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Abstract

Previous learning-to-optimize (L2O) methods on constrained optimization problems often
treat neural networks as initializers that generate approximate solutions requiring substan-
tial post-hoc refinements. This approach overlooks a key insight: Solving complex optimiza-
tion problems often requires iterative refinement of candidate solutions, a process naturally
aligned with the Markov Decision Process (MDP) and reinforcement learning (RL) frame-
work. We show that within the MDP framework, RL and Ordinary Di!erential Equation
(ODE)-based generative models (e.g., di!usion, flow matching) are formally equivalent, uni-
fying them as trainable optimizers. Building on our unified perspective, we propose to train
a flow-matching model within an RL paradigm as a learnable refinement mechanism, thereby
incorporating constraint satisfaction directly into the optimization process. To further en-
hance feasibility, we introduce a minimal correction step that adjusts solutions to ensure
constraint compliance. Empirical results demonstrate that our approach achieves state-of-
the-art performance across a range of constrained optimization tasks, yielding improvements
in inference speed, solution quality, and feasibility over prior baselines.

1 Introduction

Constrained optimization covers a broad spectrum of applications in science and engineering, such as power
systems (Fioretto et al., 2020), portfolio selection (Das et al., 2023), robotics trajectory planning (Li et al.,
2025a), and real-time resource allocation (Ró"a#ska & Horn, 2024). Classical solvers, convex optimization
methods for tractable problems, and heuristic solvers for non-convex ones, are principled but often too slow
for real-time scenarios (Dong et al., 2020). Learning to optimize (L2O) o!ers a promising direction for
accelerating inference (Koziel & Leifsson, 2013).

Recent progress in L2O can broadly be categorized into two lines. The first typically uses a neural net-
work to propose partial solutions that are then completed by enforcing equality constraints, followed by
iterative refinement. Advances in this line largely stem from borrowing mechanisms from classical optimiza-
tion, such as primal-dual methods and augmented Lagrangian updates, to design gradient-based refinement
steps (Agrawal et al., 2019; Amos & Kolter, 2017; Donti et al., 2021; Park & Van Hentenryck, 2023; Tanneau
& Van Hentenryck, 2024; Klamkin et al., 2024). These algorithms mostly focus on limited settings and
remain suboptimal, as they heavily rely on iterative post-processing to refine solutions. The second line
explores constrained sampling with di!usion-based generative models, with applications to trajectory opti-
mization and related domains (Janner et al., 2022; Pan et al., 2024; Li et al., 2025a; Zhang et al., 2025). Yet,
it remains a widely recognized challenge to enforce strict adherence to complex, high-dimensional equality
and inequality constraints (Liang & Chen, 2024; Li et al., 2025b; Ding et al., 2025).

Inspired by iterative optimization algorithms like Interior Point methods (Potra & Wright, 2000), our key
insight is: Solving complex optimization problems often requires iterative refinement of candidate solutions.
Following this insight, we formalize constrained optimization as a generic MDP, where the state represents
the current candidate solution, the action corresponds to a refinement step, and the reward encodes progress
toward feasibility and optimality. Solving the optimization problem thus amounts to learning an reinforce-
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ment learning (RL) policy that incrementally improves solutions until they reach the feasible region and
achieve near-optimal objective values.

ODE-based generative models, including di!usion and flow matching (Lipman et al., 2023), instantiate this
idea naturally. Di!usion models iteratively denoise a random initialization, progressively steering samples
toward the target distribution (Ho et al., 2020; Song et al., 2021; Sohl-Dickstein et al., 2015). Viewing each
denoising step as an action and the data distribution as the implicit MDP target, di!usion can be interpreted
as training policies to update candidates from arbitrary distributions into the target.

Despite advances in ODE-based generative models, applying them to constrained problems remains di$cult.
Equality constraints shrink the feasible set to a narrow manifold, making optimization ill-conditioned, while
constrained losses often fail under tight tolerances as solutions oscillate near boundaries. Post-processing
methods, such as completion (Donti et al., 2021) or mapping (Li et al., 2025b), enforce feasibility but disrupt
optimization: completion-based approaches (Agrawal et al., 2019) often su!er from instability, whereas
mapping-based ones (Christopher et al., 2024) can degrade objectives and add overhead. By reshaping
critical feedback signals, these methods ultimately limit RL policy training and overall performance.

