
Published as a conference paper at ICLR 2025

UNSUPERVISED MODEL TREE HERITAGE RECOVERY

Eliahu Horwitz, Asaf Shul, Yedid Hoshen
School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel
{eliahu.horwitz, asaf.shul, yedid.hoshen}@mail.huji.ac.il
https://horwitz.ai/mother

ABSTRACT

The number of models shared online has recently skyrocketed, with over one
million public models available on Hugging Face. Sharing models allows other
users to build on existing models, using them as initialization for fine-tuning,
improving accuracy, and saving compute and energy. However, it also raises
important intellectual property issues, as fine-tuning may violate the license terms
of the original model or that of its training data. A Model Tree, i.e., a tree data
structure rooted at a foundation model and having directed edges between a parent
model and other models directly fine-tuned from it (children), would settle such
disputes by making the model heritage explicit. Unfortunately, current models
are not well documented, with most model metadata (e.g., “model cards”) not
providing accurate information about heritage. In this paper, we introduce the task
of Unsupervised Model Tree Heritage Recovery (Unsupervised MoTHer Recovery)
for collections of neural networks. For each pair of models, this task requires: i)
determining if they are directly related, and ii) establishing the direction of the
relationship. Our hypothesis is that model weights encode this information, the
challenge is to decode the underlying tree structure given the weights. We discover
several properties of model weights that allow us to perform this task. By using
these properties, we formulate the MoTHer Recovery task as finding a directed
minimal spanning tree. In extensive experiments we demonstrate that our method
successfully reconstructs complex Model Trees.

1 INTRODUCTION

The number and diversity of neural models shared online have been growing at an unprecedented rate.
For instance, on the popular model repository Hugging Face alone there are over one million models,
with thousands more added daily. Many of these models are related through a common ancestor
(i.e., foundation model) from which they were fine-tuned. Recovering the heritage of a model is
important for model and data attribution. Determining whether one model originated from another
(i.e., via fine-tuning) can help resolve legal disputes over model authorship in cases where each party
claims the other model is based on their proprietary model. Moreover, it can help identify models
that resulted from the wrongful use of proprietary training data.

Public models provide 3 main sources of information: metadata, architecture, and weights. While
model metadata may specify model heritage explicitly, the majority of public models lack proper
documentation (e.g., empty model cards). Concretely, we found that over 60% of models on Hugging
Face are missing information about their heritage (see App. A for a detailed analysis). Also, as many
unrelated foundation models share the same architecture (e.g., ViT-B (Dosovitskiy et al., 2020)), we
cannot predict heritage by looking at the model architecture. As weights of public models are very
expressive and always available, in this paper we use just the weights.

Motivated by Darwin’s tree of life (Darwin, 1859), which describes the relationships between organ-
isms, we analogously aim to discover the Model Tree, a structure that describes the hereditary relations
between models. Reminiscent of the natural world, the structure of the Model Tree is unknown. We
therefore propose the task of Unsupervised Model Tree Heritage Recovery (Unsupervised MoTHer
Recovery) for mapping Model Trees in the rapidly evolving neural network ecosystem.

1

https://horwitz.ai/mother

Published as a conference paper at ICLR 2025

We begin our exploration of the Model Tree by studying the relationship between the weights of
related models. First, we establish that the distance between the weights of a pair of models correlates
with their node distance on the Model Tree. We then proceed to examine how the weights of a
model evolve over the course of training. We observe that the number of weight outliers changes
monotonically over the course of training. Specifically, we distinguish between a generalization stage
(often called pre-training) and a specialization stage (often referred to as fine-tuning). We find that
during generalization, the number of weight outliers grows, while during specialization, it decreases.

With these observations, we recover a Model Tree for a given set of models. This requires determining
whether each pair of models is directly connected and establishing the direction of the relationship. We
use weight distance to create a pairwise distance matrix between models and the outlier monotonicity
to create a binary edge direction matrix. Finally, we use a minimum directed spanning tree algorithm
on the combined distance matrix to recover our Model Tree. We extend the Model Tree to a Model
Graph, allowing us to recover ecosystems with multiple Model Trees by first clustering the nodes
based on their pairwise distances. To evaluate the MoTHer Recovery task, we introduce the MoTHer
dataset, a Model Graph comprising of over 500 models from diverse architectures and modalities.

To summarize, our main contributions are:

1. Introducing the task of Unsupervised Model Tree Heritage Recovery for model attribution.
2. Uncovering a connection between model weights and their relative location on Model Trees.
3. Proposing MoTHer, a new approach for unsupervised Model Tree Heritage Recovery and

demonstrating its effectiveness.

2 RELATED WORKS

The field of weight space learning treats models as data points and attempts to extract information
about a model by processing its weights. Eilertsen et al. (2020) performed a large empirical study of
model weights, representing each model as a point in the neural weight space and training classifiers
to predict different training hyperparameters. The seminal work of (Kong et al., 2016) proposed
using a HyperNet to generate parameters of a model, recent works (Erkoç et al., 2023; Zhang et al.,
2024; Wang et al., 2024; Peebles et al., 2022) used diffusion models to generate the weights of small
networks. A different line of works predicts model performance or classifies models based on their
weights by projecting the weight into an embedding space (Dar et al., 2022; Gueta et al., 2023),
learning model weights representations (Schürholt et al., 2021; 2022; 2024), or by incorporating
permutation invariance priors while training a neural network on the weights (Zhou et al., 2024;
Kofinas et al., 2024; Lim et al., 2023; Navon et al., 2023b;a; Unterthiner et al., 2020). Recently,
Horwitz et al. (2024) recovered the weights of a pre-trained model using a small number of LoRA
fine-tuned models, which means that their safety is vulnerable. Most related to our work is Yu &
Wang (2024) which uses model Jacobians to identify the parent model for a given model and a
suspected set of models. However, it can not recover the direction of an edge or compute a complex
heritage hierarchy. In addition, Yu & Wang (2024) uses the gradients of models, which are both very
computationally expensive and require running samples (which are often unavailable) through the
model. In contrast, our method is unsupervised, data-free, and can recover the structure of large and
complex model collections. Overall, model weight processing remains an underexplored area that is
poised to grow in the coming years.

3 MODEL TREES AND MODEL GRAPHS

This section describes the Model Tree, a data structure for describing the origin of models stemming
from a base model (e.g., a foundation model) and defines the task of recovering its structure.

Definition. Consider a set of models V , where the base model vb ∈ V serves as the root node.
Every model v ∈ V \ {vb}, is fine-tuned from another model. We refer to the model from which v
was fine-tuned as its parent model, and denote it by Pa(v). Conversely, we refer to v as a child of
Pa(v). A parent can have multiple children (including none), while all models except the root have
only one parent. The set of tree edges is denoted by E , where each directed edge between a parent
and its child is represented as e = (Pa(v), v). Overall, we define the Model Tree T by its nodes and

2

Published as a conference paper at ICLR 2025

directed edges, T = (V, E). We denote by d(u, v) the number of edges on the shortest path in T+
between the nodes u and v. The tree T+ is the same as our tree T except that the directed edges are
replaced by undirected ones.

