
Importance of Directional Feedback
for LLM-based Optimizers

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study the potential of using large language models (LLMs) as an interactive1

optimizer for solving maximization problems on a text space using natural language2

and numerical feedback. Inspired by the classical optimization literature, we3

classify the natural language feedback into directional and non-directional, where4

the former is a generalization of the first-order feedback to the natural language5

space. We find that LLMs are especially capable of optimization when they6

are provided with directional feedback. Based on this insight, we design a new7

LLM-based optimizer that synthesizes directional feedback from the historical8

optimization trace to achieve reliable improvement over iterations. Empirically, we9

show our LLM-based optimizer is more stable and efficient in solving optimization10

problems, from maximizing mathematical functions to optimizing prompts for11

writing poems, compared with existing techniques.12

1 Introduction13

Owing to their capability to produce a diverse range of outputs similar to those of humans, large14

language models (LLMs) are a powerful component for solving many difficult problems involving15

natural language, including planning [3], interacting with users, understanding documents [4], and16

producing executable code [2]. In addition to harnessing LLMs in these generative roles, several17

recent works have used LLMs for optimization. So far, these efforts, such as APO [7] and OPRO [11],18

have focused on optimization of a very specific kind – employing LLMs to produce prompts that19

improve (another) LLM’s performance. In this work, we argue that LLMs’ potential extends much20

further, to general optimization problems. We showcase that LLMs are capable of optimizing21

entities as dissimilar as mathematical functions and poems if they are provided with directional22

feedback.23

The notions of directional and non-directional feedback arise naturally in many interactive decision-24

making domains and are tied to the classical optimization literature [1]. Typically, a numerical25

optimizer iterates over two steps. The first step aims to identify a “search direction” for improvement.26

This information is provided to the optimizer by an oracle, oftentimes a first-order oracle, and27

can be viewed as directional feedback. The second step decides what to change about the input.28

The applicability of various optimization methods depends on whether the directional feedback29

information is available or not. Scenarios without directional feedback are confined to black-30

box optimization methods such as evolutionary search [5], Bayesian optimization [6], or policy31

gradient [9]. However, when the directional feedback is available, one can choose the much more32

efficient gradient-based optimization method, such as stochastic gradient descent or exact line33

search [1]. This insight motivates our use of directional feedback in the realm of LLM-driven34

optimization.35

As we show, the presence or absence of directional feedback and the possibility to access them is36

crucial for LLM-based optimization. For a systematic study of factors that make an optimization37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

process challenging, we choose one of the difficult tasks proposed in the work on OPRO (listed38

as failure cases in Appendix A of OPRO [11]) – navigating a bumpy loss function landscape. We39

discover that an LLM-based optimizer agent’s performance varies with the information the feedback40

carries, and, given proper feedback, LLMs can strategically improve over past outputs, which makes41

this previously unsolvable task solvable. In addition, we demonstrate that using LLMs to “synthesize”42

feedback from a history of observations and prompts can help optimization too.43

We also explore LLMs’ optimization potential in a completely different setting. Given the importance44

of feedback type in the LLM-based optimization process and the lack of benchmarks that generate45

verbal feedback automatically, we create a synthetic poem writing environment, where one can46

programmatically create feedback for the LLMs. The poem environment is a family of tasks where47

an LLM is asked to write a poem. A distinguishing feature of this benchmark is that the poems must48

satisfy some constraints, such as the number of syllables per line. By leveraging and synthesizing49

feedback, we show that an LLM can sequentially optimize a poem-generation prompt to yield a50

high success rate of producing constraint-satisfying poems. Our results highlight the importance51

of understanding and studying the role of feedback in the broader LLM-based text optimization52

landscape.53

2 Preliminaries: Prompt Optimization for LLM-based Agent54

An LLM-based agent’s behavior is modulated through the prompts used as inputs to the LLM. We55

describe the interactive decision-making problem encountered by an LLM-based agent, and how56

prompt optimization through interactive feedback can improve the agent over time. In the following,57

uppercase letters, e.g. X , denote random variables or sets. Lowercase letters denote realizations of58

the random variables or set elements, e.g. “X = x" states that a r.v. X takes on value x. Greek59

letters, e.g., ξ, denote parameters indexing probability distributions.60

Consider an agent encountering a complex task such as generating a poem with logi-61

cal constraints. The task is communicated to the agent via a text prompt ptask =62

