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Abstract

Self-tuning algorithms that adapt the learning process online encourage more
effective and robust learning. Among all the methods available, meta-gradients
have emerged as a promising approach. They leverage the differentiability of the
learning rule with respect to some hyper-parameters to adapt them in an online
fashion. Although meta-gradients can be accumulated over multiple learning
steps to avoid myopic updates, this is rarely used in practice. In this work, we
demonstrate that whilst multi-step meta-gradients do provide a better learning
signal in expectation, this comes at the cost of a significant increase in variance,
hindering performance. In the light of this analysis, we introduce a novel method
mixing multiple inner steps that enjoys a more accurate and robust meta-gradient
signal, essentially trading off bias and variance in meta-gradient estimation. When
applied to the Snake game, the mixing meta-gradient algorithm can cut the variance
by a factor of 3 while achieving similar or higher performance.

1 Introduction

Over the past decade, the most successful machine learning applications have moved from handcrafted
features, subject to the oversights and biases of the designer, to systems where representations
are learned from raw input data in an end-to-end manner. However, the algorithms with which
this learning is realised have remained manually designed. Recently, meta-learning has emerged
with the potential of systems that adapt to the specific learning task, promising out-of-distribution
generalisation and robust learning.

In this work, we consider the application of meta-learning to reinforcement learning (RL), so-called
meta-RL. By considering the “lifetime” of an agent to be training the agent on a specific task, we
can distinguish two main frameworks within meta-RL: “multi-” and “single-” lifetime [21]. The
multi-lifetime setting considers an algorithm that is given a set of training tasks. The aim is to quickly
adapt to a new task either by learning an initialisation [6, 8, 13, 15, 27], or by learning an objective
[2, 9, 10, 14]. By contrast, single-lifetime optimisation aims to modify the learning process online
to improve performance on the task. The algorithm is tuned as the system is being optimised to
solve a problem. In RL in particular, it has been shown that hyper-parameters have a huge impact
on performance and training stability [1, 3]. A wide variety of algorithms for self-tuning have been
proposed, based on the works of Xu et al. (2018) [22] and Zheng et al. (2018) [24], which use
meta-gradients to update hyper-parameters online [18, 19, 21, 23].

Our efforts focus on meta-gradient RL [22] in general from which many self-tuning algorithms have
been designed, making our work applicable to a wide range of meta-gradient methods [18, 19, 21,
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23, 24, 25]. Meta-gradients are used to learn and adapt differentiable components of the update rule
such as the discount factor γ, or the bootstrapping factor λ from the λ-return [16], or even the whole
target parameterised by a neural network [21]. In each of these cases, meta-gradients are computed
by backpropagating through the inner update. Consequently, meta-parameters keep evolving to make
the agent learn a bit better at each new step.

Although online meta-gradient updates have been widely adopted for self-tuning learning algorithms,
they suffer from a poor signal-to-noise ratio, i.e. high variance, as well as a bias [7, 12, 20] arising
from the very local and myopic properties of the meta-update. We focus on identifying the bias that
arises from computing meta-gradients through an inner update. Despite multi-step meta-gradients
being more accurate in expectation, we show that they tend to yield higher variance, which has limited
its usage in practice. We, therefore, demonstrate the need for and potential of trading off bias and
variance in the way meta-gradients are computed. To address this issue, we propose a solution that
mixes multiple inner updates to strongly reduce the variance, making meta-updates more robust with
equal or better performance than multi-step meta-gradients for the same number of steps.

2 Background

In the context of deep reinforcement learning, both the value function v and the policy π are
parameterised by neural networks with parameters θ. They are trained using an RL objective
whose hyper-parameters are denoted ζ. Self-tuning methods aim to adapt online some of these
hyper-parameters, called meta-parameters η ⊆ ζ, such as to optimise the learning of the agent.

To study the bias and variance of meta-gradient methods, we first work on the problem of state-value
prediction and then validate our findings on a control task using an actor-critic algorithm. In both
cases, the agent is trained using an inner loss L, while the meta-learning agent updates its meta-
parameters using an outer loss L′. We also denote by θ′ the parameters after one or several inner
updates, τ ′ the trajectories sampled from πθ′ , and η′ the fixed hyper-parameters of the meta-RL
algorithm, representing a good proxy of the agent’s final objective.

