FREE-MOE: Tuning-Free Mixture-of-Experts Purifying LLMs to Thrive
across Any Field

Anonymous ACL submission

Abstract

The scaling up of pre-trained large language
models entails increasing parameters and asso-
ciated costs, while reducing parameters gener-
ally leads to a decrease in performance. Form-
ing large language models into a Mixture
of Experts (MoE) architecture demonstrates
promising potential, as it not only reduces
the tuning requirements of MoE but also al-
lows for performance improvements. In this
work, we introduce FREE-MOE, which lever-
ages the inherent generalization ability of pre-
trained LLMs across multiple tasks and do-
mains, implementing weight purification to
obtain Domain-Specific Subnetwork Experts.
This method achieves performance improve-
ments while 1) requiring no additional model
parameters, and 2) being completely tuning-
free for the experts. Specifically, we design the
DOWP algorithm (Domain-Oriented Weight
Purification Algorithm), which purifies the ir-
relevant weights in the hidden layers of the pre-
trained LLM based on the input domain, form-
ing domain-specific subnetwork experts. Addi-
tionally, FREE-MOE incorporates a multi-level
trainable router to integrate DOWP into the pre-
trained LLM, ensuring that only the most rele-
vant subnetworks are activated. Findings show
that the FREE-MOE not only improves the
model’s adaptability across various domains
covered in contemporary language generation
model benchmarks, but can also be seamlessly
applied to any transformer-based LLM.

1 Introduction

The bigger the LLMs, the more parameters they
cointai, the bigger they consume, which in turn
limits their scalability and application efficiency
(Patterson et al., 2021; Strubell et al., 2019). Yet,
the tremendous success of Deepseek (Dai et al.,
2024) proves the feasibility of employing the MoE
architecture in pre-trained large language models to
break through the Pareto frontier of model capacity
and computational efficiency.

Previous work has primarily focused on tech-
niques such as knowledge distillation(Hinton et al.,
2015), parameter sharing (Rastegari et al., 2016),
and pruning(Han et al., 2015), but these methods
often lead to a degradation of the model’s original
performance, resulting in compromised model effi-
cacy. However, sacrificing performance should not
be the inevitable consequence of compressing large
language models. Since pre-trained LLMs inher-
ently function as implicit expert networks—while
they do not explicitly employ an MoE framework,
the subnetworks activated in their hidden layers
demonstrate specialized behaviors that are task-
dependent and input-specific. Therefore, we pose
the following question:

Is it possible to leverage the dense pre-trained
LLMs as Mixture of Experts to improve?

Building on this insight, by forming the pre-
trained LLM into a tuning-free MoE framework,
we not only achieve an extremely low training re-
quirement that traditional MoE architectures cannot
attain, but also improve its performance compared
with baseline models.

We propose FREE-MOE, a novel tuning-free
MoE architecture designed to leverage the existing
subnetwork expert mechanisms within pre-trained
LLMs. FREE-MOE identifies the input domain
and selectively activate the most relevant Domain-
specific subnetwork Experts (DSS-Experts) within
a pre-trained LLM. Compared to Sparse MoE and
Domain-Mapping & Random Gating MoE architec-
tures, FREE-MOE achieves less pruning require-
ments and more task-specific accuracy, as shown
in Figure 1. Specifically, purification represents the
core solution for experts formation, where it puri-
fies the hidden layer weights by identifying most-
relevant features from the domain of input, retain-
ing high-contributing weights while filtering out
irrelevant ones. Lastly, in order to better activate
purified experts, we introduce a Trainable Router

nilr

vnitr

_>[

Add + Normalize

V4

Add + Normalize]‘T
AT = _S\R_ s R ST T R TR S ~

\ 4 \

OIS T

Expert Al Expert A2

Oy e

Expert B2

Expert B1

| Rrandom |

| Rrandom |

S

7l

—— e = e mm m ———

e ——
L T i L v

N
L

\ [Domain Mappingy, /
B S e A, A NS i AN A iasesns -
Xi(Domain 1) X2(Domain 2) Xi1(Domain 1) X2(Domain 2)
a) Sparse MoE (Top-1 Gating) b) Domain Mapping + Random Gatin, c) Free-MoE
Required tuning| Required tuning[”77777 | (Moderate) Required tuning Jaow

Performance

Performance [](Moderate)

Performance

Figure 1: The comparison between traditional MoE methods and our FREE-MOE.(a) represents Sparse MoE with
top-1 gating, which has higher training requirements and better performance. (b) shows the combination of Domain
Mapping and Random Gating MoE, where this combination can improve training requirements but may sacrifice
some performance. (c) illustrates our FREE-MOE, which activates Domain-Specific Subnetwork Experts from
pretrained LLMs, achieving performance growth without the need for fine-tuning.

that dynamically monitors task requirements and
domain characteristics, enabling real-time domain
identification and efficient allocation. In this work,
we present several key contribution:

* LLM MOoE Architecture FREE-MOE: FREE-
MOE utilizes the latent subnetwork structures
within pre-trained LLMs, eliminating the tuning
dependency of traditional MoE, enabling adapta-
tion to multi-task requirements without the need
for fine-tuning.

* Purification Mechanism on Weights: This
mechanism dynamically selects and activates sub-
network weights relevant to specific tasks, signif-
icantly improving the accuracy of expert selec-
tion.

* A Multi-Level Trainable Dynamic Router: We
introduce a novel trainable router capable of real-
time monitoring of task requirements and domain
characteristics to dynamically identify domains,
particularly demonstrating significant advantages
in multi-task scenarios.

* Achieved Significant Performance Improve-
ments Across Multiple Datasets: Our approach
achieved performance gains of 2% to 3% on
datasets such as MMLU, MBPP, and GSMS8K.
Integrated into the FREE-MOE architecture, cu-
mulative improvements of 1.11% validate the
effectiveness and practicality of the method.