A collection of Model Trees T1, . . . , Tn forms a forest, which we call a Model Graph. This Model
Graph is defined as G = (V = V1 ∪ . . . ∪ Vn, E = E1 ∪ . . . ∪ En). In a Model Graph, d(u, v) is only
defined if u, v ∈ Ti, when u ∈ Ti and v ∈ Tj , d(u, v) is undefined. Note that all the models within
a Model Tree share the same architecture1. As the architecture of a model is given by its weights,
and since different architectures necessarily belong to different trees, we can assume without loss of
generality that all v ∈ V are of the same architecture.

Task definition. Due to the large number and diversity of models, the structure of the Model Graph
is unknown and is non-trivial to estimate. We therefore introduce the task of Model Tree Heritage
Recovery (MoTHer Recovery) for mapping the structure of the Model Graph.

Formally, given a set of models V , the goal is to recover the structure of the Model Graph G = (V, E)
based solely on the weights of the models v ∈ V . Since a Model Graph is a forest of Model Trees, the
task involves two main steps: (i) Cluster the nodes into different components T1, T2, . . ., where each
component is a Model Tree with an unknown structure. (ii) Recover the structure of each Model Tree
Ti. Essentially, as each graph is defined by its vertices and edges, the task is to recover the directed
edges E using the weights of v ∈ V .

4 MODEL GRAPH PRIORS

1 2 3 4
Model Tree Edge Distance

0.80

0.85

0.90

0.95

FT

40

60

80

100

120

Lo
RA

Full FT (= 0.990)
LoRA (= 0.998)

Figure 1: Weight Distance vs. Model Tree
Edge Distance: For every pair of models, we
plot the weight distance and the correspond-
ing edge distance on the Model Tree. Our
weight distances ℓFT and ℓLoRA almost per-
fectly correlate with the number of edges be-
tween models in a Model Tree. This correla-
tion confirms these weight distances are good
indicators for determining parent-child rela-
tion, i.e., models that were fine-tuned from
one another. We use a 3 levels deep Model
Tree that contains 21 models

Despite the recent growth in public models, and al-
though model weights fully characterize the behav-
ior of a model, our understanding of model weights
is limited. Here, we explore two key properties of
model weights that we use in Sec. 5 for Unsupervised
Model Graph recovery (MoTHer).

4.1 ESTIMATING
NODE DISTANCE FROM MODEL WEIGHTS

In this section, we investigate the use of model
weights to predict the distance between two mod-
els in the Model Tree. This will help us determine
whether two models are related via an edge.

Definition: weight distance between models. Let u
and v be two models, and ul and vl denote the weight
matrix of layer l of models u and v respectively,

ℓFT (u, v) =
1

L

L∑
l=1

ℓ2(ul, vl) (1)

where L is the number of model layers.

Full fine-tuning. We first study the weight distance ℓFT (u, v) between pairs of models as a function
of the edge distance d(u, v) between their respective nodes on the Model Tree. In Fig. 1, we plot the
relationship between these two distances (ρ = 0.99). It is evident that nodes with direct parent-child
connections (i.e., models fine-tuned from one another) have the lowest weight distance of 1. We
conclude that a low ℓFT distance between two models is highly correlated with an edge between their
nodes and vice versa.

1While it is common to practice to add one or more layers to the end of a model and perform linear probing
or fine-tuning, the pre-trained and fine-tuned models still share the “stump” architecture. In such cases, we can
simply discard the disjoint layers and consider the intersecting layers.

3

Published as a conference paper at ICLR 2025

Step

1.1

1.0

0.9

Vi
T

5

10

Re
sN

et

ViT
ResNet

Step

2.91

2.92

Vi
T

4.5

5.0

Re
sN

et

ViT
ResNet

Figure 2: Directional Weight Score: We plot the change in the directional weight score throughout
the pre-training (generalization) stage (left) and fine-tuning (specialization) stage (right). In all
cases, the directional score is almost monotonic, indicating the increasing number of weight outlier
values during generalization and the decreasing number during specialization. This confirms that our
directional weight score is effective for determining the direction of an edge. For the fine-tuning, we
used publicly available, pre-trained backbones as initialization

LoRA fine-tuning. LoRA (Hu et al., 2021) has become the dominant method for parameter-efficient
fine-tuning. When fine-tuning a model via LoRA, the entire model is frozen, and only a subset of
the layers tune a new low-rank matrix for each layer. Consequently, a model fine-tuned via rank r
LoRA differs from its base model by a matrix of at most rank r for each layer. Furthermore, two
models fine-tuned from the same base model using rank r1 and r2 LoRAs differ from each other by a
matrix of at most rank r1 + r2 per layer. We use this property to provide a better estimate of the node
distance between LoRA models and define the LoRA weight distance as:

ℓLoRA(u, v) = max
l

(rank(ul − vl)) (2)

where L is the number of fine-tuned LoRA layers. In practice, we compute the rank using singular
value decomposition (SVD), where the rank is the number of singular values greater than some
threshold ϵ. Similar to the full fine-tuning case (see Fig. 1), a low LoRA weight distance between
two models is highly correlated with an edge between their nodes.

4.2 ESTIMATING EDGE DIRECTION FROM WEIGHTS

The direction of an edge between two nodes u and v reflects whether model v was trained from u
or vice versa. The weight distance from Sec. 4.1 cannot disentangle the direction as it is symmetric.
Estimating the direction of edges requires a statistic of the weights that evolve monotonically during
training. To this end, we use kurtosis (i.e., fourth moment) and define the directional weight score as:

k(u) =
∑
l∈L

E
[
(ul − µ)

4
]

(
E
[
(ul − µ)

2
])2 (3)

where L is a set of model layers and µ is the mean of the layer weights l. Note that the directional
score only defines an order between related nodes; unrelated nodes may have very different scores.

To study the effectiveness of this score, we study how the weights of a model evolve throughout the
training process. Concretely, we calculate Eq. 3 at multiple points throughout the training process and
plot the results. Interestingly, we found that the training process can be categorized into two stages: a
generalization stage and a specialization stage. As seen in Fig. 2, while the score is monotonic in
both stages, it increases during generalization and decreases during specialization. The generalization
stage usually corresponds with model pre-training and the specialization with model fine-tuning,
however, this is not necessarily always the case. The term fine-tuning is typically used for any training
performed after the initial pre-training stage. However, generalization training may also take place in
an already pre-trained model (we show such an example in Sec. 6 (Stable Diffusion)). We therefore
use the terms generalization and specialization.