2.1 Meta-Gradients for Value Prediction

Similarly to Xu et al. (2018) [22], we first analyse the properties of meta-gradients in the context of
value prediction using the TD(λ) algorithm [17]. In that context, the inner loss L, whose gradient
is presented below, is the Mean-Squared Error (MSE) between the value prediction vθ(τ) and the
λ-return gη(τ).

∂L(θ, η, τ)
∂θ

= − (gη(τ)− vθ(τ))
∂vθ(τ)

∂θ
(1)

The gradient of the outer loss L′ is also constructed from the MSE loss but this time with respect to
the meta-parameters η and taken after one or several inner updates.

∂L′(θ′, η′, τ ′)
∂η

= − (gη′(τ
′)− vθ′(τ ′))

∂vθ′(τ
′)

∂η
(2)

2.2 Meta-Gradients for Control

For control, we focus on the A2C algorithm [11] in which an actor updates the policy distribution
in the direction suggested by the critic whose goal is to estimate the state-value function. Both the
value function v and the policy π are parameterised by neural networks with parameters θ, and are
trained using the A2C objective whose hyper-parameters are denoted η. Self-tuning aims to adapt η
online such as to optimise the learning of the agent. Any subset of differentiable hyper-parameters
can be tuned using meta-gradients [23]. Here, we consider η = {γ, λ, ccrit, centr}, meaning we allow
the agent to meta-learn all the differentiable hyper-parameters of the A2C objective.

The gradient of the inner loss L constructed from the A2C objective is given as follows.

∂L(θ, η, τ)
∂θ

= −(gη(τ)− vθ(τ))
∂ log πθ(τ)

∂θ
− ccrit(gη(τ)− vθ(τ))

∂vθ(τ)

∂θ
− centr

∂H(πθ(τ))

∂θ
(3)
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Figure 1: n-step meta-gradient estimation. Starting from θt, the algorithm makes n inner updates
to get θ(n)t , using the same meta-parameters ηt. The n-step meta-gradient is then computed by
backpropagating through the n gradient steps. θt+1 is updated to θ(1)t and the other θ(i)t , i > 1 are
discarded. The process is then repeated starting from θt+1 using meta-parameters ηt+1. and so on.

The inner loss combines the policy gradient term which aims to update the policy, with the MSE loss
of the critic predictions and entropy regularisation. The outer loss results directly from the policy
gradient theorem applied to the updated policy.

∂L′(θ′, η′, τ ′)
∂η

= − (gη′ (τ
′)− vθ′ (τ ′))

∂ log πθ′(τ
′)

∂η
(4)

2.3 Meta-Gradients

After one or multiple inner updates, one can estimate the meta-gradient by differentiating through the
inner update(s) to minimise an outer loss L′. This outer loss measures the performance of the agent
after the inner update(s), cross-validated on new samples. In this work, we consider looking ahead n
future inner updates from θt to θ(n)t to compute the meta-gradient ∇(n)

ηt at time t. We then keep the
first inner update to change θt into θt+1, and discard the n− 1 other inner updates. The goal of this
procedure is to be able to assess the quality of different meta-gradient updates (e.g. multi-step) while
keeping the inner update unchanged. The gradient computation is detailed in figure 1 and equation 5.

ηt+1 = ηt − β∇ηtL′(θ(n)t , η′, τ
(n)
t )︸ ︷︷ ︸

∇(n)
ηt

with


θ
(0)
t = θt

τ
(j)
t ∼ π

θ
(j)
t
, 0 ≤ j ≤ n

θ
(j+1)
t = θ

(j)
t − α∇θ(j)t L

Ä
θ
(j)
t , ηt, τ

(j)
t

ä (5)

Estimating an n-step meta-gradient is prone to high variance, as it requires evaluating the performance
of θ(n)t which is the result of a succession of n stochastic inner updates. To assess this variance and
measure it, we define the meta-gradient variance Var [∇ηt ] as the vector of the variances of each
meta-parameter considered independently in the n-step meta-gradient estimation over the whole
trajectory of inner updates

¶
θ
(i)
t

©
1≤i≤n

.

