also be seamlessly032
applied to any transformer-based LLM.033

1 Introduction034

The bigger the LLMs, the more parameters they035

cointai, the bigger they consume, which in turn036

limits their scalability and application efficiency037

(Patterson et al., 2021; Strubell et al., 2019). Yet,038

the tremendous success of Deepseek (Dai et al.,039

2024) proves the feasibility of employing the MoE040

architecture in pre-trained large language models to041

break through the Pareto frontier of model capacity042

and computational efficiency.043

Previous work has primarily focused on tech- 044

niques such as knowledge distillation(Hinton et al., 045

2015), parameter sharing (Rastegari et al., 2016), 046

and pruning(Han et al., 2015), but these methods 047

often lead to a degradation of the model’s original 048

performance, resulting in compromised model effi- 049

cacy. However, sacrificing performance should not 050

be the inevitable consequence of compressing large 051

language models. Since pre-trained LLMs inher- 052

ently function as implicit expert networks—while 053

they do not explicitly employ an MoE framework, 054

the subnetworks activated in their hidden layers 055

demonstrate specialized behaviors that are task- 056

dependent and input-specific. Therefore, we pose 057

the following question: 058

Is it possible to leverage the dense pre-trained 059

LLMs as Mixture of Experts to improve? 060

Building on this insight, by forming the pre- 061

trained LLM into a tuning-free MoE framework, 062

we not only achieve an extremely low training re- 063

quirement that traditional MoE architectures cannot 064

attain, but also improve its performance compared 065

with baseline models. 066

We propose FREE-MOE, a novel tuning-free 067

MoE architecture designed to leverage the existing 068

subnetwork expert mechanisms within pre-trained 069

LLMs. FREE-MOE identifies the input domain 070

and selectively activate the most relevant Domain- 071

specific subnetwork Experts (DSS-Experts) within 072

a pre-trained LLM. Compared to Sparse MoE and 073

Domain-Mapping & Random Gating MoE architec- 074

tures, FREE-MOE achieves less pruning require- 075

ments and more task-specific accuracy, as shown 076

in Figure 1. Specifically, purification represents the 077

core solution for experts formation, where it puri- 078

fies the hidden layer weights by identifying most- 079

relevant features from the domain of input, retain- 080

ing high-contributing weights while filtering out 081

irrelevant ones. Lastly, in order to better activate 082

purified experts, we introduce a Trainable Router 083
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Figure 1: The comparison between traditional MoE methods and our FREE-MOE.(a) represents Sparse MoE with
top-1 gating, which has higher training requirements and better performance. (b) shows the combination of Domain
Mapping and Random Gating MoE, where this combination can improve training requirements but may sacrifice
some performance. (c) illustrates our FREE-MOE, which activates Domain-Specific Subnetwork Experts from
pretrained LLMs, achieving performance growth without the need for fine-tuning.