“Generate a poem with a rhyming scheme of abcba”. The LLM produces output text o1 ∼ Prτ (O |63

ptask, ptunable) (e.g., a poem, or plans, or executable code, or other texts as prompted), where τ cap-64

tures LLM hyper-parameters like sampling temperature, and ptunable contains any orchestrated text65

inputs from other modules surrounding the LLM. In the sequel, we will develop modules that will66

incorporate information gathered over time to update ptunable. By analogy with tunable parameters of67

an ML model, we view ptunable as the tunable “parameters” of an LLM-based agent.68

Based on the generated output o1, a scalar reward r1 and optionally feedback f1 are generated from69

the environment (e.g., human user response, or logs generated by executing code in a programming70

environment) and passed to the agent. For ease of notation, we assume r ∼ R and f ∼ F , but we71

do not make specific assumptions of the underlying distributions. The reward can be a task success72

or failure boolean from the environment, or user-provided thumbs-up/down signal. This interaction73

process iterates o1 ⇝ {r1, f1}, . . . , ot ⇝ {rt, ft}, until the environment terminates the interaction74

session. Figure 1a illustrates the interaction process; for example, in Minecraft Voyager [10] a prompt75

ptask = “Build a house” is translated into a code-generation request using internal orchestration76

that prepends a specific ptunable
1. The produced code ot is executed in the Minecraft environment to77

generate error/debug/return messages ft as well as task completion flag rt that are returned to Voyager78

to refine the code ot+1 in subsequent iterations. The interaction session ends when the user prompting79

the Voyager agent terminates it. Note that ptask can be interactively updated within a session (e.g.,80

user providing additional hints or rephrasing the task), and we only assume that the rewards and81

feedbacks observed are consistent with the task that the agent is prompted to solve.82

The LLM-Optimizer is a specific instance of an LLM-based agent. It can be used to improve another83

LLM-based agent using collected experience so that the generated outputs have higher expected84

reward Eo [r | o, ptask]. The LLM-Optimizer takes a collection of Output-Reward-Feedback (o, r, f)85

tuples via its tunable prompt (see Figure 1b), and is tasked with generating a prompt p′tunable for the86

LLM-based agent.87

1In Voyager, these prompts are hand-engineered and not automatically tuned.

2

LLM
Agent

Task
Prompt
ptask

Tunable
Prompt
ptunable

Output
o

Feedback
f

Reward
r

(a) Schematic of LLM-based agent. ptunable can be
updated from feedback and/or previous experiences via
our sequential optimization.

LLM-
Optimizer

Optimizer
Prompt
poptimizer

Interaction
History
{ot, rt, ft}

Tuned
prompt
p′tunable

(b) LLM-Optimizer is a specific LLM-based
agent that incorporates previous experiences
into the tunable prompt ptunable of the agent.

3 Optimizing LLM-based Agents88

Define an LLM agent as π : Ptask × Ptunable → O. The distribution O is defined by ptunable alone,89

which we can regard as the parameter of the LLM agent. The optimization problem we need90

to solve is to find p⋆tunable := argmaxptunable
Eo [r | π(ptask, ptunable)]. We can define an optimizer91

g : Ptunable × F ×R→ Ptunable, where the goal is to find p⋆tunable through a limited number of times92

that π attempts the task. An optimal optimizer g⋆ can find p⋆tunable with the fewest amount of attempts.93

Different from the reasoning task setup, the output is defined as a distribution even for a single94

task ptask, and oftentimes, we do not know the distribution o⋆ that can obtain the highest expected95

reward.96

3.1 Fundamentals of LLM Optimization97

The most common approach for optimization is through an iterative solver that improves mono-98

tonically. However, in order to construct an iterative solver, the optimization problem needs to99

satisfy a few assumptions. To establish intuitions, we start with numerical optimization in a function100

approximation-based supervised learning setting. Given a hypothesis h and (x, y), let ỹ = hθ(x).101