2 Related Works

The Mixture of Experts (MoE) introduces mul-
tiple specialized expert networks, selectively acti-
vating a subset of experts during each inference
to maintain model capacity while significantly re-
ducing computational costs (Jacobs et al., 1991;
Jordan and Jacobs, 1994; Chen et al., 1999; Tresp,
2000; Rasmussen and Ghahramani, 2001). Sparse
gating MoE layers (Shazeer et al., 2017; Riquelme
et al., 2021), the GShard framework (Lepikhin
et al., 2020), and Switch Transformer (Fedus et al.,
2022) strike effective approaches. Focusing on
gating, recent studies include methods like token-
to-expert allocation BASE Layers (Lewis et al.,
2021), hashing-based routing (Roller et al., 2021),
distillation in routing Stablemoe (Dai et al., 2022)
and Expert Choice Routing (Zhou et al., 2022).
Several works have also explored training strate-
gies for sparse MoE models. (Nie et al., 2021)
proposed a dense-to-sparse gating strategy for bet-
ter training efficiency. Additionally, approaches
like expert regularization (Artetxe et al., 2021) and
dimension reduction with L2 normalization (Chi
et al., 2022) have been suggested to enhance fine-
tuning in MoE models. Most recent advancements
in MoE architectures include DeepseekMoE (Dai
et al., 2024)and XMoE(Yang et al., 2024), which
introduce fine-grained expert segmentation, while
LLaMA-MoE by (Zhu et al., 2024) prunes from a
dense LLM.

[Matrix Pateh
| Comme

[

xor (& [P myer, (Wanl| X | Xmnll) p l

) Multi-Layer) EF
i Perceptron |

Hidden Layer

e [[[

r

Split
DSS-Experts |
i

i

i

xpert
Expert 2

Hidden L:

H
| Self Attention CISHES ABRHTD

.
|
[

NX| | ' EER
[40%-60%
|

T

60%-80% 80%-100% | :
[

| ‘
! | !
Positional ®_€9

Encoding

{ 6" = arg max (acc (Outputygoge,)) I

!
@ H DSS-Expert %

! 60%-80%

Input Embedding

mput | 00000000

Step 1. Domain Oriented Weight Purification (1 layer)

Multi-Layer
Perceptron
Add & Norm
Self Attention

Positional ®_€3 !

Encoding |

Input Embedding

Input| JO0OOO00

Domain B
Domain A

] o

Step 2. Free-MoE Structure Architecture

Figure 2: Two-step pipeline for our approach. Step I demonstrates the DOWP (Domain Oriented Weight Purifica-
tion) architecture, where hidden layers extracted are compressed, sorted for domain-specific relevance via Equation
4, and further purifying MLP or Self-Attention Layers via Equation 6 to identify and retain the most relevant expert
weights. Step 2 illustrates the FREE-MOE pipeline, in which the router classifies the input by domain, assigning it
to its identified DSS-Expert split from hidden layers to generate task-specific result.

LLM Pruning removes unnecessary parameters
from a neural network to reduce its size and compu-
tational cost while maintaining or even improving
performance. Unstructured pruning (Blalock et al.,
2020; Frantar and Alistarh, 2023; Syed et al., 2023;
Sun et al., 2024) involves the removal of individ-
ual weights based on specific criteria, leading to
sparse networks that require specialized hardware
for efficient execution. However, structured prun-
ing (Wang et al., 2019; Kwon et al., 2022; Xia
et al., 2022; Ma et al., 2023; Tao et al., 2023) elim-
inates entire structures such as neurons, layers, or
attention heads, making it easier to implement on
standard hardware. Moreover, expert pruning for
Sparse Mixture of Experts (SMoE) models targets
the pruning of individual expert networks (Lu et al.,
2024), further enhancing the efficiency of MoE
architectures without sacrificing performance, per-
forming task-specific MoE (Chen et al., 2022) or
through regularization (Muzio et al., 2024).

3 Method

3.1 Domain-Oriented Weight Purification

The Domain-Oriented Weight Purification, as
shown in Figure 2, compresses matrix patches from
hidden layers and ranks them by importance. Less
relevant patches are purified, reducing complex-
ity while preserving critical weights. This process
forms the DSS-Expert for optimized task execu-
tion.

Clustering-based Classification. Consider
a set of distinct knowledge domains D =
{D1,Da,...,D,}, where each domain D; encap-

sulates specialized knowledge relevant to a specific
task. These domains are aggregated into a compre-
hensive main knowledge set D.

For a given task 7, the algorithm selects the
most suitable main knowledge domain D; by com-
puting the posterior probability P(D | T), which
quantifies the likelihood of task 7 belonging to
each domain. This process is expressed as:

Dj = arg max P(D; | T), (1

where D; is the domain with the highest poste-
rior probability, ensuring that the task 7 is matched
with the most relevant domain.

Once the main domain D) is selected, it is fur-
ther subdivided into smaller subdomains using K-
means clustering. For each dataset within D, fea-
ture representations are extracted via the embed-
ding layer of a Transformer model, forming a set of
feature vectors F; = {Fj,, F},,..., F}, }, where
each F);, corresponds to a data sample. K-means
clustering is then applied to partition ; into k sub-
domains by minimizing the intra-cluster variance,
formalized as:

k
* = i F — 1|2, 2
§*=argmind > |IF —pil, @

i=1 FeC;

where C; denotes the set of points in the i-th
cluster, and u; represents the centroid of cluster
C;. This optimization ensures that the data points
in each cluster are tightly grouped around their
respective centroid.

For any new task 7, its feature vector F;r =
Embedding(7) is extracted and compared to the

_,
5
&
=
Z

Sample Layer output OO00O0COCO
M) Sub Knowledge Domain / st s
o ||l < = Y 4
N R-0E S
. Cigh —¢ . &
0.8 B8 g Dofnain [dentificatio™ 'P""'I'tjz,-) AT Y & ’ o
O & () 5’ . ~“Main Knowledge Domainy "g p : ; _— mhdy“’ oz .é
g , atrix Pa s ; ‘ s 3
8 UE 8 > = ’ 5
=] =] > oy 4
Input __/ Clustered Domains Pre-trained LLM Hidden Layers mmput, OOO0O00000

Figure 3: The inference flow through our FREE-MOE. The input tokens ([)) is first embedded and processed
by a trainable (¢}) router, where it is initially classified into the main knowledge domain and further into a sub
knowledge domain. The embedded input tokens ([]) is then passed to the aggregated DSS-Expert, which are

dynamically formed from the hidden layers of a frozen (
output tokens ([[J) are processed by DSS-Expert to output.

centroids puy of the subdomains. The task is as-
signed to the subdomain D, that minimizes the
Euclidean distance:

k= argmin | Fr — > 3)

Once assigned to the subdomain D, , the task
is further processed according to the knowledge
characteristics.

