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Abstract

Previous work [Jac23|] has shown that DNNs with large depth L and Lo-
regularization are biased towards learning low-dimensional representations of the
inputs, which can be interpreted as minimizing a notion of rank R(O)( f) of the
learned function f, conjectured to be the Bottleneck rank. We compute finite depth
corrections to this result, revealing a measure R(!) of regularity which bounds the
pseudo-determinant of the Jacobian |.J f ()| and is subadditive under composi-
tion and addition. This formalizes a balance between learning low-dimensional
representations and minimizing complexity/irregularity in the feature maps, al-
lowing the network to learn the ‘right’ inner dimension. Finally, we prove the
conjectured bottleneck structure in the learned features as L — oo: for large
depths, almost all hidden representations are approximately R(%) ( f)-dimensional,
and almost all weight matrices W, have R(%) (f) singular values close to 1 while
the others are O(L_%). Interestingly, the use of large learning rates is required
to guarantee an order O(L) NTK which in turns guarantees infinite depth conver-
gence of the representations of almost all layers.

1 Introduction

The representation cost R(f; L) = ming. j,= [|6]|* [DKS21] can be defined for any model and de-
scribes the bias in function space resulting from the minimization of the L,-norm of the parameters.
While it can be computed explicitly for linear networks [DKS21]] or shallow nonlinear ones [Bac17],
the deep non-linear case remains ill-understood [JGHG22].

Previous work [Jac23|| has shown that the representation cost of DNNs with homogeneous nonlin-

earity o converges to a notion of rank over nonlinear functionslimy,_, % — RO (f). Over a

large set of functions £, the limiting representation cost R(*)( f) was proven the so-called Bottleneck

(BN) rank Rankpy (f) which is the smallest integer k such that f : R%» — Rout can be factored

f = Rdn 25 RF 2y Rdout with inner dimension k (it is conjectured to match it everywhere).

This suggests that large depth Lo-regularized DNNs are adapted for learning functions of the form
f* = g o h with small inner dimension.

This can also be interpreted as DNNs learning symmetries, since a function f :  — Rut with
symmetry group G (i.e. f(g-x) = f(x)) can be defined as mapping the inputs 2 to an embedding of
the modulo space 2/ and then to the outputs R%u¢, Thus a function with a lot of symmetries will
have a small BN-rank, since Rankpx (f) < dim (?/c) where dim (£/a) is the smallest dimension
©/a can be embedded into.
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A problem is that this notion of rank does not control the regularity of f, but results of [Jac23]
suggest that a measure of regularity might be recovered by studying finite depths corrections to the
R approximation. This formalizes the balance between minimizing the dimension of the learned
features and their complexity.

Another problem is that minimizing the rank R(?) does not uniquely describe the learned function,
as there are many fitting functions with the same rank. Corrections allow us to identify the learned
function amongst those.

Finally, the theoretical results and numerical experiments of [Jac23] strongly suggest a bottleneck
structure in the learned features for large depths, where the (possibly) high dimensional input data is
mapped after a few layers to a low-dimensional hidden representation, and keeps the approximately
same dimensionality until mapping back to the high dimensional outputs in the last few layers. We
prove the existence of such a structure, but with potentially multiple bottlenecks.

1.1 Contributions

We analyze the Taylor approximation of the representation cost around infinite depth L = oc:
1
R(f;Q,L) = LRO(£;) + RO (£;2) + 7R (f;2) + O(L 7).

The first correction R(Y) measures some notion of regularity of the function f that behaves sub-
additively under composition R™ (f o g) < RM(f) + RM(g) and under addition RV (f 4 g) <
RW(f) + RM(g) (under some constraints), and controls the Jacobian of f: Va,2log|J f(z)|, <
RW(f), where ||, is the pseudo-determinant, the product of the non-zero singular values.

This formalizes the balance between the bias towards minimizing the inner dimension described by
R(©) and a regularity measure R("). As the depth L grows, the low-rank bias R(®) dominates, but
even in the infinite depth limit the regularity R(*) remains relevant since there are typically multiple
fitting functions with matching R(®) which can be differentiated by their R(*) value.

For linear networks, the second correction R(?) guarantees infinite depth convergence of the repre-
sentations of the network. We recover several properties of R(®) in the nonlinear case, but we also
give a counterexample that shows that norm minimization does not guarantee convergence of the
representation, forcing us to look at other sources of bias.

To solve this issue, we show that a ©(L~!) learning rate forces the NTK to be O(L) which in turn
guarantees the convergence as L. — oo of the representations at almost every layer of the network.

Finally we prove the Bottleneck structure that was only observed empricially in [Jac23]]: we show
that the weight matrices W, are approximately rank R(®)(f), more precisely W, has R(®)(f) sin-
gular values that are O(L~2) close to 1 and all the other are O(L~2). Together with the O(L)
NTK assumption, this implies that the pre-activations a,(X ) of a general dataset at almost all layer
is approximately R()( f)-dimensional, more precisely that the k -+ 1-th singular value of cs(X) is
O(L™z).

1.2 Related Works

The representation cost has mostly been studied in settings where an explicit formula can be ob-
tained, such as in linear networks [DKS21], or shallow nonlinear networks [Bacl7], or for deep
networks with very specific structure [OW22| [LJ22]. A low rank phenomenon in large depth Lo-
regularized DNNs has been observed in [TVS22]].

Regarding deep fully-connected networks, two reformulations of the representation cost optimiza-
tion have been given in [JGHG22[], which also shows that the representation becomes independent
of the width as long as the width is large enough.

The Bottleneck structure that we describe in this paper is similar to the Information Bottleneck
theory [[TZ15]. It is not unlikely that the bias towards dimension reduction in the middle layers of
the network could explain the loss of information that was observed in the first layers of the network
in [TZ15].



2 Setup

In this paper, we study fully connected DNNs with L + 1 layers numbered from O (input layer) to
L (output layer). The layer £ € {0, ..., L} has ny neurons, with ng = d;,, the input dimension and
nr, = doy: the output dimension. The pre-activations Gy () € R™ and activations «y(x) € R™ are
defined by

aplz) ==z

dz(x) = Wgagfl(.%') + by

ap(x) = o (Gu(z)),
for the ny x ny_; connection weight matrix W, the ny-dim bias vector b, and the nonlinearity o :
R — R applied entry-wise to the vector &y (). The parameters of the network are the collection of

all connection weights matrices and bias vectors § = (W1, b1,..., Wy, by). The network function
fo : R%in — Rdout is the function that maps an input z to the pre-activations of the last layer ay, ().

rz ifx>0
axr otherwise
(yielding the ReLU for o = 0), as any homogeneous nonlinearity o (that is not proportional to the
identity function, the constant zero function or the absolute function) matches o, up to scaling and
inverting the inputs.

We assume that the nonlinearity is of the form o, (z) = { for some o € (—1,1)

The functions that can be represented by networks with homogeneous nonlinearities and any finite
depth/width are exactly the set of finite piecewise linear functions (FPLF) [ABMM18| HLXZ18].

Remark 1. In most of our results, we assume that the width is sufficiently large so that the repre-
sentation cost matches the infinite-width representation cost. For a dataset of size IV, a width of
N(N + 1) suffices, as shown in [JGHG22] (though a much smaller width is often sufficient).

2.1 Representation Cost

The representation cost R(f; €2, L) is the minimal squared parameter norm required to represent the
function f over the input domain €2:

R(f;9,L) = min 16]?

forjo=rfa
where the minimum is taken over all weights 6 of a depth L network (with some finite widths
ni,...,np—1) such that fy(z) = f(x) for all z € Q. If no such weights exist, we define
R(f;Q, L) = cc.

