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Abstract

Controllable text-to-speech (TTS) systems aim001
to manipulate various stylistic attributes of gen-002
erated speech. Existing models that use nat-003
ural language prompts as an interface often004
lack the ability for fine-grained control and005
face a scarcity of high-quality data. To ad-006
dress these challenges, we propose a two-stage007
style-controllable TTS system with language008
models, utilizing a masked-autoencoded rep-009
resentation as an intermediary. We employ a010
masked autoencoder to learn a speech feature011
rich in stylistic information, which is then dis-012
cretized using a residual vector quantizer. In013
the first stage, an autoregressive transformer014
is used for the conditional generation of these015
style-rich tokens from text and control signals.016
In the second stage, we generate codec to-017
kens from both text and sampled style-rich to-018
kens. Experiments demonstrate that training019
the first-stage model on extensive datasets en-020
hances the robustness of the two-stage model021
in terms of quality and content accuracy. Ad-022
ditionally, our model achieves superior con-023
trol over attributes such as pitch and emotion.024
By selectively combining discrete labels and025
speaker embeddings, we can fully control the026
speaker’s timbre and other stylistic information,027
or adjust attributes like emotion for a speci-028
fied speaker. Audio samples are available at029
https://style-ar-tts.github.io.030

1 Introduction031

Controllable text-to-speech (TTS) systems aim to032

generate high-fidelity speech while allowing con-033

trol over various style attributes of the synthesized034

speech, such as speaker timbre, pitch level and vari-035

ation, emotion, acoustic environment, etc. Due to036

its promising applications in digital media produc-037

tion and human-computer interaction, controllable038

TTS has been attracting growing interest in the039

machine learning community with a substantial040

amount of research working on it (Guo et al., 2023;041

Leng et al., 2023; Ji et al., 2024; Yang et al., 2024; 042

Zhou et al., 2024). 043

Despite the extensive research on this topic, 044

controllable TTS still faces some unsolved chal- 045

lenges: (1) Control Interface Issue. Most existing 046

works use natural language prompts as a medium of 047

style control, which is friendly for non-professional 048

users. However, style descriptions with natural lan- 049

guage tend to be broad and coarse-grained, making 050

it difficult to precisely control specific attributes. 051

Moreover, the rich diversity of natural language 052

brings more challenges to modeling the relation- 053

ship between style attributes and prompts. It is also 054

difficult to fully encompass the user instructions 055

in real-world scenarios, restricting the application 056

of these methods. (2) Data Issue. The training of 057

well-performed TTS systems relies on high-quality 058

speech corpora, which are often limited in both 059

data volume and stylistic diversity. When using 060

natural language as the control interface, the addi- 061

tional cost of generating prompt sentences further 062

restricts the data size. Present controllable TTS 063

datasets (Guo et al., 2023; Ji et al., 2024) are often 064

limited to hundreds of hours. This constraint puts 065

challenges on learning precise control abilities and 066

improving generation diversity. 067

In this paper, we propose a fine-grained control- 068

lable TTS system. In contrast to natural language 069

prompts, We divide the value ranges of various 070

stylistic attributes of speech into multiple intervals, 071

each represented by a label, and use these labels as 072

conditional inputs to achieve fine-grained control. 073

By selectively combining these labels with speaker 074

embeddings, we can generate new speaker timbre 075

while controlling other attributes, or adjust certain 076

attributes such as emotion for a given speaker. 077

Our controllable TTS system adopts a two-stage 078

generation paradigm using two language models 079

(LMs), with a style-rich representation as an inter- 080

mediate output. We adopt a masked autoencoder 081

(MAE) which learns to capture diverse style infor- 082
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mation by reconstructing mel filterbank from the083