Metric Calculation on Patches. After identify-
ing the subdomain Dj, , this section quantifies the
critical information contained within it. Activation
values serve as an effective metric for assessing
the importance of neurons and connections within
the network because they directly measure how
strongly neurons respond to input features, reflect-
ing their contribution to the network’s output (Han
et al., 2015). To perform this assessment, we be-
gin by scaling the weight matrix 1/ and feature
matrix X (activation embedding vector). A scaling
factor « reduces the dimensionality of the matrices,
yielding a smaller matrix of size Su x Sv (where
B = 1/a). Each element in this reduced matrix cor-
responds to a patch P;;, which represents a subre-
gion of the original matrix and contains condensed
information.

Afterwards, to further evaluate the significance
of each patch, we calculate the following impor-
tance metric M;; based on the /,-norm:

Z ([Winn| X | Xmnllp) - (4)

(m,n)€P;;

./\/lij =

This metric aggregates the weighted contribu-
tions of each element within the patch, computed
using the [,,-norm. With the norm vector of the
input feature activations, the importance of each
weight can be determined by performing a patch-
wise dot product. Observations suggest that this

) pre-trained LLM based on the identified domain, then

metric is highly robust and can be reliably esti-
mated with a small set of calibration samples.

DSS-Experts Formation. After calculating
the importance scores based on the /,,-norm M;;
for all patches, these patches are sorted in as-
cending order based on their importance scores:
M) < Mgy < -+ < Mg, where M;) de-
notes the sorted importance scores, and p represents
the total number of patches. This sorting process
helps identify the least important patches for pu-
rification. A threshold range 6, is then defined to
govern the purification process:

67" - {M(z) ‘ M(z) S [9m1n7 gmax]} . (5)

Here, Ommin and 6.« represent the lower and upper
bounds of the importance scores targeted for pu-
rification. Patches within this range are considered
less critical to the model’s performance and are thus
purified to reduce complexity while maintaining
accuracy.

Following the purification process, the model’s
accuracy is re-evaluated to ensure minimal im-
pact on performance. This accuracy, denoted as
acc(0,), serves as an indicator of the purification’s
effectiveness. Subsequently, the outputs from each
hidden layer are aggregated, incorporating the puri-
fied information to form the DSS-Expert.

The final step involves optimizing the purifi-
cation threshold. By iterating through different
threshold ranges 6,-, the model’s accuracy is evalu-
ated for each range, and the optimal threshold 6* is
determined:

0" = arg max (acc(OutputMODEL79T)> . (6)

T

This selection of 8* ensures that the model main-
tains maximum accuracy while removing the least

Algorithm 1 Pytorch-style pseudocode for
DOWP Algorithm.

D_k: domain-specific data

theta_init: initial threshold
theta_max: maximum threshold
delta_theta: step size

def optimize_threshold(D_k, Perf, theta_init, theta_max,
delta_theta):
Initialize variables
theta = theta_init
best_perf = @
theta_k_star = theta_init

Extract features and perform K-means clustering

F_k = embedding(D_k) # Feature extraction

subdomains = kmeans_clustering(F_k, k) # K-means
clustering

Iterate over thresholds to find the optimal one
while theta <= theta_max:
Calculate importance and select patches for
purification
selected_patches = select_patches(subdomains, theta)
Select patches based on importance

Purify model and evaluate performance
purified_model = purify_model(selected_patches)
current_perf = Perf(purified_model, D_k)

Update best performance and optimal threshold
if current_perf > best_perf:

best_perf = current_perf

theta_k_star = theta
theta += delta_theta # Increment threshold

return theta_k_star # Return the optimal threshold

Perf: function to evaluate model performance on domain-specific data Dj,.

significant patches, resulting in an efficient and
accurate DSS-Expert, where Epgs = MODEL _g-.

3.2 FREE-MOE Architecture

The FREE-MOE Architecture, illustrated in Fig-
ure 2, utilizes a multi-level trainable router to dy-
namically classify tasks for DSS-Experts.

A Multi-level Trainable Router. We introduce
a multi-level trainable router that classifies tasks
through two hierarchical stages. First, the task
embedding F is classified into a main knowledge
domain D;. Then, in the second stage, the task is
further classified into a subdomain D;, within the
selected main domain, as shown:

Dy, = Resub,j (Rumain (F7))- (7)

Here, Rumain(Fr) maps the task embedding to a
specific main domain D;, and Ry ;(F7), condi-
tioned on this domain, further assigns the task to a
subdomain D, .

The router is trained by minimizing cross-
entropy loss at both levels, optimizing the clas-
sification process:

L = CrossEntropyLoss(X)

== wlog(P(D] X)), (¥
k=1

where y;. is the true label for domain D, and
P(D | X) represents the predicted probability of
the input X being classified into domain D.

The multi-level trainable router classifies tasks
hierarchically into main and subdomains. The clas-
sification process is optimized using cross-entropy
loss at both levels, enhancing precision across do-
mains.

FREE-MOE Inference. The inference process
in FREE-MOE begins with the input tokens X,
which are first passed through an embedding layer
into the embedded representation X . The embed-
ded tokens X are then fed into the router, a train-
able classifier designed to assign the input to the
most relevant domain. The router R classifies the
input into a main knowledge domain and then sub
knowledge domain, depending on the characteris-
tics of the task, expressed as:

Dy, = R(X).)

After classification, the model proceeds DOWP. This
step filters out irrelevant weights from the pre-
trained LLM, retaining only those necessary for
the selected domain. The purified weights, denoted
as Whurified, form the core of the DSS-Expert:

Wpuriﬁed = DOWP (Wpre—trained 5 D m;) . (10)

These purified expert in dynamically activated to
process the embedded input X, ensuring that only
the domain-relevant parameters are used for the cur-
rent task. The embedded input X is then forwarded
through the selected DSS-Expert, which generate
the intermediate output Y. Finally, the intermedi-
ate output Y is subjected to a linear transformation
and a softmax operation to produce the final output
Y, which represents the model’s prediction for the
given task. Whole inference procedure is shown in
Figure 3.