To address these challenges, we revisit the nature of constrained optimization and formally establish the
first RL-based framework for iteratively solving constrained optimization. We first provide a unified view
of RL and ODE-based generative models through the lens of iterative solution dynamics. Building on
this, we propose the constrained Markov flow optimizer (CMFO), a flow-matching-based trainable optimizer
tailored to constrained optimization and trained within the RL paradigm. In addition, we analyze the
failure modes of existing methods for enforcing constrained generation in ODE-based models and introduce
the relaxComplete operator, which preserves the full reward signal while providing necessary assistance in
constraint enforcement.

We conduct extensive experiments to evaluate the performance of CMFO across a range of constrained
optimization tasks, including convex quadratic programs (QPs), non-convex quadratic programs with sine
regularization (QPSR), and the practical AC optimal power flow (ACOPF) problem. Compared with tradi-
tional one-step L2O methods, ODE-based methods are generally superior in generating solutions with better
objective values and faster inference speed. Among ODE-based methods, CMFO achieves superior optimality
with the best feasibility across high-dimensional convex, non-convex, and power-system benchmarks.

2 Related Work

We briefly introduce existing work in L2O. A more detailed discussion is in Appendix A.

One-step L2O methods. This line of work seeks to accelerate the solution of complex problems, often
under constraints. Early surrogate models directly map problem instances to solutions (Koziel & Leifsson,
2013) but struggle with feasibility and optimality. Later approaches use neural predictors to warm-start
classical solvers, improving convergence and robustness (Baker, 2019; Dong et al., 2020). More recently, end-
to-end pipelines couple predictions with explicit constraint handling and refinement, such as DC3 (Donti
et al., 2021), which combines completion and gradient-based corrections. Extensions improve these steps
with dual-inspired updates (Park & Van Hentenryck, 2023; Tanneau & Van Hentenryck, 2024; Klamkin
et al., 2024). Our approach follows this paradigm but di!ers in framing refinement as an RL problem, where
a neural policy proposes iterative updates and is supported by constraint-aware operators.

Di!usion models-based L2O methods. A closely related line of work in L2O is based on di!usion
models (Sohl-Dickstein et al., 2015; Song et al., 2021; Ho et al., 2020; Lipman et al., 2023), which optimizes
implicitly toward objectives defined by the data distribution and thus can be viewed as a model-free setting.
Subsequent variants introduce model-based formulations (Pan et al., 2024) and improve sampling quality
and e$ciency (Berner et al., 2024; Richter & Berner, 2024; Chen et al., 2025). For constrained settings,
methods embed constraints in the loss (Pan et al., 2024), warm-start classical solvers (Li et al., 2025a),
adapt dual methods (Zhang et al., 2025), or enforce feasibility through projections (Christopher et al., 2024)
and gauge mappings (Li et al., 2025b). While e!ective in some perspectives, these approaches fail to deal
with the challenging trade-o!s among feasibility, optimality, and inference time in constrained optimization
problems.
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RL for optimization. RL has been extensively applied to discrete, combinatorial optimization (Mazyavkina
et al., 2021), where the discrete nature of the search space often renders exact solvers computationally
infeasible. Initial successes have been achieved in solving the traveling salesman problem (TSP) (Bello
et al., 2017), and the vehicle routing problem (VRP) (Nazari et al., 2018). These initial successes spur a
wave of research on architectural innovations that integrate RL with graph representation learning (Khalil
et al., 2017; Chen & Tian, 2019; Lu et al., 2020; Kwon et al., 2020; Chen et al., 2021; Hottung et al., 2022;
Feng et al., 2025; Li et al., 2025c), shifting the focus from direct policy learning toward hybrid approaches
that combine RL with explicit search or refinement mechanisms. By contrast, RL is only sparingly applied
to continuous optimization. A few studies explore its use for general continuous optimization (Li & Malik,
2017a;b; Chen et al., 2022) or in domain-specific contexts (Xian et al., 2025), but none address constrained
continuous optimization, which is the focus of our work.

