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Abstract

Controllable text-to-speech (TTS) systems aim
to manipulate various stylistic attributes of gen-
erated speech. Existing models that use nat-
ural language prompts as an interface often
lack the ability for fine-grained control and
face a scarcity of high-quality data. To ad-
dress these challenges, we propose a two-stage
style-controllable TTS system with language
models, utilizing a masked-autoencoded rep-
resentation as an intermediary. We employ a
masked autoencoder to learn a speech feature
rich in stylistic information, which is then dis-
cretized using a residual vector quantizer. In
the first stage, an autoregressive transformer
is used for the conditional generation of these
style-rich tokens from text and control signals.
In the second stage, we generate codec to-
kens from both text and sampled style-rich to-
kens. Experiments demonstrate that training
the first-stage model on extensive datasets en-
hances the robustness of the two-stage model
in terms of quality and content accuracy. Ad-
ditionally, our model achieves superior con-
trol over attributes such as pitch and emotion.
By selectively combining discrete labels and
speaker embeddings, we can fully control the
speaker’s timbre and other stylistic information,
or adjust attributes like emotion for a speci-
fied speaker. Audio samples are available at
https://style-ar-tts.github.io.

1 Introduction

Controllable text-to-speech (TTS) systems aim to
generate high-fidelity speech while allowing con-
trol over various style attributes of the synthesized
speech, such as speaker timbre, pitch level and vari-
ation, emotion, acoustic environment, etc. Due to
its promising applications in digital media produc-
tion and human-computer interaction, controllable
TTS has been attracting growing interest in the
machine learning community with a substantial
amount of research working on it (Guo et al., 2023;

Leng et al., 2023; Ji et al., 2024; Yang et al., 2024;
Zhou et al., 2024).

Despite the extensive research on this topic,
controllable TTS still faces some unsolved chal-
lenges: (1) Control Interface Issue. Most existing
works use natural language prompts as a medium of
style control, which is friendly for non-professional
users. However, style descriptions with natural lan-
guage tend to be broad and coarse-grained, making
it difficult to precisely control specific attributes.
Moreover, the rich diversity of natural language
brings more challenges to modeling the relation-
ship between style attributes and prompts. It is also
difficult to fully encompass the user instructions
in real-world scenarios, restricting the application
of these methods. (2) Data Issue. The training of
well-performed TTS systems relies on high-quality
speech corpora, which are often limited in both
data volume and stylistic diversity. When using
natural language as the control interface, the addi-
tional cost of generating prompt sentences further
restricts the data size. Present controllable TTS
datasets (Guo et al., 2023; Ji et al., 2024) are often
limited to hundreds of hours. This constraint puts
challenges on learning precise control abilities and
improving generation diversity.

In this paper, we propose a fine-grained control-
lable TTS system. In contrast to natural language
prompts, We divide the value ranges of various
stylistic attributes of speech into multiple intervals,
each represented by a label, and use these labels as
conditional inputs to achieve fine-grained control.
By selectively combining these labels with speaker
embeddings, we can generate new speaker timbre
while controlling other attributes, or adjust certain
attributes such as emotion for a given speaker.

Our controllable TTS system adopts a two-stage
generation paradigm using two language models
(LMs), with a style-rich representation as an inter-
mediate output. We adopt a masked autoencoder
(MAE) which learns to capture diverse style infor-
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mation by reconstructing mel filterbank from the
encoded content input and masked fbank. The fea-
tures extracted by the style encoder of the trained
MAE are then discretized and used as an inter-
mediary of the TTS pipeline. Each of the two
stages relies on a decoder-only transformer. The
first stage generates style-rich tokens conditioned
on content and control signals, while the second
stage generates codec tokens from the content in-
put and the predicted style-rich tokens. Due to
low dependence on high-quality corpora, the style-
rich token generation phase can scale up to a large
amount of data, boosting control capability and
generation diversity; while in the codec token gen-
eration stage, a relatively small amount of data is
sufficient to learn how to reconstruct codec tokens
from content and style units, addressing the issue of
high-quality data scarcity. To enhance the control
accuracy of fine-grained attributes, we investigate
classifier-free guidance in the style-rich token gen-
eration stage. Experiments indicate that our model
achieves good style control ability while keeping
decent audio quality and content accuracy.