Intuition. Consider a model with Gaussian-based weight initialization, such as Kaiming initial-
ization by He et al. (2015). During the generalization stage, to better encode large, general-purpose
datasets, the weights of a model will likely take an increasing number of diverse values. This may

4

Published as a conference paper at ICLR 2025

B C

A
GPC PC2

PCS S3
B

A

C

A

B C

(b)	Edge	via	
weight	distance

(c)	Root	via	weight	
directional	score

(a)	Input	
models

B

C

A
B CA

B AC

B
A

C

B CA

B

C

A

Figure 3: Recovering a Simplified Model Graph: We enumerate all possible Model Graphs of size 3
(left). On the right, we demonstrate a Model Graph Recovery process. (a) A set of 3 models with no
prior knowledge regarding their relations. (b) Place edges between the nodes with the lowest weight
distance. (c) Designate the node with the highest directional weight score as the root

lead to an increase in the number of outlier values in the weight matrix. In contrast, during the spe-
cialization stage, the weights of a model with a lower value diversity will likely suffice to encompass
the smaller, task-specific data. This may lead to a decrease in the number of outlier values in the
weight matrix. Kurtosis, as a measure of the “tailedness” of a distribution, captures this property.

5 MODEL TREE HERITAGE RECOVERY

Given the above priors, we now describe how to recover the structure of Model Graphs. As a warm-up
problem, in Sec. 5.1 we start by manually solving all the 3 nodes Model Graphs. Then, in Sec. 5.2
we describe MoTHer, our proposed algorithm for recovering real Model Graphs.

In both cases, we have access to the model weights and assume that we are given the training stage of
each node (i.e., generalization or specialization)2. Each Model Graph may contain one or more Model
Trees. Connected nodes within a Model Tree are derived from each other via additional training steps.
Unless otherwise specified, we assume no prior knowledge regarding the model relations.

5.1 WARM-UP: A SIMPLIFIED MODEL GRAPH

To recover a Model Graph of size 3, we place edges between the nodes with the lowest weight
distance and designate the node with the highest directional weight score as the root. Next, we
elaborate on each of the possible size 3 Model Graphs.

Grandparent-Parent-Child (GPC). This Model Tree exhibits a 3-generational relationship, where
each node is derived from the previous one (see Fig. 3). To recover the underlying Model Tree
structure, we use ℓFT to place edges between node pairs with the lowest weight distances. This is
motivated by our analysis in Sec. 4.1 and Fig. 1. Next, to determine the order of the nodes, we use the
directional score shown in Eq. 3 and designate the node with the highest score as the root. Combining
these steps fully constructs the GPC Model Tree, we illustrate this process in Fig. 3. Note that the
above process assumes the specialization training stages for all 3 models. To adjust the process for
the generalization stage, we can simply flip the sign of the directional score. When the training stages
of each node differ, we choose the sign according to each node’s training stage.

Parent-Child-Child (PC2). This Model Tree contains one parent with two children (see Fig. 3).
As in the GPC case, we start by placing the edges using the weight distance defined in Eq. 1. Since
both children are derived from the root, the directional score will predict the node with the highest
score as the root (see Fig. 3). Different training stages are handled as in the GPC case.

Parent-Child-Stranger (PCS). Unlike the previous triplets, here we have a Model Graph comprised
of two Model Trees (see Fig. 3). To recover this structure, we first identify the node with no edge

2This is a reasonable assumption as we generally know whether a model is a foundation model with general
capabilities or a fine-tuned specialized model.

5

Published as a conference paper at ICLR 2025

(a)	Cluster
	input	models

(b)	Pairwise	
distance	matrix	𝐷	&	
directional	matrix	𝐾	

(c)	 Find	MDST	
using	merged	
prior	matrix	𝑀

MDST	
Algorithm+

Figure 4: MoTHer Recovery Overview: Our proposed Model Graphs and Model Trees are new
data structures for describing the heredity training relations between models. In these structures,
heredity relations are represented as directed edges. We introduce the task of MoTHer Recovery its
goal is to uncover the unknown structure of Model Graphs based on the weights of a set of input
models. Our algorithm works as follows: (a) Cluster into different Model Trees based on the pairwise
weight distances. (b) For each cluster, i) use ℓFT or ℓLoRA to create a pairwise distance matrix D for
placing edges, and ii) create a binary directional matrix K based on the kurtosis to determine the
edge direction. (c) To recover the final Model Tree, run a minimum directed spanning tree (MDST)
algorithm on the merged prior matrix M . The final recovered Model Graph is the union of the
recovered Model Trees

according to the pairwise weight distance. Since that node belongs to a different Model Tree, it will
have a larger distance than a set threshold, allowing us to classify it as the odd one. With the node
isolated, we can follow the protocol of the previous Model Trees for the two remaining nodes.

Stranger-Stranger-Stranger (S3). Finally, here we have a Model Graph comprising 3 Model Trees
(see Fig. 3). Similar to PCS, we can cluster them into different Model Trees based on their large
distances, allowing us to identify the structure.

5.2 MOTHER RECOVERY: SCALING UP MODEL GRAPH RECOVERY

We present MoTHer, our method for recovering the structure of larger Model Graphs. Let
v1, . . . , vn ∈ V be a set of nodes representing different models. For simplicity, assume for now that
all v1, . . . , vn ∈ T , i.e., all nodes are from the same Model Tree, we will later relax this assumption.

Our goal is to recover the edges E of the Model Tree T , this is done by placing edges between two
nodes, where one was trained from the other. As seen above, recovering the structure requires a
combination of the estimated weight distance and the edge direction. Let D be a weight distance
matrix and let K be a binary directional matrix,

Dij =

{
ℓ(vi, vj), if i ̸= j

∞, otherwise
, Kij =

{
1, if k(vi) < k(vj)

0, otherwise
(4)

To allow for both generalization and specialization node relations, we define T as a binary matrix

Tij =

{
1, if generalization
0, otherwise

(5)

The final distance matrix for recovering the Model Tree takes into account all 3 constraints as follows,

Mij = D + λ(K ⊕ T) (6)

where ⊕ is a binary XOR and λ regularizes the directional score, allowing for some mistakes. Since
ℓFT and ℓLoRA may range in value, we define λ to be proportional to D with λ = c · (1

n2

∑n
i,j=1 Dij)

where c is some constant. In practice, we found that the results are virtually unchanged for values of
c ∈ (0, 5), and chose c = 0.3 arbitrarily.