The representation cost describes the natural bias on the represented function fy induced by adding
L, regularization on the weights 6:

min C(fy) + A 0" = min C(f) + AR(f; 2, L)

for any cost C' (defined on functions f : € ~ R%ut) and where the minimization on the right is
over all functions f that can be represented by a depth L network with nonlinearity o.

For any two functions f, g, we denote f — g the function h such that g = h o f, assuming it exists,
and we write R(f — ¢;Q, L) = R(h; f(Q2), L).

Remark 2. The representation cost also describes the implicit bias of networks trained with the
cross-entropy loss [SHN™ 18} [GL.SST8], [CB20].

3 Representation Cost Decomposition

Since there are no explicit formula for the representation cost of deep nonlinear networks, we pro-
pose to approximate it by a Taylor decomposition in !/z around L = oco. This is inspired by the
behavior of the representation cost of deep linear networks (which represent a matrix as a product
Ag = Wy, --- W), for which an explicit formula exists [DKS21]]:

Rank A
R(A:L) = min 0" =LAl =L > si(A)7",
o i=1



where ||-||}, is the L,-Schatten norm, the L,, norm on the singular values s;(A) of A.
Approximating s = 1+ 2 log s + 2 (log s)2 + O(L ™), we obtain

1
R(A; L) = LRankA + 2log |A|, + — |[log, ATA|* + O(L?),

2L
where log__ is the pseudo-log, which replaces the non-zero eigenvalues of A by their log.

We know that gradient descent will converge to parameters 6 representing a matrix Ay that locally
minimize the loss C(A) + AR(A; L). The approximation R(A; L) ~ LRankA fails to recover the
local minima of this loss, because the rank has zero derivatives almost everywhere. But this problem
is alleviated with the second order approximation R(A; L) ~ LRankA + 2log|A|, . The minima
can then be interpreted as first minimizing the rank, and then choosing amongst same rank solutions
the matrix with the smallest pseudo-determinant. Changing the depth allows one to tune the balance
between minimizing the rank and the regularity of the matrix A.

3.1 First Correction: Regularity Control
As a reminder, the dominating term in the representation cost R(°)(f) is conjectured in [Jac23] to
converge to the so-called Bottleneck rank Rank gy (f; €2) which is the smallest integer & such that

f can be decomposed as f = Q L5 RF s Rdout with inner dimension k, and where g and h are
FPLE. A number of results supporting this conjecture are proven in [Jac23]: a sandwich bound

Rank;(f; Q) < R (f:Q) < Rankpy (f;9)

for the Jacobian rank Rank s (f; () = max, RankJ f(z) r,q, and three natural properties of ranks
that R(®) satisfies:

L. RO(f 0 g;Q) <min {RO(f), RV(g)},

2. RO(f +¢:9) < RO(f) + RO (g),

3. RO (2 — Ax;Q) = RankA for any full dimensional and bounded €.
These results imply that for any function f = ¢ o A o ¢ that is linear up to bijections ¢, 1, the
conjecture is true RV (f; Q) = Rankpy(f;2) = RankA.

The proof of the aforementioned sandwich bound in [Jac23| actually prove an upper bound of the
form LRankgy(f;€) + O(1) thus proving that the R™ term is upper bounded. The following
theorem proves a lower bound on R(!) as well as some of its properties:

Theorem 3. For all inputs x where RankJ f(z) = R (z), RW(f) > 2log|Jf(x)

more.
1 IFRO(f 0 g) = RO(f) = RO (g). then RO (f o) < RO (f) + RV(g).
2. IFRO(f +g) = RO(f) + RO (g), then RV (f +g) < RO (f) + RV(g).

3. If Prpyar ) and AQ) are k = Rank A dimensional and completely positive (i.e. they can be
embedded isometrically into R for some m), then R (z — Ax; Q) = 2log |AlL .

o further-

Notice how these properties clearly point to the first correction R™")( f) measuring a notion of reg-
ularity of f instead of a notion of rank. One can think of Ly-regularized deep nets as learning
functions f that minimize

min C(f(X)) + ALR (f) + ARV (f).
The depth determines the balance between the rank regularization and regularity regularization.

Without the R(1-term, the above minimization would never be unique since there can be multiple
functions f with the same training outputs f(X) with the same rank R(?)(f).

Under the assumption that R(°) only takes integer value the above optimization can be rewritten as

~ - (1)
k:ngl{l ALk + f:Rg%l(Ifl):k C(f(X))+ARY(f).
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(a) Parameter norm and depth (b) Bottleneck structure at different depths.

Figure 1: (a) Plot of the parameter norm at the end of training (A = 0.001) over a range of depths,
colored acoording to the rank (# of sing. vals above 0.1) of the weight matrices Wz, in the middle
of the network, and marked with a dot ’.” or cross 'x’ depending on whether the final train cost is
below or above 0.1. The training data is synthetic and designed to have a optimal rank £* = 2.
We see different ranges of depth where the network converges to different rank, with larger depths

leading to smaller rank, until training fails and recover the zero parameters for L > 25. Within each

range the norm H9||2 is well approximated by a affine function with slope equal to the rank. (b) Plot
of the singular values of W, throughout the networks for 4 trials, we see that the bottleneck structure
remains essentially the same throughout each range of depth, with only the middle low-rank part
growing with the depth.

Every inner minimization for a rank £ that is attained inside the set { f:RO(f) = k} corresponds
to a different local minimum. Note how these inner minimization do not depend on the depth,
suggesting the existence of sequences of local minima for different depths that all represent approx-
imately the same function f, as can be seen in Figure|l} We can classify these minima according to
whether they recover the true BN-rank k* of the task, underestimate or overestimate it.

In linear networks [WJ23|], rank underestimating minima cannot fit the data, but it is always possi-
ble to fit any data with a BN-rank 1 function (by mapping injectively the datapoints to a line and
then mapping them nonlinearly to any other configuration). We therefore need to also differentiate
between rank-underestimating minima that fit or do not fit the data. The non-fitting minima can in
theory be avoided by taking a small enough ridge (along the lines of [WJ23]), but we do observe
them empricially for large depths in Figure[I]

In contrast, we have never observed fitting rank-underestimating minima, though their existence
was proven for large enough depths in [Jac23]. A possible explanation for why GD avoids these
minima is their R(Y) value explodes with the number of datapoints N, since these network needs
to learn a space filling surface (a surface of dimension £ < k* that visits random outputs y; that
are sampled from a k*-dimensional distribution). More precisely Theorem 2 of [Jac23| implies that
the R(M) value of fitting BN-rank 1 minima explodes at a rate of 2(1 — k%) log N as the number
of datapoints N grows, which could explain why we rarely observe such minima in practice, but
another explanation could be that these minima are very narrow, as explained in Section 4.1}

In our experiments we often encountered rank overestimating minima and we are less sure about
how to avoid them, though it seems that increasing the depth helps (see Figure [I), and that SGD
might help too by analogy with the linear case [WJ23]]. Thankfully overestimating the rank is less
problematic for generalization, as supported by the fact that it is possible to approximate BN-rank
k* with a higher rank function with any accuracy, while doing so with a low rank function requires
a pathological function.



3.2 Second Correction

We now identify a few properties of the second correction R(%):
Proposition 4. If there is a limiting representation as L — 0 in the optimal representation of f,
then R (f) > 0. Furthermore:
L If RO(f o g) = RO(f) = ROg) and RV (f o g) = RD(f) + RW(g), then
VR®(fog) < VRA(f) + VR®(g).
2. IfRO(f +g) = RO(f) + RV (g) and RV (f + g) = RV (f) + RM(g), then R (f +
9) < RP(f) + R®)(g).