4 Experiment

4.1 Setup

Datasets. We select three primary domains for
our experiments: general, code, and mathemat-
ics. For the general domain, we use the MMLU
benchmark(Hendrycks et al., 2021)to assess world
knowledge and problem-solving across various sub-
jects. In the code domain, we evaluate coding abili-
ties using the MBPP (Austin et al., 2021) and Hu-
manEval (Chen et al., 2021) datasets, focusing on
language comprehension and algorithmic reason-
ing. For mathematics, we utilize GSM8K(Cobbe

MBPP MathQA

GSM8K

GSMBK
a) LLaMA-2-7b-chat

HumanEval GSMB8K HumanEval

b) LLaMA-2-13b-chat

MMLU MMLU
\

¢) LLaMA-2-70b-chat

| T 1
|

> MBPP athQA ¢ \\' MBPP

HumanEval GSMSK HumanEval GSM8K

d) Gemma-7b

HumanEval

e) Gemma-9b

Figure 4: Performance comparison of different models applying DOWP and FREE-MOE. The radar charts illustrate
the improvements across five datasets among DOWP [|, FREE-MOE [_], and baseline methods [].

Model Performance with DOWP Algorithm

=

S

Accuracy Improvement (%)

=

—q’ o
K
i
==x

T

=

Accuracy Improvement (%)
S

Model Performance with FREE-MOE

EN w
[J

w
[

.
°
1}
|
o‘:
|
=
1
1
1
r
1
T
1

o
[]

1

Model E&1 Liama-2-7b-chat 8] Liama-2-13b-chat [Liama-2-70b-chat 5] Gemma-7b [Gemma-2-9b

Figure 5: Accuracy improvement comparison of models using DOWP and Free-MoE methods across various

architectures.

et al., 2021) and MathQA(Amini et al., 2019),
which feature elementary-level problems in algebra
and probability. We use the validation sets from
MMLU, MBPP, MathQA, and GSMS8K as refer-
ence data for our algorithm, with final evaluations
on their respective test sets. For HumanEval, the
MBPP validation set serves as the reference, with
evaluation on the full HumanEval dataset. We em-
ploy a 5-shot evaluation for MMLU, providing the
model five example questions and answers before
predictions. For the other datasets, evaluations are
conducted in a 0-shot setting.

Baseline & Foundation Models. Our experi-
ments use five baseline models: LLaMA-2-7b-chat,
LLaMA-2-13b-chat, LLaMA-2-70b-chat, Gemma-
7b, and Gemma-2-9b. Both LLaMA-2 and Gemma
models are based on transformer architecture, op-
timized for dialogue and natural language under-
standing. We selected LLaMA-2 and Gemma mod-
els, along with their various scales, to test the ef-
fectiveness and generalizability of our method on
dense pre-trained models of different sizes.

Evaluation Metrics. We use accuracy (acc%
1) as the primary evaluation metric across tasks,
defined as the ratio of correctly answered questions
to the total number of questions. For mathematics
and general tasks, accuracy is the sole metric for as-
sessing performance. For coding tasks, we evaluate

model performance using pass@1 and pass@10.
The pass@k(1) metric allows the model to gener-
ate k different solutions for a given problem and
measures the probability that at least one of these
k solutions is correct. This is calculated as:

pass@kzl—H(l—B),

=1

an

where P; is the probability that the model’s ¢-th
solution is correct, and k is the number of trials.

4.2 Main Results

Our DOWP algorithm consistently boosts per-
formance across datasets: MMLU, MBPP, Hu-
manEval, GSM8K and MathQA. When incorpo-
rated into the FREE-MOE architecture, it further
improves efficiency, adaptability and stability, as
shown in Figure 4.

DOWP. Firstly, the application of DOWP using
lo-norm and 10% purification ratio results in con-
sistent performance improvements with an average
gain of 2.04% over the baseline models, as shown
in Table 1. Specifically, LLaMA-2-7b-chat’s ac-
curacy on MMLU increases by 2.02%, while its
performance on MBPP (pass@1) rose by 2.08%,
and its accuracy on GSMS8K improves by 1.97%.
Similar patterns are observed for the other models.
Notably, Gemma-7b exhibits an increase of 3.26%

Table 1: Performance comparison of DOWP and FREE-MOE with baseline on foundation models.

| Method | MMLU | MBPP | HumanEval | GSMSK | MathQA
| acc | pass@1 pass@10 | pass@1 pass@10 | acc | acc
BASELINE | 4581 | 19.24 23.60 | 1445 1951 | 2024 | 2533
DOWP 47.83 21.32 26.40 15.73 20.73 22.21 27.34
LLaMA-2-7b-chat | Improvement | +2.02 | +2.08 4280 | +1.28 +1.22 | +1.97 | 4201
FREE-MOE 47.34 20.58 25.80 14.51 19.51 20.79 26.13
‘ Improvement | +1.53 +1.34 +2.20 +0.06 +0 +0.55 +0.80
BASELINE 52.34 9.68 13.00 18.66 28.05 31.77 24.86
DOWP 53.18 11.52 16.00 19.45 29.88 34.42 27.57
LLaMA-2-13b-chat ‘ Improvement | +0.84 +1.84 +3.00 +0.79 +1.83 +2.65 +2.71
FREE-MOE 52.93 12.39 14.80 19.13 29.27 33.86 26.34
‘ Improvement | +0.59 +2.71 +1.80 +0.47 +1.22 +2.09 +1.48
BASELINE 66.87 45.22 66.15 30.52 59.34 59.47 35.12
DOWP 68.89 47.15 66.98 31.71 60.72 61.83. 35.96
LLaMA-2-70b-chat ‘ Improvement | +2.02 +1.93 +0.83 +1.19 +1.38 +2.36 +0.84
FREE-MOE | 68.12 45.93 66.34 31.22 60.01 60.56 35.33
‘ Improvement | +1.25 +0.71 +0.19 +0.70 +0.67 +1.09 +0.21
BASELINE 63.56 2.94 9.00 15.31 20.12 57.92 37.12
DOWP 65.30 6.20 15.80 16.77 22.56 59.59 39.57
Gemma-7b ‘ Improvement | +1.74 +3.26 +6.80 +1.46 +2.44 +1.67 +2.45
FREE-MOE | 65.05 5.85 13.90 12.93 18.29 59.29 38.79
‘ Improvement | +1.49 +2.91 +4.90 —0.38 —-0.11 +1.37 +1.67
BASELINE 69.71 8.36 9.80 12.87 18.90 68.46 50.75
DOWP 71.07 8.52 10.80 15.12 22.56 69.98 51.22
Gemma-2-9b \ Improvement | +1.36 | +0.16 +1.00 +2.25 +3.66 +1.52 +0.47
FREE-MOE 70.90 8.28 10.40 14.33 20.73 69.45 50.97
\ Improvement | +1.19 —0.08 +0.60 +1.46 +1.83 +0.99 +0.22

in MBPP (pass@10) and a 2.4% improvement in
MathQA accuracy, demonstrating DOWP’s effi-
cacy across different models and tasks. Secondly,
as shown in Figure 5, the performance generally
lies within the improvement range of 2% to 3%
across tasks, with the highest reaching up to 6.8%.
The results suggest that DOWP enhances large-
scale models by improving accuracy and maintain-
ing stability. Its ability to purify domain-specific
weights ensures efficient operation across diverse
datasets and architectures.