With a loss function ℓ : X × Y ×Θ→ R, we can define L(θ) = E(x,y) [ℓ(θ, x, y)]. The goal is to102

find θ⋆ = argminθ L(θ). To achieve this goal, a valid optimization procedure proposes a new θ for103

k number of times. They usually consist of two steps:104

S1 Finding Valid Search Direction: We need to find useful information, such as a descend direction105

∆θ(k) that can help the update step. The usefulness of the information is tightly coupled with106

what the update step is.107

S2 Decide Update Rules: We need to decide how to update θ. A typical update procedure is simply:108

θ(k+1) = θ(k) + t(k)∆θ, if ∆θ is informative, where tk is the step size.109

If L is convex, then the criteria to determine whether ∆θ is informative is quite simple: we can110

use the gradient of L. From convexity, we know that ∇L(θ(k))T (L(θ(k+1)) − θ(k)) ≥ 0 implies111

L(θ(k+1)) ≥ L(θ(k)). Then we can set the descend direction ∆θ(k) to satisfy −∇L(θ(k))T∆θ(k).112

A simple way to satisfy this criterion is let ∆θ(k) := −∇L(∆θ(k)), which is the gradient descent113

method (GD). However, more complicated update rules can be used, such as backtracking line114

search [1]. It is also worth noting that we do not always need to satisfy S2. For example, in an115

evolutionary search algorithm, many candidates are proposed and the update rule is simply to keep116

the candidate with the best score.117

Then we can contrast the setting with an LLM optimization problem. If we want to have an iterative118

descent algorithm to find the optimal prompt for an LLM agent, then we need to consider the119

following properties:120

S1 Search Direction: We should obtain useful information, analogous to ∇L(θ), to help inform the121

optimizer on how to update the parameter ptunable.122

S2 Update Parameter: Unlike the numerical case, where basic algebra can be applied to update123

parameters, it is unclear whether there is a predefined notion of ∆p
(k)
tunable in text space. This124

distance ∆p
(k)
tunable in the best case, can be assessed by human intuition over the semantics of the125

text, in the worst case, can be completely arbitrary.126

In order to propose an optimization algorithm using LLM as an optimizer, we must make the following127

assumptions:128

3

A1 Permissible Search Direction: There exists useful information, which we describe as feedback,129

f , for an LLM optimizer g such that g can propose a pk+1
tunable where Eo

[
r | π(ptask, p

k+1
tunable)

]
≥130

Eo

[
r | π(ptask, p

k
tunable)

]
.131

A2 Valid Update: The LLM optimizer g can modify ptunable based on f , where direction of change:132

∆ptunable is determined by the information contained in f (i.e., not a random text edit).133

In the next few sections, we describe a few possible settings where these assumptions can be satisfied134

or need not be. We assume A2 is always satisfied. The first setting we discuss is that it is possible135

that LLM itself acts as a black-box optimizer. For example, it might obtain a valid search direction136

by implicitly computing finite differences between inputs and outputs in text space.137

LLM Might Implicitly Perform Newton’s Method Similar to Newton’s Method for using finite138

difference to approximate gradient, we can hope that LLM can implicitly compute the following139

function:140

∇R = lim
∆p

(k)
tunable→0

Eo

[
r | π(ptask, p

k
tunable)

]
− Eo

[
r | π(ptask, p

k+1
tunable)

]
∆p

(k)
tunable

If we think this is possible, then the input to the LLM can be tuples of (p1tunable, r1), ..., (p
k
tunable, rk).141

Although it is unclear if this is truly the case, this shows that the optimizer needs to retain a history of142

how past prompts p have changed the reward r.143

Feedback Can Be Directional The other possibility, not relying on the black box “magic” of the144

LLM’s internal process, is to hope that somehow a permissible search direction f is given to us from145

an external source. Humans give directional feedback quite often: “This coffee is too hot for me.” or146

“Can you lower the room temperature?” The first feedback implicitly asks the agent to make a cooler147

coffee (but not saying exactly how cool it should be). The second feedback asks the agent to turn down148

the room temperature (but without specifying which temperature to set). Imagine if the agent’s action149