3. If APQ is k = RankA-dimensional and completely positive for all p € [0, 1], where AP has
its non-zero singular taken to the p-th power, then R (z +— Axz; Q) = % ||10g+ ATAHQ.

While the properties are very similar to those of R(1), the necessary conditions necessary to apply
them are more restrictive. There might be case where the first two terms R(®) and R") do not
uniquely determine a minimum, in which case the second correction R(?) needs to be considered.

In linear networks the second correction R(?)(A) = 1 ||log, ATAH2 plays an important role, as

it bounds the operator norm of A (which is not bounded by R(®)(A) = RankA nor RV (A) =
2log|A[,), thus guaranteeing the convergence of the hidden representations in the middle of net-
work. We hoped at first that R(®>) would have similar properties in the nonlinear case, but we were
not able to prove anything of the sort. Actually in contrast to the linear setting, the representations of
the network can diverge as L — oo, which explains why the R(?) does not give any similar control,
which would guarantee convergence.

3.3 Representation geodesics

One can think of the sequence of hidden representations &, . .., &, as a path from the input repre-
sentation to the output representation that minimizes the weight norm ||W;||* required to map from
one representation to the next. As the depth L grows, we expect this sequence to converge to a form
of geodesic in representation space. Such an analysis has been done in [Owh20] for ResNet where
these limiting geodesics are continuous.

Two issues appear in the fully-connected case. First a representation &, remains optimal after any
swapping of its neurons or other symmetries, but this can easily be solved by considering represen-
tations ¢y up to orthogonal transformation, i.e. to focus on the kernels K (z,y) = do(x)? dae(y).
Second the limiting geodesics of fully-connected networks are not continuous, and as such they
cannot be described by a local metric.

We therefore turn to the representation cost of DNNs to describe the hidden representations of the
network, since the /-th pre-activation function &© : Q — R™ in a network which minimizes the
parameter norm must satisfy

R(f;Q, L) = R(ae;Q,0) + R(o(ay) — f;Q,L—10).
Thus the limiting representations &, = limj_,o &, (for a sequence of layers ¢; such that
limy o f2/L = p € (0, 1)) must satisfy
RO(f;0) = R(é;0) = RO (0(Gy) = [;9)
RO(f;0) = RO(é; 9) + R (0(dy) = £39)

Let us now assume that the limiting geodesic is continuous at p (up to orthogonal transformation,
which do not affect the representation cost), meaning that any other sequence of layers ¢, converging
to the same ratio p € (0, 1) would converge to the same representation. The taking the limits with

two sequences lim % =p = lim % such that lim ¢; — £, = +oo and and taking the limit of the
equality

R(f;Q,L) = R(u,;Lr) + R(o(Ge,) — G s Q0 — L) + R(o(ag, ) — f;Q,L—€7),



we obtain that R (o (a,) — a,;Q) = RO(f) and RV (0 (a,) — Gp; Q) = 0. This implies
that o(&(z)) = @(x) at any point  where RankJ f(z) = RO(f;Q), thus R (id; &, (Q)) =
RO(f;9) and RY (id; &, (Q)) = 0 if RankJ f(z) = RO(f; Q) for all z € Q.

3.3.1 Identity

When evaluated on the identity, the first two terms R(%) (id; ) and R™) (id; Q) describe properties
of the domain €2.

For any notion of rank, Rank(id; 2) defines a notion of dimensionality of 2. The Jacobian rank
Rank(id; ) = max,cq dim T, is the maximum tangent space dimension, while the Bottleneck
rank Rankpy (id; ) is the smallest dimension €2 can be embedded into. For example, the circle
Q = S*7! has Rank(id; Q) = 1 and Rankpy (id; Q) = 2.

On a domain €2 where the two notions of dimensionality match Rank ;(id; ) = Rankpgy (id; ) =
k, the first correction R(l)(id; ) is non-negative since for any z with dim7,,Q2 = k, we have
RM(id; Q) > log | Pr, |, = 0. The RW (id; Q) value measures how non-planar the domain € is,
being 0 only if €2 is k-planar, i.e. its linear span is k-dimensional:

Proposition 5. For a domain with Rank ;(id; )) = Rankpy (id; Q) = k, then R™M (id; Q) = 0 if
and only if Q) is k-planar and completely positive.

This proposition shows that the R(Y) term does not only bound the Jacobian of f as shown in
Theorem 3] but also captures properties of the curvature of the domain/function.

Thus at ratios p where the representation geodesics converge continuously, the representations
ap(Q) are k = RO (f;Q)-planar, proving the Bottleneck structure that was only observed em-
pirically in [Jac23|]. But the assumption of convergence over which we build this argument does not
hold in general, actually we give in the appendix an example of a simple function f whose optimal

representations diverges in the infinite depth limit. This is in stark contrast to the linear case, where

. 2 L
the second correction R() (A) = % Hlog n ATAH guarantees convergence, since it bounds the op-

erator norm of A. To prove and describe the bottleneck structure in nonlinear DNNs, we therefore
need to turn to another strategy.

4 Bottleneck Structure in Large Depth Networks

Up to now we have focused on one aspect of the Bottleneck structure observed in [Jac23[: that the
representations (X)) inside the Bottleneck are approximately k-planar. But another characteristic
of this phenomenon is that the weight matrices W, in the bottleneck have k dominating singular
values, all close to 1. This property does not require the convergence of the geodesics and can be
proven with finite depth rates:

Theorem 6. Given parameters 0 of a depth L network, with H9||2 < kL + c¢1 and a point
x such that RankJ fo(x) = k, then there are wy X k (semi-)orthonormal V; such that
25:1 W, — VgVE{IHQF < e —2log|J fo(z)| . thus for any p € (0, 1) there are at least (1 — p)L
layers £ with
ex — 2og | fo(x)]
pL '

We = VeV, |15 <

Note how we not only obtain finite depth rates, but our result has the advantage of being applicable
to any parameters with a sufficiently small parameter norm (close to the minimal norm solution).
The bound is tighter at optimal parameters in which case ¢; = R(!)( fy), but the theorem shows that
the Bottleneck structure generalizes to points that are only almost optimal.

To prove that the pre-activations é(X ) are approximately k-dimensional for some dataset X (that
may or may not be the training set) we simply need to show that the activations ay_1(X) do not
diverge, since ap(X) = Wyayp—1(X) + b (and one can show that the bias will be small at almost
every layer too). By our counterexample we know that we cannot rule out such explosion in general,
however if we assume that the NTK [JGHIS] ©(%)(z, x) is of order O(L), then we can guarantee to
convergence of the activations cy_1(X) at almost every layer:



Theorem 7. Given balanced parameters 0 of a depth L network, with ||0]|* < kL~ ¢, and a point x
c1
such that RankJ fy(x) = k then if Tr [01) (z, 2)] < cL, then ZZLZI leve—1(2)]5 < %L
o(x)]
and thus for all p € (0,1) there are at least (1 — p)L layers such that

oy ()| < Lomextlie®)
C— 2 — 2 .
P k| J folx)|7*

Note that the balancedness assumption is not strictly necessary and could easily be weakened to
some form of approximate balancedness, since we only require the fact that the parameter norm

[TV, ||§, is well spread out throughout the layers, which follows from balancedness.

The NTK describes the narrowness of the minima [JGH20], and the assumption of bounded NTK
is thus related to stability under large learning rates. There are multiple notions of narrowness that
have been considered:

* The operator norm of the Hessian H (which is closely related to the top eigenvalue of the
NTK Gram matrix ©) (X, X) especially in the MSE case where at any interpolating func-
tion || H]|,, = + [0 (X, X) Hop) which needs to be bounded by 2/5 to have convergence
when training with gradient descent with learning rate 7.

e The trace of the Hessian (in the MSE case TrH = %Tr@“‘)(X,X )) which has
been shown to describe the bias of stochastic gradient descent or approximation thereof
[DML21] LWA2T]).