encoded content input and masked fbank. The fea-084

tures extracted by the style encoder of the trained085

MAE are then discretized and used as an inter-086

mediary of the TTS pipeline. Each of the two087

stages relies on a decoder-only transformer. The088

first stage generates style-rich tokens conditioned089

on content and control signals, while the second090

stage generates codec tokens from the content in-091

put and the predicted style-rich tokens. Due to092

low dependence on high-quality corpora, the style-093

rich token generation phase can scale up to a large094

amount of data, boosting control capability and095

generation diversity; while in the codec token gen-096

eration stage, a relatively small amount of data is097

sufficient to learn how to reconstruct codec tokens098

from content and style units, addressing the issue of099

high-quality data scarcity. To enhance the control100

accuracy of fine-grained attributes, we investigate101

classifier-free guidance in the style-rich token gen-102

eration stage. Experiments indicate that our model103

achieves good style control ability while keeping104

decent audio quality and content accuracy.105

2 Related works106

2.1 Controllable text-to-speech107

Controllable TTS aims to enable control over108

stylistic attributes of the speech during synthe-109

sis. The earliest exploration, PromptTTS (Guo110

et al., 2023), extracts textual features from prompts111

with a fine-tuned BERT and incorporates them112

in a TTS backbone with attention. InstructTTS113

(Yang et al., 2024) achieves a text-controlled ex-114

pressive TTS system with cross-modal represen-115

tation learning. PromptTTS 2 (Leng et al., 2023)116

employs a variational network to generate reference117

acoustic features conditioned on text features. Au-118

diobox (Vyas et al., 2023) builds a unified natural-119

language-instructed flow-matching model integrat-120

ing speech, music, and audio generation. Textrol-121

Speech (Ji et al., 2024) integrates natural language122

style prompt into the condition of VALL-E (Wang123

et al., 2023a) for controllable TTS. VoxInstruct124

(Zhou et al., 2024) merges the content input and125

style prompt of TTS into a single composite tex-126

tual instruction and utilizes a multimodal codec127

language model as the backbone for TTS. Unlike128

these methods using natural language as the con-129

trol interface, we adopt a two-stage controllable130

TTS system with attribute labels for fine-grained131

control.132

2.2 Speech style representations 133

Various works attempt to obtain style representa- 134

tions of speech at different granularities with dis- 135

entanglement or other methods to facilitate voice 136

conversion, controllable TTS, and other applica- 137

tions. NANSY (Choi et al., 2021) deconstructs 138

input speech into multiple information flows ex- 139

plicitly, and then reconstructs speech from these 140

flows, obtaining a model capable of voice conver- 141

sion, pitch shift, and other applications. Speech- 142

Split 1 and 2 (Qian et al., 2020; Chan et al., 2022) 143

disentangle speech into content, rhythm, pitch, and 144

timbre using multiple autoencoders in an unsu- 145

pervised manner. DSVAE (Lian et al., 2022b,a, 146

2023) presents a self-supervised method to disen- 147

tangle content information and global speaker in- 148

formation, in an end-to-end manner. Prosody-TTS 149

(Huang et al., 2023) utilizes an MAE to learn a 150

prosody representation disentangled from content 151

and speaker timbre, boosting expressive TTS. Nat- 152

uralSpeech 3 (Ju et al., 2024) proposes a codec that 153

factorizes speech into individual subspaces repre- 154

senting different attributes like content, prosody, 155

timbre, and acoustic details, facilitating the mod- 156

eling of intricate speech. In this paper, we adopt 157

a masked autoencoder to extract speech features 158

with rich style information, which are then used as 159

an intermediary to facilitate controllable TTS. 160

3 Method 161

3.1 Overview 162

Our controllable TTS system consists of two major 163

stages with a discrete style-rich token as an interme- 164

diate representation. This style-rich representation 165

is from a transformer-based MAE as illustrated 166

in figure 1 (a), which learns to capture style in- 167

formation including speaker timbre, prosody, and 168

acoustic environment in the speech with a mask- 169

reconstruction paradigm. The style-rich tokens of a 170

speech clip can be extracted with the style encoder 171

of the pre-trained MAE followed by a residual vec- 172

tor quantizer (RVQ) trained individually. The two 173

stages of TTS are (1) style-rich token (ST) gen- 174

eration, which generates style-rich tokens condi- 175

tioned on content phonemes and style controlling 176

signals including discrete labels and / or contin- 177

uous speaker embeddings; and (2) codec token 178

(CT) generation, which generates codec tokens 179

conditioned on content phonemes and style-rich 180

tokens, where the style-rich tokens are either ex- 181

tracted from ground truth speech or predicted by 182
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Figure 1: Model overview of our controllable TTS system. Figure (a) shows the architecture of the style MAE.
Figure (b) illustrates the two-stage controllable TTS pipeline. The gray dashed lines represent paths that occur only
during inference.

the former stage. The generated codec tokens are183

then used to reconstruct the waveform with the184

codec decoder. Each of the two stages relies on a185

decoder-only transformer to conduct LM-style gen-186

eration, as illustrated in figure 1 (b). We provide187

details of these modules respectively in the follow-188

ing subsections. Details of model configurations189

are provided in appendix A.190

3.2 Style masked autoencoder and feature191

tokenization192

The style masked autoencoder aims to learn to ex-193

tract style information like speaker timbre, prosody,194

and acoustic environment by reconstructing mel195

filterbanks from masked ones and an additional196

content input with reconstruction and several auxil-197

iary losses. Its architecture is illustrated in figure 1198

(a). The two branches of input, which are masked199

fbanks and a temporal-aligned phoneme sequence200

where each phoneme is duplicated by its duration,201

are processed by two encoders separately. Both the202

style encoder and content encoder are multi-layer203

transformer encoders. The output of the two en-204

coders together with sinusoidal positional embed-205

ding are added and fed to the transformer decoder.206

Following Huang et al. (2023), we append four207

different linear heads at the end of the decoder208

for output projection used for different optimiza-209

tion objectives. The four objectives are (1) recon-210

struction loss Lr: mean square loss between the211

masked fbank patches and the output of the recon- 212

struction head; (2) contrastive loss Lc: InfoNCE 213

loss to maximize the similarity between the head 214

output and the corresponding fbank patch, while 215

minimizing its similarity with non-corresponding 216

fbank patches; (3) pitch classification loss Lp and 217

(4) energy classification loss Le, which are cross- 218

entropy losses calculated on log-scale fundamen- 219

tal frequency (f0) and the L2-norm of the ampli- 220

tude spectrogram from short-time Fourier trans- 221

form, respectively, both of which are frame-level 222

and binned to 256 scales. The final loss is a linear 223

combination of the four losses: 224

L = λrLr + λcLc + λpLp + λeLe (1) 225

where λr = 10, and λc, λp, λe are all 1. In- 226

tuitively, this design enables the MAE to extract 227

content information from the encoded feature of 228

the aligned phonemes, while extracting style in- 229

formation from the encoded feature of the masked 230

fbank for reconstruction. Once the MAE finishes 231

training, its style encoder should be able to capture 232

various style information from speech. 233

To reduce the sequence length for language mod- 234

eling and eliminate redundant information in the 235

style features, we conduct phone-level merge by 236

averaging the frame-level features in the range of 237

each phoneme. After that, we train an RVQ with 238

3 codebooks independently over the phone-level 239
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style features for discretizing the style-rich repre-240