that dynamically monitors task requirements and084

domain characteristics, enabling real-time domain085

identification and efficient allocation. In this work,086

we present several key contribution:087

• LLM MoE Architecture FREE-MOE: FREE-088

MOE utilizes the latent subnetwork structures089

within pre-trained LLMs, eliminating the tuning090

dependency of traditional MoE, enabling adapta-091

tion to multi-task requirements without the need092

for fine-tuning.093

• Purification Mechanism on Weights: This094

mechanism dynamically selects and activates sub-095

network weights relevant to specific tasks, signif-096

icantly improving the accuracy of expert selec-097

tion.098

• A Multi-Level Trainable Dynamic Router: We099

introduce a novel trainable router capable of real-100

time monitoring of task requirements and domain101

characteristics to dynamically identify domains,102

particularly demonstrating significant advantages103

in multi-task scenarios.104

• Achieved Significant Performance Improve-105

ments Across Multiple Datasets: Our approach106

achieved performance gains of 2% to 3% on107

datasets such as MMLU, MBPP, and GSM8K.108

Integrated into the FREE-MOE architecture, cu-109

mulative improvements of 1.11% validate the110

effectiveness and practicality of the method.111

2 Related Works 112

The Mixture of Experts (MoE) introduces mul- 113

tiple specialized expert networks, selectively acti- 114

vating a subset of experts during each inference 115

to maintain model capacity while significantly re- 116

ducing computational costs (Jacobs et al., 1991; 117

Jordan and Jacobs, 1994; Chen et al., 1999; Tresp, 118

2000; Rasmussen and Ghahramani, 2001). Sparse 119

gating MoE layers (Shazeer et al., 2017; Riquelme 120

et al., 2021), the GShard framework (Lepikhin 121

et al., 2020), and Switch Transformer (Fedus et al., 122

2022) strike effective approaches. Focusing on 123

gating, recent studies include methods like token- 124

to-expert allocation BASE Layers (Lewis et al., 125

2021), hashing-based routing (Roller et al., 2021), 126

distillation in routing Stablemoe (Dai et al., 2022) 127

and Expert Choice Routing (Zhou et al., 2022). 128

Several works have also explored training strate- 129

gies for sparse MoE models. (Nie et al., 2021) 130

proposed a dense-to-sparse gating strategy for bet- 131

ter training efficiency. Additionally, approaches 132

like expert regularization (Artetxe et al., 2021) and 133

dimension reduction with L2 normalization (Chi 134

et al., 2022) have been suggested to enhance fine- 135

tuning in MoE models. Most recent advancements 136

in MoE architectures include DeepseekMoE (Dai 137

et al., 2024)and XMoE(Yang et al., 2024), which 138

introduce fine-grained expert segmentation, while 139

LLaMA-MoE by (Zhu et al., 2024) prunes from a 140

dense LLM. 141
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Figure 2: Two-step pipeline for our approach. Step 1 demonstrates the DOWP (Domain Oriented Weight Purifica-
tion) architecture, where hidden layers extracted are compressed, sorted for domain-specific relevance via Equation
4, and further purifying MLP or Self-Attention Layers via Equation 6 to identify and retain the most relevant expert
weights. Step 2 illustrates the FREE-MOE pipeline, in which the router classifies the input by domain, assigning it
to its identified DSS-Expert split from hidden layers to generate task-specific result.

LLM Pruning removes unnecessary parameters142

from a neural network to reduce its size and compu-143

tational cost while maintaining or even improving144

performance. Unstructured pruning (Blalock et al.,145

2020; Frantar and Alistarh, 2023; Syed et al., 2023;146

Sun et al., 2024) involves the removal of individ-147

ual weights based on specific criteria, leading to148

sparse networks that require specialized hardware149

for efficient execution. However, structured prun-150

ing (Wang et al., 2019; Kwon et al., 2022; Xia151

et al., 2022; Ma et al., 2023; Tao et al., 2023) elim-152

inates entire structures such as neurons, layers, or153

attention heads, making it easier to implement on154

standard hardware. Moreover, expert pruning for155

Sparse Mixture of Experts (SMoE) models targets156

the pruning of individual expert networks (Lu et al.,157

2024), further enhancing the efficiency of MoE158

architectures without sacrificing performance, per-159

forming task-specific MoE (Chen et al., 2022) or160

through regularization (Muzio et al., 2024).161

3 Method162

3.1 Domain-Oriented Weight Purification163

The Domain-Oriented Weight Purification, as164

shown in Figure 2, compresses matrix patches from165

hidden layers and ranks them by importance. Less166

relevant patches are purified, reducing complex-167

ity while preserving critical weights. This process168

forms the DSS-Expert for optimized task execu-169

tion.170

Clustering-based Classification. Consider171

a set of distinct knowledge domains D =172

{D1, D2, . . . , Dn}, where each domain Di encap-173

sulates specialized knowledge relevant to a specific 174

task. These domains are aggregated into a compre- 175

hensive main knowledge set D. 176

For a given task T , the algorithm selects the 177

most suitable main knowledge domain Dj by com- 178

puting the posterior probability P (D | T ), which 179

quantifies the likelihood of task T belonging to 180

each domain. This process is expressed as: 181

Dj = arg max
Di∈D

P (Di | T ), (1) 182

where Dj is the domain with the highest poste- 183

rior probability, ensuring that the task T is matched 184

with the most relevant domain. 185

Once the main domain Dj is selected, it is fur- 186

ther subdivided into smaller subdomains using K- 187

means clustering. For each dataset within Dj , fea- 188

ture representations are extracted via the embed- 189

ding layer of a Transformer model, forming a set of 190

feature vectors Fj = {Fj1 , Fj2 , . . . , Fjm}, where 191

each Fji corresponds to a data sample. K-means 192

clustering is then applied to partition Fj into k sub- 193

domains by minimizing the intra-cluster variance, 194

formalized as: 195

S∗ = argmin
S

k∑
i=1

∑
F∈Ci

∥F − µi∥2, (2) 196

where Ci denotes the set of points in the i-th 197

cluster, and µi represents the centroid of cluster 198

Ci. This optimization ensures that the data points 199

in each cluster are tightly grouped around their 200

respective centroid. 201

For any new task T , its feature vector FT = 202

Embedding(T ) is extracted and compared to the 203
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Figure 3: The inference flow through our FREE-MOE. The input tokens ( ) is first embedded and processed
by a trainable (" ) router, where it is initially classified into the main knowledge domain and further into a sub
knowledge domain. The embedded input tokens ( ) is then passed to the aggregated DSS-Expert, which are
dynamically formed from the hidden layers of a frozen (❄ ) pre-trained LLM based on the identified domain, then
output tokens ( ) are processed by DSS-Expert to output.