2 Related works

2.1 Controllable text-to-speech

Controllable TTS aims to enable control over
stylistic attributes of the speech during synthe-
sis. The earliest exploration, PromptTTS (Guo
et al., 2023), extracts textual features from prompts
with a fine-tuned BERT and incorporates them
in a TTS backbone with attention. InstructTTS
(Yang et al., 2024) achieves a text-controlled ex-
pressive TTS system with cross-modal represen-
tation learning. PromptTTS 2 (Leng et al., 2023)
employs a variational network to generate reference
acoustic features conditioned on text features. Au-
diobox (Vyas et al., 2023) builds a unified natural-
language-instructed flow-matching model integrat-
ing speech, music, and audio generation. Textrol-
Speech (Ji et al., 2024) integrates natural language
style prompt into the condition of VALL-E (Wang
et al., 2023a) for controllable TTS. VoxInstruct
(Zhou et al., 2024) merges the content input and
style prompt of TTS into a single composite tex-
tual instruction and utilizes a multimodal codec
language model as the backbone for TTS. Unlike
these methods using natural language as the con-
trol interface, we adopt a two-stage controllable
TTS system with attribute labels for fine-grained
control.

2.2 Speech style representations

Various works attempt to obtain style representa-
tions of speech at different granularities with dis-
entanglement or other methods to facilitate voice
conversion, controllable TTS, and other applica-
tions. NANSY (Choi et al., 2021) deconstructs
input speech into multiple information flows ex-
plicitly, and then reconstructs speech from these
flows, obtaining a model capable of voice conver-
sion, pitch shift, and other applications. Speech-
Split 1 and 2 (Qian et al., 2020; Chan et al., 2022)
disentangle speech into content, rhythm, pitch, and
timbre using multiple autoencoders in an unsu-
pervised manner. DSVAE (Lian et al., 2022b,a,
2023) presents a self-supervised method to disen-
tangle content information and global speaker in-
formation, in an end-to-end manner. Prosody-TTS
(Huang et al., 2023) utilizes an MAE to learn a
prosody representation disentangled from content
and speaker timbre, boosting expressive TTS. Nat-
uralSpeech 3 (Ju et al., 2024) proposes a codec that
factorizes speech into individual subspaces repre-
senting different attributes like content, prosody,
timbre, and acoustic details, facilitating the mod-
eling of intricate speech. In this paper, we adopt
a masked autoencoder to extract speech features
with rich style information, which are then used as
an intermediary to facilitate controllable TTS.

3 Method

3.1 Overview

Our controllable TTS system consists of two major
stages with a discrete style-rich token as an interme-
diate representation. This style-rich representation
is from a transformer-based MAE as illustrated
in figure 1 (a), which learns to capture style in-
formation including speaker timbre, prosody, and
acoustic environment in the speech with a mask-
reconstruction paradigm. The style-rich tokens of a
speech clip can be extracted with the style encoder
of the pre-trained MAE followed by a residual vec-
tor quantizer (RVQ) trained individually. The two
stages of TTS are (1) style-rich token (ST) gen-
eration, which generates style-rich tokens condi-
tioned on content phonemes and style controlling
signals including discrete labels and / or contin-
uous speaker embeddings; and (2) codec token
(CT) generation, which generates codec tokens
conditioned on content phonemes and style-rich
tokens, where the style-rich tokens are either ex-
tracted from ground truth speech or predicted by
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Figure 1: Model overview of our controllable TTS system. Figure (a) shows the architecture of the style MAE.
Figure (b) illustrates the two-stage controllable TTS pipeline. The gray dashed lines represent paths that occur only

during inference.

the former stage. The generated codec tokens are
then used to reconstruct the waveform with the
codec decoder. Each of the two stages relies on a
decoder-only transformer to conduct LM-style gen-
eration, as illustrated in figure 1 (b). We provide
details of these modules respectively in the follow-
ing subsections. Details of model configurations
are provided in appendix A.

3.2 Style masked autoencoder and feature
tokenization

The style masked autoencoder aims to learn to ex-
tract style information like speaker timbre, prosody,
and acoustic environment by reconstructing mel
filterbanks from masked ones and an additional
content input with reconstruction and several auxil-
iary losses. Its architecture is illustrated in figure 1
(a). The two branches of input, which are masked
fbanks and a temporal-aligned phoneme sequence
where each phoneme is duplicated by its duration,
are processed by two encoders separately. Both the
style encoder and content encoder are multi-layer
transformer encoders. The output of the two en-
coders together with sinusoidal positional embed-
ding are added and fed to the transformer decoder.

Following Huang et al. (2023), we append four
different linear heads at the end of the decoder
for output projection used for different optimiza-
tion objectives. The four objectives are (1) recon-
struction loss £,: mean square loss between the

masked fbank patches and the output of the recon-
struction head; (2) contrastive loss L.: InfoNCE
loss to maximize the similarity between the head
output and the corresponding fbank patch, while
minimizing its similarity with non-corresponding
fbank patches; (3) pitch classification loss £, and
(4) energy classification loss L., which are cross-
entropy losses calculated on log-scale fundamen-
tal frequency (fO) and the L2-norm of the ampli-
tude spectrogram from short-time Fourier trans-
form, respectively, both of which are frame-level
and binned to 256 scales. The final loss is a linear
combination of the four losses:

L=MLr+ Lo+ MLp+ALe (D)

where A, = 10, and A, Ay, Ac are all 1. In-
tuitively, this design enables the MAE to extract
content information from the encoded feature of
the aligned phonemes, while extracting style in-
formation from the encoded feature of the masked
tbank for reconstruction. Once the MAE finishes
training, its style encoder should be able to capture
various style information from speech.