(output space O) for both cases is to write API calls to set temperature; then we know immediately150

what ∆O should be – keep everything the same, but enter a lower temperature value. After the151

adjustment, a user might say: “This coffee is now too cold for me.” or “I’m freezing!” Making this152

kind of feedback very similar to the gradient information we get from numerical optimization. This153

suggests that, in some cases, incorporating feedback (or somehow obtaining directional feedback)154

could be helpful for the optimization procedure. We should provide LLM optimizer with examples of155

(p1tunable, f1, r1), (p
2
tunable, f2, r2), ..., (p

k
tunable, fk, rk) instead.156

Non-directional Feedback There is another type of feedback we can consider. This type of157

feedback contains useful information but is not directional because they do not directly inform us how158

to change the input O. For example, feedback like “I can’t drink this coffee because the temperature159

is not quite right.” This feedback clearly states that the attribute of “temperature” is important to the160

user and is not satisfactory. However, it does not tell us whether we should make a coffee that’s hotter161

or colder. Coffee can have many attributes, such as “temperature”, “acidity”, “roast”, “sweetness”, or162

“cream-level”. This feedback is more useful than a scalar reward because it explains attributes that163

affect R and allows us to focus more on a single dimension of many attributes.164

Reward as Feedback / No Feedback Unlike directional and non-directional feedback, which165

usually contains information about how to change ptunable, score-based feedback only gives back a166

numerical value indicating how well ptunable performs. In our setup, this means LLM-Optimizer only167

observes reward r without f . This is often referred to as the 0th-order feedback.168

3.2 Sequential Prompt Optimization169

Inspired by the descent method in numerical optimization, we propose an algorithm that aims to170

satisfy the requirement of descent methods such that we can reach the extremum. We define the171

following optimization loop with an LLM-based agent π. Agent π with an initial tunable prompt172

ptunable takes a task description ptask from the environment and samples an output o1. The environment173

returns a reward r1 and feedback f1. An LLM-optimizer stores (o1, r1, f1, ptunable) in a history buffer174

H. When the buffer becomes large, we subsample H from H. The LLM-optimizer proposes a175

new tunable parameter p′tunable. We make an explicit decision on whether to replace ptunable with176

p′tunable based on the reward evaluated on the distribution o and o′. We describe the full procedure177

in Algorithm 1. We now describe the implementation choices for each component of our iterative178

solver.179

4

Policy Policy is an LLM that takes in a tunable instruction prompt ptunable, description of task ptask180

and produces an output o. It does not see a history of interaction it did with the environment. This181

design decision prohibits the policy from controlling its own prompts. It is different from some other182

existing work. For example, Voyager [10] would allow the policy to see all of its interaction histories183

(and errors they make). React [12] also allows the policy to see the full error trace. Allowing the184

policy to see its past errors is a specific design choice on ptunable. We hope to let the optimizer decide185

what ptunable should be without injecting human prior.186

Prompt Proposal We define the prompt proposal module as ∆ : Ptask×Ptunable×F ×R→ Ptunable.187

This module looks at the task description, past prompts, and the feedback each prompt receives and188

proposes a new prompt. If the environment provides directional or non-directional feedback, this189

module should take in F as well. Even though past prompts were included, this module is allowed to190

produce completely new prompts.191

Algorithm 1: Sequential Prompt Optimization
Input: Given s,R, an LLM-based agent π, an

LLM-based prompt proposal module ∆, p0tunable,
ptask, and K iterations.

Output: pKtunable

H = ∅
for k ← 0...K do

ok, rk ∼ π(ptask, p
(k)
tunable), R

fk ∼ F or F̂ (ptask, ok, rk)
H = Sample(H)
p(k+1) = ∆(H, {ptask, p

k
tunable, fk, rk})

if Eo

[
r | π(ptask, p

k+1
tunable)

]
≥

Eo

[
r | π(ptask, p

k
tunable)

]
then

pk+1
tunable = pktunable

end
H = H ∪ {ok, rk, fk, pktunable}

end
return pKtunable

192

Feedback Synthesizer If numerical feedback is the only type of feedback given, we can design193

a feedback synthesizing module F̂ : Ptask × O × R → F . It takes in (o1, r1), ..., (ok, rk) and194

produces feedback to the prompt proposal module. We designed this module to ask the question,195