2.4 Meta-Learning Oracle

Different choices of self-tuning or online meta-learning techniques give rise to varied learning
dynamics and can lead to disparate performance. In equation 6, we aim to define an oracle that would
give the best algorithm with which the agent may learn most effectively. At time t during training,
we define the oracle as the meta-parameter trajectory ηt:T−1 ≡ {ηt, . . . , ηT−1} that maximises the
performance of the parameters at the end of training θT .
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η?t:T−1 = arg min
ηt:T−1

E{θ(T−t)t ,τ̃
(T−t)
t }

î
L′
Ä
θ
(T−t)
t (ηt:T−1), η

′, τ̃
(T−t)
t

äó
With


θ
(0)
t = θt

τ
(j)
t ∼ π

θ
(j)
t
, j ∈ [0, T − t]

θ
(j+1)
t (ηt:t+j) = θ

(j)
t (ηt:t+j−1)− α∇θ(j)t L

Ä
θ
(j)
t , ηt+j , τ

(j)
t

ä (6)

This oracle quickly becomes intractable as it requires optimising an expected value in a continuous,
non-convex, and very high-dimensional space. In the experiments, we wish to measure how close to
the oracle an algorithm may perform. As the oracle is computationally too expensive to be practical,
we need to approximate it. By considering simple environments and restricting n to a large finite
number, we can use the expectation of the n-step meta-gradient, noted E

î
∇(n)
ηt

ó
, as a proxy for the

oracle. The meta-gradient bias is thus defined as the difference between the oracle proxy and the
expected meta-gradient.

Bias [∇ηt ] =
∥∥∥E [∇ηt ]− E

î
∇(n)
ηt

ó∥∥∥ (7)

3 Experiments & Results

In this work, we analyse how different hyper-parameter trajectories influence the learning of an
agent. Therefore, we focus on different ways to estimate meta-gradients, yet we always keep the
inner update fixed. This is to measure the effect on performance, of the quality of the estimation of
meta-gradients.

3.1 Environments

(a) Markov Reward Process. Source: Xu et al. (2018) [22]. (b) Snake Environment.

Figure 2: Environments used for the experiments. (a): Markov Reward Process (MRP), with 10 states
and transitions from left to right only. Even-numbered states output a deterministic reward of +0.1,
while odd-numbered states provide a random reward sampled from the standard normal distribution.
The goal of the agent is to predict the state-value function. A discount factor is meta-learnt for each
state to enable the agent to discard the noisy rewards in the value estimation. (b): Implementation of
the Snake game on a 12x12 grid. The snake moves one cell at a time to collect fruits on the board. Its
length grows by 1 with each collected fruit, making it critical for the agent to establish long-term
strategies to survive.

For this purpose, we run experiments on two custom-built environments written in JAX [4], whose
detailed descriptions can be found in appendix B. The first one is a Markov Reward Process (MRP)
introduced in Xu et al. (2018) [22] in which even-numbered states provide deterministic rewards
and odd-numbered ones output rewards that are sampled from a zero-mean Gaussian (figure 2a).
Per-state discount factors γi can be tuned to improve the signal-to-noise ratio of the gradient of the
TD(λ) error by discarding noisy rewards in the computation of the state value function. Since no
actions are taken, the MRP has a lower variance than typical RL problems, hence, it is well-suited
for meta-learning experiments as meta-parameter trajectories are easier to predict. In this problem,
effective meta-learning would see odd-numbered discount factors decrease to 0 whilst even-numbered
ones increase to 1. The second environment implements the game of Snake (figure 2b). The latter
contains a single agent, namely the snake, whose goal is to navigate in a 12x12 grid world to collect
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Inner Steps n 0 1 3 5 10 3-mix 5-mix

Final Return 67 (3) 85 (28) 114 (15) 97 (7) 86 (9) 115 (2) 113 (12)

‖Std [∇η]‖ — 1.0 4.6 (0.5) 8.6 (2.1) 23.5 (8.4) 1.7 (0.4) 2.6 (0.8)