To reduce the sequence length for language mod-
eling and eliminate redundant information in the
style features, we conduct phone-level merge by
averaging the frame-level features in the range of
each phoneme. After that, we train an RVQ with
3 codebooks independently over the phone-level



style features for discretizing the style-rich repre-
sentation for LM-style modeling. Note that such
an architecture and training approach cannot fully
prevent content information from leaking into the
representations extracted by the style encoder, as
it does not include a suitable bottleneck or supervi-
sory signal to achieve this. This is why we refer to
it as style-rich token rather than style token. Nev-
ertheless, this does not hinder the effectiveness of
this representation in subsequent TTS applications.

3.3 Two-stage LM-style controllable
text-to-speech

We use a decoder-only transformer for autoregres-
sive generation for each of the two stages. Specifi-
cally, we adopt the multi-scale transformer as the
backbone model (Yang et al.; Huang et al., 2024),
which utilizes a stacked global-local transformer
architecture to handle multi-codebook token mod-
eling and has exhibited remarkable capabilities in
audio synthesis. Details of the model architecture
are provided in appendix B. During training, the
conditional inputs and target outputs are concate-
nated into a single sequence and fed to the trans-
former, with each part having a modality-specific
start and end token at both ends. The LMs model
the conditional distribution using next-token pre-
diction with cross-entropy loss calculated on the
target output part.

ST Generation In the first stage, we adopt
a style LM to generate style-rich tokens from
phonemes and control signals. This procedure can
be formulated as:

T N
P(s) = [[ ] P(silm et s7:05) ()

t=11i=1

where s, 7, ¢, and s are style-rich tokens,
phonemes, control signals, and model parameters,
respectively. Here, the control signals can be a
speaker embedding and / or discrete control labels.
For discrete control labels, we include age, gen-
der, pitch mean for average pitch, pitch std for the
extent of pitch variation, emotion represented by
arousal, dominance, and valence, SNR for signal-
noise rate, and C50 for reverberation level. These
labels are denoted by extracting attribute values
with some tools and binning them to different lev-
els. We can use all these labels to generate speech
with a new speaker, or combine part of them like
emotion labels with a speaker embedding to adjust
these attributes on the basis of a reference speaker.

The training data of this stage can be scaled up to
large corpora to achieve higher style diversity and
control accuracy.

CT Generation In the second stage, we adopt
an acoustic LM to generate codec tokens from
phonemes and style-rich tokens. No additional con-
trol signal is used in this stage, as we assume that
the style information is carried by the style-rich to-
kens. During training, the model takes ground truth
style-rich tokens and learns to reconstruct codec
tokens of the speech. In inference, the style-rich
tokens can be either ground truth ones for speech
reconstruction, or predicted ones from the former
stage for controllable TTS. This procedure can be
formulated as:

T N
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where a, 7, s, and 0, are codec tokens, phonemes,
style-rich tokens, and model parameters, respec-
tively. We observe in our experiment that several
hundred hours of data are sufficient for the model to
learn to reconstruct speech of decent quality from
phoneme and style-rich tokens, therefore address-
ing the scarcity issue of high-quality corpora for
controllable TTS.

3.4 Classifier-free guidance

We observe that for attributes with distinct dif-
ferences among categories (like gender), simply
adding the label to the prefix condition sequence
leads to pretty good control capability. However,
for attributes with fine-grained levels and relatively
ambiguous boundaries, this simple approach leaves
room for improvement in control accuracy. To
enhance the model’s control capabilities, we intro-
duce classifier-free guidance (CFG) (Ho and Sali-
mans, 2021), which is initially used in score-based
generative models and performs well in aligning
conditional input and results. We investigate CFG
in the ST generation stage.

Specifically, during the training of the style LM,
we randomly replace the controlling labels with a
special empty control token with a probability of
p = 0.15. During inference, for each position ¢,
we apply correction to the logit value of style-rich
token s; with the formula

log ls(sﬂs@,sfi,r, c; 0s)
= ’legP(Si|s<t7St<i7T> (& 65) (4)
+(1—=7) logP(si|s<t, sfi, T,9;05)



where T, ¢, and y represent text (phonemes), con-
trol labels, and guidance scale, respectively. The
re-calculated logit is then used for calculating the
probability for sampling with the softmax func-
tion. Appropriate CFG scales improve the style
coherence between the generated speech and the
fine-grained control labels, boosting the control ca-
pability of the model to some extent. Note that we
conduct only CFG on discrete control labels but
not on speaker embeddings.