FREE-MOE. To make further comparison, we
evaluate the FREE-MOE architecture on the same
set of LLMs to examine its effectiveness. Firstly,
applying FREE-MOE also led to noticeable per-
formance gains of 1.11% in average, though the
improvements were generally more moderate com-
pared to DOWP, as shown in Table 1. In de-
tail, LLaMA-2-7b-chat’s accuracy on MMLU in-
creases by 1.53%, while its performance on MBPP

(pass@1) improves by 1.34%, and its accuracy
on GSMSK see a 0.55% rise. Similarly, Gemma-
7b’s performance in MBPP (pass@10) increases
by 2.91%, with MathQA showing a 1.67% gain.
Secondly, the accuracy improvements under FREE-
MOE primarily fall within the range of 0.5% to
2.5%, with the highest to 4.9%, as shown in Fig-
ure 5. The results suggest that FREE-MOE, while
less impactful than DOWP in terms of absolute
gains, offers a viable and stable method for enhanc-
ing model performance with minimal additional
computation.

4.3 Ablation Studies

In the ablation studies, we use the LLaMA-2-7b-
chat model due to its stable performance in pre-
vious results. Employing DOWP, we analyze [,,-
norm, purification ratios, layers, and patch-square
configurations. Furthermore, employing FREE-
MOE, we analyze the k-means clustering process.

l,-norm. We firstly evaluate the performance of
different p-norm values on the MMLU dataset. For
p = 2, accuracy improves to 47.83%, representing
a2.02% increase over the base accuracy. For p = 4,
accuracy decreases to 47.27%, noting that differ-
ent p-norm configurations yield varying results in
terms of performance, with p = 2 achieving the
highest accuracy, as shown in Table 2.

Table 2: DOWP Performance of Different p in [,,-norm
on MMLU Dataset.

p | MMLU(%)
1 46.26
2
4

47.83
47.27

Accuracy

Purification Ratio. We purify the all model
layers (layers O to 31) using a 1 x 1 patch-square
configuration and examine different ratios on the
MMLU dataset categorized into 12 groups. With
a 10% purification ratio, accuracy reaches 47.83%,
a 2.02% increase over the 45.81% of base. This
shows the 10% ratio effectively balances accuracy
and computational cost, as shown in Table 3.

Table 3: DOWP Performance of Different Purification
Ratio on MMLU Dataset.

| Ratio | MMLU(%)

base 45.81
1% 47.75
Accuracy 3% 47.83
5% 47.79
10% 47.83

Purification Sublayers. We then apply a 5% pu-
rification to MLP layers and Self-Attention layers,
from layers O to 31, evaluating the impact on the
GSMS8K and MathQA, divided into 8 categories.
Results shows purifying the Self-Attention layers
yields the best on GSMS8K, with a 3.18% improve-
ment. On MathQA, the combination performs best,
reaching a 2.01% increase, as shown in Table 4.

Patch-square Configuration. Besides, based
on 5% purification ratio, we evaluate different
patch-square configurations on the MBPP and Hu-
manEval, divided into 3 categories. For MBPP,
the 1 x 1 patch-square achieves the best perfor-
mance on pass@1 with a 1.56% improvement, and
on pass@10 with a 2.40% increase. Similarly,
on HumanEval, the 1 x 1 configuration lead with

Table 4: DOWP Performance of Purifying Different
Sublayers on GSM8K and MathQA Datasets.

Datasets
Patch
GSMSK(%) \ MathQA (%)
base 20.24 25.33
Accurac MLP 21.61 26.87
Y| self-Attention 23.42 25.90
Combination 22.21 27.34

Table 5: DOWP Performance of Different Patch Size
on MBPP and HumanEval Datasets.

| Patch | MBPP(%) | HumanEval(%)

| e elo | e @10

base | 19.24 23.60 | 14.45 19.51

Ix1 |2080 26.00|15.73 20.73

passek | 2x2 | 19.88 25.60 | 15.67 20.12
4x4 | 1858 24.00 | 14.88 20.73

16 x 16 | 18.40 24.40 | 13.97 17.68

1.28% gains for pass@1 and 1.22% for pass@10
respectively over the baseline, as shown in Table 5.

K-means Clustering. Finally, we examine
the impact of different K values applied in
FREE-MOE in the K-means clustering step on
the MMLU dataset, divided into 12 categories.
We vary the number of clusters from 8 to 16, the
results show that with K=12, the accuracy reaches
the highest value of 47.79%, outperforming other
cluster settings, as shown in Table 6.

Table 6: FREE-MOE Performance of Different K-means
on MMLU Dataset.

| K | MMLU(%)
10 47.46
Accuracy | 12 47.79
14 47.27

5 Conclusion

Conclusion. In this work, we introduced FREE-
MOE, a novel framework designed effectively com-
poress dense models, with the core of the DOWP
Alg. FREE-MOE achieves 1) tuning-free, 2) highly
portable, and 3) parameter efficiency, and can
integrate into any transformer-based LLM with-
out model-specific adjustments. Our method thus
presents a promising solution for enhancing large
model scalability and adaptability.

Limitation. Despite its effectiveness, FREE-
MOE has several limitations. First, its reliance on
pre-trained LLMs assumes well-separated expert
subnetworks, which may not optimally handle tasks
requiring cross-domain knowledge. Second, the K-
means clustering used for domain classification
may not always yield semantically meaningful par-
titions, potentially affecting expert selection. Third,
while FREE-MOE reduces fine-tuning needs, its
success depends on the quality of pre-training data,
limiting performance in underrepresented domains.
Fourth, evaluations are primarily based on bench-
marks (MMLU, MBPP, GSM8K), which may not
fully reflect real-world complexities. Future im-
provements could focus on refining domain clus-
tering, adaptive expert selection, and optimizing
routing efficiency.