Intersection of RL and ODE-based generative model Some related works (Wang et al., 2023; Ma et al.,
2025; McAllister et al., 2025; Pfrommer et al., 2025; Park et al., 2025) have explored the intersection between
reinforcement learning and ODE-based models, which mostly utilize generative models as an expressive
policy.

3 Constrained Optimization Via the Lens of Iterative Solution Dynamics

Optimization is usually expressed in static form-minimizing an objective subject to constraints. In practice,
however, solvers act iteratively, refining candidate solutions under structural feedback. This dynamic view
motivates our key insight: iterative constrained optimization is naturally an RL problem. Unlike classical
solvers with hand-crafted updates, RL treats the update rule as a policy that can be trained and optimized.
Following this insight, we present the first systematic formulation of constrained optimization as an MDP,
casting iterative refinement as a sequential decision process. As a natural extension, we further connect this
RL view to ODE-based generative models, whose dynamics correspond to continuous-time policies. Under
this unified lens, RL and generative modeling are both reinterpreted as instances of trainable optimizers,
bridging two previously disjoint lines of research under a common foundation.

3.1 The Constrained Optimization Problem

Consider a parametric family of constrained optimization problems, each defined by an instance X → X . For a
given instance X, let the objective be fX : Rd ↑ R with inequality and equality constraints gX : Rd ↑ Rmineq

and hX : Rd ↑ Rmeq . Formally, we have

min
y→Rd

fX(y) s.t. gX(y) ↓ 0, hX(y) = 0. (1)

The structure of fX , gX , hX and the optimal solution y↑(X) depend on the instance X, and may be nonlinear
and nonconvex. This standard static formulation will serve as the basis for our dynamic reinterpretation.

3.2 Constrained Optimization as an MDP

We now formalize constrained optimization as an episodic MDP, making its iterative nature explicit.

For each problem instance X, we define MX = ↔S, A, P, R, ω↗. At iteration t, the state is st = (X, yt),
consisting of the problem instance X and the current solution candidate yt. An action at = !yt corresponds
to an update step that deterministically produces yt+1 = yt + !yt, with optional stochasticity introduced
by noise. The reward rt = MX(yt) ↘ MX(yt+1) measures progress via the decrease of a merit function:

MX(y) = fX(y) + ε≃hX(y)≃2 + ϑ≃[gX(y)]+≃2. (2)

Here ≃ · ≃2 is the L-2 norm, [u]+ = max(u, 0) is applied element-wise, and (ε, ϑ) are penalty weights chosen
su$ciently large to approximate hard constraints.
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Figure 1: Flow-matching models solve the optimization problems as MDPs.

Since only the terminal solution matters, we adopt the undiscounted setting ω = 1. The cumulative reward
then telescopes to

J(ϖ) =
∑T ↓1

t=0
(
MX(yt) ↘ MX(yt+1)

)

= MX(y0) ↘ MX(yT ).
(3)

Given MX(y0) is regarded as constant, maximizing return is therefore equivalent to minimizing the terminal
merit MX(yT ), showing that the MDP formulation is not merely an analogy but a faithful restatement of
the original constrained optimization objective.

3.3 ODE-based Generative Models as MDPs

We now turn to ODE-based generative models, which can be described under a unified continuous-time
framework

dxt = f(xt, t)dt, (4)

where the learnable vector field f prescribes how the sample xt should evolve over time. The generative
process is simply the numerical integration of this ODE, starting from a prior (noise) distribution p0 and
converging toward a target distribution p1. Di!erent choices of f recover well-known models.