Thus boundedness of almost all activations as L — oo can be guaranteed by assuming either
7 [[0H(X, X[, < cL (which implies dou TrO™) (X, X) < cL) or xTrOM (X, X) < cL
directly, corresponding to either gradient descent with 7 = 2/cL or stochastic gradient descent with
a similar scaling of 7).

Note that one can find parameters that learn a function with a NTK that scales linearly in depth,
but it is not possible to represent non-trivial functions with a smaller NTK ©(/) < L. This is why
we consider a linear scaling in depth to be the ‘normal’ size of the NTK, and anything larger to be
Narrow.

Putting the two Theorems together, we can prove the Bottleneck structure for almost all representa-
tions & (X):

Corollary 8. Given balanced parameters 0 of a depth L network with ||19||2 < kL + ¢y and a
set of points x1,...,xn such that RankJ fo(z;) = k and +Tr [0 (X, X)] < cL, then for all
p € (0,1) there are at least (1 — p)L layers such that

1 . 1 Y cmax{l,e™ } 1
Sk+1 <\/Ncw(X)> < \/61 —2log |J fo(x)], N;W +p piﬁ

4.1 Narrowness of rank-underestimating minima
We know that the large R(") value of BN-rank 1 fitting functions is related to the explosion of its
derivative, but a large Jacobian also leads to a blow up of the NTK:

Proposition 9. For any point x, we have

62,02, > 2L 1 fo )15, "

op
where 8gy®($, x) is understood as a dindoyt X dindeyt matrix.

Furthermore, for any two points x,y such that the pre-activations of all neurons of the network
remain constant on the segment [z, y|, then either ||©(z,z)|,, or [©(y,y)|,, is lower bounded by

—2/r,

2
2 —x
Lz =yl | fo@rpzzy ]
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Figure 2: A depth L = 25 network with a width of 200 trained on the task described in Section
with a ridge A = 0.0002. (a) Singular values of the weight matrices of the network, showing two
outliers in the bottleneck, which implies that the network has recovered the true rank of 2. (b) Hidden
representation of the 6-th layer projected to the first two dimensions, we see how images of GD paths
do not cross in this space, showing that the dynamics on these two dimensions are self-consistent.
(c) The distance ||aa(xo) — aa(z)|| in the second hidden layer between the representations at a fixed
point x( (at the white pixel) and another point x on a plane orthogonal to the axis w of rotation, we
see that all points on the same symmetry orbit are collapsed together, proving that the network has
learned the rotation symmetry.

With some additional work, we can show the the NTK of such rank-underestimating functions will
blow up, suggesting a narrow minimum:

Theorem 10. Let f* : Q — R%ut be a function with Jacobian rank k* > 1 (i.e. there is a x € )
with RankJ f*(x) = k*), then with high probability over the sampling of a training set x1, ..., TN
(sampled from a distribution with support (1), we have that for any parameters 0 of a deep enough
network that represent a BN-rank 1 function fy that fits the training set fg(x;) = f*(x;) with norm

011> = L + ¢, then there is a point - € Q where the NTK satisfies

Tr {@(L)(x,x)} > "Le™ N4~ 7=

One the one hand, we know that ¢; must satisfy ¢; > R (f5) > 2(1— &) log N butif ¢; is within

a factor of 2 of this lower bound ¢; < 4(1 — 1%) log N, then the above shows that the NTK will
blow up a rate N L for a positive .

The previous explanation for why GD avoids BN-rank 1 fitting functions was that when N is much
larger than the depth L (exponentially larger), there is a rank-recovering function with a lower pa-
rameter norm than any rank-underestimating functions. But this relies on the assumption that GD
converges to the lower norm minima, and it is only true for sufficiently small depths. In contrast the
narrowness argument applies for any large enough depth and does not assume global convergence.

Of course the complete explanation might be a mix of these two reasons and possbily some other
phenomenon too. Proving why GD avoids minima that underestimate the rank with arank 1 < £ <
k* also remains an open question.

S Numerical Experiment: Symmetry Learning

In general, functions with a lot of symmetries have low BN-rank since a function f with symmetry
group G can be decomposed as mapping the inputs €2 to the inputs module symmetries ©/G and then
mapping it to the outputs, thus Rankpn (f; 2) < dim ©2/c where dim ©/q is the smallest dimension
Q/c can be embedded into. Thus the bias of DNNs to learn function with a low BN-rank can be
interpreted as the network learning symmetries of the task. With this interpretation, overestimating
the rank corresponds to failing to learn all symmetries of the task, while underestimating the rank
can be interpreted as the network learning spurious symmetries that are not actual symmetries of the
task.



To test this idea, we train a network to predict high dimensional dynamics with high dimensional
. . 2 . .
symmetries. Consider the loss C(v) = |jov” — (ww” + E)||,, where w € R is a fixed unit vector
and F is a small noise d x d matrix. We optimize v with gradient descent to try and fit the true vector
w (up to a sign). One can think of these dynamics as learning a shallow linear network vv” with a
single hidden neuron. We will train a network to predict the evolution of the cost in time C(v(t)).

For small noise matrix F, the GD dynamics of v(t) are invariant under rotation around the vector
w. As a result, the high-dimensional dynamics of v(¢) can captured by only two summary statistics

u(v) = (wTv)?, || (I—- wa)v||2): the first measures the position along the axis formed by w and
the second the distance to this axis [AGJ22]. The evolution of the summary statistics is (approxi-

mately) self-consistent (using the fact that [|v||* = (wTv)? + || (I — wa)v||2):

9, (wTv)? = —8(||v]* — 1)(w"v)? + O(| E|)
0, ||(T = ww)yo||” = =8 o] ||(T — wwT)o||* + O(| E]).

Our goal now is to see whether a DNN can learn these summary statistics, or equivalently learn the
underlying rotation symmetry. To test this, we train a network on the following supervised learning
problem: given the vector v(0) at initialization, predict the loss (C'(v(1)),...,C(v(T))) over the
next 7' GD steps. For E = 0, the function f* : R — R7 that is to be learned has BN-rank 2, since
one can first map v(0) to the corresponding summary statistics u(v(0)) € R?, and then solve the
differential equation on the summary statistics (u(1),...,u(T")) over the next T steps, and compute

the cost C'(v) = |Jv||* = 2(wTv)? + 1 + O(|| E|)) from w.

We observe in Figure [2| that a large depth Lo-regularized network trained on this task learns the
rotation symmetry of the task and learns two dimensional hidden representations that are summary
statistics (summary statistics are only defined up to bijections, so the learned representation match
u(v) only up to bijection but they can be recognized from the fact that the GF paths do not cross on
the 2D representation).

6 Conclusion

We have computed corrections to the infinite depth description of the representation cost of DNNs
given in [Jac23], revealing two regularity R(!), R(?) measures that balance against the dominating
low rank/dimension bias R(?). We have also partially described another regularity inducing bias that
results from large learning rates. We argued that these regularity bias play a role in stopping the net-
work from underestimating the ‘true’ BN-rank of the task (or equivalently overfitting symmetries).

We have also proven the existence of a bottleneck structure in the weight matrices and under the
condition of a bounded NTK of the learned representations, where most hidden representations are
approximately k& = R(°)( fy)-dimensional, with only a few high-dimensional representations.
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A Properties of the Corrections

A.1 First Correction

Theorem 11 (Theorem from the main). For all inputs x where Rank.J f(z) = RO)(f;Q), we
have RWV(f) > 2log|J f(x)| . furthermore:

L IfRO(f o g) = RO(f) = R(g), then RV (f o g) < RV(f) + RM(g).