References

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
Preprint, arXiv:1905.13319.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor
Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru,
Giri Anantharaman, Xian Li, Shuohui Chen, Halil
Akin, Mandeep Baines, Louis Martin, Xing Zhou,
Punit Singh Koura, Jeff Wang, and 4 others. 2021.
Efficient large scale language modeling with mixtures
of experts. arXiv preprint arXiv:2112.10684v1.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state of
neural network pruning? Proceedings of Machine
Learning and Systems, 2:129—-146.

K. Chen, L. Xu, and H. Chi. 1999. Improved learn-
ing algorithms for mixture of experts in multiclass
classification. Neural Networks, 12(9):1229-1252.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Tianyu Chen, Shaohan Huang, Yuan Xie, Binx-
ing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li,

and Furu Wei. 2022. Task-specific expert prun-
ing for sparse mixture-of-experts. arXiv preprint
arXiv:2206.00277.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai,
Shuming Ma, Barun Patra, Saksham Singhal, Payal
Bajaj, Xia Song, and Furu Wei. 2022. On the repre-
sentation collapse of sparse mixture of experts. arXiv
preprint arXiv:2204.09179.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y Wu, and et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang
Sui, Baobao Chang, and Furu Wei. 2022. Stablemoe:
Stable routing strategy for mixture of experts. arXiv
preprint arXiv:2204.08396.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of

Proceedings of Machine Learning Research, pages
10323-10337. PMLR.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015. Learning both weights and connections for ef-
ficient neural networks. Preprint, arXiv:1506.02626.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Michael I Jordan and Robert A Jacobs. 1994. Hierarchi-
cal mixtures of experts and the em algorithm. Neural
computation, 6(2):181-214.

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
2022. A fast post-training pruning framework for
transformers. In Advances in Neural Information
Processing Systems.

https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://github.com/pytorch/fairseq/
https://github.com/pytorch/fairseq/
https://github.com/pytorch/fairseq/
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=0GRBKLBjJE
https://openreview.net/forum?id=0GRBKLBjJE
https://openreview.net/forum?id=0GRBKLBjJE

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In International
Conference on Learning Representations.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. 2021. Base layers:
Simplifying training of large, sparse models. arXiv
preprint arXiv:2103.16716v1.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.
2024. Not all experts are equal: Efficient expert
pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Alexandre Muzio, Alex Sun, and Churan He. 2024.
Seer-moe: Sparse expert efficiency through regu-
larization for mixture-of-experts. arXiv preprint
arXiv:2404.05089.

Xiaonan Nie, Shijie Cao, Xupeng Miao, Lingxiao Ma,
Jilong Xue, Youshan Miao, Zichao Yang, Zhi Yang,
and Bin Cui. 2021. Dense-to-sparse gate for mixture-
of-experts. article, arXiv.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lucia Munguia, David Rothchild, and Jef-
frey Dean. 2021. Carbon emissions and large neural
network training. arXiv preprint arXiv:2104.10350.

Carl Rasmussen and Zoubin Ghahramani. 2001. Infinite
mixtures of gaussian process experts. In Advances in
neural information processing systems, volume 14.

Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. 2016. Xnor-net: Imagenet
classification using binary convolutional neural net-
works. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 5254-5262.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Mario
Neumann, Rodolphe Jenatton, Adria Susano Pinto,
Daniel Keysers, and Neil Houlsby. 2021. Scaling
vision with sparse mixture of experts. In Advances in
Neural Information Processing Systems, volume 34,
pages 8583-8595.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason E Weston. 2021. Hash layers for large
sparse models. In Advances in Neural Information
Processing Systems.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In Inter-
national Conference on Learning Representations.

10

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3645-3650. Association for Com-
putational Linguistics.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024. A simple and effective pruning approach for
large language models. In The Twelfth International
Conference on Learning Representations.

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sun-
darapandiyan. 2023. Prune and tune: Improving
efficient pruning techniques for massive language
models.

Chaofan Tao, Lu Hou, Haoli Bai, Jiansheng Wei, Xin
Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2023.
Structured pruning for efficient generative pre-trained
language models. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 10880—
10895, Toronto, Canada. Association for Computa-
tional Linguistics.

Volker Tresp. 2000. A bayesian committee machine.
Neural Computation, 12(11):2719-2741.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong
Zhang. 2019. Eigendamage: Structured pruning in
the kronecker-factored eigenbasis. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97, pages 6566—-6575. PMLR.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1513—1528, Dublin, Ireland.
Association for Computational Linguistics.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng
Wang, Cuiyun Gao, and Zenglin Xu. 2024. Enhanc-
ing efficiency in sparse models with sparser selection.
arXiv preprint arXiv:2403.18926.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan-
ping Huang, Vincent Y. Zhao, Andrew M. Dai,
Zhifeng Chen, Quoc V. Le, and James Laudon. 2022.
Mixture-of-experts with expert choice routing. In
Advances in Neural Information Processing Systems.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
Llama-moe: Building mixture-of-experts from
llama with continual pre-training. arXiv preprint
arXiv:2406.16554.

https://github.com/pytorch/fairseq/
https://github.com/pytorch/fairseq/
https://github.com/pytorch/fairseq/
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
http://arxiv.org/abs/2112.14397
http://arxiv.org/abs/2112.14397
http://arxiv.org/abs/2112.14397
https://openaccess.thecvf.com/content_cvpr_2016/html/Rastegari_XNOR-Net_ImageNet_2016_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Rastegari_XNOR-Net_ImageNet_2016_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Rastegari_XNOR-Net_ImageNet_2016_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Rastegari_XNOR-Net_ImageNet_2016_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Rastegari_XNOR-Net_ImageNet_2016_CVPR_paper.html
https://openreview.net/forum?id=lMgDDWb1ULW
https://openreview.net/forum?id=lMgDDWb1ULW
https://openreview.net/forum?id=lMgDDWb1ULW
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://openreview.net/forum?id=cKlgcx7nSZ
https://arxiv.org/abs/2403.18926
https://arxiv.org/abs/2403.18926
https://arxiv.org/abs/2403.18926
https://openreview.net/forum?id=jdJo1HIVinI
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554

A Scaling Hidden Layers into Patches
Maintains Information in
Self-Attention and MLP

In Transformer models, the Self-Attention and
MLP layers are critical for capturing global contex-
tual information and performing non-linear trans-
formations on feature representations. The scaling
of hidden layers into patches might raise concerns
about the potential loss of information, but this pro-
cess is designed to preserve both local and global
relationships in the model.