Table 1: Performance of n-step meta-gradients with varying n on the Snake environment. Metrics
are averaged over 3 different seeds with their means and standard deviations displayed in the table.
The first row shows the number of look-ahead inner steps used for each iteration to compute the
meta-gradient. 0 inner steps refers to the baseline where the meta-parameters are fixed and do not
evolve with time. The second row shows the return at the end of the training, with its deviation on
3 seeds. Finally, the last row gives the meta-gradient standard deviation normalised with respect
to the 1-step update and averaged over the 4 meta-parameters {γ, η, ccrit, centr}. It means that, for
instance, across all 4 meta-parameters, the meta-gradient deviation is on average 5 times higher for
10-step meta-gradient than for 3-step. The variance was periodically estimated using batches of 96
meta-gradients at 300 different points throughout training. The n-step mix algorithm is detailed in
section 3.5.
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Figure 3: Learning curves for the Snake environment for different values n of inner steps used for
meta-gradients, lines represent the average over 3 seeds. Baseline means meta-parameters remain
fixed during training. (a): Average return throughout training. The theoretical maximum return is
143, when all fruits are collected on time. (b): Learning curves of the meta-parameters.

as many fruits as possible, without colliding with its own body, i.e. looping on itself. Its length grows
by 1 with each fruit it gathers, making it harder to survive as the episode progresses. An episode ends
if the snake exits the board, hits itself, or after 5000 steps. Planning within an episode is directly
linked to the discount factor. Hence, meta-learning γ enables the Snake agent to start off with short
planning horizons and progressively increase them as performance rises.

3.2 Multi-Step Meta-Gradients

In table 1, we compare the difference in performance and meta-gradient variance when using different
values of n to compute n-step meta-gradients in the Snake environment. We observe that performance
increases with n to a point and then deteriorates, whereas meta-gradient variance keeps increasing
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with n, showing a strong correlation between the variance and the number of inner updates. Learning
curves are displayed in figure 3 and show that meta-learning the discount factor γ seems to yield
the highest correlation with performance. When n is too small, the meta-objective seems myopic,
whereas when n is too high, the trajectory appears noisier, in both cases slowing down the meta-
learning of γ and hence, hindering performance. The "mix" version is detailed later in section 3.5. In
the two next sections, we analyse both the bias and the variance of n-step meta-gradients.

3.3 Monte Carlo Meta-Gradient

During each step of training, the agent first takes one or several gradient steps using a few rollouts,
and then the meta-learning algorithm validates its performance on new rollouts to compute the meta-
gradient. Its computation combines randomness from both the inner and outer loops, and therefore the
meta-gradient has high variance, which may affect performance (as seen in table 1). Here, we analyse
the expected direction of the meta-gradient by averaging a batch of computed meta-gradients, i.e. we
calculate a Monte Carlo approximation of the expected meta-gradient. In this way, we can compare
different ways of computing the meta-gradient without yet taking the variance into account. For all
algorithms, we keep the inner update of the network parameters the same, meaning we do not use
more data to train the agent itself, but only to update the meta-parameters of the learning algorithms.
The n-step Monte Carlo meta-update is given in equation 9 with θ(n)t derived from equation 5.

θt+1 = θt − α∇θtL(θt, ηt, τt), τt ∼ πθt (8)

ηt+1 = ηt − β∇ηtE{τ(j)
t ∼πθ(j)t

}j∈[0,n]

î
L′(θ(n)t , η′, τ

(n)
t )
ó

(9)

We compare Monte Carlo meta-gradient estimations using n ∈ {1, 5, 10} inner updates for the
computation of each meta-gradient. To analyse the expected meta-gradient signals, we use a very
high number of Monte Carlo simulations, i.e. 256, at every step of training, which can only be done
in simple toy problems such as the introduced Markov Reward Process. Returns and meta-parameter
trajectories are shown in figure 4 where one can already see evidence that the expected meta-gradients
are more informative, as they result in higher performance when using more inner updates.
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Figure 4: Markov Reward Process Monte Carlo meta-learning of per-state discount factors {γi}i∈[0,9].
(a): MSE training loss (log scale). (b): Trajectories of even-numbered γ, supposed to increase to 1.
The 5- and 10-step lines overlap as they are identical. (c): Trajectories of odd-numbered γ, meant
to decrease to 0. At each iteration a Monte Carlo estimation of 256 meta-gradients is used for the
meta-update, this is to ensure meta-gradient variance does not interfere in these experiments. Shaded
areas represent the standard deviation over 5 random seeds. We observe that, taking the meta-gradient
variance out, increasing n leads to faster convergence and better performance.