2. IfRO(f + g) = RO(f) + RO(g), then RV (f + g) < RV (f) + RN (g).

3. If Pryyar ) and AQ) are k = Rank A dimensional and completely positive (i.e. they can be
embedded with an isometric linear map into R’ for some m), then RM (x — Az;Q) =
2log Al .

Proof. For the first bound, we remember that R(f;Q, L) > L||J f H;ﬁ, therefore
RO(f;Q) = lim R(f;2,L) ~ LRO(f;0)
—00

RankJ f(x)
> lim L si(Jf(x)T —1

~ L—oo 4
i=1

RankJ f(x)
> Y 2logs(f(x)
i=1
where we used sT — 1 = e7 1985 _ 1 > 2 log s.

(1) Since R(f 0 g;Q, L1 + La) < R(f; L1) + R(g; L), we have

RO(fogi@) = lm  R(fogLi+Lo) ~ (I + L)RO(fo g )

< lim R(f9, L) = LiRO(£;Q) + lim R(g;Q, La) — LaRO(f;.0)
1—00

2—>00

= RY(f;9) + RY(g; Q).
(2) Since R(f + g;Q, L) < R(f;Q,L) + R(g;Q, L), we have
RO(f +g:9) = Jim R(f +9:9, L) = LRO(f +:2)
—00
< lim R(f;Q,L) — LRO(f;Q) + lim R(¢;Q, L) — LR (g;9)
L—oo L—oo
= RY(f;9) + R (9:9).

(3) By the first bound, we know that R (z — Az;Q) > 2log |Al,, we now need to show
RW(z — Az;Q) < 2log|A] - Let us define the set of completely positive representations as the

set of bilinear kernels K (x, ) = ¥ BT By such that Bz has non-negative entries for all z €  (we
say that a kernel K is completely positive over €2 if it can be represented in this way for some choice
of B). The set of completely positive representations is convex, since for K (z,y) = 27 BT By and

K(z,y) = T BT By, we have

~ 1 T 1
K(z,y)+ Ky o 7B 7B
9 =7 15 1B )Y
V2 V2

The conditions that there are O;,, and O,,; with Og;z Ojn = Pryar and OfutOout = P4 such that
Oin2 € Ril and O, AQ) € R’f is equivalent to saying that the kernels K;, (x,y) = x% Pyary
and K, (7,y) = T AT Az are completely positive over ).

By the convexity of completely positive representations, the interpolation K, = pK;y, +(1—p) Kout
is completely positive for all p € [0, 1]. Now choose for all depths L and all layers { = 1,..., L —1

12



a matrix By, ¢ such that Kp
L network as

(r,y) = :cTBg ,Br ¢y and then choose the weights W, of the depth

£

L
Wy = Br B}
¢=BreBr, 1

using the convention By, o = Iy, and By, ; = I,,:. By induction, we show that for any input
x € () the activation of the /-th hidden layer is By, . This is true for £ = 1, since W; = By, ; and

therefore p(!) (z) = By, 1z which has positive entries so that ¢ (z) = o (p!)(z)) = By, 12. Then
by induction
P (@) = Weq"" V() = BreBf ,_ Bre—1x = Br e,
which has positive entries, so that again ¢! (z) = o (p)(z)) = Bpz. In the end, we get
pF)(z) = Az as needed.
Let us now compute the Frobenius norms of the weight matrices ||Wg||§, =
+
Tr {BEJBL,@ (Bgyé_lBL,g,l) ] as L — oo, remember that Bf ,Br, ¢ = L Prpar+(1-£)AT A,
therefore the matrices BfeBLyg and Bg ¢—1Br.e—1 converge to each other, so that at first or-
: ¢ :
der Bg,eBLl (B%l[?lBL,g_l) converges to P47, so that ||Wg||§7 — RankA, so that
ZeL=1 [IWe ||§7 — LRank A converges to a finite value as L — oo. To obtain this finite limit, we need
to study approximate the next order

RankA
IWell% — RankA = 3 2logs;(Wi) + O(L )

i=1

+ _
= log ‘Bg,ZBLl (Bgz_lBL,Z—l) ‘+ + O(L 2)
=log |BL (Bre|, —log|BL  1Bre-1|, +O(L™?).

But as we sum all these second order terms, they cancel out, and we are left with

L
> IWel} — LRankA = 2log [A], — 2log|Iymar|, + O(L71).
=1
We have therefore build parameters 6 that represent the function x — Az with parameter norm
[6]I> = LRankA+2log | A ++O(L™"), which upper bounds the representation cost, thus implying
that R (2 — Az; ) < 2log |A|, as needed. O

A.2 Identity

Proposition 12 (Proposition from the main). For a domain with Rank;(id;Q}) =
Rankpy (id; Q) = k, then RV (id; Q) = 0 if and only if 0 is k-planar and completely positive.

Proof. First if Q) is completely positive and k-planar one can represent the identity with a depth L
network of parameter norm Lk, by taking W7 = O, W, = Piy0, Wi = O7T where O is the m x d
so that OQ C R’ and OTO = Pipang. Thus RW (id; ) = 0 (and all other corrections as well).

We will show that for any two points x, y € € with k-dim tangent spaces, their tangent spaces must
match if R™ (id; Q) = 0.

Let A = Ja'r=V(z)r.q and B = Ja(Lfl)(y)‘TyQ be the be the Jacobian of the last hidden
activations restricted to the tangent spaces, we know that

Pro=W,A
Pr,o=W.B
so that given any weight matrix ¥/, whose image contains 73,2 and T, (2, we can write
A=W} Prq
B=Ww; Pr,q.

13



Without loss of generality, we may assume that the span of 7,,(2 and T}, (2 is full output space, and
therefore that W, W1 is invertible.

Now we now that any parameters that represent the identity on Q and has A = Ja(*~1 (x) |7, and
B = Jo!'=(y) 7, o must have parameter norm at least

||WL||§«“ + k(L — 1) + max {210g |A\Jr ,2log |B|+} .
Subtracting kL and taking L — oo, we obtain that
R (id; Q) > min | W |7 — k + max {210g Wi Prql, ,2log ]W;PT,yQ\+} .
If we optimize W, only up to scaling (i.e. optimize aWp, over a) we see that at the optimum, we
always have |Wp, ||§, = k. This allows us to rewrite the optimization as

R(l)(id;Q) > mizn max{?log |W+PT Q|+ ,2log |W Q| }
WLllZ=k,

The only way to put the first term inside the maximum to 0 is to have W, W = Pr_q, but this
leads to an exploding second term if Pr o # PTyQ. O

Under the assumption of C-uniform Lipschitzness of the representations (that for all ¢, the functions
ay and (o — fg) are C-Lipschitz), one can show a stronger version of the above:

Proposition 13. For a C-uniformly Lipschitz sequence of ReLU networks representing the function
f, we have

RU(f) > log|Jf(x)], +log | f(y)], + C 21T fal(x) — T fa(y)ll, -

Proof. The decomposition of the difference

Jfo(x) = J foly ZWLD“ - Weg1 (De(x) = De(y)) WeDe—y () - - Dy (z) W1,

for the wy x wy diagonal matrices Dy(z) = diag(d(ae(z))), implies the bound

L—-1

[ fo(x) = Tfo(Wll. < D _ IWLDr-1(y) -+ Desa(y)|l,p [Wesr (De(@) — De(y)) Well, [|De-1(z) - - - Dy