Flow matching. In this case, the ODE dynamics dxt/dt = f(xt, t) are parameterized directly by a learnable
velocity field vω. Supervision is obtained by constructing a simple interpolation between a noise sample x0 ⇐
p0 and a data sample x1 ⇐ p1, x̄t = (1↘ε(t))x0 +ε(t)x1, whose analytic velocity is vε(x̄t, t) = ε̇(t)(x1 ↘x0).
The training objective is then to regress vω toward this oracle velocity along the path,

LFM(ϱ) = Et,x0,x1

[
≃vω(x̄t, t) ↘ vε(x̄t, t)≃2]

. (5)

Di!usion models. Di!usion starts from a stochastic forward process that perturbs data into noise. Song
et al. (2021) showed that the reverse dynamics admit a Probability Flow ODE, dxt

dt = xt↓E[x0|xt]
t , where

E[x0 | xt] is the denoiser. In practice, a neural network Dϑ(xt, t) is trained with the denoising score-
matching loss E≃x0 ↘ Dϑ(xt, t)≃2 to approximate this conditional expectation, yielding the empirical PF
ODE dxt

dt = xt↓Dω(xt,t)
t .

Once the vector field f is learned, the generative process reduces to numerically integrating the dynamics.
In practice, this is implemented as discrete updates such as

xk+1 = xk + !t · f(xk, tk), (6)

so that the generation proceeds step by step from an initial noise sample toward the data distribution.
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Figure 2: Performance metrics across steps for vanilla. Smaller values are better for all metrics.

This iterative structure makes the MDP connection immediate: the state is (xt, t), the action is given by
f(xt, t), the transition is given by the integration scheme, and the reward reflects how close the trajectory
approaches the target distribution. Viewed this way, ODE-based generative models are just continuous-time
policies trained by imitation, fitting neatly into the RL framework introduced in Section 3.2. A detailed
discussion is in Appendix B.1

4 Constrained Markov Flow Optimizer (CMFO)

As discussed in Section 3.3, di!usion and flow-matching models can both be cast as continuous-time poli-
cies under the RL framework. Di!usion relies on Gaussian priors and noise-driven trajectories, which often
produce long, unstable paths and require careful schedule design. In contrast, flow matching parameterizes
deterministic ODE dynamics that directly transport an initializer distribution to the target, naturally mir-
roring constrained optimization where candidates are refined toward feasibility and optimality. This direct
and stable formulation makes flow matching a more natural and e$cient backbone for our optimizer, with
exploration complemented by metric function rather than stochastic sampling.

We now introduce CMFO, a learnable optimizer composed of a flow-matching refinement module (Figure 1)
and a stabilized constraint-handling operator. The model takes warm-start solutions from a lightweight
neural network–a standard practice–and iteratively refines them to improve both optimality and feasibility.

4.1 Challenges of a Vanilla Implementation

At first glance, the alignment between flow matching and the MDP view suggests a straightforward route
to constrained optimization, i.e., to enforce constraints by adding penalty terms to the loss function, as
shown in Equation 2. With the established equivalence between the formulations of flow-matching and RL
(Section 3.3), this loss can be seen as a Q-value-style objective that drives iterative refinement. We call this
baseline the vanilla method.

Figure 2 reports a preliminary study on its performance across four metrics, where the x-axis is the flow
matching steps, and the y-axis represents the metric value that is described by the respective sub-caption.
We can see that the objective value (Figure 2a), the distance to the optimum (Figure 2b), and the maximum
and mean numbers of violations of inequality constraints (blue curve in Figure 2c,d) all consistently show a
steady trend of decrease. For equality constraints (red curve in Figure 2c,d), however, violations initially in-
crease, since the initialization model enforces feasibility through completion, but later decrease as refinement
proceeds. Nevertheless, the final violations remain non-negligible. In fact, our empirical results (Table 1)
show that the vanilla method ultimately achieves 0% equality feasibility.

In summary, while the vanilla method improves objective values and reduces inequality violations, it fails
to enforce equality constraints reliably. This limitation stems from the ill-conditioned optimization landscape
near the feasible region (e.g., functions like |x ↘ a|), where gradients are unstable or uninformative, thereby
hindering precise convergence.
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Figure 3: Performance metrics across steps for completion (before completion operator). Smaller values
are better for all metrics.

4.2 RelaxCompletion on Equality Constraints

Completion. Following (Donti et al., 2021), this technique enforces equality constraints by optimizing only
over a reduced set of free variables. Given y → Rn, let ypartial denote m free entries, while the remaining
(n ↘ m) entries are recovered via a mapping ς(ypartial) such that

hx

( [
ypartial ≃ ς(ypartial)

] )
= 0, (7)

where ≃ denotes concatenation and ς(·) may be either explicit or implicit (e.g., obtained via Newton’s
method). This reformulation constrains optimization to the equality-constraint manifold. By the implicit
function theorem, gradients can be backpropagated through ς(·) regardless of its di!erentiability (Donti
et al., 2021; Amos & Kolter, 2017).