We can recover the Model Tree from M using a minimum directed spanning tree (MDST) algorithm.
In this paper, we employ the Chu-Liu-Edmonds’ algorithm (Chu, 1965; Edmonds et al., 1967), which

6

Published as a conference paper at ICLR 2025

iteratively contracts cycles in the graph until forming a tree. The algorithm proceeds as follows:
initially, it treats each node as a temporary tree. Then, it merges the temporary trees via the incoming
edge with the minimum weight. Subsequently, it identifies cycles in the remaining temporary trees
and removes the edge with the highest weight. This merging process continues until all cycles are
eliminated, resulting in the minimum directed spanning tree. The algorithm runs in O(EV), however,
faster MDST algorithms exist (Gabow et al., 1986) with O(E + V logV).

Multiple components. Thus far we assumed all v1, . . . , vn are from the same Model Tree. If we
were to simply run the above algorithm on models that are unrelated (i.e., belong to different Model
Trees), we would end up with a single, wrong Model Tree. Therefore, when dealing with general
model populations, we first cluster v1, . . . , vn into different components based on their pairwise
distances (using Eq. 1 or Eq. 2). We then run the above MoTHer recovery algorithm on each of
the clusters independently. Note that while in some cases clustering is trivial by using the model
architecture, it is not sufficient for the general case as there are many unrelated foundation models
that share the exact same architecture. For instance, DINO (Caron et al., 2021), MAE (He et al.,
2022), and CLIP (Radford et al., 2021) all use a VIT-B(Dosovitskiy et al., 2020) architecture despite
being completely unrelated.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

To evaluate the performance of MoTHer we construct the MoTHer dataset, a Model Graph with over
500 models organized in different Model Trees. We distinguish between 4 main disjoint sub-graphs
of the dataset: i) LoRA-V: LoRA fine-tuning with varying ranks, ii) LoRA-F: LoRA fine-tuning with
fixed ranks, iii) FT: full fine-tuning, and iv) Mixed: mixed LoRA and full fine-tuning.

Each category contains 105 models in 3 levels of hierarchy and is comprised of 5 Model Trees rooted
by different, unrelated pre-trained ViTs (Dosovitskiy et al., 2020) found on Hugging Face. The
second level of each Model Tree contains 4 models fine-tuned on randomly chosen datasets from the
VTAB benchmark(Zhai et al., 2019). Each second-level model has 4 child nodes, fine-tuned with
randomly sampled VTAB datasets while ensuring they are different than their parent model. We label
all of the models as specialization-trained. In addition, we also construct a deeper Model Tree (Deep)
with 121 models in 5 levels of hierarchy as well as a ResNet50(He et al., 2016) Model Tree (ResNet)
with 21 models in 3 levels of hierarchy. The fine-tuning exhibits some variation in hyperparameters,
for more details see App. B. In addition to the MoTHer dataset, we evaluate our method on the Stable
Diffusion Model Tree found on Hugging Face.

We use accuracy as the evaluation metric, a correct prediction is one where both the edge placement
and direction are correct. In all our tests, MoTHer ran in seconds to minutes even on a CPU
(see App. F for more details). For clustering the Model Graph into different Model Trees, we use
hierarchical clustering over the ℓ2 pairwise distance and assume knowledge of the number of clusters.
We use the “scipy” (Virtanen et al., 2020) implementation with the default hyperparameters.

6.2 MOTHER DATASET RESULTS

We now present the results of our method. As discussed in Sec. 5.2, when given a set of models, we
first cluster the models into smaller subsets where the models belong to disjoint Model Trees. We
then run MoTHer recovery on the set of models in each cluster. Notably, the clustering succeeded
with perfect accuracy, we therefore discuss the results of independent Model Trees. In Sec. 6.4 show
the relation between the size of the Model Graph and the accuracy of the clustering.

LoRA fine-tuning. We start by testing MoTHer on the LoRA sub-graphs of the dataset. We set
L from Eq. 2 and Eq. 3 to be all the LoRA fine-tuned layers of the model. We first study the
performance of LoRA fine-tuned models with varying ranks. Meaning, that the rank of the difference
between two pairs of models is likely to be different and therefore discriminative. Indeed, as can
be seen in Tab. 1, we successfully reconstruct all 5 Model Trees within the sub-graph with perfect
accuracy. In contrast, when all models use the same rank, the variance between different models
decreases, resulting in a reduced accuracy for one of the 5 Model Trees.

7

Published as a conference paper at ICLR 2025

-	ImageNet
-	ImageNet-21k
-	MAE
-	DINO
-	MSN

Figure 5: MoTHer Dataset Overview: Our dataset simulates a Model Graph consisting of over
20 Model Trees with a total of over 500 models fine-tuned on varying datasets with different
hyperparameters. We distinguish between 4 main disjoint sub-graphs, differing in backbone and
fine-tuning paradigm. We visualize the ground truth structure of a single sub-graph that contains 105
models across 5 Model Trees. The different colors represent the different Model Trees, each rooted
in a different foundation model. In practice, this structure is unknown and we are only given the set
of models, without knowing their relations or their origin. Note that all 105 models use the same ViT
architecture, making it non-trivial to recover the structure

Table 1: MoTHer Results: MoTHer Recovery achieves high accuracy both for individual Model
Trees and entire Model Graphs. Each sub-graph comprises 105 models from 5 Model Trees, the
Mixed sub-graph simulates a real-world repository where models from the same Model Tree use
either LoRA or full fine-tuning

Sub-graph Model Tree Root Model
GraphImageNet ImageNet-21k MAE DINO MSN

LoRA-V 1.0 1.0 1.0 1.0 1.0 1.0
LoRA-F 1.0 1.0 1.0 1.0 0.8 0.96
FT 0.85 0.85 1.0 1.0 1.0 0.94
Mixed 0.9 0.9 0.9 0.9 0.9 0.83

To ablate whether the LoRA-based ℓLoRA distance defined in Eq. 2 is necessary, we repeat the above
experiment with ℓFT defined in Eq. 1. Not using the low-rank distance prior reduces the results on
LoRA-V by 22% to 0.78, demonstrating the significance of ℓLoRA for LoRA fine-tuned models.

Full fine-tuning. We now proceed to test our method in cases where all the models used full fine-
tuning. As before, we use the already clustered sets and run MoTHer on each set independently. We
set L from Eq. 1 to all the model layers and Eq. 3 to be all the dense layers of the model. For 3 out
of the 5 Model Trees in the dataset, MoTHer successfully reconstructs the tree structure with perfect
accuracy. The other two Model Trees suffered from a wrong directional score, which resulted in an
imperfect reconstruction, we show the full breakdown in Tab. 1. Our method also generalizes to other
architectures, we demonstrate this by recovering the structure of the ResNet Model Tree with perfect
accuracy.