sentation for LM-style modeling. Note that such241

an architecture and training approach cannot fully242

prevent content information from leaking into the243

representations extracted by the style encoder, as244

it does not include a suitable bottleneck or supervi-245

sory signal to achieve this. This is why we refer to246

it as style-rich token rather than style token. Nev-247

ertheless, this does not hinder the effectiveness of248

this representation in subsequent TTS applications.249

3.3 Two-stage LM-style controllable250

text-to-speech251

We use a decoder-only transformer for autoregres-252

sive generation for each of the two stages. Specifi-253

cally, we adopt the multi-scale transformer as the254

backbone model (Yang et al.; Huang et al., 2024),255

which utilizes a stacked global-local transformer256

architecture to handle multi-codebook token mod-257

eling and has exhibited remarkable capabilities in258

audio synthesis. Details of the model architecture259

are provided in appendix B. During training, the260

conditional inputs and target outputs are concate-261

nated into a single sequence and fed to the trans-262

former, with each part having a modality-specific263

start and end token at both ends. The LMs model264

the conditional distribution using next-token pre-265

diction with cross-entropy loss calculated on the266

target output part.267

ST Generation In the first stage, we adopt268

a style LM to generate style-rich tokens from269

phonemes and control signals. This procedure can270

be formulated as:271

P(s) =

T∏
t=1

N∏
i=1

P(sit|τ, c, s<t, s
<i
t ; θs) (2)272

where s, τ , c, and θs are style-rich tokens,273

phonemes, control signals, and model parameters,274

respectively. Here, the control signals can be a275

speaker embedding and / or discrete control labels.276

For discrete control labels, we include age, gen-277

der, pitch mean for average pitch, pitch std for the278

extent of pitch variation, emotion represented by279

arousal, dominance, and valence, SNR for signal-280

noise rate, and C50 for reverberation level. These281

labels are denoted by extracting attribute values282

with some tools and binning them to different lev-283

els. We can use all these labels to generate speech284

with a new speaker, or combine part of them like285

emotion labels with a speaker embedding to adjust286

these attributes on the basis of a reference speaker.287

The training data of this stage can be scaled up to 288

large corpora to achieve higher style diversity and 289

control accuracy. 290

CT Generation In the second stage, we adopt 291

an acoustic LM to generate codec tokens from 292

phonemes and style-rich tokens. No additional con- 293

trol signal is used in this stage, as we assume that 294

the style information is carried by the style-rich to- 295

kens. During training, the model takes ground truth 296

style-rich tokens and learns to reconstruct codec 297

tokens of the speech. In inference, the style-rich 298

tokens can be either ground truth ones for speech 299

reconstruction, or predicted ones from the former 300

stage for controllable TTS. This procedure can be 301

formulated as: 302

P(a) =
T∏
t=1

N∏
i=1

P(ait|τ, s,a<t,a
<i
t ; θa). (3) 303

where a, τ , s, and θa are codec tokens, phonemes, 304

style-rich tokens, and model parameters, respec- 305

tively. We observe in our experiment that several 306

hundred hours of data are sufficient for the model to 307

learn to reconstruct speech of decent quality from 308

phoneme and style-rich tokens, therefore address- 309

ing the scarcity issue of high-quality corpora for 310

controllable TTS. 311

3.4 Classifier-free guidance 312

We observe that for attributes with distinct dif- 313

ferences among categories (like gender), simply 314

adding the label to the prefix condition sequence 315

leads to pretty good control capability. However, 316

for attributes with fine-grained levels and relatively 317

ambiguous boundaries, this simple approach leaves 318

room for improvement in control accuracy. To 319

enhance the model’s control capabilities, we intro- 320

duce classifier-free guidance (CFG) (Ho and Sali- 321

mans, 2021), which is initially used in score-based 322

generative models and performs well in aligning 323

conditional input and results. We investigate CFG 324

in the ST generation stage. 325

Specifically, during the training of the style LM, 326

we randomly replace the controlling labels with a 327

special empty control token with a probability of 328

p = 0.15. During inference, for each position i, 329

we apply correction to the logit value of style-rich 330

token si with the formula 331

log P̂(sit|s<t, s
<i
t , τ, c; θs)

= γ log P(sit|s<t, s
<i
t , τ, c; θs)

+ (1− γ) log P(sit|s<t, s
<i
t , τ,∅; θs)

(4) 332
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where τ , c, and γ represent text (phonemes), con-333