centroids µk of the subdomains. The task is as-204

signed to the subdomain Djk that minimizes the205

Euclidean distance:206

k = argmin
k

∥FT − µk∥2. (3)207

Once assigned to the subdomain Djk , the task208

is further processed according to the knowledge209

characteristics.210

Metric Calculation on Patches. After identify-211

ing the subdomain Djk , this section quantifies the212

critical information contained within it. Activation213

values serve as an effective metric for assessing214

the importance of neurons and connections within215

the network because they directly measure how216

strongly neurons respond to input features, reflect-217

ing their contribution to the network’s output (Han218

et al., 2015). To perform this assessment, we be-219

gin by scaling the weight matrix W and feature220

matrix X(activation embedding vector). A scaling221

factor α reduces the dimensionality of the matrices,222

yielding a smaller matrix of size βu× βv (where223

β = 1/α). Each element in this reduced matrix cor-224

responds to a patch Pij , which represents a subre-225

gion of the original matrix and contains condensed226

information.227

Afterwards, to further evaluate the significance228

of each patch, we calculate the following impor-229

tance metric Mij based on the lp-norm:230

Mij =
∑

(m,n)∈Pij

(|Wmn| × ∥Xmn∥p) . (4)231

This metric aggregates the weighted contribu-232

tions of each element within the patch, computed233

using the lp-norm. With the norm vector of the234

input feature activations, the importance of each235

weight can be determined by performing a patch-236

wise dot product. Observations suggest that this237

metric is highly robust and can be reliably esti- 238

mated with a small set of calibration samples. 239

DSS-Experts Formation. After calculating 240

the importance scores based on the lp-norm Mij 241

for all patches, these patches are sorted in as- 242

cending order based on their importance scores: 243

M(1) ≤ M(2) ≤ · · · ≤ M(q), where M(i) de- 244

notes the sorted importance scores, and p represents 245

the total number of patches. This sorting process 246

helps identify the least important patches for pu- 247

rification. A threshold range θr is then defined to 248

govern the purification process: 249

θr =
{
M(i) | M(i) ∈ [θmin, θmax]

}
. (5) 250

Here, θmin and θmax represent the lower and upper 251

bounds of the importance scores targeted for pu- 252

rification. Patches within this range are considered 253

less critical to the model’s performance and are thus 254

purified to reduce complexity while maintaining 255

accuracy. 256

Following the purification process, the model’s 257

accuracy is re-evaluated to ensure minimal im- 258

pact on performance. This accuracy, denoted as 259

acc(θr), serves as an indicator of the purification’s 260

effectiveness. Subsequently, the outputs from each 261

hidden layer are aggregated, incorporating the puri- 262

fied information to form the DSS-Expert. 263

The final step involves optimizing the purifi- 264

cation threshold. By iterating through different 265

threshold ranges θr, the model’s accuracy is evalu- 266

ated for each range, and the optimal threshold θ∗ is 267

determined: 268

θ∗ = argmax
θr

(
acc(OutputMODEL−θr

)
)
. (6) 269

This selection of θ∗ ensures that the model main- 270

tains maximum accuracy while removing the least 271
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Algorithm 1 Pytorch-style pseudocode for
DOWP Algorithm.

# D_k: domain-specific data
# theta_init: initial threshold
# theta_max: maximum threshold
# delta_theta: step size

def optimize_threshold(D_k, Perf, theta_init, theta_max,
delta_theta):

# Initialize variables
theta = theta_init
best_perf = 0
theta_k_star = theta_init

# Extract features and perform K-means clustering
F_k = embedding(D_k) # Feature extraction
subdomains = kmeans_clustering(F_k, k) # K-means

clustering

# Iterate over thresholds to find the optimal one
while theta <= theta_max:

# Calculate importance and select patches for
purification

selected_patches = select_patches(subdomains, theta)
# Select patches based on importance

# Purify model and evaluate performance
purified_model = purify_model(selected_patches)
current_perf = Perf(purified_model, D_k)

# Update best performance and optimal threshold
if current_perf > best_perf:

best_perf = current_perf
theta_k_star = theta

theta += delta_theta # Increment threshold

return theta_k_star # Return the optimal threshold

Perf: function to evaluate model performance on domain-specific data Dk .