Mixed LoRA and full fine-tuning. Finally, we created a sub-graph to simulate real model repositories
where Model Trees contain models that use different fine-tuning paradigms. In particular, we construct
a Model Graph where the fine-tuning method is randomly chosen to be either full fine-tuning or
LoRA fine-tuning (with fixed rank). Since the weights of models that used full fine-tuning are full
rank, we must use Eq. 1 and set L to be all the model layers. Similar to the drop in performance when
using ℓFT with LoRA fine-tuned models, here too there is some decrease in performance, resulting
in an overall accuracy of 0.9, see Tab. 1 for the Model Tree breakdown.

6.3 IN-THE-WILD MOTHER RECOVERY

Having shown we can recover the Model Graph structure with high accuracy on the MoTHer dataset,
we now attempt to recover the Model Tree of in-the-wild models found on Hugging Face. We note

8

Published as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8 1.0
Node Percentage

0

20

40

60

80

100

Ac
cu

ra
cy

VTHR FT
VTHR LoRA-V

Figure 6: Clustering Robustness to Small Model
Graphs: In both cases, the clustering works with
high accuracy even for small Model Graphs

SD	
v1.1

SD	
v1.2

SD	
v1.3

SD	
v1.4

SD	
v1.5Stable	Diffusion	

GT

Figure 7: Stable Diffusion Model Tree: We suc-
cessfully reconstruct all but a single edge, where
the estimated weight distance was incorrect but
the direction was correct

that the example below is special in that it provides a relatively detailed description of its model
hierarchy, this provides a unique opportunity for us to test our method in a real-world situation with
ground truth metrics but also emphasizes the relevance and importance of the MoTHer recovery task.

Stable Diffusion The Hugging Face model cards for Stable Diffusion describe a 4 level hierarchy
spanning 5 of their models. These are: i) Stable Diffusion 1.1, ii) Stable Diffusion 1.2, iii) Stable
Diffusion 1.3, iv) Stable Diffusion 1.4, and v) Stable Diffusion 1.5. We use the ℓFT distance described
above, however, since the different model versions are better and more generalized foundation models
we treat them as generalization nodes (i.e., the directional score is now flipped, as seed in Eq. 5). As
seen in Fig. 7, MoTHer successfully reconstructs all but a single edge, incorrectly placing “Stable
Diffusion 1.4” as a descendent of “Stable Diffusion 1.3”, instead of a sibling. Notably, the mistake
occurred due to a wrong distance, as the directional score returned the correct edge direction.

6.4 ABLATIONS

Robustness to similar models. Foundation models often come with fine-tuning “recipes”, as such,
many publicly available models are almost identical to each other, often with just a different seed.
We therefore test the robustness of MoTHer with 3 identically fine-tuned versions of ViT that used
different seeds. In all 3 cases, the distance between sibling models was greater than to the parent
model, allowing us to correctly recover the Model Tree.

Deeper and larger Model Trees. We ablate whether MoTHer can scale to deeper and larger Model
Trees. To this end, we train a 5-level hierarchy of ViT models, rooted at the ImageNet foundation
model. Each ith level model has 3 child models, resulting in a set of 121 models, all belonging to the
same Model Tree. Indeed, although this structure has 6× more nodes and is 2× deeper (the root to
leaf path is now 4 edges instead of 2), we observe a minor decrease in accuracy, from 0.85 to 0.79.
We note that we did not test MoTHer on huge, web scale Model Graphs, in Sec. 7 we discuss scaling
MoTHer recovery to web scale Model Graphs.

Clustering robustness to smaller Model Graphs. We now test whether the clustering succeeds for
small Model Graphs. As seen in Fig. 6, even with as little as 10 models (across 5 Model Trees), the
clustering achieves high accuracy, indicating MoTHer recovery could be performed even for small,
yet diverse Model Graphs.

Other directional scores. Our directional score (Eq. 3) uses kurtosis to estimate the distributional
change in outliers of weight values. However, other directional scores may be favorable. We compared
the performance using the variance, skewness, kurtosis, and entropy. To do so, we fine-tuned each of
the root models from the MoTHer dataset and extracted intermediate weights throughout the training
process. The kurtosis is the only metric that demonstrated consistent monotonicity across the different
models (see Fig. 8).

Effect of layers types. Neural networks often contain multiple layer types (e.g., linear, convolutional,
attention). We therefore study the change in the directional score for different layer types throughout
the fine-tuning process. Despite different types of layers exhibiting similar trends on average, the
dense layer remained consistent across all Model Trees (see Fig. 13).

Robustness to Pruning and Quantization. Our method is robust to pruned (see App. D.1) and
quantized models (see App. D.2). For example, with 90% pruning, the accuracy decreases by only
4%. In the extreme case where 99% of weights are pruned, our method still achieves 68% accuracy

9

Published as a conference paper at ICLR 2025

(a) Variance (b) Skewness (c) Kurtosis (d) Entropy

Figure 8: Other directional scores: We compute the different types of directional scores throughout
the fine-tuning process. The kurtosis is the only metric that remained consistently (almost) monotonic.
Each color represents a fine-tuning from a different Model Tree root

(random baseline is roughly 5%). Moreover, when 50% of the models underwent quantization, the
performance of our method decreases by less than 1%.

7 DISCUSSION AND LIMITATIONS

Training stage supervision. Throughout the paper we assumed the training stage is known in advance.
While for many use cases, this is a reasonable assumption, finding a method to automatically infer the
stage based on the model weights would allow for greater applicability in cases where the training
stage supervision is missing. Alternatively, one could extend MoTHer with methods for identifying
the direction of an edge that does not rely on the training stage.

MoTHer Recovery at web scale. This paper makes the first step in recovering the Model Graph
of trained neural networks. However, recovering web scale Model Graphs requires significant
computational resources for storing the millions of models and computing their distance matrices.
One possible solution is to train a neural network to learn compact representations that encode the
relations between models. This may be done by using the limited number of already documented
models as weak supervision. However, as recent studies demonstrate (Schürholt et al., 2024; Lim
et al., 2023; Eilertsen et al., 2020), while the weights encode vast information about the model,
treating the weights as an input to a neural network is non-trivial even for small models.

Models with Mixed Heritage. In this work we focused on models with a single parent. However, in
some cases two or more models are merged to form a new model. In App. E we describe a preliminary
experiment that explores the potential of identifying such cases where we show that it is determine
forward to determine both parents of a merged model. Extending our method to fully handle such
cases is left for future work.

8 CONCLUSION

As the number of neural network models in repositories like Hugging Face now crosses the one
million threshold, tracing the heritage of a model becomes essential for attribution and can help
resolve legal disputes. We analyze current model repositories and conclude that most models are
poorly documented and do not contain enough information for model attribution. We propose using
the Model Graph and Model Tree to organize collections of models and represent the hereditary
relations between them. As the structure of the Model Graph of public repositories is unknown,
we introduce the task of unsupervised MoTHer Recovery, which aims to map out unknown Model
Graphs. We identify two key properties of model weights that enable the recovery of Model Graphs.
We validate our approach by successfully reconstructing a Model Graph with over 500 nodes as well
as a Model Graph of in-the-wild production models. Taken together, the Model Graph and MoTHer
Recovery make an exciting first step toward understanding the origin of models.