3.4 Bias and Variance of Meta-Gradients

We have seen that taking more training steps into account while computing meta-gradients may lead
to higher variance which can hinder performance (table 1), yet it may also provide a better signal for
the learning of the agent (figure 4).
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Figure 5: Markov Reward Process bias-variance experiment. Along the training trajectory of a
standard 1-step meta-gradient algorithm, Monte Carlo meta-gradient updates are plotted for different
values of n. Shaded areas represent the standard deviation over 5 random seeds, averaged over all
even-numbered γi. Each Monte Carlo estimation uses 2048 meta-gradients to precisely estimate
the bias and variance. (a): Meta-gradient bias throughout training, using 40-step Monte Carlo
meta-gradient as the oracle. (b): Meta-gradient standard deviation throughout training. (c): Both
deviation and bias averaged over the whole training and plotted as a function of n for both the classic
n-step meta-gradient and mixed algorithms, the latter being explained in section 3.5.

We further analyse the meta-gradients themselves by inspecting their bias and variance throughout
training in figure 5. To do so, we compute what the Monte Carlo meta-gradient updates would be for
different values of n along the training trajectory of a standard 1-step meta-gradient algorithm.

Although computing the variance from a batch of meta-gradient estimates is rather straightforward,
particular attention must be given to the estimation of the bias. Unfortunately, the oracle described in
equation 6 is intractable. Therefore, we are forced to bootstrap it and estimate the bias by looking at
n steps of training instead. Consequently, the meta-gradient used as an oracle in the experiments is
the n-step Monte Carlo expression (with n = 40) given in equation 9.

In the bias-variance experiments, one may see that the higher the n, the higher the variance, yet
the lower the bias, providing a better expected meta-gradient in the sense of closer to the oracle.
Therefore, we highlight a bias-variance trade-off analogous to n-step TD learning [17].

3.5 Trading Off Bias and Variance

Similarly to TD(λ) [17], we propose to control the meta-gradient bias-variance trade-off by mixing
all i-step updates with a discount factor κ ∈ [0, 1]. This mixing version gives more weight to i-step
meta-gradient estimates with lower i. The mixing update computes all i-step meta-gradients and
discounts them by κ such that their weight ranges from κ0 to κn−1. A normalising constant 1−κ

1−κn is
included so that the mixing meta-gradient norm does not explode with n. In equation 10, the ith inner
update θ(i)t is derived from equation 5.

ηt+1 = ηt − β
1− κ
1− κn

n∑
i=1

κi−1∇ηtL′(θ(i)t , η′, τ̃
(i)
t ) (10)

Although this mixing n-step algorithm brings a new hyper-parameter κ that controls the horizon of
inner updates through which meta-gradients flow, we can automatically set it such that (1−κ)−1 = n,
similar to the choice of discount factor γ as a function of the horizon in RL environments. κ could
be fine-tuned over a grid-search, yet we find that this automatic baseline value performs well. For
κ = 0, one retrieves the 1-step meta-gradient algorithm with high bias and low variance, whereas
κ = 1 gives the same weight to all i-step meta-gradients. We compare this new algorithm with classic
n-step updates in table 1 and figure 3.

In the Snake experiments, n-step meta-gradients seem to perform the best with n = 3 Indeed, the
meta-gradient variance explodes with higher numbers of inner steps, making 5-step and 10-step
underperform. Introducing the mixing algorithm for the n = 3 appears to perform similarly while
cutting the variance by 3. Additionally, using the mixing with n = 5 reduces the variance by the
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same amount, hence performing better than classic 5-step meta-gradients. Therefore, mixing n-step
meta-gradients appears as a way to control meta-gradient variance while maintaining a low bias,
leading to robust and high performance.

4 Discussion

In the experiments, we could see the potential of multiple-step meta-gradients, yet we showed why
they are not used in practice due to their high variance.

4.1 Hessian Matrix

To better analyse the origin of this variance, we decompose the gradient of the n-step outer loss L′,
whose derivation can be found in the appendix (D.1).