Zero gradient propagation for enforced constraints. While equality completion can strictly enforce
equality constraints, its key limitation is that it removes the influence of equality constraints during training,
delegating enforcement entirely to the operator. Because solutions are projected directly into the equality-
feasible region, the corresponding loss terms, and thus their gradients, remain identically zero.

Figure 3 summarizes the refinement dynamics of the flow matching model in the completion method.
Compared with the vanilla baseline (Figure 2), the most notable di!erence is that violations of equality
constraints consistently increase during refinement to large values (Figure 3c,d), indicating complete reliance
on the operator for enforcement. This also suggests that the adjustments introduced by completion to can-
didate solutions can be substantial, which in turn degrades other performance metrics, such as the objective
value (Figure 3a), distance to the optimum (Figure 3b), and inequality constraints (Figure 3c,d), relative
to the vanilla method. These findings highlight the importance of feedback from equality constraints in
guiding refinement, motivating new constraint-handling techniques.

RelaxCompletion. To overcome the limitations of strict completion, we propose relaxCompletion (relax-
Comp), a soft operator that retains the learning signal of equality constraints while guiding solutions toward
feasibility. Given a candidate solution y → Rn, let C(y) =

[
ypartial ≃ ς(ypartial)

]
denote the solution obtained

by completion and define the residual
r(y) = C(y) ↘ y, (8)

which captures the update introduced by enforcing feasibility. Instead of applying r(y) in full, a bounded
correction is conducted:

y+ = y + clip
(
r(y), c

)
, (9)

where c > 0 is a cuto! parameter and clip(·, c) applies elementwise clipping in [↘c, c].

Figure 4 illustrates how relaxComp helps during training and inference. First, it provides full guidance for
refinement, guiding prediction toward improved objective values and feasibility of both equality and inequal-
ity constraints, alleviating instability from post-processing, an insight that coincides with PPO (Schulman
et al., 2017). Second, it allows direct loss backpropagation to the model, avoiding expensive Jacobian com-
putations and scalability issues in high-dimensional settings. Finally, when the solution is already close to
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Figure 4: Illustration of relaxCompletion. The blue region denotes the cuto! radius c that limits the
magnitude of the correction applied to model outputs. For ypred 1, which is far from the equality-constrained
set, the allowable correction (bounded by c) is insu$cient to reach the set, leaving a non-zero equality residual
that provides useful gradients. In contrast, ypred 2 is close enough that the clipped correction reaches the
set and fully satisfies the equality constraints.

the optimum and the feasible region, where the vanilla approach reaches its limit, relaxComp stands out and
applies only a minimal corrective step to ensure feasibility. Since this adjustment is small, its e!ect on the
objective value and inequality constraints is often negligible.

4.3 Training and Inference of CMFO

Algorithm 1 Training Algorithm for Constrained Markov Flow Optimizer
Require: Dtrain = {(X, Y )}; initialization model Init; flow-matching based OPT with velocity predictor

vm; constrained loss φq(·), behavior cloning loss φbc(·, ·, ·); weights wbc, wq
1: Initialize parameters of Init and vm
2: for epoch = 1, 2, . . . , Nepoch do
3: for each minibatch (X, Y ) ⇐ D do
4: # train initialization model
5: ŷ ⇒ Complete(Init(X))
6: Linit ⇒ φq(ŷ) and update Init using Linit

7: # train flow-matching based optimizer
8: ycand ⇒ OPT(X, ŷ)
9: y ⇒ relaxComplete(ycand)

10: Lbc ⇒ φbc(X, ŷ, Y ); Lq ⇒ φq(y)
11: Ltotal ⇒ wbcLbc + wqLq
12: Update vm using Ltotal
13: Update Init using Ltotal Optionally

Training. As discussed in Section 3.3, ODE-based generative models can be viewed as fixed-step RL
methods, where predefined templates construct trajectories in the absence of explicit data. Section 3.2
further shows that constrained optimization can be cast as a deterministic, undiscounted MDP, with returns
directly derived from the optimization objective. In practice, such optimization is naturally finite-horizon
due to time and computational limits. Accordingly, CMFO training follows the RL paradigm, combining
behavior cloning and Q value losses to guide the optimization process (Algorithm 1).