10

Published as a conference paper at ICLR 2025

SOCIAL IMPACT

The ability to recover model heritage trees has significant implications for intellectual property rights
and ethical AI development. By providing a method to trace the heritage of fine-tuned models, this
work could help resolve disputes over model ownership and identify cases of proprietary data misuse.
Additionally, it promotes transparency in the AI ecosystem, potentially encouraging more responsible
model sharing and development practices. However, this technique could also be misused by bad
actors to reverse-engineer proprietary models or training datasets, compromising the competitive
advantage or privacy safeguards of legitimate AI developers.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our method and results, we describe the experimental setup in Sec. 6.1.
We elaborate on the exact models and hyperparameters we use in App. B. We include the our code in
the supplementary material and will make it publicly available through github upon acceptance. We
will also upload the entire MoTHer dataset to Hugging Face.

ACKNOWLEDGEMENTS

This work was supported in part by the “Israel Science Foundation” (ISF), the “Council for Higher
Education” (Vatat), the “Center for Interdisciplinary Data Science Research” (CIDR), the “Israeli
Cyber Authority”, and “KLA”.

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. arXiv preprint arXiv:2209.04836, 2022. 19

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin.
Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9650–9660, 2021. 7

Yoeng-Jin Chu. On the shortest arborescence of a directed graph. Scientia Sinica, 14:1396–1400, 1965. 6

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding space. arXiv
preprint arXiv:2209.02535, 2022. 2

Charles Darwin. On the Origin of Species by Means of Natural Selection. Murray, 1859. or the Preservation of
Favored Races in the Struggle for Life. 1

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 1, 7

Jack Edmonds et al. Optimum branchings. Journal of Research of the national Bureau of Standards B, 71(4):
233–240, 1967. 6

Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying the classifier:
dissecting the weight space of neural networks. arXiv preprint arXiv:2002.05688, 2020. 2, 10

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating implicit
neural fields with weight-space diffusion. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 14300–14310, 2023. 2

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity and
the lottery ticket hypothesis. In International Conference on Machine Learning, pp. 3259–3269. PMLR, 2020.
19

Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. Combinatorica, 6(2):109–122, 1986. 7

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen. Knowledge is a
region in weight space for fine-tuned language models. arXiv preprint arXiv:2302.04863, 2023. 2

11

Published as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision, pp. 1026–1034, 2015. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016. 7

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16000–16009, 2022. 7

Eliahu Horwitz, Jonathan Kahana, and Yedid Hoshen. Recovering the pre-fine-tuning weights of generative
models. In ICML, 2024. URL https://openreview.net/forum?id=761UxjOTHB. 2

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021. 4

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves, Cees GM
Snoek, and David W Zhang. Graph neural networks for learning equivariant representations of neural
networks. arXiv preprint arXiv:2403.12143, 2024. 2

Tao Kong, Anbang Yao, Yurong Chen, and Fuchun Sun. Hypernet: Towards accurate region proposal generation
and joint object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 845–853, 2016. 2

Derek Lim, Haggai Maron, Marc T Law, Jonathan Lorraine, and James Lucas. Graph metanetworks for
processing diverse neural architectures. arXiv preprint arXiv:2312.04501, 2023. 2, 10

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equivariant
architectures for learning in deep weight spaces. In International Conference on Machine Learning, pp.
25790–25816. PMLR, 2023a. 2

Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, and Haggai Maron. Equivariant deep
weight space alignment. arXiv preprint arXiv:2310.13397, 2023b. 2

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to learn with
generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892, 2022. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pp. 8748–8763. PMLR, 2021. 7

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learning on neural
network weights for model characteristic prediction. Advances in Neural Information Processing Systems, 34:
16481–16493, 2021. 2

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations as
generative models: Sampling unseen neural network weights. Advances in Neural Information Processing
Systems, 35:27906–27920, 2022. 2

Konstantin Schürholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile weight
space learning. In Forty-first International Conference on Machine Learning, 2024. URL https://
openreview.net/forum?id=ug2uoAZ9c2. 2, 10

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting neural
network accuracy from weights. arXiv preprint arXiv:2002.11448, 2020. 2

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2. 7

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural network
diffusion. arXiv preprint arXiv:2402.13144, 2024. 2

12

https://openreview.net/forum?id=761UxjOTHB
https://openreview.net/forum?id=ug2uoAZ9c2
https://openreview.net/forum?id=ug2uoAZ9c2

Published as a conference paper at ICLR 2025

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of
multiple fine-tuned models improves accuracy without increasing inference time. In International conference
on machine learning, pp. 23965–23998. PMLR, 2022. 17

Runpeng Yu and Xinchao Wang. Neural lineage. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4797–4807, 2024. 2

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip
Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A large-scale study of rep-
resentation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.
7

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang. Metadiff:
Meta-learning with conditional diffusion for few-shot learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 16687–16695, 2024. 2

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J Zico Kolter, and
Chelsea Finn. Permutation equivariant neural functionals. Advances in Neural Information Processing
Systems, 36, 2024. 2

13

Published as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.975

0.980

0.985

0.990

0.995

1.000

1.005

Figure 9: Query

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.95

0.96

0.97

0.98

0.99

1.00

Figure 10: Value

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.975

0.980

0.985

0.990

0.995

1.000

Figure 11: Key

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Figure 12: Dense

Figure 13: Effect of Layer Type: We compute the directional score throughout the fine-tuning
process. The Dense layer is the only layer that remained consistently (almost) monotonic. Each color
represents a different Model Tree root

A MODEL CARDS ANALYSIS

To establish the benefit of using the model weights as opposed to the metadata of the model, we analyzed over
800, 000 model cards from Hugging Face. We found that at least 36% of all models (roughly 290K) do not
have model cards. We used Llama 3 to analyze the remaining cards and found that for about 510K remaining
models, about 35% of model cards had no useful information about the pre-training models. Overall, about
60% of the models (about 470K) have no model cards or have uninformative model cards. Even for the (about
330K) models with “informative” cards (about 40% of all models), the cards often did not describe their parent
but often just the root node. As we verified the last point manually, and as there is no ground truth, we do not
have an exact percentage for the models that actually have the parent node, but based on a manual inspection of
500 randomly sampled model cards, we estimate this to be less than half of the remaining models (about 165K).
See Fig. 14 for a flowchart with the above schematic.