trol labels, and guidance scale, respectively. The334

re-calculated logit is then used for calculating the335

probability for sampling with the softmax func-336

tion. Appropriate CFG scales improve the style337

coherence between the generated speech and the338

fine-grained control labels, boosting the control ca-339

pability of the model to some extent. Note that we340

conduct only CFG on discrete control labels but341

not on speaker embeddings.342

4 Experiments343

4.1 Dataset and style attributes labeling344

We adopt large-scale corpora for training the style345

MAE, where we combine Gigaspeech-xl (Chen346

et al., 2021) and Librispeech (Panayotov et al.,347

2015). We use Gigaspeech-xl solely for training348

the style LM, and use high-quality LibriTTS (Zen349

et al., 2019) with a relatively small scale for train-350

ing the acoustic LM. For evaluation, we randomly351

pick small sets of samples respectively from Lib-352

riTTS (184 samples), GigaSpeech (173 samples),353

and a dialogue dataset, DailyTalk (Lee et al., 2023)354

(201 samples), to evaluate the models’ performance355

across different data domains.356

To train the style LM, we need to label the dif-357

ferent attributes of the data. We utilize multiple358

annotation tools to extract continuous values or359

classification probabilities for different speech at-360

tributes, and split them into different bins by per-361

forming equidistant division within an upper and362

lower boundary that covers most of the data to363

obtain the discrete control labels. Details of label-364

ing tools and splitting strategies are provided in365

appendix C. Besides, considering the correlations366

between control signals, we discuss methods to de-367

termine the range of low-level label intervals from368

high-level labels to reduce information conflicts in369

appendix D.370

4.2 Metrics371

Our evaluation of model performance primarily372

consists of speech naturalness, content accuracy,373

speaker similarity, speech reconstruction quality,374

and control accuracy. We adopt different objec-375

tive metrics for evaluation. For speech naturalness,376

we adopt UTMOS (Saeki et al., 2022) to predict377

the MOS score of each sample and report mean378

values and 95% confidence intervals for each test379

set. For content accuracy, we use Whisper large-380

v3 (Radford et al., 2022) to transcribe the speech381

and calculate the word error rate (WER) against 382

the ground truth text. For speaker similarity, we 383

compute cosine similarity on speaker embedding 384

extracted by wavlm-base-plus-sv 1. For reconstruc- 385

tion quality, we calculate MCD between generated 386

and ground truth speech with tools provided in 387

fairseq 2. For control accuracy, we use the anno- 388

tation tools to extract attribute labels and compute 389

percentage accuracy with ground truth labels. Con- 390

sidering the challenges of achieving precise control 391

with fine-grained labels, we make some relaxation 392

that results differing from the ground truth attribute 393

label by one bin are also considered correct for 394

age, SNR and C50, and are considered half correct 395

(taken as 0.5 correct samples) for emotion and pitch 396

labels. 397

We also conduct subjective evaluations and re- 398

port mean-opinion-scores of speech naturalness 399

(MOS-Q), style alignment with control labels 400

(MOS-A), and timbre similarity with the reference 401

speaker (MOS-S). Details of subjective metrics are 402

provided in appendix E. 403

4.3 Results and analysis 404

4.3.1 Reconstruct speech style from style-rich 405

tokens and phonemes 406

To validate that our style-rich tokens encapsulate 407

rich voice style information, we reconstruct speech 408

from phonemes and ground truth (GT) style-rich 409

tokens, and compare them with original speech, 410

compressed speech from the codec, and zero-shot 411

TTS results. We use YourTTS (Casanova et al., 412

2022) and XTTS-V2 (Casanova et al., 2024) as rep- 413

resentative zero-shot TTS systems for comparison. 414

The results on LibriTTS and Gigaspeech are shown 415

in table 1. For results on both test sets, our model 416

achieves comparable UTMOS to recent zero-shot 417

TTS systems. This demonstrates the reliability of 418

our model in terms of speech naturalness. Besides, 419

our model achieves comparable speaker similar- 420

ity with zero-shot TTS systems, indicating that the 421

style-rich tokens contain rich speaker information 422

for speech synthesis. Moreover, the reconstruction 423

results have significantly lower MCD than zero- 424

shot TTS, proving that it is closer to the original 425

audio in terms of prosody and other style infor- 426

mation like acoustic environment, which further 427

1https://huggingface.co/microsoft/
wavlm-base-plus-sv

2https://github.com/facebookresearch/fairseq/
blob/main/examples/speech_synthesis/docs/
ljspeech_example.md#mcdmsd-metric

5

https://huggingface.co/microsoft/wavlm-base-plus-sv
https://huggingface.co/microsoft/wavlm-base-plus-sv
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_synthesis/docs/ljspeech_example.md#mcdmsd-metric
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_synthesis/docs/ljspeech_example.md#mcdmsd-metric
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_synthesis/docs/ljspeech_example.md#mcdmsd-metric


Table 1: Comparing reconstructed speech from phonemes and ground truth style-rich tokens to original speech,
compressed speech and zero-shot TTS results.

LibriTTS Gigaspeech

Method SIM MCD UTMOS SIM MCD UTMOS

GT. / / 4.06 ± 0.05 / / 3.47 ± 0.10
GT. + Codec 0.94 1.98 3.43 ± 0.06 0.91 2.21 2.87 ± 0.09
YourTTS 0.91 6.12 3.61 ± 0.09 0.85 6.72 2.33 ± 0.09
XTTS-V2 0.91 5.96 3.68 ± 0.08 0.87 6.48 3.26 ± 0.10
Acoustic LM + GT Style 0.90 3.19 3.63 ± 0.05 0.86 3.68 3.24 ± 0.08
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Figure 2: WER and UTMOS on different guidance
scales.