significant patches, resulting in an efficient and272

accurate DSS-Expert, where EDSS = MODEL−θ∗ .273

3.2 FREE-MOE Architecture274

The FREE-MOE Architecture, illustrated in Fig-275

ure 2, utilizes a multi-level trainable router to dy-276

namically classify tasks for DSS-Experts.277

A Multi-level Trainable Router. We introduce278

a multi-level trainable router that classifies tasks279

through two hierarchical stages. First, the task280

embedding FT is classified into a main knowledge281

domain Dj . Then, in the second stage, the task is282

further classified into a subdomain Djk within the283

selected main domain, as shown:284

Djk = Rsub,j(Rmain(FT )). (7)285

Here, Rmain(FT ) maps the task embedding to a286

specific main domain Dj , and Rsub,j(FT ), condi-287

tioned on this domain, further assigns the task to a288

subdomain Djk .289

The router is trained by minimizing cross-290

entropy loss at both levels, optimizing the clas-291

sification process:292

LR = CrossEntropyLoss(X)293

= −
m∑
k=1

yk log (P (D | X)) , (8)294

where yk is the true label for domain D, and 295

P (D | X) represents the predicted probability of 296

the input X being classified into domain D. 297

The multi-level trainable router classifies tasks 298

hierarchically into main and subdomains. The clas- 299

sification process is optimized using cross-entropy 300

loss at both levels, enhancing precision across do- 301

mains. 302

FREE-MOE Inference. The inference process 303

in FREE-MOE begins with the input tokens Xin, 304

which are first passed through an embedding layer 305

into the embedded representation X̂ . The embed- 306

ded tokens X̂ are then fed into the router, a train- 307

able classifier designed to assign the input to the 308

most relevant domain. The router R classifies the 309

input into a main knowledge domain and then sub 310

knowledge domain, depending on the characteris- 311

tics of the task, expressed as: 312

Dmi = R(X̂). (9) 313

After classification, the model proceeds DOWP. This 314

step filters out irrelevant weights from the pre- 315

trained LLM, retaining only those necessary for 316

the selected domain. The purified weights, denoted 317

as Wpurified, form the core of the DSS-Expert: 318

Wpurified = DOWP(Wpre-trained, Dmi). (10) 319

These purified expert in dynamically activated to 320

process the embedded input X̂ , ensuring that only 321

the domain-relevant parameters are used for the cur- 322

rent task. The embedded input X̂ is then forwarded 323

through the selected DSS-Expert, which generate 324

the intermediate output Ŷ . Finally, the intermedi- 325

ate output Ŷ is subjected to a linear transformation 326

and a softmax operation to produce the final output 327

Y , which represents the model’s prediction for the 328

given task. Whole inference procedure is shown in 329

Figure 3. 330

4 Experiment 331

4.1 Setup 332

Datasets. We select three primary domains for 333

our experiments: general, code, and mathemat- 334

ics. For the general domain, we use the MMLU 335

benchmark(Hendrycks et al., 2021)to assess world 336

knowledge and problem-solving across various sub- 337

jects. In the code domain, we evaluate coding abili- 338

ties using the MBPP (Austin et al., 2021) and Hu- 339

manEval (Chen et al., 2021) datasets, focusing on 340

language comprehension and algorithmic reason- 341

ing. For mathematics, we utilize GSM8K(Cobbe 342
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Figure 4: Performance comparison of different models applying DOWP and FREE-MOE. The radar charts illustrate
the improvements across five datasets among DOWP , FREE-MOE , and baseline methods .

Figure 5: Accuracy improvement comparison of models using DOWP and Free-MoE methods across various
architectures.

et al., 2021) and MathQA(Amini et al., 2019),343

which feature elementary-level problems in algebra344

and probability. We use the validation sets from345

MMLU, MBPP, MathQA, and GSM8K as refer-346

ence data for our algorithm, with final evaluations347

on their respective test sets. For HumanEval, the348

MBPP validation set serves as the reference, with349

evaluation on the full HumanEval dataset. We em-350

ploy a 5-shot evaluation for MMLU, providing the351

model five example questions and answers before352

predictions. For the other datasets, evaluations are353

conducted in a 0-shot setting.354

Baseline & Foundation Models. Our experi-355

ments use five baseline models: LLaMA-2-7b-chat,356

LLaMA-2-13b-chat, LLaMA-2-70b-chat, Gemma-357

7b, and Gemma-2-9b. Both LLaMA-2 and Gemma358

models are based on transformer architecture, op-359

timized for dialogue and natural language under-360

standing. We selected LLaMA-2 and Gemma mod-361

els, along with their various scales, to test the ef-362

fectiveness and generalizability of our method on363

dense pre-trained models of different sizes.364

Evaluation Metrics. We use accuracy (acc%365

↑) as the primary evaluation metric across tasks,366

defined as the ratio of correctly answered questions367

to the total number of questions. For mathematics368

and general tasks, accuracy is the sole metric for as-369

sessing performance. For coding tasks, we evaluate370

model performance using pass@1 and pass@10. 371

The pass@k(↑) metric allows the model to gener- 372

ate k different solutions for a given problem and 373

measures the probability that at least one of these 374

k solutions is correct. This is calculated as: 375

pass@k = 1−
n∏

i=1

(1− Pi) , (11) 376

where Pi is the probability that the model’s i-th 377

solution is correct, and k is the number of trials. 378

4.2 Main Results 379

Our DOWP algorithm consistently boosts per- 380

formance across datasets: MMLU, MBPP, Hu- 381

manEval, GSM8K and MathQA. When incorpo- 382

rated into the FREE-MOE architecture, it further 383

improves efficiency, adaptability and stability, as 384

shown in Figure 4. 385

DOWP. Firstly, the application of DOWP using 386

l2-norm and 10% purification ratio results in con- 387

sistent performance improvements with an average 388

gain of 2.04% over the baseline models, as shown 389

in Table 1. Specifically, LLaMA-2-7b-chat’s ac- 390

curacy on MMLU increases by 2.02%, while its 391

performance on MBPP (pass@1) rose by 2.08%, 392

and its accuracy on GSM8K improves by 1.97%. 393

Similar patterns are observed for the other models. 394

Notably, Gemma-7b exhibits an increase of 3.26% 395
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Table 1: Performance comparison of DOWP and FREE-MOE with baseline on foundation models.