36%
64%

Hugging Face models
(~800k)

No model card
(~290K)

23%
41%

Has a model card
(~510K)

Uninformative or
empty model card

(~180K)

20%21%

"Informative" model
cards

(~330K)

Partial information*
(~165K)

Existing relevant
information (~165K)

* Only Model Tree root information is given. Not enough
to determine the exact location on the Model Tree

Estimated

Model Cards on Hugging Face

Figure 14

14

Published as a conference paper at ICLR 2025

B DATASET DETAILS

For all the MoTHer dataset subsets, we use the following models as the Model Tree roots taken from Hugging
Face:

• https://huggingface.co/google/vit-base-patch16-224

• https://huggingface.co/google/vit-base-patch16-224-in21k

• https://huggingface.co/facebook/vit-mae-base

• https://huggingface.co/facebook/dino-vitb16

• https://huggingface.co/facebook/vit-msn-base

For the FT split, to prevent model overfitting, we use larger datasets of 10K samples rather than the original 1K
used in the VTAB benchmark. Each model uses a different randomly sampled seed. See Tab. 2 for additional
hyperparameters.

Apart from the rank and seeds, both LoRA-F and LoRA-V use the same hyperparameters. LoRA-F uses a fixed
rank and alpha of 16, LoRA-V uses ranks sampled randomly out of the options shown in Tab. 3. Both use the
VTAB-1K datasets shown in Tab. 3 and random seeds. See Tab. 2 for additional hyperparameters.

Table 2: Full Fine-tuning hyperparameters

Name Value

lr [6e− 3, 9e− 3, 2e− 4, 5e− 4]
batch_size 64
epochs [2− 5]

datasets
cifar100, svhn, patch_camelyon,

clevr-count, clevr-distance, dmlab

Table 3: LoRA Varying Ranks Fine-tuning hyperparameters

Name Value

lora_rank (r) 8, 16, 32, 64
lora_alpha (α) 8, 16, 32, 64
lr [6e− 3, 9e− 3, 2e− 4, 5e− 4]
batch_size 128
epochs [10− 20]

datasets
cifar100, caltech101, dtd, flower102, pet37, svhn, patch_camelyon,

clevr-count, clevr-distance, dmlab, kitti, dsprites-location, dsprites-orientation,
smallnorb-azimuth, smallnorb-elevation

C STABLE DIFFUSION MODELS

For Stable Diffusion we used the following versions found on Hugging Face:

• https://huggingface.co/CompVis/stable-diffusion-v1-1

• https://huggingface.co/CompVis/stable-diffusion-v1-2

• https://huggingface.co/CompVis/stable-diffusion-v1-3

• https://huggingface.co/CompVis/stable-diffusion-v1-4

• https://huggingface.co/runwayml/stable-diffusion-v1-5

15

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/facebook/vit-mae-base
https://huggingface.co/facebook/dino-vitb16
https://huggingface.co/facebook/vit-msn-base
https://huggingface.co/CompVis/stable-diffusion-v1-1
https://huggingface.co/CompVis/stable-diffusion-v1-2
https://huggingface.co/CompVis/stable-diffusion-v1-3
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/runwayml/stable-diffusion-v1-5

Published as a conference paper at ICLR 2025

Figure 15: Pruning Ablation: Our method is robust to model pruning. For example, with 90%
pruning, the accuracy decreases by only 4%, and even at 95% pruning, it drops by just 9%. Remark-
ably, when 99% of weights are pruned, our method still achieves 68% accuracy (random baseline is
roughly 5%)

Pruning % ImageNet ImageNet-21k MAE DINO MSN Model
Graph

Pruned
Params

Non-pruned
Params

0% (Original) 0.9 0.9 0.8 0.85 1 0.89 0 85,524,480
10% 0.9 0.9 0.8 0.85 1 0.89 8,552,438 76,972,042
30% 0.9 0.9 0.8 0.8 1 0.88 25,657,339 59,867,141
50% 0.9 0.85 0.75 0.8 1 0.86 42,762,240 42,762,240
70% 0.9 0.85 0.8 0.8 1 0.87 59,867,141 25,657,339
90% 0.9 0.85 0.8 0.7 1 0.85 76,972,042 8,552,438
91% 0.95 0.85 0.8 0.6 1 0.84 77,827,276 7,697,204
92% 0.95 0.85 0.8 0.6 1 0.84 78,682,510 6,841,970
93% 0.95 0.95 0.8 0.5 1 0.84 79,537,744 5,986,736
94% 0.95 0.95 0.8 0.5 1 0.84 80,393,027 5,131,453
95% 0.9 0.95 0.8 0.45 0.9 0.8 81,248,261 4,276,219
96% 0.9 0.9 0.8 0.4 0.9 0.78 82,103,495 3,420,985
97% 0.9 0.85 0.8 0.4 0.9 0.77 82,958,729 2,565,751
98% 0.9 0.9 0.6 0.4 0.85 0.73 83,814,012 1,710,468
99% 0.8 0.9 0.45 0.45 0.8 0.68 84,669,246 855,234

Table 4: Pruning Robustness Ablation: Our method is robust to model pruning. For example, with
90% pruning, the accuracy decreases by only 4%, and even at 95% pruning, it drops by just 9%.
Remarkably, when 99% of weights are pruned, our method still achieves 68% accuracy (random
baseline is roughly 5%)

D ADDITIONAL ABLATIONS

D.1 ROBUSTNESS TO PRUNED MODELS

We test the robustness of our method to model pruning. Specifically, we fine-tuned a new ViT model
graph with a structure similar to the FT graph (5 Model Trees, each containing 21 models). We used this
Model Graph and incrementally pruned weights from the models using the l1_unstructured function in
torch.nn.utils.prune and evaluated our method on the pruned Model Graphs.

The results show that our method is robust to significant pruning (see Fig. 15 and a detailed breakdown in Tab. 4).
For example, with 90% pruning, the accuracy decreases by only 4%, and even at 95% pruning, it drops by just
9%. Remarkably, when 99% of weights are pruned, our method still achieves 68% accuracy (random baseline is
roughly 5%).

16

Published as a conference paper at ICLR 2025

Quantization Method ImageNet ImageNet-21k MAE DINO MSN Model Graph

None (Original) 0.9 0.9 0.8 0.85 1 0.89
fp16 0.9 ± 0 0.9 ± 0 0.765 ± 0.022 0.85 ± 0 1 ± 0 0.883 ± 0.0044
Int8 0.9 ± 0 0.895 ± 0.015 0.77 ± 0.024 0.85 ± 0 1 ± 0 0.883 ± 0.0078

Table 5: Quantization Robustness Ablation: Our method is robust to weight quantization, exhibiting
less than 1% decrease in performance

D.2 ROBUSTNESS TO WEIGHT QUANTIZATION

We test the robustness of our method to model quantization. Specifically, we fine-tuned a new ViT Model Graph
similar to the FT graph in the paper (5 Model Trees, each containing 21 models). We then applied quantization
to half of the models with a 50% probability, yielding a Model Graph where 50% of the models are quantized.
This experiment was repeated 10 times to generate diverse quantized Model Graphs.