∇ηtL′(θt+n, η′, τ̃t+n) = Tt+n

n∑
i=1

Ñ
i−1∏
j=1

(I +Ht+n−j)

é
Nt+n−i (11)

With


Tt+n = ∂L′

∂θt+n
(θt+n, η

′, τ̃t+n)

Ht+n−j = −α ∂2L
∂θ2t+n−j

(θt+n−j , ηt, τt+n−j)

Nt+n−i = −α ∂2L
∂θt+n−i∂ηt

(θt+n−i, ηt, τt+n−i)

If we call Ht+n−j the Hessian as it is the Hessian matrix, up to a factor −α, of the inner loss L with
respect to the parameters θt+n−j of the network, we show in the appendix (D.2) that products of
such Hessian matrices may be responsible for the meta-gradient variance increase. Indeed, spectral
radii may explode with the number of Hessian to multiply together. Further work could focus on
these matrices Ht+n−j to derive properties that would clearly explain the variance. One may also
use the accumulative trace approximation [22] to analyse the impact of the Hessian matrices on the
meta-gradient variance and derive better methods for meta-gradients.

4.2 Sample Efficiency

The experiments were designed to keep the inner learning update unchanged but to work on the
learning signal to provide to the agent. Therefore, the ideas presented here are not particularly sample
efficient as they need to look ahead in the training dynamics of the agent to eventually provide it
with a learning signal. However, we believe these ideas apply to most meta-gradient methods and
future work could derive sample-efficient approaches to compute meta-gradients. Consistent with our
findings, recent work [7] managed to look ahead a few inner steps and then reuse the collected data to
improve upon myopic meta-objectives. We would be excited to see efforts that use past inner updates
to compute meta-gradients by looking backwards instead of forward in time, in either an off-policy or
close to on-policy fashion.

5 Conclusion

Meta-gradients offer an elegant way of self-tuning a learning algorithm. Up to now, they have rarely
been used with more than one inner update. In this work, we show that increasing the number of
inner steps to differentiate through leads to higher meta-gradient variance, which may deteriorate its
signal-to-noise ratio and hinder performance. Yet, when using a close approximation of expected
meta-gradients, we observe the opposite trend in which performance is increased with a higher
number of inner updates. This means that, while a meta-gradient meta-learning algorithm is more
adept to understand the training dynamics from multiple gradient steps rather than from only one, it
may also suffer from higher variance.

As a result, we show the potential of trading off meta-gradient bias and variance to self-tune rein-
forcement learning agents within a single lifetime. We propose to mix multiple n-step meta-gradients
to achieve lower variance while maintaining high performance, leading to more robust learning. We
believe that better meta-learning algorithms may be designed if both meta-gradient bias and variance
are understood and properly studied.
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A Reinforcement Learning Background

For reinforcement learning, we consider the framework of a Markov Decision Process, which is a
tuple (S,A, P,R, µ), where S is the state space, A the action space, P the probability transition
matrix,R the reward function, and µ the initial state distribution. The goal of a reinforcement learning
agent is to maximise the expected return which is the discounted sum of rewards.

maximise J = E

[ ∞∑
t=0

γtRt

]

In our analysis, we also integrate a simpler framework called Markov Reward Process in which there
is no action space A. Hence, the agent cannot act in the environment but can only observe it.

B Environment Specifications

B.1 Markov Reward Process

The Markov Reward Process (MRP) used in the experiments is taken from Xu et al. (2018) [22]. It
consists of 10 states with transitions from left to right. Even-numbered states output a deterministic
reward of 0.1, whereas odd-numbered states give a random reward sampled from the standard normal
distribution. Since the goal of the agent is to predict the state value function, the odd-numbered states
make the task harder as they just add noise to the estimated targets.

B.2 Snake

The Snake environment consists of an agent, the snake, navigating a 2D grid of size 12 × 12. Its
goal is to collect fruits on the board. The reward is 1 upon collection of each fruit, else 0. As an
observation, the agent has access to the concatenation of 5 feature maps as channels stacked up in an
image (figure 6b) representing the snake body, its head, its tail, where the fruit is, as well as the order
in which the cells are organised.