4 Experiments

4.1 Dataset and style attributes labeling

We adopt large-scale corpora for training the style
MAE, where we combine Gigaspeech-x1 (Chen
et al., 2021) and Librispeech (Panayotov et al.,
2015). We use Gigaspeech-xl solely for training
the style LM, and use high-quality LibriTTS (Zen
et al., 2019) with a relatively small scale for train-
ing the acoustic LM. For evaluation, we randomly
pick small sets of samples respectively from Lib-
riTTS (184 samples), GigaSpeech (173 samples),
and a dialogue dataset, DailyTalk (Lee et al., 2023)
(201 samples), to evaluate the models’ performance
across different data domains.

To train the style LM, we need to label the dif-
ferent attributes of the data. We utilize multiple
annotation tools to extract continuous values or
classification probabilities for different speech at-
tributes, and split them into different bins by per-
forming equidistant division within an upper and
lower boundary that covers most of the data to
obtain the discrete control labels. Details of label-
ing tools and splitting strategies are provided in
appendix C. Besides, considering the correlations
between control signals, we discuss methods to de-
termine the range of low-level label intervals from
high-level labels to reduce information conflicts in
appendix D.

4.2 Metrics

Our evaluation of model performance primarily
consists of speech naturalness, content accuracy,
speaker similarity, speech reconstruction quality,
and control accuracy. We adopt different objec-
tive metrics for evaluation. For speech naturalness,
we adopt UTMOS (Saeki et al., 2022) to predict
the MOS score of each sample and report mean
values and 95% confidence intervals for each test
set. For content accuracy, we use Whisper large-
v3 (Radford et al., 2022) to transcribe the speech

and calculate the word error rate (WER) against
the ground truth text. For speaker similarity, we
compute cosine similarity on speaker embedding
extracted by wavlm-base-plus-sv '. For reconstruc-
tion quality, we calculate MCD between generated
and ground truth speech with tools provided in
fairseq 2. For control accuracy, we use the anno-
tation tools to extract attribute labels and compute
percentage accuracy with ground truth labels. Con-
sidering the challenges of achieving precise control
with fine-grained labels, we make some relaxation
that results differing from the ground truth attribute
label by one bin are also considered correct for
age, SNR and C50, and are considered half correct
(taken as 0.5 correct samples) for emotion and pitch
labels.

We also conduct subjective evaluations and re-
port mean-opinion-scores of speech naturalness
(MOS-Q), style alignment with control labels
(MOS-A), and timbre similarity with the reference
speaker (MOS-S). Details of subjective metrics are
provided in appendix E.

4.3 Results and analysis

4.3.1 Reconstruct speech style from style-rich
tokens and phonemes

To validate that our style-rich tokens encapsulate
rich voice style information, we reconstruct speech
from phonemes and ground truth (GT) style-rich
tokens, and compare them with original speech,
compressed speech from the codec, and zero-shot
TTS results. We use YourTTS (Casanova et al.,
2022) and XTTS-V2 (Casanova et al., 2024) as rep-
resentative zero-shot TTS systems for comparison.
The results on LibriTTS and Gigaspeech are shown
in table 1. For results on both test sets, our model
achieves comparable UTMOS to recent zero-shot
TTS systems. This demonstrates the reliability of
our model in terms of speech naturalness. Besides,
our model achieves comparable speaker similar-
ity with zero-shot TTS systems, indicating that the
style-rich tokens contain rich speaker information
for speech synthesis. Moreover, the reconstruction
results have significantly lower MCD than zero-
shot TTS, proving that it is closer to the original
audio in terms of prosody and other style infor-
mation like acoustic environment, which further

"https://huggingface.co/microsoft/
wavlm-base-plus-sv

2https://github.com/facebookresearch/fairseq/
blob/main/examples/speech_synthesis/docs/
1jspeech_example.md#mcdmsd-metric
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Table 1: Comparing reconstructed speech from phonemes and ground truth style-rich tokens to original speech,

compressed speech and zero-shot TTS results.

LibriTTS

Gigaspeech

Method

SIM

MCD

UTMOS

| SIM

MCD

UTMOS

GT.

GT. + Codec
YourTTS
XTTS-V2

0.94
0.91
0.91
0.90

/
1.98
6.12
5.96
3.19

4.06 £ 0.05
3.43 £0.06
3.61 £0.09
3.68 £0.08
3.63 £0.05
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Figure 2: WER and UTMOS on different guidance
scales.

validates the effectiveness of our style MAE. We
also refer the readers to appendix F for illustration
of the reconstructed spectrogram.