As discussed in Section 3.2, maximizing the return is equivalent to minimizing the merit function defined in
Equation 2 in our problem setting. Thus, we defined the Q value loss, φq, to minimize Equation 2.

lq(X, y) = f(x, y) + ε≃h(X, y)≃2 + ϑ≃[g(X, y)]+≃2. (10)
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Table 1: Comparison of di!erent methods on QPs.

Baselines CMFO
Metric Optimizer DC3 B-Projection Vanilla +Completion +RelaxComp (ours)
Obj. value ⇑ -15.05 (0.00) -13.45 (0.03) -4.38 (0.15) -14.83 (0.04) -14.54 (0.09) -14.17 (0.08)
Max eq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.00 (0.00) 0.00 (0.00)
Mean eq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.19 (0.00) 0.01 (0.00) 0.07 (0.06) 0.02 (0.03)
Mean ineq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Eq. fea. rate ⇓ 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Ineq. fea. rate ⇓ 1.00 (0.00) 1.00 (0.00) 0.63 (0.01) 0.62 (0.22) 0.51 (0.24) 0.75 (0.35)
Fea. rate ⇓ 1.00 (0.00) 1.00 (0.00) 0.63 (0.01) 0.00 (0.00) 0.51 (0.24) 0.75 (0.35)
Time (s) ⇑ 1.692 (0.013) 0.009 (0.000) 0.017 (0.001) 0.002 (0.000) 0.008 (0.000) 0.008 (0.000)

where X is problem instance, y is final predicted solution. While the behavior cloning loss, φbc, is derived
from the standard flow-matching loss in Equation 5 (equivalence has been discussed in Section 3.3):

φbc(X, ŷ, Y ) = ≃vω(X, yt, t) ↘ (Y ↘ ŷ)≃2, (11)

where X is problem instance, ŷ is initial solution, Y is ground-truth solution, and yt = (1 ↘ t)ŷ + tY ,
t ⇐ U(0, 1).

The overall training objective for updating the velocity (and optionally the initialization) model is given by

Ltotal = wbc φbc + wq φq, (12)

where wbc and wq are weights controlling the relative contributions of behavior cloning and Q value opti-
mization. Analogous to RL, behavior cloning encourages the model to imitate high-quality trajectories, while
the Q value loss promotes exploration of the solution space and guides the model toward better solutions. In
practice, we adopt a two-stage training schedule: during the first stage, both terms are active, with behavior
cloning in a dominating role to stabilize learning. In the second stage, training relies solely on Q value
optimization to further refine the model.

Algorithm 2 RelaxCompletion

Require: candidate y → Rn, completion operator C(·), cuto! c > 0
1: function RelaxCompletion(y, C, c)
2: r ⇒ C(y) ↘ y
3: rclip ⇒ clip(r, ↘c, c)
4: return y+ ⇒ y + rclip

Inference. Given an instance X, inference proceeds in three stages:

(1) Warm start. Predict an initial guess ỹ = Init(X) using initialization model and map it into the equality
manifold using equality completion (Equation 7).

(2) Flow-matching refinement. Starting from ŷ, run the learned optimizer to produce a candidate ycand.

(3) Soft feasibility enforcement. Apply the relaxComp operator to ycand to obtain the final iterate y according
to Algorithm 2.

To further improve feasibility and optimality, one may batch-sample multiple solutions and select the best
feasible one. This increases computational cost, but typically only increases negligible wall-clock time when
executed in parallel.
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Table 2: Comparison across methods on QPSR.