Global Context Preservation in Self-Attention.
The Self-Attention mechanism ensures that every
token in the input sequence can attend to all other
tokens, capturing global dependencies. This opera-
tion is described by:

Q T
Attention(Q, K, V') = softmax <

i)y
e
(12)
Where: @, K, and V are the Query, Key, and
Value matrices. dj, is the dimensionality of the Key
vectors. By scaling hidden layers into patches, each
patch retains local interactions within the patch.
Meanwhile, the Self-Attention mechanism ensures
that global interactions between patches are main-
tained. This is because the attention mechanism
operates across all patches, allowing the model to
propagate global information and maintain context
across the entire sequence of patches. As a result,
the scaled matrix retains the full global context, en-
suring no information is lost during patch scaling.
Patch Scaling and Information Compression.
When the hidden layers are scaled by a factor «,
the resulting reduced matrix of size X x Y
(8 = 1/«) has elements that correspond to patches
in the original matrix. Each patch P;; captures
a compressed representation of the information
within the original matrix. By aggregating the con-
tributions from each element in a patch, the scaled
matrix effectively compresses the local information,
while Self-Attention ensures that this compressed
representation continues to interact globally. The
importance of each patch is calculated as:

bij = Z ([Winn| X | Xmnll2) (13)

(m,n)EP;;

This compression allows for efficient representa-
tion of both local and global information, preserv-
ing the integrity of the original model.

11

MLP Layer and Information Flow. Follow-
ing Self-Attention, the MLP layer processes the
globally-contextualized output. The MLP is de-
fined as:

MLP(h) = o(Wy - ReLU(W; - h)) (14)

Where: h is the output from Self-Attention. Wy
and W5 are the weight matrices in the MLP. o is
the activation function (typically ReLU). The MLP
performs non-linear transformations on the com-
pressed feature representations from the patches.
Since the MLP does not rely on spatial relation-
ships, it processes the patch-level information with-
out any risk of information loss. The critical feature
transformations in the MLP are unaffected by the
scaling process, ensuring that the information flow
remains intact.

B Procedure of DOWP to Select Best ¢

In this section, we present the procedure for select-
ing the optimal threshold 6 in the Domain-Oriented
Weight Purification (DOWP) method. The goal is
to assess the impact of varying 6 values on per-
formance across multiple datasets and domains,
specifically MMLU, GSM8K, MathQA, and Hu-
manEval. Each table provides a comprehensive
comparison of the DOWP performance over differ-
ent ranges of 0, from 50% to 100%, highlighting its
effectiveness in selecting the most relevant experts
in various domains.

C Threshold-Based Performance Analysis
Across Datasets

This appendix provides a comprehensive analysis
of the performance trends observed across vary-
ing threshold 6 values for the datasets GSM8K,
MathQA, HumanEval, MBPP, and MMLU. Each
dataset, representing a distinct domain, showcases
unique response patterns when applying the FREE-
MOE framework. As 6 increases, we observe
noticeable fluctuations in accuracy, highlighting
the dynamic behavior of domain-specific subnet-
works. The results consistently demonstrate that ac-
tivating experts based on purified domain-specific
weights yields stable improvements across tasks,
while maintaining computational efficiency. This
analysis reinforces the scalability and adaptability
of FREE-MOE, validating its ability to enhance
task-specific accuracy without the need for fine-
tuning.

Table 7: Performance comparison of DOWP throughout all MMLU domains with different 6.

cluster_id | Samples | 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% | Max (%) | Ratio (%)

mmlu_0 2047 57.79 58.72 58.96 59.26 59.99 59.94 60.67 60.23 60.77 60.92 60.92 14.58
mmlu_1 1518 35.57 34.72 34.32 35.70 35.38 35.31 35.84 35.44 36.17 35.77 36.17 10.81
mmlu_2 895 23.02 24.02 22.57 23.35 23.02 22.01 22.46 22.68 22.79 22.57 24.02 6.37
mmlu_3 1586 48.93 47.92 49.37 48.99 49.87 49.50 49.43 50.44 50.88 51.01 51.01 11.29
mmlu_4 212 27.83 28.77 28.30 25.94 28.77 26.89 27.83 26.89 27.36 26.89 28.77 1.51
mmlu_5 1477 59.58 59.04 60.39 59.51 60.12 60.80 60.93 61.61 61.61 61.75 61.75 10.52
mmlu_6 322 35.09 32.92 33.85 34.78 33.54 34.78 33.54 34.16 35.09 35.09 35.09 2.29
mmlu_7 434 27.65 25.58 29.95 26.96 26.96 27.19 28.11 29.72 27.19 29.49 29.95 3.09
mmlu_8 2016 55.21 55.36 55.46 55.51 56.15 55.56 56.35 57.04 57.19 57.44 57.44 14.36
mmlu_9 1839 46.66 47.53 46.82 46.49 47.36 47.74 47.36 48.02 48.45 48.29 48.45 13.09
mmlu_10 1174 30.92 30.15 31.26 31.09 30.49 30.15 30.83 32.03 32.28 31.86 32.28 8.36
mmlu_11 522 42.34 45.21 44.25 4291 46.74 45.40 46.74 47.32 46.36 47.13 47.32 3.72

Table 8: Performance comparison of DOWP throughout all GSM8K domains with different 6.

cluster_id ‘ Samples ‘ 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% ‘ Max (%) ‘ Ratio (%)

gsm8k_0 240 12.92 15.00 15.83 18.75 13.75 17.08 16.67 17.50 15.83 16.67 18.75 18.20
gsm8k_1 8 0.00 12.50 12.50 37.50 25.00 12.50 12.50 37.50 0.00 12.50 37.50 0.61
gsm8k_2 225 17.78 21.78 18.22 24.00 22.67 22.67 22.22 21.78 20.44 24.00 24.00 17.06
gsm8k_3 361 18.28 16.90 19.67 20.50 19.94 23.82 21.05 23.82 21.61 23.82 23.82 27.37
gsm8k_4 113 13.27 17.70 9.73 15.04 15.93 19.47 17.70 13.27 17.70 16.81 19.47 8.57
gsm8k_5 193 12.44 10.88 12.95 13.99 15.03 17.62 20.73 18.65 17.10 19.69 20.73 14.63
gsm8k_6 [§ 33.33 16.67 50.00 33.33 33.33 16.67 33.33 33.33 16.67 50.00 50.00 0.45
gsm8k_7 173 16.18 14.45 17.92 23.12 17.34 19.08 17.34 19.65 18.50 19.65 23.12 13.12