4.3.2 Controllable TTS with discrete labels

In this section, we evaluate the performance of our
controllable TTS system with solely discrete labels.
Considering the differences in control interfaces,
target attributes and training data, it is difficult to
directly compare our model with previous control-
lable TTS systems. To validate the effectiveness of
our two-stage design, we train a one-stage model
as the baseline, which generates codec tokens from
phonemes and control labels directly. We use Lib-
riTTS to train the one-stage model, which is the
same as training the acoustic LM. Due to the sheer
magnitude of their quantity, traversing all possible
attribute combinations is not feasible. Furthermore,
the correlation among attributes may render cer-

tain combinations of labels impossible or difficult
to achieve. Therefore, we use label combinations
extracted from ground truth speech for control and
evaluation and further modify specific attributes for
case studies.

We first consider the content accuracy and natu-
ralness of the TTS systems. We illustrate the WER
and UTMOS values of the two models under dif-
ferent CFG scales in figure 2. It can be seen that
for the one-stage model trained on LibriTTS, as
the CFG scale increases, the word error rate rises
and UTMOS declines, especially on out-of-domain
test sets of Gigaspeech and DailyTalk, manifesting
significant degradation in content accuracy and nat-
uralness. This indicates the instability of the one-
stage model trained on small, high-quality datasets
when subjected to an increased CFG scale, mak-
ing it difficult to balance control capabilities with
speech quality. On the other hand, the two-stage
model with the first stage trained on large corpora
exhibits good and stable content accuracy and natu-
ralness with growing CFG scales. This proves that
the first stage trained on extensive data helps in en-
hancing the content robustness of controllable TTS,
without affecting speech quality by error propaga-
tion.

In figure 3, we illustrate the control accuracies
of the two-stage model under different CFG scales.
We can see that the effect of CFG varies for dif-
ferent attributes. For gender attributes with fewer
categories and significant differentiation, the pres-
ence or absence of CFG shows no clear impact and
the model achieves good control performance in
both cases. However, for fine-grained attributes like
arousal and pitch mean, appropriate CFG scales
can benefit control accuracy, especially on Lib-
riTTS and DailyTalk test sets. This indicates that
CFG helps in the precise control of fine-grained at-
tributes. Meanwhile, we find that larger CFG scales
are not always beneficial. For some attributes, con-
trol accuracy initially increases before subsequently
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Figure 3: Control accuracy of the two-stage controllable TTS with discrete labels under different CFG scales. The

coordinate range is also set to 40-100.
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Figure 4: Control accuracy of the one-stage and two-stage controllable TTS with discrete labels under a CFG scale
of 3.0. The coordinate range is set to 40-100 for the more apparent differences.

declining as the scale rises. We speculate that this
may be due to larger scale values causing distortion
in the generated speech, similar to the phenomenon
observed with CFG in score-based models. The full
results of these two models under different CFG
scales are provided in appendix G.

We further evaluate the control ability of the
models. In figure 4, we compare the control accura-
cies of the one-stage and the two-stage model under
a CFG scale of 3.0. It can be seen that the one-stage
model has some advantages in age control, while
the two-stage model achieves comparable or su-
perior control over other attributes. The two-stage
model shows significant advantages in emotion con-
trol and average pitch, and it also achieves better
accuracy over pitch variation and SNR on part of
the test sets. This indicates that compared to the
one-stage model trained on high-quality corpora
with limited scale, the two-stage model with the
first stage trained with extensive data boosts mod-
eling diverse pitch and acoustic conditions. We
refer the readers to appendix F for spectrogram
samples that intuitively demonstrate the model’s
control capabilities.

4.3.3 Controlling pitch and emotion with a
reference speaker

In this section, we present the results that alter-
nate the timbre-related labels including age and
gender with speaker embedding from WeSpeaker
(Wang et al., 2023b) to achieve control over emo-
tion attributes with a specified reference speaker,
and investigate the emotion control capability of
the model. The pitch and acoustic condition labels
are kept in the condition sequence. We present re-
sults on Gigaspeech and DailyTalk in table 2. It can
be seen that our model achieves decent speaker sim-
ilarity on both test sets as well as comparable con-
trol accuracy to the discrete-label-only paradigm
over emotion. This indicates the effectiveness of
our model in controlling emotion for a specified
speaker. Moreover, compared to fully-discrete-
label controlling, the one-stage model shows better
content robustness with growing CFG scale in this
setting, and the one-stage and two-stage models ex-
hibit comparable performance in content accuracy
and speaker similarity. Despite this, the two-stage
model retains advantages in control over the emo-
tional attributes, demonstrating that the ST genera-
tion model trained on an extensive dataset remains



Table 2: Results of controllable TTS combining speaker embedding, pitch and emotion labels.