validates the effectiveness of our style MAE. We428

also refer the readers to appendix F for illustration429

of the reconstructed spectrogram.430

4.3.2 Controllable TTS with discrete labels431

In this section, we evaluate the performance of our432

controllable TTS system with solely discrete labels.433

Considering the differences in control interfaces,434

target attributes and training data, it is difficult to435

directly compare our model with previous control-436

lable TTS systems. To validate the effectiveness of437

our two-stage design, we train a one-stage model438

as the baseline, which generates codec tokens from439

phonemes and control labels directly. We use Lib-440

riTTS to train the one-stage model, which is the441

same as training the acoustic LM. Due to the sheer442

magnitude of their quantity, traversing all possible443

attribute combinations is not feasible. Furthermore,444

the correlation among attributes may render cer-445

tain combinations of labels impossible or difficult 446

to achieve. Therefore, we use label combinations 447

extracted from ground truth speech for control and 448

evaluation and further modify specific attributes for 449

case studies. 450

We first consider the content accuracy and natu- 451

ralness of the TTS systems. We illustrate the WER 452

and UTMOS values of the two models under dif- 453

ferent CFG scales in figure 2. It can be seen that 454

for the one-stage model trained on LibriTTS, as 455

the CFG scale increases, the word error rate rises 456

and UTMOS declines, especially on out-of-domain 457

test sets of Gigaspeech and DailyTalk, manifesting 458

significant degradation in content accuracy and nat- 459

uralness. This indicates the instability of the one- 460

stage model trained on small, high-quality datasets 461

when subjected to an increased CFG scale, mak- 462

ing it difficult to balance control capabilities with 463

speech quality. On the other hand, the two-stage 464

model with the first stage trained on large corpora 465

exhibits good and stable content accuracy and natu- 466

ralness with growing CFG scales. This proves that 467

the first stage trained on extensive data helps in en- 468

hancing the content robustness of controllable TTS, 469

without affecting speech quality by error propaga- 470

tion. 471

In figure 3, we illustrate the control accuracies 472

of the two-stage model under different CFG scales. 473

We can see that the effect of CFG varies for dif- 474

ferent attributes. For gender attributes with fewer 475

categories and significant differentiation, the pres- 476

ence or absence of CFG shows no clear impact and 477

the model achieves good control performance in 478

both cases. However, for fine-grained attributes like 479

arousal and pitch mean, appropriate CFG scales 480

can benefit control accuracy, especially on Lib- 481

riTTS and DailyTalk test sets. This indicates that 482

CFG helps in the precise control of fine-grained at- 483

tributes. Meanwhile, we find that larger CFG scales 484

are not always beneficial. For some attributes, con- 485

trol accuracy initially increases before subsequently 486
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Figure 3: Control accuracy of the two-stage controllable TTS with discrete labels under different CFG scales. The
coordinate range is also set to 40-100.
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Figure 4: Control accuracy of the one-stage and two-stage controllable TTS with discrete labels under a CFG scale
of 3.0. The coordinate range is set to 40-100 for the more apparent differences.

declining as the scale rises. We speculate that this487

may be due to larger scale values causing distortion488

in the generated speech, similar to the phenomenon489

observed with CFG in score-based models. The full490

results of these two models under different CFG491

scales are provided in appendix G.492

We further evaluate the control ability of the493

models. In figure 4, we compare the control accura-494

cies of the one-stage and the two-stage model under495

a CFG scale of 3.0. It can be seen that the one-stage496

model has some advantages in age control, while497

the two-stage model achieves comparable or su-498

perior control over other attributes. The two-stage499

model shows significant advantages in emotion con-500

trol and average pitch, and it also achieves better501

accuracy over pitch variation and SNR on part of502

the test sets. This indicates that compared to the503

one-stage model trained on high-quality corpora504

with limited scale, the two-stage model with the505

first stage trained with extensive data boosts mod-506

eling diverse pitch and acoustic conditions. We507

refer the readers to appendix F for spectrogram508

samples that intuitively demonstrate the model’s509

control capabilities.510

4.3.3 Controlling pitch and emotion with a 511

reference speaker 512

In this section, we present the results that alter- 513

nate the timbre-related labels including age and 514

gender with speaker embedding from WeSpeaker 515

(Wang et al., 2023b) to achieve control over emo- 516

tion attributes with a specified reference speaker, 517

and investigate the emotion control capability of 518

the model. The pitch and acoustic condition labels 519

are kept in the condition sequence. We present re- 520

sults on Gigaspeech and DailyTalk in table 2. It can 521

be seen that our model achieves decent speaker sim- 522

ilarity on both test sets as well as comparable con- 523

trol accuracy to the discrete-label-only paradigm 524

over emotion. This indicates the effectiveness of 525

our model in controlling emotion for a specified 526

speaker. Moreover, compared to fully-discrete- 527

label controlling, the one-stage model shows better 528

content robustness with growing CFG scale in this 529

setting, and the one-stage and two-stage models ex- 530

hibit comparable performance in content accuracy 531

and speaker similarity. Despite this, the two-stage 532

model retains advantages in control over the emo- 533

tional attributes, demonstrating that the ST genera- 534

tion model trained on an extensive dataset remains 535
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Table 2: Results of controllable TTS combining speaker embedding, pitch and emotion labels.