Method MMLU MBPP HumanEval GSM8K MathQA

acc pass@1 pass@10 pass@1 pass@10 acc acc

LLaMA-2-7b-chat

BASELINE 45.81 19.24 23.60 14.45 19.51 20.24 25.33

DOWP 47.83 21.32 26.40 15.73 20.73 22.21 27.34
Improvement +2.02 +2.08 +2.80 +1.28 +1.22 +1.97 +2.01

FREE-MOE 47.34 20.58 25.80 14.51 19.51 20.79 26.13
Improvement +1.53 +1.34 +2.20 +0.06 ±0 +0.55 +0.80

LLaMA-2-13b-chat

BASELINE 52.34 9.68 13.00 18.66 28.05 31.77 24.86

DOWP 53.18 11.52 16.00 19.45 29.88 34.42 27.57
Improvement +0.84 +1.84 +3.00 +0.79 +1.83 +2.65 +2.71

FREE-MOE 52.93 12.39 14.80 19.13 29.27 33.86 26.34
Improvement +0.59 +2.71 +1.80 +0.47 +1.22 +2.09 +1.48

LLaMA-2-70b-chat

BASELINE 66.87 45.22 66.15 30.52 59.34 59.47 35.12

DOWP 68.89 47.15 66.98 31.71 60.72 61.83. 35.96
Improvement +2.02 +1.93 +0.83 +1.19 +1.38 +2.36 +0.84

FREE-MOE 68.12 45.93 66.34 31.22 60.01 60.56 35.33
Improvement +1.25 +0.71 +0.19 +0.70 +0.67 +1.09 +0.21

Gemma-7b

BASELINE 63.56 2.94 9.00 15.31 20.12 57.92 37.12

DOWP 65.30 6.20 15.80 16.77 22.56 59.59 39.57
Improvement +1.74 +3.26 +6.80 +1.46 +2.44 +1.67 +2.45

FREE-MOE 65.05 5.85 13.90 12.93 18.29 59.29 38.79
Improvement +1.49 +2.91 +4.90 −0.38 −0.11 +1.37 +1.67

Gemma-2-9b

BASELINE 69.71 8.36 9.80 12.87 18.90 68.46 50.75

DOWP 71.07 8.52 10.80 15.12 22.56 69.98 51.22
Improvement +1.36 +0.16 +1.00 +2.25 +3.66 +1.52 +0.47

FREE-MOE 70.90 8.28 10.40 14.33 20.73 69.45 50.97
Improvement +1.19 −0.08 +0.60 +1.46 +1.83 +0.99 +0.22

in MBPP (pass@10) and a 2.4% improvement in396

MathQA accuracy, demonstrating DOWP’s effi-397

cacy across different models and tasks. Secondly,398

as shown in Figure 5, the performance generally399

lies within the improvement range of 2% to 3%400

across tasks, with the highest reaching up to 6.8%.401

The results suggest that DOWP enhances large-402

scale models by improving accuracy and maintain-403

ing stability. Its ability to purify domain-specific404

weights ensures efficient operation across diverse405

datasets and architectures.406

FREE-MOE. To make further comparison, we407

evaluate the FREE-MOE architecture on the same408

set of LLMs to examine its effectiveness. Firstly,409

applying FREE-MOE also led to noticeable per-410

formance gains of 1.11% in average, though the411

improvements were generally more moderate com-412

pared to DOWP, as shown in Table 1. In de-413

tail, LLaMA-2-7b-chat’s accuracy on MMLU in-414

creases by 1.53%, while its performance on MBPP415

(pass@1) improves by 1.34%, and its accuracy 416

on GSM8K see a 0.55% rise. Similarly, Gemma- 417

7b’s performance in MBPP (pass@10) increases 418

by 2.91%, with MathQA showing a 1.67% gain. 419

Secondly, the accuracy improvements under FREE- 420

MOE primarily fall within the range of 0.5% to 421

2.5%, with the highest to 4.9%, as shown in Fig- 422

ure 5. The results suggest that FREE-MOE, while 423

less impactful than DOWP in terms of absolute 424

gains, offers a viable and stable method for enhanc- 425

ing model performance with minimal additional 426

computation. 427

4.3 Ablation Studies 428

In the ablation studies, we use the LLaMA-2-7b- 429

chat model due to its stable performance in pre- 430

vious results. Employing DOWP, we analyze lp- 431

norm, purification ratios, layers, and patch-square 432

configurations. Furthermore, employing FREE- 433

MOE, we analyze the k-means clustering process. 434

7



lp-norm. We firstly evaluate the performance of435

different p-norm values on the MMLU dataset. For436

p = 2, accuracy improves to 47.83%, representing437

a 2.02% increase over the base accuracy. For p = 4,438

accuracy decreases to 47.27%, noting that differ-439

ent p-norm configurations yield varying results in440

terms of performance, with p = 2 achieving the441

highest accuracy, as shown in Table 2.
Table 2: DOWP Performance of Different p in lp-norm
on MMLU Dataset.

p MMLU(%)

Accuracy
1 46.26
2 47.83
4 47.27

442
Purification Ratio. We purify the all model443

layers (layers 0 to 31) using a 1× 1 patch-square444

configuration and examine different ratios on the445

MMLU dataset categorized into 12 groups. With446

a 10% purification ratio, accuracy reaches 47.83%,447

a 2.02% increase over the 45.81% of base. This448

shows the 10% ratio effectively balances accuracy449

and computational cost, as shown in Table 3.450

Table 3: DOWP Performance of Different Purification
Ratio on MMLU Dataset.