Baselines CMFO
Metric Optimizer DC3 B-Projection Vanilla +Completion +RelaxComp (ours)
Obj. value ⇑ -11.59 (0.00) -10.70 (0.02) -7.56 (0.15) -11.47 (0.00) -11.30 (0.10) -11.29 (0.04)
Max eq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00)
Mean eq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.01 (0.00) 0.09 (0.12) 0.01 (0.01)
Mean ineq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Eq. fea. rate ⇓ 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Ineq. fea. rate ⇓ 1.00 (0.00) 1.00 (0.00) 0.99 (0.00) 0.82 (0.06) 0.60 (0.40) 0.91 (0.04)
Fea. rate ⇓ 1.00 (0.00) 1.00 (0.00) 0.99 (0.00) 0.00 (0.00) 0.60 (0.40) 0.91 (0.04)
Time (s) ⇑ 0.192 (0.010) 0.006 (0.000) 0.024 (0.011) 0.002 (0.000) 0.008 (0.000) 0.008 (0.000)

5 Experiment

5.1 Experimental Setup

Tasks. Following DC3 (Donti et al., 2021), we evaluate on three representative problems: (i) convex
quadratic programs (QPs), (ii) non-convex quadratic programs with sine regularization (QPSR), and (iii)
the real-world AC optimal power flow (ACOPF) problem. For the two synthetic datasets, QPs and QPSR,
we set the solution dimension to 100, with both the number of equality and inequality constraints fixed at
50. Details of these three problems can be found in Appendix C.

Metrics. We assess the performance of di!erent methods across three dimensions:

• Optimality: We use the objective value fx(y) (obj. value) to quantify the optimality of a final solution.
• Feasibility: We provide fine-grained metrics to evaluate the feasibility violations by the final solutions.

Max/Mean ineq/eq viol. are the maximum and mean number of inequality or equality feasibility violations
quantified by ReLU(gX(y)) or |hX(y)|, respectively. Ineq/Eq fea. rate are the ratios of samples that are
considered ineq/eq feasible with all violations < ↼. Fea. rate is the portion of samples that satisfy both
the inequality and equality feasibility. The threshold ↼ is set to be 0.0001.

• E!ciency: We use the inference time to characterize the e$ciency. Shorter time means higher e$ciency.

Baselines. We adopt three baselines from prior work.

• Optimizer: Classical solvers including qpth (Stellato et al., 2020) for QPs, IPOPT (Wächter & Biegler,
2006) for QPSR, and PYPOWER (Zimmerman et al., 1997) for ACOPF.

• DC3: Generates a partial candidate solution using a neural network, completes it via equality completion,
and refines it with gradient-based corrections (Donti et al., 2021).

• B-Projection:Uses interior-point prediction plus bisection to project NN outputs onto general constraint
sets (Liang & Chen, 2025).

We also craft two baselines that ablate our method.

• Vanilla: A flow-matching-based optimizer trained with Ltotal. It removes relaxComp in our method.
• Completion: Replace relaxComp in our method with equality completion.

We use +relaxComp to represent our method in the ablation. For a fair comparison, all flow-matching-
based methods used an initialization model to generate solutions for timestep 0.

Hyperparameters. Unless otherwise noted, we set: T = 5 (timesteps of the flow-matching optimizer);
ε = ϑ = 5 in φq; c = 0.5 in relaxComp; and wq = 0.001. For ACOPF57, we set wbc = 0. For QPs and QPSR,
wbc is initialized at 1 and decayed to 0 during 500-1000 epochs. All experiments are run on one NVIDIA
A40 GPU for fair comparison.

Comparisons on the three datasets are presented in Tables 1, 2, and 3. Arrows indicate the desired trend of
each metric (⇓ for higher, ⇑ for lower). Results are reported as mean with standard deviation (in brackets)
over three runs. And we only sample once for every method.
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Table 3: Comparison across methods on ACOPF.