Test set Model CFG Scale WER(%) SIM Aro. Dom. Val. UTMOS

Gigaspeech

1-stage
1.0 0.13 0.85 69.1 74.9 63.0 3.33 ± 0.08
2.0 0.12 0.85 73.1 77.7 67.1 3.30 ± 0.08
3.0 0.14 0.86 70.5 75.7 62.1 3.27 ± 0.07

2-stage
1.0 0.12 0.86 76.9 76.3 68.5 3.24 ± 0.09
2.0 0.14 0.85 78.0 78.6 68.5 3.26 ± 0.09
3.0 0.14 0.86 76.0 80.9 65.6 3.24 ± 0.09

DailyTalk

1-stage
1.0 0.14 0.82 65.7 71.6 58.5 3.28 ± 0.07
2.0 0.13 0.82 66.7 71.6 59.5 3.24 ± 0.07
3.0 0.15 0.82 68.9 75.1 59.0 3.18 ± 0.07

2-stage
1.0 0.10 0.80 73.9 78.6 62.7 3.50 ± 0.07
2.0 0.10 0.80 76.1 81.6 64.4 3.53 ± 0.07
3.0 0.09 0.80 79.6 83.3 63.7 3.51 ± 0.07

advantageous in modeling pitch-related stylistic536

information in this setting.537

4.3.4 Subjective evaluation on model538

performance539

Table 3: Subjective evaluation results.

Model CFG Scale MOS-Q MOS-A MOS-S

Control with discrete labels

1-stage
1.0 4.11 ± 0.11 3.99 ± 0.13 /
2.0 3.81 ± 0.12 3.98 ± 0.11 /
3.0 2.89 ± 0.14 3.45 ± 0.13 /

2-stage
1.0 4.14 ± 0.13 3.93 ± 0.13 /
2.0 4.01 ± 0.11 4.20 ± 0.14 /
3.0 4.18 ± 0.12 4.20 ± 0.11 /

Control with speaker embeddings and emotion labels

1-stage
1.0 3.96 ± 0.12 3.61 ± 0.13 3.89 ± 0.11
2.0 3.90 ± 0.11 3.90 ± 0.14 3.58 ± 0.14
3.0 3.70 ± 0.12 3.86 ± 0.12 3.40 ± 0.13

2-stage
1.0 3.97 ± 0.12 4.06 ± 0.13 3.56 ± 0.12
2.0 4.13 ± 0.11 4.23 ± 0.12 3.68 ± 0.12
3.0 3.91 ± 0.11 4.28 ± 0.10 3.52 ± 0.13

Table 3 presents the results of our subjective eval-540

uations. As shown, the two-stage model demon-541

strates comparable or superior MOS-A to the one-542

stage model, indicating its superior control capabil-543

ities. Additionally, an appropriate CFG scale leads544

to better control performance. Meanwhile, for the545

one-stage model trained with a small dataset, in-546

creasing the CFG scale while using only the labels547

as the control signal leads to a decrease in MOS-Q.548

These results align with the conclusions reflected549

by the objective metrics.550

5 Conclusion551

In this paper, we propose an LM-based fine-grained552

controllable TTS system. We adopt a two-stage553

generation pipeline, with an autoregressive trans-554

former as the backbone for each stage. We design 555

a masked autoencoder for extracting features with 556

rich style information from the speech and use the 557

discretized feature as the intermediate output of the 558

TTS pipeline. By selectively combining discrete 559

control labels with speaker embeddings, our model 560

supports both generating new speaker timbre while 561

controlling other attributes, and controlling emo- 562

tion for a specified speaker. Experiments indicate 563

the effectiveness of our model. 564

In the future, we may explore more diverse con- 565

trol signals and employ techniques such as prompt 566

engineering to integrate large language models with 567

controllable TTS, enabling support for both natural 568

language prompts and fine-grained control signals. 569

6 Limitations 570

Despite that our approach achieves fine-grained 571

control over multiple style attributes, our method 572

and evaluation protocols still suffer from several 573

limitations: 1) Due to the performance limitations 574

of labeling tools, there may be errors in the attribute 575

annotations of the training data, which could lead 576

to a decline in the model’s control capabilities. 2) 577

Evaluation with label combinations from real data 578

may present issues of uneven distribution, particu- 579

larly for attributes with significant distribution bias, 580

such as SNR and C50. Therefore, the evaluation 581

may not fully accurately reflect the model’s control 582

capabilities. 3) Due to their small proportion in 583

the training data, some marginal labels and their 584

combinations may lead to degraded generated au- 585

dio and diminished control performance. We will 586

explore solutions to these issues in future work. 587
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7 Potential Risks588

Improper use of this model may lead to the creation589

of fake content, such as generating statements that a590

specific speaker has never made. It may also cause591

copyright issues. We will add some constraints to592

guarantee people who use our code or pre-trained593

model will not use the model in illegal cases.594
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Table 4: Hyper-parameters of different modules of our
approach.

Model Hyperparameter

Style MAE

Encoder Layers 12
Decoder Layers 2
Hidden Dimension 768
Mask Probability 0.75
Fbank Channels 128

Style LM &
Acoustic LM

Global Layers 20
Local Layers 6
Hidden Dim 1,152
Global Attention Heads 16
Local Attention Heads 8
FFN Dim 4,608

A Implementation details 759

In table 4, we illustrate the model hyper-parameters 760

of the style MAE and two language models in our 761

approach. For codec, we train a EnCodec (Dé- 762

fossez et al., 2022) model for 16k audio, with 8 763

quantization levels, a codebook size of 1024, and 764

a downsampling rate of 320. We use the first 3 765
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Table 5: Extracting tools and binning strategies for different attributes.