Ratio MMLU(%)

Accuracy

base 45.81
1% 47.75
3% 47.83
5% 47.79
10% 47.83

Purification Sublayers. We then apply a 5% pu-451

rification to MLP layers and Self-Attention layers,452

from layers 0 to 31, evaluating the impact on the453

GSM8K and MathQA, divided into 8 categories.454

Results shows purifying the Self-Attention layers455

yields the best on GSM8K, with a 3.18% improve-456

ment. On MathQA, the combination performs best,457

reaching a 2.01% increase, as shown in Table 4.458

459

Patch-square Configuration. Besides, based460

on 5% purification ratio, we evaluate different461

patch-square configurations on the MBPP and Hu-462

manEval, divided into 3 categories. For MBPP,463

the 1 × 1 patch-square achieves the best perfor-464

mance on pass@1 with a 1.56% improvement, and465

on pass@10 with a 2.40% increase. Similarly,466

on HumanEval, the 1× 1 configuration lead with467

Table 4: DOWP Performance of Purifying Different
Sublayers on GSM8K and MathQA Datasets.

Patch
Datasets

GSM8K(%) MathQA(%)

Accuracy

base 20.24 25.33

MLP 21.61 26.87

Self-Attention 23.42 25.90

Combination 22.21 27.34

Table 5: DOWP Performance of Different Patch Size
on MBPP and HumanEval Datasets.

Patch
MBPP(%) HumanEval(%)

@1 @10 @1 @10

pass@k

base 19.24 23.60 14.45 19.51

1× 1 20.80 26.00 15.73 20.73

2× 2 19.88 25.60 15.67 20.12

4× 4 18.58 24.00 14.88 20.73

16× 16 18.40 24.40 13.97 17.68

1.28% gains for pass@1 and 1.22% for pass@10 468

respectively over the baseline, as shown in Table 5. 469

K-means Clustering. Finally, we examine 470

the impact of different K values applied in 471

FREE-MOE in the K-means clustering step on 472

the MMLU dataset, divided into 12 categories. 473

We vary the number of clusters from 8 to 16, the 474

results show that with K=12, the accuracy reaches 475

the highest value of 47.79%, outperforming other 476

cluster settings, as shown in Table 6. 477

478
Table 6: FREE-MOE Performance of Different K-means
on MMLU Dataset.

K MMLU(%)

Accuracy

10 47.46

12 47.79

14 47.27

5 Conclusion 479

Conclusion. In this work, we introduced FREE- 480

MOE, a novel framework designed effectively com- 481

poress dense models, with the core of the DOWP 482

Alg. FREE-MOE achieves 1) tuning-free, 2) highly 483

portable, and 3) parameter efficiency, and can 484

integrate into any transformer-based LLM with- 485

out model-specific adjustments. Our method thus 486

presents a promising solution for enhancing large 487

model scalability and adaptability. 488

8



Limitation. Despite its effectiveness, FREE-489

MOE has several limitations. First, its reliance on490

pre-trained LLMs assumes well-separated expert491

subnetworks, which may not optimally handle tasks492

requiring cross-domain knowledge. Second, the K-493

means clustering used for domain classification494

may not always yield semantically meaningful par-495

titions, potentially affecting expert selection. Third,496

while FREE-MOE reduces fine-tuning needs, its497

success depends on the quality of pre-training data,498

limiting performance in underrepresented domains.499

Fourth, evaluations are primarily based on bench-500

marks (MMLU, MBPP, GSM8K), which may not501

fully reflect real-world complexities. Future im-502

provements could focus on refining domain clus-503

tering, adaptive expert selection, and optimizing504

routing efficiency.505
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A Scaling Hidden Layers into Patches700