Test set Model CFG Scale WER(%) SIM Aro. Dom. Val UTMOS
1.0 0.13 0.85 69.1 749 63.0 3.33+£0.08
1-stage 2.0 0.12 0.85 731 777 67.1 3.30+£0.08
. 3.0 0.14 0.86 705 757 62.1 3.27+0.07
Gigaspeech
1.0 0.12 0.86 769 763 68.5 3.24+0.09
2-stage 2.0 0.14 0.85 780 786 685 3.26+0.09
3.0 0.14 0.86 760 809 656 3.24+0.09
1.0 0.14 0.82 657 716 585 3.28+0.07
1-stage 2.0 0.13 0.82 667 716 59.5 3.24+0.07
DailyTalk 3.0 0.15 082 689 751 59.0 3.18+0.07
1.0 0.10 0.80 739 786 627 3.50+0.07
2-stage 2.0 0.10 0.80 76.1 81.6 644 3.53+0.07
3.0 0.09 0.80 79.6 833 63.7 3.51+0.07

advantageous in modeling pitch-related stylistic
information in this setting.

4.3.4 Subjective evaluation on model
performance

Table 3: Subjective evaluation results.

Model  CFG Scale MOS-Q MOS-A MOS-S
Control with discrete labels

1.0 4.114+0.11 399+0.13 /
1-stage 2.0 381 +£0.12 3.98+0.11 /

3.0 289+0.14 345+0.13 /

1.0 4.144+0.13 393+0.13 /
2-stage 2.0 401 £0.11 420+0.14 /

3.0 4.184+0.12 420+£0.11 /
Control with speaker embeddings and emotion labels

1.0 396 +0.12 3.61+0.13 3.89+0.11
1-stage 2.0 390+0.11 3.904+0.14 3.58+0.14

3.0 370 +0.12 3.86+0.12 3.40+0.13

1.0 397+£0.12 4.06+0.13 3.56+0.12
2-stage 2.0 413+0.11 4234+0.12 3.68 +0.12

3.0 391 +0.11 428+0.10 3.524+0.13

Table 3 presents the results of our subjective eval-
uations. As shown, the two-stage model demon-
strates comparable or superior MOS-A to the one-
stage model, indicating its superior control capabil-
ities. Additionally, an appropriate CFG scale leads
to better control performance. Meanwhile, for the
one-stage model trained with a small dataset, in-
creasing the CFG scale while using only the labels
as the control signal leads to a decrease in MOS-Q.
These results align with the conclusions reflected
by the objective metrics.

5 Conclusion

In this paper, we propose an LM-based fine-grained
controllable TTS system. We adopt a two-stage
generation pipeline, with an autoregressive trans-

former as the backbone for each stage. We design
a masked autoencoder for extracting features with
rich style information from the speech and use the
discretized feature as the intermediate output of the
TTS pipeline. By selectively combining discrete
control labels with speaker embeddings, our model
supports both generating new speaker timbre while
controlling other attributes, and controlling emo-
tion for a specified speaker. Experiments indicate
the effectiveness of our model.

In the future, we may explore more diverse con-
trol signals and employ techniques such as prompt
engineering to integrate large language models with
controllable TTS, enabling support for both natural
language prompts and fine-grained control signals.

6 Limitations

Despite that our approach achieves fine-grained
control over multiple style attributes, our method
and evaluation protocols still suffer from several
limitations: 1) Due to the performance limitations
of labeling tools, there may be errors in the attribute
annotations of the training data, which could lead
to a decline in the model’s control capabilities. 2)
Evaluation with label combinations from real data
may present issues of uneven distribution, particu-
larly for attributes with significant distribution bias,
such as SNR and C50. Therefore, the evaluation
may not fully accurately reflect the model’s control
capabilities. 3) Due to their small proportion in
the training data, some marginal labels and their
combinations may lead to degraded generated au-
dio and diminished control performance. We will
explore solutions to these issues in future work.



7 Potential Risks

Improper use of this model may lead to the creation
of fake content, such as generating statements that a
specific speaker has never made. It may also cause
copyright issues. We will add some constraints to
guarantee people who use our code or pre-trained
model will not use the model in illegal cases.
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Table 4: Hyper-parameters of different modules of our
approach.

Model | Hyperparameter
Encoder Layers 12
Decoder Layers 2
Style MAE Hidden Dimension 768
Mask Probability 0.75
Fbank Channels 128
Global Layers 20
Local Layers 6
Style LM & | Hidden Dim 1,152
Acoustic LM | Global Attention Heads 16
Local Attention Heads 8
FFN Dim 4,608

A Implementation details

In table 4, we illustrate the model hyper-parameters
of the style MAE and two language models in our
approach. For codec, we train a EnCodec (Dé-
fossez et al., 2022) model for 16k audio, with 8
quantization levels, a codebook size of 1024, and
a downsampling rate of 320. We use the first 3
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Table 5: Extracting tools and binning strategies for different attributes.

Attribute Extracting Tool ~ Lower Bound Upper Bound Bin Number
Gender w2v2-age-gender 0.0 1.0 4
Age w2v2-age-gender 0 100 10
Arousal, Dominance, Valence w2v2-emotion 0.2 0.8 7
Pitch Mean DataSpeech 45.0 320.0 10
Pitch Std DataSpeech 0.0 132.0 10
SNR DataSpeech -9.16 77.13 10
C50 DataSpeech 0.0 25.0 10

quantization levels only. We also use 3 RVQ layers
for style-rich tokens.