Attribute Extracting Tool Lower Bound Upper Bound Bin Number

Gender w2v2-age-gender 0.0 1.0 4
Age w2v2-age-gender 0 100 10
Arousal, Dominance, Valence w2v2-emotion 0.2 0.8 7
Pitch Mean DataSpeech 45.0 320.0 10
Pitch Std DataSpeech 0.0 132.0 10
SNR DataSpeech -9.16 77.13 10
C50 DataSpeech 0.0 25.0 10

quantization levels only. We also use 3 RVQ layers766

for style-rich tokens.767

B Multi-scale transformer architecture768

The hierarchical structure of the multi-scale trans-769

former is illustrated in figure 5. This structure is770

formed by a global and a local transformer, both771

of which are decoder-only transformers. For a tem-772

poral position t, embeddings z
1:nq

t of style-rich773

or acoustic tokens from different codebooks are774

concatenated and fed to the global transformer for775

inter-frame correlation modeling. The output hid-776

den feature ht is generated autoregressively con-777

ditioned on h1:t−1. This hidden feature is then778

split according to the original shape of the embed-779

dings, projected by a linear layer, and added to780

the input embeddings of the local transformer as781

a frame-level context. The local transformer pre-782

dicts style-rich or acoustic tokens of different code-783

books inside a frame autoregressively. For other784

modalities, each item is repeated nq times to fit this785

modeling mechanism, with nq being the number of786

codebooks.787

C Style attribute labeling788

In this section, we provide details of how we obtain789

the labels of different attributes. The extracting790

tools and binning strategies are summarized in ta-791

ble 5. For age and gender, we use a finetuned792

wav2vec2 model 3 to extract gender classification793

probability and estimated age between 0-100. We794

then split age into 4 categories: male, neutral-795

masculine, neutral-feminine, female, with the crite-796

ria being the probability of male, and thresholds of797

0.65, 0.5 and 0.35.798

For emotion labels, we adopt another finetuned799

wav2vec2 model 4 to extract the predicted logits of800

arousal, dominance, and valence. The range of the801

3https://github.com/audeering/
w2v2-age-gender-how-to

4https://github.com/audeering/w2v2-how-to

logits is 0-1, yet most audio falls between 0.2 and 802

0.8. Therefore, we divide the interval from 0.2 to 803

0.8 into seven labels with a distance of 0.1. 804

For pitch and acoustic conditions, we utilize 805

DataSpeech (Lyth and King, 2024) to extract the 806

mean value and standard variation of pitch, as well 807

as SNR and C50. The ranges between the upper 808

and lower bounds of each attribute are divided into 809

10 equidistant intervals, with the boundaries listed 810

in the table. 811

D Correlation among control attributes 812

In fact, the information contained among different 813

attributes may overlap, manifesting as correlations 814

between labels. Certain high-level attributes can be 815

reflected in lower-level acoustic properties. For ex- 816

ample, attributes related to speaker timbre, such as 817

age and gender, are closely linked to average pitch, 818

while emotion is closely related to pitch variation. 819

In table 6, we present the Pearson correlation co- 820

efficients (Wikipedia, 2024) between high-level at- 821

tributes and pitch attributes calculated on LibriTTS. 822

It can be seen that age is correlated with average 823

pitch to some degree, while gender, arousal, and 824

dominance show significant correlations with both 825

the mean and variation of pitch, indicating the pres- 826

ence of overlapping information. Additionally, the 827

limited performance of the annotation tools may 828

also lead to significant correlation among different 829

emotional dimensions. Theoretically, the three di- 830

mensions of arousal, dominance, and valence are 831

orthogonal. However, as shown in figure 7, the 832

distributions of arousal and dominance extracted 833

by the model exhibit a strong linear correlation. 834

Due to the correlation among different attributes, 835

using control signals that contain conflict informa- 836

tion may lead to sub-optimal speech quality and 837

control capability. We showcase examples on our 838

demo page where conflicting control signals lead 839

to degraded control performance. To achieve bet- 840

ter control accuracy and content quality, we can 841

11

https://github.com/audeering/w2v2-age-gender-how-to
https://github.com/audeering/w2v2-age-gender-how-to
https://github.com/audeering/w2v2-how-to


(a) Ground Truth (b) Acoustic LM + GT Style (c) XTTS-V2

Figure 6: Spectrogram from original speech, reconstructed speech with ground truth style-rich tokens and zero-shot
TTS result.

Table 6: Pearson correlation coefficients between high-level and low-level attributes.

Low-Level
High-Level Age Gender Arousal Dominance Valence

Pitch Mean -0.15 -0.74 0.38 0.29 0.06
Pitch Std -0.01 0.37 0.39 0.33 0.06

1 2 3 4 5 6 7 8 9
Arousal

1

2

3

4

5

6

7

8

9

Do
m

in
an

ce

Figure 7: Illustration of the data distribution for arousal
and dominance.