Baselines CMFO
Metric Optimizer DC3 B-Projection Vanilla +Completion +RelaxComp (ours)
Obj value ⇑ 3.81(0.00) 3.82 (0.00) 3.90 (0.00) 2.84 (0.58) 3.91 (0.07) 3.82(0.00)
Max eq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.35 (0.22) 0.00 (0.00) 0.00 (0.00)
Mean eq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.06 (0.04) 0.00 (0.00) 0.00 (0.00)
Max ineq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.04 (0.00) 0.00 (0.00) 0.07 (0.05) 0.01 (0.00)
Mean ineq. viol. ⇑ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Eq. fea. rate ⇓ 1.00 (0.00) 0.87 (0.01) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Ineq. fea. rate ⇓ 1.00 (0.00) 0.62 (0.00) 0.09 (0.01) 1.00 (0.00) 0.25 (0.27) 0.54 (0.06)
Fea. rate ⇓ 1.00 (0.00) 0.58 (0.00) 0.09 (0.01) 0.00 (0.00) 0.25 (0.27) 0.54 (0.06)
Time (s) ⇑ 0.524 (0.004) 0.090 (0.002) 0.462 (0.012) 0.003 (0.000) 0.042 (0.000) 0.041 (0.001)

5.2 Benchmark Results

We compare the three tasks separately.

QPs represent a simple optimization space with convex assumptions. In Table 1, we observe that relax-

Comp strikes the best trade-o! among optimality (obj. value), feasibility, and inference speed. Compared
to the classical solver (qpth), ours is much more e$cient, using only 0.4% inference time to achieve a similar
objective value and feasibility. Using a similar run time to ours, DC3 and B-Projection remain a large
gap in the optimality.

In the task, ablating relaxComp causes the solutions to violate constraints severely. None of the solutions
by vanilla satisfies the equality constraints. Complete mitigates this issue for equality constraints but
covers only 51% of inequality constraints. relaxComp delivers the best overall feasibility, with only a mild
cost in e$ciency and optimality.

QPSR provides a harder test than QPs with a non-convex objective from sine regularization. relaxComp

still achieves a well-balanced performance, reaching the second-lowest objective value in 0.008 seconds, with
100% equality feasibility and 91%±4% inequality feasibility. By contrast, DC3 and B-Projection sacrifice
optimality substantially to satisfy the constraints.

The ablation results in the task are consistent with QPs. Worth mentioning, vanilla finds the solution with
an objective value even closer to the one by the classic optimizer. As a result, relaxComp gets closer to
the classic baseline in optimality as well.

ACOPF is a real-world optimization problem with inequality and highly non-convex equality constraints.
Performance degradation consistently occurs with model-based methods, including DC3, B-Projection,
and CMFO variants. At a similar feasibility rate, our method finds the best solution in only 46% of the time
used by DC3, showing superior e$ciency under complex constraints. It also satisfies equality constraints
better than DC3. Moreover, relaxComp consistently outperforms B-Projection in feasibility, optimality,
and inference speed.

In the real-world task, the ablation study reiterates the value of our method. Fine-grained results show a
non-trivial maximal feasibility violation, 0.35, by the vanilla method. Simply adding equality completion
can increase the overall feasibility rate to 25%. And relaxComp can double the overall feasibility rate to
54%, which is a remarkable improvement.

Overall, we have these key findings from the three diverse tasks. (1) Our method balances the optimality,
feasibility, and e$ciency better than the traditional manually designed optimizers or the prior model-based
art. (2) relaxComp achieves substantially better objective values than DC3, with a minimal decrease of
optimality than that of other flow-matching–based methods. This di!erence can be attributed in part to the
multi-objective nature of the constrained optimization loss and to the corrective adjustments. (3) Ablation
studies also demonstrate the essence of RelaxComp in the CMFO framework in our method, without which
constraints cannot be satisfied by the vanilla methods or the completion.
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Importantly, these findings highlight the promise of RL-augmented ODE-based generative models for tackling
constrained optimization problems.

6 Conclusion

We presented CMFO, the first framework to solve constrained optimization by leveraging RL principles
in conjunction with ODE-based generative models. Our formulation views constrained optimization as an
MDP, where trajectories are generated following a predefined template inspired by flow-matching models,
thereby enabling RL-style training without requiring explicit expert trajectories. To address the challenges
of constraint enforcement, we introduced relaxCompletion, which retains full feedback signals while softly
enforcing equality constraints. Across convex, non-convex, and real-world benchmarks, CMFO achieves a
balanced combination of near-optimal objective values, strong feasibility, and fast inference, compared with
DC3 and other flow-based baselines.
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