(=1
C2

< 2
-2

M7

(Wi (D)~ DI + 1D1(2) — Dila) Wil

o~
I

1

since [|AB||, < MAEIBIE ang (D, (2) — De(y))® = (De(x) — Dily))-

Now since

L
L7 fo(@)| 2 < anm 1(@)]17
14

| De () W[

Mn

L fo()12r <

o~
Il
—

with the convention Do (x) = I, and Dy (z) = I4,,,. We obtain that

(x)Wluop

L fo(@) |5y + LI fo(y) Zis Z|\W4Dé1 @5 + WeDer I + | De(x)Wel[ 3 + [ De(y)We| 7

L

< S 2IWallE 5 IWe (Do (@) ~ Der )3~ 5 (Dele) — Dela)) Wl

(=1
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This implies the bound

L\ fo(@)12s + L1 o)l .
- 2

l6)* C72 |1 fo(x) = T fo(y)ll.

and thus
RU(f) > log|Jf(x)], +log | f(y)], + C 21T fa(x) — T fa(y)ll, -

A.3 Second Correction

Proposition 14 (Proposition [d] from the main). If there is a limiting representation as L — 0 in the
optimal representation of f, then R(z)( f) > 0. Furthermore:

1 If RO(f o g) = RO(f) = R(g) and RD(f o g) = RV(f) + RM(g), then
VR (fog) < /RA(f) + VRO (g).

2. IfRO(f+g) = RO(f)+ R (g) and RV (f +g) = RV (f)+ RW(g), then R (f +
g9) < RA(f) + R (g).

3. If APQ is k = RankA-dimensional and completely positive for all p € [0 1], where AP has
its non-zero singular taken to the p-th power, then R®) (z +— Az; Q) = 1 ||10g+ ATAH

Proof. We start from the inequality

R(fog;Q Ly+ Ly) < R(f;9(Q),Ly) + R(g;Q, Ly).

9)
We subtract (L + Ly) R (fog) + RY(f ( g) divide by Ly + L, and take the limit of increasing
depths Ly, Ly with limy, | 7., 00 LfL-st =p € (0,1) to obtain
1 1
Mfog;) < mR(Q)(f;Q(Q)) + ];R(Q)(g; Q). (1)

If K, is the limiting representation at a ratio p € (0,1), we have R (f;Q) = %R(z)(Kp; Q) +
= R®)(K, — f;9) and p must minimize the RHS since if it was instead minimized at a different
ratio p’ # p, one could find a lower norm representation by mapping to K, in the first p’ L layers and
then back to the outputs. Now there are two possiblities, either R(?)(K,; Q) and R (K, — f;Q)
are non-negative in which case the minimum is attained at some p € (0,1) and R®)(f;Q) > 0, or
one or both is negative in which case the above is minimized at p € {0,1} and R (f; Q) = —oo.
Since we assumed p € (0, 1), we are in the first case.

(1) To prove the first property, we optimize the RHS of[TJover all possible choices of p (and assuming
that R (f; 9(Q)), R (g; Q) > 0) we obtain

VRO (fo.g:2) < /RO (f:9() + /RO (g: ).
(2) This follows from the inequality R(f + ¢; 2, L) < R(f;g(?), L)+ R(g; 2, L) after subtracting
the R(®) and R™) terms, dividing by L and taking L — oo.

(3)If A = USVT, one chooses W, = U,ST Ul | with Uy = V, U, = U and U, chosen so that
U, STVTO e R™, choosing large enough widths n,. This choice of representation of A is optimal,

i.e. its parameter norm matches the representation cost LTy {S %} = LRankA + 2log |A] | +
2 -

5 |[log AT A||" + O(L72).

We know that oy

lim R (ap, — ag,; Q) = RV (f5;Q) hm SR

L—oo L—oo
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L R®(0:0) + 1RO = £:9) 2 RI(7;0)
p —-p

1 1
“RP(a; Q)+ T—RP(a = £;9) > RO(f;Q)
p —p

B Bottleneck Structure

This first result shows the existence of a Bottleneck structure on the weight matrices:

Theorem 15 (Theorem@from the main). Given parameters 0 of a depth L network, with ||6]|* <
kL + ¢y and a point x such that RankJ fo(x) = k, then there are wy X k (semi-)orthonormal Uy, V;
such that

L
2
Z ||Wg — UZVETHHF + Hb£||2 <c1 —2log |Jf9($)|+
=1
thus for any p € (0, 1) there are at least (1 — p)L layers £ with

c1 —2log |Jf9($)|+

IWe = UVE |7 + 0ol < o

Proof. Since
Jfg(.%‘) = WLDL_l(a:) oDy (l‘)Wl
= WLPImJaL,l(m)DL—l('r) e PImJOtl(ﬁ)Dl(m)Wl
If the preimage of A matches the image of B then [AB|, = [A| |B| . We therefore have

log |J fo(z)| . = log |WLPImJaL71(x)|+
+ log |PImJ(aL,ﬁf9)(w)TDL71(CU)PImJ&L_l(z)|+ +108 | P s(ar 1 fo) () Wi—1Pimsar _s(x) N
+ ...
+10g | Pins(ar 1) (2)7 D1(2) Punsas ()| 4. +108 | Pray = o) ) Wi

This implies that

L
2

Z IWell =k — 2108 | P (0 fo) ()" WePimgag 1 ()],
=1
— 2108 | Pins(as— fo) ()7 Do (@) Pim gy (2)

= [0]|* — kL — 2log|J fo(x)|,

< o — 2log [T folx)].
with the convention Dy, (z) = I

Wout*

Our goal is to show that the LHS is a sum of positive value which sum up to a finite positive value,
which will imply that most of the summands must be very small.

First observe that
2
—2108 | Pt (s o) ()" Do (@) P, ()| >k — ||PImJ(ag—>f9)(ac)TDé('r)PIdeg(m)||F
which is positive since the eigenvalues of Dy(x) are < 1.

To show that the other part of the summands || W;||% —k —2log | Prn(Ge— fo) ()T WePimdas 1 () |+
is positive, we give lower bound it. First, it can be rewritten as

2
(||PImJ(&ﬁfg)(x)TWePImJaz,l(m) | = % = 2108 | Pions(ao—s fo) ()7 WePimas () \Jr)

[ We = Pransa,— o)y We P ) ||
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Now for a general matrix A, we have

|A||% — RankA — 2log|A|, =

|
D
—~
b
~—
[
I
—_
I
[N
—_—
=}
09
»
—~
S
~—

Y
v
<!
—~
b
~
v}
|
—_
I
[\)
—~
»
<
—~
b
~—
I
—_
~

Il
S

d

<
_-
Sl

for the SVD decomposition A = USVT. We can thus lower bound

[Wellf =k = 2108 | Puas @100yt WePrnsa 10| 2 [We = UV [

where UgSg‘/é is the SVD decomposition of Piy, y(a, - f4)(2)" WePimja,_ 1 (z) (Which we know has
rank k since it must match the rank of .J fp(z)).

Since [|0]|* = Yoo IWell% + |lbe||* < kL + ¢1, we have

L
ST IWe = UVEL |5+ bell? < er — 2log | fa()]
/=1

And for any p € (0, 1) there are at most pL layers ¢ with

c1 —2log|J fo(z)|

[We = UVEL G + el L

O

The fact that almost all weight matrices W, are approximately k-dim would imply that the pre-
activations &y (X) = Wyay—_1(X) are k-dim too under the condition that the activations cp—1(X)
do not diverge. Assuming a bounded NTK is sufficient to guarantee that these activations converge
at almost every layer:

Theorem 16 (Theorem 7] from the main). Given balanced parameters 0 of a depth L network, with

16|1> < kL + ¢1 and a point x such that RankJ fo(x) = k then if £Tr [0F) (z,2)] < cL, then

S w1 (@) < %L and thus for all p € (0, 1) there are at least (1 — p)L layers
o(x

such that " .