B Multi-scale transformer architecture

The hierarchical structure of the multi-scale trans-
former is illustrated in figure 5. This structure is
formed by a global and a local transformer, both
of which are decoder-only transformers. For a tem-
poral position ¢, embeddings ztl " of style-rich
or acoustic tokens from different codebooks are
concatenated and fed to the global transformer for
inter-frame correlation modeling. The output hid-
den feature h; is generated autoregressively con-
ditioned on hi.;—_1. This hidden feature is then
split according to the original shape of the embed-
dings, projected by a linear layer, and added to
the input embeddings of the local transformer as
a frame-level context. The local transformer pre-
dicts style-rich or acoustic tokens of different code-
books inside a frame autoregressively. For other
modalities, each item is repeated n, times to fit this
modeling mechanism, with n, being the number of
codebooks.

C Style attribute labeling

In this section, we provide details of how we obtain
the labels of different attributes. The extracting
tools and binning strategies are summarized in ta-
ble 5. For age and gender, we use a finetuned
wav2vec2 model 3 to extract gender classification
probability and estimated age between 0-100. We
then split age into 4 categories: male, neutral-
masculine, neutral-feminine, female, with the crite-
ria being the probability of male, and thresholds of
0.65, 0.5 and 0.35.

For emotion labels, we adopt another finetuned
wav2vec2 model 4 to extract the predicted logits of
arousal, dominance, and valence. The range of the

3https://github.com/audeering/
w2v2-age-gender-how-to
*https://github.com/audeering/w2v2-how-to
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logits is 0-1, yet most audio falls between 0.2 and
0.8. Therefore, we divide the interval from 0.2 to
0.8 into seven labels with a distance of 0.1.

For pitch and acoustic conditions, we utilize
DataSpeech (Lyth and King, 2024) to extract the
mean value and standard variation of pitch, as well
as SNR and C50. The ranges between the upper
and lower bounds of each attribute are divided into
10 equidistant intervals, with the boundaries listed
in the table.

D Correlation among control attributes

In fact, the information contained among different
attributes may overlap, manifesting as correlations
between labels. Certain high-level attributes can be
reflected in lower-level acoustic properties. For ex-
ample, attributes related to speaker timbre, such as
age and gender, are closely linked to average pitch,
while emotion is closely related to pitch variation.
In table 6, we present the Pearson correlation co-
efficients (Wikipedia, 2024) between high-level at-
tributes and pitch attributes calculated on LibriTTS.
It can be seen that age is correlated with average
pitch to some degree, while gender, arousal, and
dominance show significant correlations with both
the mean and variation of pitch, indicating the pres-
ence of overlapping information. Additionally, the
limited performance of the annotation tools may
also lead to significant correlation among different
emotional dimensions. Theoretically, the three di-
mensions of arousal, dominance, and valence are
orthogonal. However, as shown in figure 7, the
distributions of arousal and dominance extracted
by the model exhibit a strong linear correlation.
Due to the correlation among different attributes,
using control signals that contain conflict informa-
tion may lead to sub-optimal speech quality and
control capability. We showcase examples on our
demo page where conflicting control signals lead
to degraded control performance. To achieve bet-
ter control accuracy and content quality, we can
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Figure 6: Spectrogram from original speech, reconstructed speech with ground truth style-rich tokens and zero-shot

TTS result.

Table 6: Pearson correlation coefficients between high-level and low-level attributes.

High-Level
M Age

Gender

Arousal Dominance Valence

Pitch Mean -0.15
Pitch Std -0.01

-0.74
0.37

0.29
0.33

0.06
0.06

0.38
0.39

Dominance

4 6

5
Arousal

Figure 7: Illustration of the data distribution for arousal
and dominance.

restrict the ranges of low-level attributes with de-
sired high-level attribute labels, thereby avoiding
information conflicts. A straightforward solution is
a statistical approach, where we can calculate the
conditional distributions of pitch mean and pitch
std given other labels on the training dataset, and
sample labels from the distribution. Another so-
lution is a learning-based method, where we can
train label predictors for estimating low-level at-
tributes from the given high-level labels. We train
two 3-layer MLPs with a hidden dimension of 160
to predict pitch mean and pitch std from age, gen-
der, arousal, dominance and valence. We find that
the accuracy of predicting pitch mean and pitch
std can reach around 40%, while the soft accu-
racy—considering a label error of no more than 1
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as correct—exceeds 80%. This demonstrates the ef-
fectiveness of these predictive models. Once these
models finish training, the output probabilities can
be used to sample pitch labels.