Table 9: Performance comparison of DOWP throughout all MathQA domains with different 6.

cluster_id | Samples | 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% | Max (%) | Ratio (%)

mathga_0 289 19.03 19.72 20.42 23.53 26.99 28.72 26.30 22.84 26.30 22.15 28.72 9.68
mathqga_1 318 24.53 24.84 24.21 22.96 31.45 23.58 29.87 29.25 26.42 25.79 31.45 10.65
mathqa_2 453 20.75 22.30 27.15 22.96 24.06 25.39 23.18 26.49 25.39 22.96 27.15 15.18
mathga_3 107 24.30 27.10 28.97 20.56 28.04 27.10 28.04 20.56 22.43 20.56 28.97 3.58
mathga_4 238 24.37 20.17 29.83 21.01 22.69 29.41 22.69 27.31 29.41 28.15 29.83 7.97
mathqa_5 269 26.77 20.45 24.91 25.65 29.37 27.14 25.65 21.56 23.79 29.00 29.37 9.01
mathqa_6 659 24.28 19.58 20.49 21.40 20.64 22.91 21.55 18.97 20.64 19.88 24.28 22.08
mathga_7 652 20.09 21.47 21.32 24.08 22.70 22.70 25.92 24.54 23.47 22.55 25.92 21.84

Table 10: Performance comparison of DOWP throughout all HumanEval domains with different 6.

cluster_id | Metric | Samples | 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% | Max (%) | Ratio (%)

humaneval_0 | pass@l 44 11.82 17.05 15.68 14.77 15.00 16.36 17.05 15.23 15.45 14.77 17.05 26.83
humaneval_1 | pass@l 75 8.27 9.47 10.80 10.67 13.07 15.33 12.67 13.20 13.47 13.33 15.33 45.73
humaneval_2 | pass@1 45 6.89 12.22 1111 9.33 14.22 14.00 15.11 14.00 14.89 15.11 15.11 27.44
humaneval_0 | pass@1@ 44 18.18 25.00 25.00 18.18 22.73 18.18 25.00 18.18 20.45 20.45 25.00 26.83
humaneval_1 | pass@10 75 10.67 14.67 13.33 12.00 18.67 18.67 16.00 17.33 17.33 16.00 18.67 45.73
humaneval_2 | pass@10 45 8.89 15.56 15.56 13.33 15.56 15.56 17.78 15.56 20.00 17.78 20.00 27.44

Table 11: Performance comparison of DOWP throughout all MBPP domains with different 6.

clusterﬁid‘ Metric ‘Samples ‘ 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% ‘ Max (%) ‘ Ratio (%)

mbpp_0 pass@1 185 35.68 34.32 33.89 38.16 34.05 35.19 37.51 34.65 36.65 36.38 38.16 37.00
mbpp_1 pass@1 53 17.74 15.47 20.19 27.92 22.83 25.47 23.96 20.75 19.62 22.08 27.92 10.60
mbpp_2 pass@1 262 7.29 6.18 5.84 6.34 6.56 8.09 6.56 6.45 7.75 7.52 8.09 52.40
mbpp_0 pass@10 185 40.54 43.24 42.16 42.16 40.54 41.08 44.32 39.46 42.70 42.16 44.32 37.00
mbpp_1 pass@10 53 24.53 26.42 28.30 32.08 28.30 35.85 30.19 26.42 26.42 33.96 35.85 10.60
mbpp_2 pass@10 262 9.16 9.16 9.92 9.16 10.31 11.83 9.92 10.31 11.83 11.45 11.83 52.40

12

35
50
30
40 ——GSMSK_0 —-MathQA_0
g ——GSMSK_1 SLas ~MathQa,_L
N - GSMSK_2 = ~MathQA_2
5 ——GSMSK_3 £ ~-MathQA 3
2 - GSMBK_4 E 20 ——MathQA_4
20 ~~-GSMSK_5 - MathQA_5
——GSMSK_6 ——MathQA_6
10 ——GSMSK_7 15 ——MathQA_7
10
50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100% 50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%
Different § Different 6
(a) GSM8SK (b) MathQA
180
160
0 140
25 - 120
g ~MBPP_2_pass@10
Hzo 3100 ~~MBPP_I_pass@10
S —HumanEval_0_pass@! P ~-MBPP_0_pass@10
E's ——humaneval_I_pass@! E ~MBPP_2_pass@1
3 —HumanEval_2_pass@! 60 —MBPP_1_pass@!
g ~—HumanEval_0_pass@10 - -
° ——HumanEval_1_pass@10 40 MBPP_0_pass@]1
v ~+HumanEval_2_pass@10
s 20

50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%

50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%
Different &

Different 6

(c) HumanEval (d) MBPP

65

60 ———
—e-mmlu_0
55 ——mmlu_I
—mmly_2
,\?50 —"] —-mmlu_3
s —T | T | —mmh4
g —-mmly_5
g 40 ——mmlu_6
< 15 r__::_,_.‘ ——mmlu_7
— | ~mms
30 —~—mmlu_9
e~ —~—mmlu_10
25 | emmun

50-55% 55-60% 60-65% 65-70% 70-75% 75-80% 80-85% 85-90% 90-95% 95-100%
Different

(e) MMLU

Figure 6: Accuracy comparison of DOWP across different thresholds 6 for various datasets including GSMS8K,
MathQA, HumanEval, MBPP, and MMLU. Each subfigure (a-e) shows performance variations with respect to the 0
values, highlighting dataset-specific accuracy trends.

13

	Introduction
	Related Works
	Method
	Domain-Oriented Weight Purification
	Free-MoE Architecture

	Experiment
	Setup
	Main Results
	Ablation Studies

	Conclusion
	Scaling Hidden Layers into Patches Maintains Information in Self-Attention and MLP
	Procedure of DOWP to Select Best
	Threshold-Based Performance Analysis Across Datasets