< 1 cmax{l, er}

llae—1 ()5 < T
D k|Jfo(x) I

Proof. We have
L
[@(L) z, T ] Z llee—1( HQ [|J (e — OCL)(x)Hi”

we therefore need to lower bound || J (&y — ) () H% to show that the activations ||ay—1 () ||§ must
be bounded at almost every layer.

We will lower bound ||.J (& — aL)(J:)H% by ||J (& — aL)(a:)PgH; for P, the orthogonal projec-
tion to the image ImJéy(x). Note J(&y — o )(x) P, and J fg(x) have the same rank.

By the arithmetic-geometric mean inequality, we have ||A||?, > RankA4 |A|i{k, yielding

17 (Ge — ap) (@) Py > k| (& — ap)(@)Pi 7"
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Now the balancedness of the parameters (i.e. | ;.

* + 52, = [[Wesr,ll” , W2, i) implies that the
parameter norms are increasing || Wy |5 >

2 2 2 2
Weard|” + -+ (W] [WAl” + -+ [[We] ™

L1 = v
Thus
WA e w2 (A Wal®) g (Il - W)
0 = I I 0
_ Lo
=L
and 2 2 2
N | e o Wall” + -+ [Well” _ |19l c
< - < < —
o)l < 2 1@ < - U

and therefore
17 (G0 = fo) (@) Pell3 > K |T (G0 = fo) (x) Pol T

_ @

|Ja(x)[{"

T fole )2/’“
zlife(:c)\+ T
> k| fo(w)[7* min{1,e” % }.
Thus .
ZHOM W "QWL

which implies that there are at most pL layers ¢ with

1 cmax{l,e™}

a1 ()5 > T
R kT fy )

O

Note that for the MSE loss in the limit A ™\, 0, the Hessian at a global minimum (i.e. fy interpolates
the training set) equals Tr [HL(0)] = +Tr [@(L)(X ,X)]. If we then assume that the trace of the
Hessian is bounded by cL, we get that Tr [©X) (X, X)] < ¢NL and thus there are at least (1 —p) L
layers where

1 emax{1, e }

1
— a1 (X)[|F < = T
N D kT fe(a) T

thus guaranteeing the infinite depth convergence of training set activations ay—1 (X ') on those layers.

Putting the two above theorems together, we can prove that the pre-activations are k-dim at almost
every layer:

Corollary 17 (Corollary B from the main). Given balanced parameters 0 of a depth L net-
work with ||0||> < kL + ¢1 and a set of points x1,...,xy such that RankJ fo(z;) = k and
+Tr [0)(X, X)] < cL, then for all p € (0,1) there are at least (1 — p) L layers such that

1 . cmax{1, ek} 1
st (i) < \for — 210 T ha(o)l, Nzkwe SE)
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Proof. Since dy(X) = Wiayp—1(X) + be1%; we know that

XN+ lloell-

op

1
ﬁ ar—1(
By Theorems 15|and|16] there are for any p € (0, 1) at least (1 — 2p) L layers such that

c1 —2log|J fo(z)|,
pL

Sk+1 (\/IN&Z(XO < sk41(We)

[We = ViV |5 + 1be)?

2

N €1

1 ecmax{l,e® }

<D ST
F P k|Jf6(9Uz‘)|+

| e x)

1 c1 — 2log |J fo(z)| cmax{l,e® }
X 1
o (gt < ¢ b PN ; Z e

-

C Local Minima Stability

In this section we motivate the assumption that the Jacobian Jé,(x) is uniformly bounded in oper-
ator norm as L — oo. The idea is that solutions with a blowing up Jacobian Jay () correspond to
very narrow local minima.

The narrowness of a local minimum is related to the Neural Tangent Kernel (or Fisher matrix). We
have that

Tr [ o) (x x} ZHae 1 ||J(54£ — fe)(l’)”i“

A large Jacobian J fy(x) leads to a blow up of the derivative of the NTK:

Proposition 18 (Proposition [0 from the main). For any point x, we have
2_2
03,0, )|, = 2L 1/ fo(@)Il5, "

where 83,/@(30, x) is understood as a dipdoyt X dindeyt matrix.

Furthermore, for any two points x,y such that the pre-activations of all neurons of the network
remain constant on the segment [z, y|, then either ||©(z,z)|,, or [©(y,y)|,, is lower bounded by

L _2/L
||:C—y|| HJfG Hf y”H
Proof. (1) For any point x, we have

L
Oz.y (v O(z,x)v ) U, U :Z WlTDl( )- --Dg,l(x)Q-~-D1(m)W1uvTWLDL,1(x)~--Dg(x)Q--~DL 1(x )WLv

z
=Y IDe-a(@) - Di(@)Wrull3 | De(x) - - Dy (2) W3

On the other hand, we have

|v"J fo(z)u| = [v" WL DL _ 1( )+ Dy(z)Whul
< 1De(x) - - Di(@)Whully | De() - - Dpa(z)Weoly,
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where we used the fact that Dy(z)D,

(x) = This applies to the case / = L and ¢ = 1 too,
using the definition Dy (z) = I4,,,, and Do (z

Dy ().
) = Ig,,. This implies

L 2

D - Dy (z) Wil

02, (v'O(x,z)v) [u,u] > |vT T fo(x E H i1 2
2 ) | [1De( Dl( YWl

=

: ) [l
Z o7 ol L(WLDL1(x)~--D1($)W1“”3>

"UT J fo(zx |
H T fo(@yull*
where we used the geometric/arithmetic mean inequality for the second inequality.

If u,v are right and left singular vectors of J fy(x) with singular value s, then the above bound
equals Ls?~T.

(2) Now let us consider a segment v(t) = (1 — t)a + ty between two points x, y with no changes

of activations on these paths (i.e. Dy(~(t)) is constant for all ¢ € [0, 1]). Defining u = ” H and
Jfo(z)u
U= T @yul Ve have

OO (1), 7 (1) = ||z — y]| 8= (V7O (1), 7(1))v) [u] + [l= — y]| By (LT O (1), ¥(1))v) [u]
and since 695:1;@( (t),~7(t)) = 0 and 0y, O(~(t),~(t)) = 0 forall t € [0, 1], we have
a7 (v" AB)) =2 e = yl? 82, (VTONE), ()W) [u,u] > 2L ||z — y|* || T fo(x)ulls 7" .
Since vT®( ( ),v(t))v > 0forall t € [0, 1] then either

V020> 2 o~ 1P 1 foaul}
or I

O,y = 7 o —yl I falw)ully "

]

Rank-underestimating fitting functions typically feature exploding derivatives, which was used to
show in [Jac23] that BN-rank 1 fitting functions must have a R() term that blows up iwith the
number of datapoints /N. With some additional work, we can show that the NTK will blow up at
some z:

Theorem 19 (Theoremfrom the main). Let f* : Q — R%ut be a function with Jacobian rank
k* > 1 (ie. there is a x € Q with RankJ f*(x) = k*), then with high probability over the sampling
of a training set x1,...,xN (sampled from a distribution with support §), we have that for any
parameters 0 of a deep enough network that represent a BN-rank 1 function fg that fits the training

set fo(x;) = f*(x;) withnorm ||0]|* = L + 1 then there is a point x € Q where the NTK satisfies
0 (z,z) > " Le ™t N*~ %=

Proof. For all i we define d; ; and da; to be the distance between y; and its closest and second
closest pointinyy, ..., yy. Following the argument in [BHHS59], the shortest path that goes through

all points must be at least ZN m (which would be tight if it is possible to always jump to the
closest or second closest point along the path). Since the expected distances d; ; and do ; are N~ =
since the y; are sampled from a k*-dimensional distribution, the expected length of the shortest path
is of order N1—%=. Actually most of the distance d; ; and do; will be of order N~ 7 with only
a few outliers w1th larger or smaller distances, thus for any subset of indices I C [1,..., N] that

contains a finite ratio of all indices, the sum ) | % will be of order N1~ %= too.