Maintains Information in701

Self-Attention and MLP702

In Transformer models, the Self-Attention and703

MLP layers are critical for capturing global contex-704

tual information and performing non-linear trans-705

formations on feature representations. The scaling706

of hidden layers into patches might raise concerns707

about the potential loss of information, but this pro-708

cess is designed to preserve both local and global709

relationships in the model.710

Global Context Preservation in Self-Attention.711

The Self-Attention mechanism ensures that every712

token in the input sequence can attend to all other713

tokens, capturing global dependencies. This opera-714

tion is described by:715

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

(12)716

Where: Q, K, and V are the Query, Key, and717

Value matrices. dk is the dimensionality of the Key718

vectors. By scaling hidden layers into patches, each719

patch retains local interactions within the patch.720

Meanwhile, the Self-Attention mechanism ensures721

that global interactions between patches are main-722

tained. This is because the attention mechanism723

operates across all patches, allowing the model to724

propagate global information and maintain context725

across the entire sequence of patches. As a result,726

the scaled matrix retains the full global context, en-727

suring no information is lost during patch scaling.728

Patch Scaling and Information Compression.729

When the hidden layers are scaled by a factor α,730

the resulting reduced matrix of size βX × βY731

(β = 1/α) has elements that correspond to patches732

in the original matrix. Each patch Pij captures733

a compressed representation of the information734

within the original matrix. By aggregating the con-735

tributions from each element in a patch, the scaled736

matrix effectively compresses the local information,737

while Self-Attention ensures that this compressed738

representation continues to interact globally. The739

importance of each patch is calculated as:740

θij =
∑

(m,n)∈Pij

(|Wmn| × ∥Xmn∥2) (13)741

This compression allows for efficient representa-742

tion of both local and global information, preserv-743

ing the integrity of the original model.744

MLP Layer and Information Flow. Follow- 745

ing Self-Attention, the MLP layer processes the 746

globally-contextualized output. The MLP is de- 747

fined as: 748

MLP(h) = σ(W2 · ReLU(W1 · h)) (14) 749

Where: h is the output from Self-Attention. W1 750

and W2 are the weight matrices in the MLP. σ is 751

the activation function (typically ReLU). The MLP 752

performs non-linear transformations on the com- 753

pressed feature representations from the patches. 754

Since the MLP does not rely on spatial relation- 755

ships, it processes the patch-level information with- 756

out any risk of information loss. The critical feature 757

transformations in the MLP are unaffected by the 758

scaling process, ensuring that the information flow 759

remains intact. 760

B Procedure of DOWP to Select Best θ 761

In this section, we present the procedure for select- 762

ing the optimal threshold θ in the Domain-Oriented 763

Weight Purification (DOWP) method. The goal is 764

to assess the impact of varying θ values on per- 765

formance across multiple datasets and domains, 766

specifically MMLU, GSM8K, MathQA, and Hu- 767

manEval. Each table provides a comprehensive 768

comparison of the DOWP performance over differ- 769

ent ranges of θ, from 50% to 100%, highlighting its 770

effectiveness in selecting the most relevant experts 771

in various domains. 772

C Threshold-Based Performance Analysis 773

Across Datasets 774

This appendix provides a comprehensive analysis 775

of the performance trends observed across vary- 776

ing threshold θ values for the datasets GSM8K, 777

MathQA, HumanEval, MBPP, and MMLU. Each 778

dataset, representing a distinct domain, showcases 779

unique response patterns when applying the FREE- 780

MOE framework. As θ increases, we observe 781

noticeable fluctuations in accuracy, highlighting 782

the dynamic behavior of domain-specific subnet- 783

works. The results consistently demonstrate that ac- 784

tivating experts based on purified domain-specific 785

weights yields stable improvements across tasks, 786

while maintaining computational efficiency. This 787

analysis reinforces the scalability and adaptability 788

of FREE-MOE, validating its ability to enhance 789

task-specific accuracy without the need for fine- 790

tuning. 791

792
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Table 7: Performance comparison of DOWP throughout all MMLU domains with different θ.
cluster_id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

mmlu_0 2047 57.79 58.72 58.96 59.26 59.99 59.94 60.67 60.23 60.77 60.92 60.92 14.58
mmlu_1 1518 35.57 34.72 34.32 35.70 35.38 35.31 35.84 35.44 36.17 35.77 36.17 10.81
mmlu_2 895 23.02 24.02 22.57 23.35 23.02 22.01 22.46 22.68 22.79 22.57 24.02 6.37
mmlu_3 1586 48.93 47.92 49.37 48.99 49.87 49.50 49.43 50.44 50.88 51.01 51.01 11.29
mmlu_4 212 27.83 28.77 28.30 25.94 28.77 26.89 27.83 26.89 27.36 26.89 28.77 1.51
mmlu_5 1477 59.58 59.04 60.39 59.51 60.12 60.80 60.93 61.61 61.61 61.75 61.75 10.52
mmlu_6 322 35.09 32.92 33.85 34.78 33.54 34.78 33.54 34.16 35.09 35.09 35.09 2.29
mmlu_7 434 27.65 25.58 29.95 26.96 26.96 27.19 28.11 29.72 27.19 29.49 29.95 3.09
mmlu_8 2016 55.21 55.36 55.46 55.51 56.15 55.56 56.35 57.04 57.19 57.44 57.44 14.36
mmlu_9 1839 46.66 47.53 46.82 46.49 47.36 47.74 47.36 48.02 48.45 48.29 48.45 13.09
mmlu_10 1174 30.92 30.15 31.26 31.09 30.49 30.15 30.83 32.03 32.28 31.86 32.28 8.36
mmlu_11 522 42.34 45.21 44.25 42.91 46.74 45.40 46.74 47.32 46.36 47.13 47.32 3.72