(a) Image

body head tail fruit body_state

(b) Observation

Figure 6: Snake environment.

The environment is built using JAX [4] so that the training can be compiled on the device directly,
allowing high computation speeds. The theoretical maximal reward is 12× 12− 1 = 143 when the
snake succeeds in collecting all fruits that have appeared on the grid.

C Experiments Details

C.1 Markov Reward Process

For the Markov Reward Process experiments, we just use a value network for prediction. Both inner
and outer losses are Mean Squared Error functions whose derivatives can be found below.

∂L(θ, η, τ)
∂θ

= −(gη(τ)− vθ(τ))
∂vθ(τ)

∂θ

∂L′(θ′, η′, τ ′)
∂η

= −(gη′(τ)− vθ′(τ))
∂vθ′(τ)

∂η
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For states s0 to s9, the targets gη(si) use per-state discount factors γi.

gη(si) =

9∑
j=i

γj−i+1
j rj

Whereas the outer target is just the Monte Carlo return, i.e. the undiscounted sum of rewards.

gη′(si) =

9∑
j=i

rj

Since some discount factors would converge to 0 and others to 1, we initialise all factors to 0.5 to
observe both dynamics.

C.2 Snake

In actor-critic algorithms, such as A2C, the actor is represented by the policy network πθ, and the
critic by the value network vθ. For the experiments on Snake, we use the A2C algorithm for control,
leading to the inner loss L and outer loss L′ whose gradients are derived below. The inner loss uses
weights ccrit and centr that can be meta-learnt to dynamically change the impact of the critic or entropy
term in the total loss.

∂L(θ, η, τ)
∂θ

= −(gη(τ)− vθ(τ))
∂ log πθ(τ)

∂θ
− ccrit(gη(τ)− vθ(τ))

∂vθ(τ)

∂θ
− centr

∂H(πθ(τ))

∂θ

∂L′(θ′, η′, τ ′)
∂η

= −(gη′(τ ′)− vθ′(τ ′))
∂ log πθ′(τ

′)

∂η

The targets used are λ-returns from TD(λ) [17]. gη(τ) uses the meta-parameters γ and λ whereas
gη′(τ) uses meta-learning hyper-parameters γ′ and λ′ for which a good proxy needs to be found. The
parameters used for the experiments are described in table 2.

C.3 Hyper-Parameters

Parameters Markov Reward Process Snake
architecture MLP(1,10,10,1) conv + MLP

γstart 0.5 0.99
λstart N/A 0.99

learning rate α 1e-3 6e-4
learning rate schedule constant linear annealing to 0

inner optimiser Adam Adam
cstart

crit N/A 0.5
cstart

entr N/A 0.01
gradient clipping norm N/A 10

batch size 32 32
γ′ 1 0.99
λ′ 1 0.99

meta learning rate β 2e-3 1e-3
meta optimiser Adam Adam

meta-gradient clipping norm N/A 0.1
meta batch size 32 32

Table 2: Hyperparameters used in experiments.

The architecture used for Snake is a composition of convolution layers followed by a multilayer
perceptron (MLP) with two heads for the actor and the critic. The complete architecture is made of 2
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consecutive blocks of one convolution layer (kernel size of 3, stride 1, and 32 feature maps) and one
max pooling layer of stride and window size 2. The output of the convolution is then followed by a
linear layer of output 40 from which two MLP heads of respective shape (30,4) and (30,1) compute
respectively the actor and critic outputs.

We use standard values of hyper-parameters for the baseline. After meta-learning the discount factor,
we yet observe that higher γ would lead to higher performance. This shows the added value of
self-tuning, in that grid searches may be avoided.

D Hessian Matrix

D.1 n-Step Meta-Gradient Formula

Here, we provide the derivation of the n-step meta-gradient:

∇ηtL′(θt+n, η′, τ̃t+n) = Tt+n

n∑
i=1

Ñ
i−1∏
j=1

(I +Ht+n−j)

é
Nt+n−i

Proof.
Starting from θt, let us consider a series of n inner updates, leading to θt+n, through which to compute
the meta-gradient ∇ηtL′(θt+n, η′, τ̃t+n), with τ̃t+n ∼ πθt+n being validation data to compute the
outer loss.