We tested 2 quantization methods: i) Simple quantization to fp16, ii) Int8 quantization using bitsandbytes.
Our method is robust to weight quantization, exhibiting less than 1% decrease in performance (see Tab. 5).

D.3 DIRECTIONAL WEIGHT SCORE ANALYSIS

To further ablate the directional weight score, we fine-tuned a set of ViT models under varying learning rates
and training steps. Specifically, we fine-tuned 5 models for each learning rate in the set [1e− 2, 5e− 3, 1e−
3, 5e − 4, 1e − 4, 5e − 5, 1e − 5, 5e − 6, 1e − 6]. Each model was fine-tuned on CIFAR-100 with a unique
seed for 10 epochs.

Our results show that for all models that successfully converged, the Directional Weight Score was monotonic
(see Fig. 16). For the two non-convergent learning rates (5e − 3 and 1e − 2, which achieved an accuracy
below 20%) the Directional Weight Score no longer monotonically decreases. Notably, we observed that at
some point during training (which varies across learning rates), the Directional Weight Score becomes noisy.
Upon inspection, this corresponds to the model’s validation loss plateauing and becoming noisy, indicating
convergence.

E MODELS WITH MIXED HERITAGE

We conducted a preliminary experiment to explore models with mixed heritage. We started with the ImageNet,
MAE, and DINO pre-trained base models and merged each pair of models using standard uniform weight
averaging as described in Model Soups (Wortsman et al., 2022). Subsequently, we fine-tuned 5 models from
each of the original and merged models, yielding a total of 30 fine-tuned models.

We evaluate the ability of our method to handle merged models in 2 settings:

1. Clustering: We first clustered the 30 fine-tuned models into 6 clusters, which resulted in perfect
clustering accuracy.

2. Parent Detection: To determine the parents of each merged model, we calculated the distance between
each merged model and the centers of its potential parent clusters. Specifically, we computed the mean
weights across all 5 fine-tuned models for each parent group (ImageNet, MAE, and DINO). For each
merged fine-tuned model, we calculated the cosine similarity to each parent cluster’s center.

In Tab. 6 we summarize the averaged cosine similarity between the merged models and the pre-trained clusters.
As shown, the cosine similarity to the true parents is significantly higher than to the unrelated pre-trained model,
which enabled us to correctly identify the parents of all merged models with perfect accuracy.

17

Published as a conference paper at ICLR 2025

(a) 1e− 6 (b) 5e− 6 (c) 1e− 5

(d) 5e− 5 (e) 1e− 4 (f) 5e− 4

(g) 1e− 3 (h) 5e− 3 (i) 1e− 2

Figure 16: Directional Weight Score Analysis: We inspect the directional weight score for a
wide range of learning rates and number of steps. For all models that successfully converged, the
Directional Weight Score was monotonic. For the two non-convergent learning rates (5e − 3 and
1e−2, which achieved an accuracy below 20%) the Directional Weight Score no longer monotonically
decreases. Notably, we observed that at some point during training (which varies across learning
rates), the Directional Weight Score becomes noisy. Upon inspection, this corresponds to the model’s
validation loss plateauing and becoming noisy, indicating convergence. In each sub-figure we plot 5
different models that were fine-tuned using the corresponding learning rate

ImageNet DINO MAE

ImageNet + DINO 0.976 0.192 -0.001
ImageNet + MAE 0.847 -0.0002 0.524
DINO + MAE -0.001 0.303 0.940

Table 6: Models with Mixed Heritage: We show the averaged cosine similarity between the merged
models and the pre-trained clusters. As shown, the cosine similarity to the true parents is significantly
higher than to the unrelated pre-trained model, which enabled us to correctly identify the parents
of all merged models with perfect accuracy. In bold are the chosen parent models according to the
cosine similarity

18

Published as a conference paper at ICLR 2025

10 Samples 100 Samples 1k Samples 10k Samples

Pairwise distances (CPU) 0.033 sec 0.504 sec 5.468 sec 5.01 min
Pairwise distances (GPU) 0.1 sec 0.697 sec 0.005 sec 34.742 sec
Clustering (CPU) 0.011 sec 0.001 sec 0.134 sec 4.43 min

Table 7: Clustering Running Time: Our method scales even to larger Model Graphs

F RUNNING TIME ANALYSIS

We measure the runtime of the clustering phase. Specifically, we simulated ViT Model Graphs of varying sizes
and observed the scalability of the method. Notably, our approach allows for clustering based on the weights of
a single model layer without sacrificing performance, which provides significant speedups. As can be seen, our
method scales even to larger Model Graphs (see Tab. 7). Note, that the runtime of running the minimum directed
spanning tree search is negligible compared to the pairwise distance calculation and clustering.

G THEORETICAL INTUITION FOR CLUSTERING

While the primary focus of this work is empirical, recent theoretical results provide support for the clustering of
weights into trees. The literature on linear mode connectivity (LMC) has shown that models trained on the same
data but with different random initializations converge to linearly related weights, up to a permutation of the
neurons (Ainsworth et al., 2022). This implies that such models will be significantly distant from one another in
ℓ2-norm in weight space.

In contrast, Frankle et al. (2020) demonstrated that models fine-tuned from a shared starting point (e.g., a
pre-trained foundation model) experience less neuron permutation and tend to have weights that remain close to
the original model. This establishes a clear distinction: root models in our Model Trees (typically foundation
models) are far apart in weight space, whereas their fine-tuned descendants remain relatively close to their parent
model.

In summary, these theoretical findings predict that intra-tree distances (between models within a tree) will be
smaller than inter-tree distances (between models from different trees), thereby justifying the effectiveness of
clustering models into trees.

19

	Introduction
	Related Works
	Model Trees and Model Graphs
	Model Graph Priors
	Estimating node distance from model weights
	Estimating edge direction from weights

	Model Tree Heritage Recovery
	Warm-up: A simplified Model Graph
	MoTHer Recovery: Scaling up Model Graph Recovery

	Experiments
	Experimental setup
	MoTHer dataset results
	In-the-wild MoTHer recovery
	Ablations

	Discussion and Limitations
	Conclusion
	Model Cards Analysis
	Dataset Details
	Stable Diffusion Models
	Additional Ablations
	Robustness to Pruned Models
	Robustness to Weight Quantization
	Directional Weight Score Analysis

	Models with Mixed Heritage
	Running Time Analysis
	Theoretical Intuition for Clustering