E Subjective Evaluation

We invite 10 individuals with experience in TTS
research as participants for our subjective evalu-
ation. For each experiment setting, we select 16
samples for each model for evaluation. The partic-
ipants rate scores on 1-5 Likert scales, and report
mean scores with 95% confidence intervals. For
MOS-A, considering that the original VAD labels
are difficult to understand, we converted the VAD
label combinations into emotional intensity levels
(such as flat, neutral, or highly expressive) or typ-
ical emotional categories (such as happy, angry,
or sad) corresponding to those combinations. The
participants are paid $8 hourly.

F Sample illustrations of results

For experiment results in section 4.3.1, figure 6
illustrates the spectrogram of some sample results
on DailyTalk. It can be observed that despite some
over-smoothing in certain details, the acoustic LM
is able to leverage the style information contained
in the style-rich tokens to achieve accurate recon-
struction on out-of-domain samples, indicating the
effectiveness of our style representation. In con-
trast, zero-shot TTS that only leverages speaker
information cannot achieve prosody reconstruction.

To illustrate the control capabilities of the model,
we take pitch mean and emotion labels as examples,



(a) pitch mean=3

(b) pitch mean=5

(c) pitch mean=7

Figure 8: Spectrograms obtained using pitch labels of different levels in two-stage controllable TTS.

(a) a=2 d=3 v=2 (depressed)

(b) a=5 d=6 v=6 (joyful)

(c) a=6 d=7 v=2 (angry)

Figure 9: Spectrograms obtained using different compositions of emotion labels in two-stage controllable TTS.

and plot the spectrograms to illustrate the effects of
modifying specific attributes of the given samples.
Figure 8 showcases the results using different aver-
age pitch labels while keeping the content and other
attributes constant. We only display the frequency
range of 0-2kHz for clearer visualization. It can be
seen that when we raise the value of the pitch mean
label, the fundamental frequency levels up, and the
distance between formants increases, indicating
that the speaker timbre grows shriller, proving the
effectiveness of our model on controlling average
pitch. In figure 9, we use three different groups of
emotion labels for one test sample. The spectro-
gram shows that labels corresponding to elevated
emotion lead to more pronounced pitch variation
compared to those of subdued emotion. We refer
the reader to our demo page for more samples.

G Supplementary experiment results

In table 7, we provide the full results of the one-
stage and two-stage models with discrete labels un-
der different CFG scales, corresponding to figure 3
and figure 4 in section 4.3.2. This table provides a
more accurate and comprehensive comparison of
the performance between the one-stage and two-
stage models, as well as the impact of CFG scales
on both of them. It can be seen that CFG is ef-
fective in boosting control performance for both
the one-stage and two-stage models. Moreover,
the results demonstrate that the two-stage model
outperforms the one-stage model in attributes such
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as pitch mean and arousal across a wide range of
settings, further supporting the conclusions drawn
in section 4.3.2.



Table 7: Control accuracy of controllable TTS with discrete labels.

Test set Model CFG Scale  WER Age Gen. PM. PS. Aro. Dom. Val. SNR  C50

1.0 0.08 80.4 95.7 742 527 739 77.4 73.6 783 87.5

1-stage 2.0 0.10 85.9 99.5 829 655 774 88.0 69.8 82.6  90.8

LibriTTS 3.0 0.16 91.3 98.9 832 67.1 753 82.3 66.6 85.3 89.1

1.0 0.11 85.3 98.4 81.8 66.0 777 82.3 73.9 826 918

2-stage 2.0 0.09 87.0 99.5 894 712  80.2 87.5 76.6 87.5 92.9

3.0 0.10 90.8 99.5 87.8 739 834 85.6 76.1 85.3 924

1.0 0.12 70.5 96.0 705 575 734 74.9 62.4 63.0 613

1-stage 2.0 0.17 82.7 98.3 712 639 737 75.4 592 723 64.7

. 3.0 0.38 83.8 97.7 754 659 584 73.4 494 728 65.3
Gigaspeech

1.0 0.11 78.6 97.7 79.5 685 795 82.9 682 715 62.4

2-stage 2.0 0.11 79.8 96.5 829 679 795 82.7 650 792 618

3.0 0.10 77.5 96.5 815 668 81.2 83.2 699 769 64.2

1.0 0.10 75.6 94.0 709 604  66.7 71.4 614  76.1 73.1

1-stage 2.0 0.14 83.1 99.0 75.6 614 746 78.4 59.5 70.6 726

. 3.0 0.29 87.1 98.0 754 604 726 77.9 532 61.7 76.6

DailyTalk

1.0 0.10 73.6 98.0 813 634 759 754 64.7 62.2 74.6

2-stage 2.0 0.09 82.1 1000 86.8 69.7 776 79.4 65.4 64.7 74.6

3.0 0.09 75.1 99.0 863  70.1 79.6 81.8 65.9 69.7 74.1
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