∀j ∈ J0, n− 1K, θt+j+1 = θt+j − α∇θt+jL(θt+j , ηt, τt+j)

∇ηtL′(θt+n, η′, τ̃t+n) =
∂L′
∂θt+n

(θt+n, η
′, τ̃t+n)︸ ︷︷ ︸

Tt+n

dθt+n
dηt

θt+n = θt+n−1−α∇θt+n−1L(θt+n−1, ηt, τt+n−1)︸ ︷︷ ︸
f(θt+n−1,ηt,τt+n−1)

dθt+n
dηt

=
dθt+n−1
dηt

+
∂f(θt+n−1, ηt, τt+n−1)

∂ηt
+
∂f(θt+n−1, ηt, τt+n−1)

∂θt+n−1

dθt+n−1
dηt

dθt+n
dηt

=

á
I +

∂f(θt+n−1, ηt, τt+n−1)

∂θt+n−1︸ ︷︷ ︸
Ht+n−1

ë
dθt+n−1
dηt

+
∂f(θt+n−1, ηt, τt+n−1)

∂ηt︸ ︷︷ ︸
Nt+n−1

Since
dθt
dηt

= 0, and
Å
dθt+i
dηt

ã
i∈N

is an arithmetico–geometric sequence,

dθt+n
dηt

=

n∑
i=1

Ñ
i−1∏
j=1

(I +Ht+n−j)

é
Nt+n−i (proof by induction)

Hence, ∇ηtL′(θt+n, η′, τ̃t+n) = Tt+n

n∑
i=1

Ñ
i−1∏
j=1

(I +Ht+n−j)

é
Nt+n−i

With


Tt+n = ∂L′

∂θt+n
(θt+n, η

′, τ̃t+n)

Ht+n−j =
∂f

∂θt+n−j
(θt+n−j , ηt, τt+n−j) = −α ∂2L

∂θ2t+n−j
(θt+n−j , ηt, τt+n−j)

Nt+n−i =
∂f
∂ηt

(θt+n−i, ηt, τt+n−i) = −α ∂2L
∂θt+n−i∂ηt

(θt+n−i, ηt, τt+n−i)

The accumulative trace approximation [22] consists in discarding the Hessian and using an exponential
decay of previous updates parameterised by µ.

(I +Ht+n−j) ≈ µI, with µ ∈ [0, 1]

∇ηtL′(θt+n, η′, τ̃t+n) ≈ T
n∑
i=1

µi−1Nt+n−i (Accumulative trace approximation)
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D.2 Hessian and Meta-Gradient Variance

Let us call Ht+n−j the Hessian as it is the Hessian matrix, up to a factor −α, of the inner loss L with
respect to the parameters θt+n−j of the network. It is of size the square of the number of parameters,
which can quickly become huge. Additionally, we presume the meta-gradient variance to partly
come from this Hessian. Indeed, the n-step meta-gradient estimation uses products of these Hessian
matrices, and multiplying matrices may lead to high matrix norm, escalating variance.

Let us denote by Pi one such product
∏i−1
j=1 (I +Ht+n−j). In the worst case, all Hessian matrices

are equal and hence, the meta-gradient norm may explode. Therefore, to study this impact on the
variance, we assume a common Hessian matrix H for the n steps, Ht+n−j ≈ H symmetric as well.

Then, (I +H) is a real and symmetric matrix, hence the spectral theorem [5] states that there exists
an orthogonal matrix Q and a diagonal matrix D such that (I +H) = QDQ−1.

Pi =

i−1∏
j=1

(I +Ht+n−j) ≈
i−1∏
j=1

(I +H) = QDi−1Q−1 (12)

λ ∈ Sp(H) ⇐⇒ λ+ 1 ∈ Sp (I +H) ⇐⇒ (λ+ 1)i−1 ∈ Sp (Pi) (13)

Therefore, an eigenvalue of the Hessian that lies outside the interval [−2, 0] is to explode in the
product Pi for large i, leading to a high spectral radius and a high matrix norm. Meaning that the
randomness caused by differentiating the inner update computed in Nt+n−i is likely to be amplified
by high-norm Pi, leading to high meta-gradient variance.
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