i€l
Following the argument in the proof Theorem 2 from [Jac23]], we can reorder the indices so that the
segment [z1, z ] will mapped fjy to a path that goes through y1, ..., yn. We can therefore define

the points Z1, . .., Ty that are preimages of y1, ..., yn on the segment.
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On the interval [Z;,#;11] there must a point o with [|.J fa(2)l],, > H Now since

2Zipr =Tl = [len — 21| < diag there must be at least p(N — 1) intervals i witlh
|Zig1 — Zi]] < %, and amongst those s they would all satisfy |ly;+1 — vl > cN™#

except for a few outliers. Thus we can for example guarantee that there are at least %(N -1
intervals [Z;, 7;41] that contain a point z with ||J fo(2)||,,, > ¢N 1=,

First observe that by Theorem 2 of [Jac23], there must be a point z € €2 such that ||/ fo(z)||,,, >
N1=% thus by Theorem@ there are at least pL layers where

c1 —2log|J fo(z)|,
pL '

T2
[We = uevy ||” <
Consider one of those pL layers ¢, with activatons z; = ay—1(Z;). Let iy, ...,y be the ordering of
the indices so that u} z;, . is increasing in m. Then the hidden representations must satisfy

HWZ<Z1 - Z@,l)H + HWK(ZZ - Z'L+1)H S e,w dy i, + da,,
2 - 2

and

c1 — 2log |J fo(x)]
W~ e ) [ 2B

For any two indices m; < mg separated by pN indices (where p > 0 remains finite), we have

m
FYCTP PU S LGS (R LGS

m=m1+1
e - 210g|.]fg(av)|+ i szm — zinH + szm — Zim+1||
pL ?
m=mi1+1

||9(l+1:L)||27(L7£) m2 dyy;,. +da;
5 —oim | Sm
>e 2 Z 2

m=mi+1
oD~ e — 2log | fola
—(mg —mq)e =z : g1|3 4 ”*diamﬂ
p

o+ 1:L) |2 (1,0 oD |P—e-n oy — 2log |J fo(x
> (mg —myq) ce‘%N‘ﬁ - e% ! g‘L ol )|+diamQ )
p

where we used the fact that up to a few outliers % = Q(Nw).

1 —2log|J .
Thus for L > ;%eq“]\fk%% (diam®2)?, we have UZT(Zimz = i, ) = (m2 —

p
s oo
e en

¥ . which implies that at least half of the activations z; have norm
o)
- 2

my)<e

Nlo

c 1— L
larger than ge N ~%,

This implies that at least one fourth of the indices ¢ satisfy for at least one fourth of the pL layers ¢

laer @)l 3 Sem A0
—1\Lg = .

c
8
Now amongst these indices there are at least some such that there is a point z in the interval [Z;, Z; 1]
with [|.J fo(2)]],, > eN'= 7%= Since x is O(N~1)-close to Z; one can guarantee that |jcvy_; (2)|| >

oo~ -0
| K | el

_1
ce N'=% for some constant ¢’.
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But the Jacobian J (&, — fy) also explodes at x since

0 P T

[ (& = fo)(@)llyp = 72 eN'wF,
P [ Jau(),,
We can now lower bound the NTK
Tr (05 (@,x)| = Znae L@ 1@ = fo))l;
zsz o0 e o a2

= Le  N*"%*
O

This suggests that such points are avoided not only because they have a large R(Y) value, but also (if
not mostly) because they lie at the bottom of a very narrow valley.

D Technical Results

D.1 Regularity Counterexample

We guve here an example of a simple function whose optimal representation geodesic does not
converge, due to it being not uniformly Lipschitz:

Example 20. The function f : Q — R? with Q = [0, 1] defined by

 f(@,9,2) ifo <y
1o = {0 ey sy
satisfies RO (f;Q) = 3 and R (f;Q) = 0. The optimal representations of f are not uniformly
Lipschitz as L — oo.

Proof. While we are not able to identify exactly the optimal representation geodesic for the function
f. we will first show that R (f;Q) = 0, and then show that the uniform Lipschitzness of the
optimal representations would contradict with Proposition [I3]

1 -1 1
know by Theorem l that RV (f;Q) > 2log|I3| 4+ = 0. We therefore only need to construct
a sequence of parameters of different depths that represent f with a squared parameter norm of
order 3L + o(1). For simplicity, we only do this construction for even depths (the odd case can be
constructed similarly). We define:

1 0 O
(1) Since the Jacobian takes two values inside Ri, either the identity I3 or < 0 1 0 ), we

e 0 0 I
Wy = 0 e O for/{=1,...,——1
O 0 6725 2
1 0 0
0 1 0
Wy = 0 0 1
Vae= T —\Jae= T 0
1 0 0 0
We, = 0 1 0 0
2 0 0 1 f —(L—2)e
e ¢ 0 0
W, = 0 e*° 0 for{=—+4+2,...,L
0 0 e*




We have for all z € RY

L—2
e 2 ‘r
- L—2,
ar_y(z) = e 2 "To
—(L—2)e
e ( )153

and
L2
e 2 EIL'l
L—2
e 2 ‘xo
6_(L_2)E.f()3
O’(.Z‘l — 1‘2)
and
L—2
e 2 ‘r
a%+1(a§) = e T e,
e~ (L—2)e (x5 + o(x1 — x2))

fol) = ( 2 )
xIs —+ O'((El — ZQ)

L—-2
(26264*6746)+(3+267<L72)6)+(3+€72(L72)6)+ 5 (267264*646)

and

The norm of the parameters is
L—-2
2
— 3L 4 2 (626 . 1) 4 (6746 o 1) 4 267([/72)6 + 672([/72)6 + 2 (6726 - 1) 4 (646 o 1)
If we take € = L~7 fory € (3, 1), then the terms 2e~(“~2)€ and e~2(-=2)¢ decay exponentially (at
arate of e*" ), in addition the terms 2 (€2 — 1) 4 (¢~ — 1) and 2 (¢72¢ — 1) + (e — 1) are of
order L~27. This proves that RV (f; Q) = 0.

(2) Let us now assume that the optimal representation of f is C-uniform Lipschitz for some constant
C, then by Proposition[I3] we have that
1 0 0
I3;—| 0 1 0
1 -1 1

1 0 0
0 1 0
1 -1 1

which contradicts with the fact that R (f; Q) = 0. O

R(l)(ﬁQ) > log |I3], +log +C72 > 0,

+

*

D.2 Extension outside FPLFs

Since all functions represented by finite depth and width networks are FPLFs, the representation
cost of any such function is infinite. But we can define the representation cost of a function f
that is the limit of a sequence of FPLF as the infimum over all sequences f; — f converging of
lim; _, o R(f;; Q) (for some choice of convergence type that implies convergence of the Jacobians
Jfi(x) — Jf(x)). Note that since the representation cost R(f;€2) is lower semi-continuous, i.e.
liminf,_,p, R(f;82) > R(fo; ), this does not change the definition of the representation cost on
the space of FPLFs.

E Numerical Experiments

For the first numerical experiment, the data pairs (z,y) were generated as follows. First we sample a
8-dimensional ‘latent vector’ z, from which we define = g(z1, ..., 23) € R* andy = h(z1, 22) €
R?° for two random functions g : R® — R2% and h : R? — R2° given by two shallow networks
with random parameters. Assuming that g is injective (which it is with high probability), the function
f* = h o g—! which maps z to 3 has BN-rank 2.
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