restrict the ranges of low-level attributes with de-842

sired high-level attribute labels, thereby avoiding843

information conflicts. A straightforward solution is844

a statistical approach, where we can calculate the845

conditional distributions of pitch mean and pitch846

std given other labels on the training dataset, and847

sample labels from the distribution. Another so-848

lution is a learning-based method, where we can849

train label predictors for estimating low-level at-850

tributes from the given high-level labels. We train851

two 3-layer MLPs with a hidden dimension of 160852

to predict pitch mean and pitch std from age, gen-853

der, arousal, dominance and valence. We find that854

the accuracy of predicting pitch mean and pitch855

std can reach around 40%, while the soft accu-856

racy—considering a label error of no more than 1857

as correct—exceeds 80%. This demonstrates the ef- 858

fectiveness of these predictive models. Once these 859

models finish training, the output probabilities can 860

be used to sample pitch labels. 861

E Subjective Evaluation 862

We invite 10 individuals with experience in TTS 863

research as participants for our subjective evalu- 864

ation. For each experiment setting, we select 16 865

samples for each model for evaluation. The partic- 866

ipants rate scores on 1-5 Likert scales, and report 867

mean scores with 95% confidence intervals. For 868

MOS-A, considering that the original VAD labels 869

are difficult to understand, we converted the VAD 870

label combinations into emotional intensity levels 871

(such as flat, neutral, or highly expressive) or typ- 872

ical emotional categories (such as happy, angry, 873

or sad) corresponding to those combinations. The 874

participants are paid $8 hourly. 875

F Sample illustrations of results 876

For experiment results in section 4.3.1, figure 6 877

illustrates the spectrogram of some sample results 878

on DailyTalk. It can be observed that despite some 879

over-smoothing in certain details, the acoustic LM 880

is able to leverage the style information contained 881

in the style-rich tokens to achieve accurate recon- 882

struction on out-of-domain samples, indicating the 883

effectiveness of our style representation. In con- 884

trast, zero-shot TTS that only leverages speaker 885

information cannot achieve prosody reconstruction. 886

To illustrate the control capabilities of the model, 887

we take pitch mean and emotion labels as examples, 888
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(a) pitch mean=3 (b) pitch mean=5 (c) pitch mean=7

Figure 8: Spectrograms obtained using pitch labels of different levels in two-stage controllable TTS.

(a) a=2 d=3 v=2 (depressed) (b) a=5 d=6 v=6 (joyful) (c) a=6 d=7 v=2 (angry)

Figure 9: Spectrograms obtained using different compositions of emotion labels in two-stage controllable TTS.

and plot the spectrograms to illustrate the effects of889

modifying specific attributes of the given samples.890

Figure 8 showcases the results using different aver-891

age pitch labels while keeping the content and other892

attributes constant. We only display the frequency893

range of 0-2kHz for clearer visualization. It can be894

seen that when we raise the value of the pitch mean895

label, the fundamental frequency levels up, and the896

distance between formants increases, indicating897

that the speaker timbre grows shriller, proving the898

effectiveness of our model on controlling average899

pitch. In figure 9, we use three different groups of900

emotion labels for one test sample. The spectro-901

gram shows that labels corresponding to elevated902

emotion lead to more pronounced pitch variation903

compared to those of subdued emotion. We refer904

the reader to our demo page for more samples.905

G Supplementary experiment results906

In table 7, we provide the full results of the one-907

stage and two-stage models with discrete labels un-908

der different CFG scales, corresponding to figure 3909

and figure 4 in section 4.3.2. This table provides a910

more accurate and comprehensive comparison of911

the performance between the one-stage and two-912

stage models, as well as the impact of CFG scales913

on both of them. It can be seen that CFG is ef-914

fective in boosting control performance for both915

the one-stage and two-stage models. Moreover,916

the results demonstrate that the two-stage model917

outperforms the one-stage model in attributes such918

as pitch mean and arousal across a wide range of 919

settings, further supporting the conclusions drawn 920

in section 4.3.2. 921
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Table 7: Control accuracy of controllable TTS with discrete labels.

Test set Model CFG Scale WER Age Gen. P.M. P.S. Aro. Dom. Val. SNR C50

LibriTTS

1-stage
1.0 0.08 80.4 95.7 74.2 52.7 73.9 77.4 73.6 78.3 87.5
2.0 0.10 85.9 99.5 82.9 65.5 77.4 88.0 69.8 82.6 90.8
3.0 0.16 91.3 98.9 83.2 67.1 75.3 82.3 66.6 85.3 89.1

2-stage
1.0 0.11 85.3 98.4 81.8 66.0 77.7 82.3 73.9 82.6 91.8
2.0 0.09 87.0 99.5 89.4 71.2 80.2 87.5 76.6 87.5 92.9
3.0 0.10 90.8 99.5 87.8 73.9 83.4 85.6 76.1 85.3 92.4

Gigaspeech

1-stage
1.0 0.12 70.5 96.0 70.5 57.5 73.4 74.9 62.4 63.0 61.3
2.0 0.17 82.7 98.3 77.2 63.9 73.7 75.4 59.2 72.3 64.7
3.0 0.38 83.8 97.7 75.4 65.9 58.4 73.4 49.4 72.8 65.3

2-stage
1.0 0.11 78.6 97.7 79.5 68.5 79.5 82.9 68.2 77.5 62.4
2.0 0.11 79.8 96.5 82.9 67.9 79.5 82.7 65.0 79.2 61.8
3.0 0.10 77.5 96.5 81.5 66.8 81.2 83.2 69.9 76.9 64.2

DailyTalk

1-stage
1.0 0.10 75.6 94.0 70.9 60.4 66.7 71.4 61.4 76.1 73.1
2.0 0.14 83.1 99.0 75.6 61.4 74.6 78.4 59.5 70.6 72.6
3.0 0.29 87.1 98.0 75.4 60.4 72.6 77.9 53.2 61.7 76.6

2-stage
1.0 0.10 73.6 98.0 81.3 63.4 75.9 75.4 64.7 62.2 74.6
2.0 0.09 82.1 100.0 86.8 69.7 77.6 79.4 65.4 64.7 74.6
3.0 0.09 75.1 99.0 86.3 70.1 79.6 81.8 65.9 69.7 74.1
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