Table 8: Performance comparison of DOWP throughout all GSM8K domains with different θ.
cluster_id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

gsm8k_0 240 12.92 15.00 15.83 18.75 13.75 17.08 16.67 17.50 15.83 16.67 18.75 18.20
gsm8k_1 8 0.00 12.50 12.50 37.50 25.00 12.50 12.50 37.50 0.00 12.50 37.50 0.61
gsm8k_2 225 17.78 21.78 18.22 24.00 22.67 22.67 22.22 21.78 20.44 24.00 24.00 17.06
gsm8k_3 361 18.28 16.90 19.67 20.50 19.94 23.82 21.05 23.82 21.61 23.82 23.82 27.37
gsm8k_4 113 13.27 17.70 9.73 15.04 15.93 19.47 17.70 13.27 17.70 16.81 19.47 8.57
gsm8k_5 193 12.44 10.88 12.95 13.99 15.03 17.62 20.73 18.65 17.10 19.69 20.73 14.63
gsm8k_6 6 33.33 16.67 50.00 33.33 33.33 16.67 33.33 33.33 16.67 50.00 50.00 0.45
gsm8k_7 173 16.18 14.45 17.92 23.12 17.34 19.08 17.34 19.65 18.50 19.65 23.12 13.12

Table 9: Performance comparison of DOWP throughout all MathQA domains with different θ.
cluster_id Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

mathqa_0 289 19.03 19.72 20.42 23.53 26.99 28.72 26.30 22.84 26.30 22.15 28.72 9.68
mathqa_1 318 24.53 24.84 24.21 22.96 31.45 23.58 29.87 29.25 26.42 25.79 31.45 10.65
mathqa_2 453 20.75 22.30 27.15 22.96 24.06 25.39 23.18 26.49 25.39 22.96 27.15 15.18
mathqa_3 107 24.30 27.10 28.97 20.56 28.04 27.10 28.04 20.56 22.43 20.56 28.97 3.58
mathqa_4 238 24.37 20.17 29.83 21.01 22.69 29.41 22.69 27.31 29.41 28.15 29.83 7.97
mathqa_5 269 26.77 20.45 24.91 25.65 29.37 27.14 25.65 21.56 23.79 29.00 29.37 9.01
mathqa_6 659 24.28 19.58 20.49 21.40 20.64 22.91 21.55 18.97 20.64 19.88 24.28 22.08
mathqa_7 652 20.09 21.47 21.32 24.08 22.70 22.70 25.92 24.54 23.47 22.55 25.92 21.84

Table 10: Performance comparison of DOWP throughout all HumanEval domains with different θ.
cluster_id Metric Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

humaneval_0 pass@1 44 11.82 17.05 15.68 14.77 15.00 16.36 17.05 15.23 15.45 14.77 17.05 26.83
humaneval_1 pass@1 75 8.27 9.47 10.80 10.67 13.07 15.33 12.67 13.20 13.47 13.33 15.33 45.73
humaneval_2 pass@1 45 6.89 12.22 11.11 9.33 14.22 14.00 15.11 14.00 14.89 15.11 15.11 27.44

humaneval_0 pass@10 44 18.18 25.00 25.00 18.18 22.73 18.18 25.00 18.18 20.45 20.45 25.00 26.83
humaneval_1 pass@10 75 10.67 14.67 13.33 12.00 18.67 18.67 16.00 17.33 17.33 16.00 18.67 45.73
humaneval_2 pass@10 45 8.89 15.56 15.56 13.33 15.56 15.56 17.78 15.56 20.00 17.78 20.00 27.44

Table 11: Performance comparison of DOWP throughout all MBPP domains with different θ.
cluster_id Metric Samples 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% Max (%) Ratio (%)

mbpp_0 pass@1 185 35.68 34.32 33.89 38.16 34.05 35.19 37.51 34.65 36.65 36.38 38.16 37.00
mbpp_1 pass@1 53 17.74 15.47 20.19 27.92 22.83 25.47 23.96 20.75 19.62 22.08 27.92 10.60
mbpp_2 pass@1 262 7.29 6.18 5.84 6.34 6.56 8.09 6.56 6.45 7.75 7.52 8.09 52.40

mbpp_0 pass@10 185 40.54 43.24 42.16 42.16 40.54 41.08 44.32 39.46 42.70 42.16 44.32 37.00
mbpp_1 pass@10 53 24.53 26.42 28.30 32.08 28.30 35.85 30.19 26.42 26.42 33.96 35.85 10.60
mbpp_2 pass@10 262 9.16 9.16 9.92 9.16 10.31 11.83 9.92 10.31 11.83 11.45 11.83 52.40
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(a) GSM8K (b) MathQA

(c) HumanEval (d) MBPP

(e) MMLU

Figure 6: Accuracy comparison of DOWP across different thresholds θ for various datasets including GSM8K,
MathQA, HumanEval, MBPP, and MMLU. Each subfigure (a-e) shows performance variations with respect to the θ
values, highlighting dataset-specific accuracy trends.
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