“How should the input be changed to have a greater effect on the objective/output?” We note that we196

more specifically prompt the LLM to think about the difference in the input space that would impact197

the difference in output space, different from APO, where they ask the LLM to “give reasons why the198

prompt could have gotten these examples wrong.”199

Prompt Selector In order to satisfy the descent method assumption A1 (permissible search di-200

rection), we need to guarantee that p′tunable is an improvement over ptunable. This can be achieved by201

setting a selection criterion that requires p(k+1) to get a higher reward than p(k). A simple crite-202

rion is to improve the average performance over the distribution of O: Eo

[
r | π(ptask, p

k+1
tunable)

]
≥203

Eo

[
r | π(ptask, p

k
tunable)

]
.204

4 Experiments205

4.1 Numerical Optimization206

We test if LLM is possible to do optimization and what are the necessary ingredients for it to find the207

optimal solution in an optimization problem. We set up this task because in prompt optimization,208

it is often hard to know what the optimal prompt or a good search direction is. With a numerical209

optimization problem, both are well-defined. We use a set of classic optimization problems2 that210

require LLMs to find x, a 2-dimensional vector.211

2https://www.sfu.ca/~ssurjano/optimization.html

5

https://www.sfu.ca/~ssurjano/optimization.html

(a) No Feedback

(b) Directional Feedback

GPT-3.5
GPT-4

Figure 2: We visualize the optimization trajectory path made by the Optimizer Agent with GPT-3.5
and GPT-4. The loss landscape on the left is the Rosenbrock Function, and on the right is the
Six-Hump Camel Function.

1. Task: Given a task description ptask and a function J (which is hidden from the LLM), we sample212

a random starting point (x0, J(x0)), x0 ∼ X . An LLM is asked to produce x to minimize J .213

2. Optimizable variable: X . The LLM is asked to output x directly. Here, ptunable is the same as x.214

3. Output process O: the output module takes x and directly outputs x, an identity function.215

4. Reward R: R(x) = −J(x).216

5. Feedback F :217

• Directional Feedback: ∇R(x) = dR
dx , the first-order derivative of the output.218

• Non-directional Feedback: We compare the partial derivatives ∂R
∂x1

and ∂R
∂x2

, and tell the LLM219

which dimension of x should be changed to accomplish the task (but without telling LLM in220

which direction to change).221

This experiment does not use the full setup of Algorithm 1. We only test our LLM-based optimizer ∆222

and our feedback synthesizer F̂ . We choose four functions: Booth, McCormick, Rosenbrock, and223

Six-Hump-Camel Function. They were chosen because the optimal x that minimizes these functions224

is not [0, 0]. In our initial experiments, LLM is quick to guess [0, 0], which trivializes the optimization225

problem.226

We define simple regret as Reg(∆) = |J(xT)− J(x⋆)|, where J is the function we try to minimize227

and T is the number of optimization steps we allow the optimizer ∆ to take. We define cumulative228

regret as CuReg(∆) =
∑T

t=1 |J(xt)− J(x⋆)|. Intuitively, simple regret corresponds to how close is229

an optimizer’s final answer xT to the correct answer x⋆. Cumulative regret describes how “efficient”230

is the optimizer at finding the x⋆. We compare three models: ∆ with GPT-3.5, GPT-4, and a231

stochastic gradient descent algorithm (SGD) with a small yet fixed learning rate. In the reported232

results, we run 10 trials and allow ∆ to take at most 10 optimization steps.233

RQ1 Can an LLM Implicitly Perform Newton’s Method, given (x1, J(x1), ..., (xk, J(xk))?234

6

GPT-3.5 GPT-4 SGD GPT-3.5 GPT-4 SGD

Cumulative Regret with Feedback Types Simple Regret with Feedback Types

No Feedback
Non-Dir Feedback

Directional Feedback

No Feedback
Non-Dir Feedback

Directional Feedback

(a) (b)

Figure 3: We plot out the average Cumulative Regret and Simple Regret of each condition over 10
trials. Each algorithm is allowed to take 10 steps. We tuned the SGD learning rate slightly to ensure
it is not too large or too small. The result is aggregated over 4 loss functions.

From Figure 2, we can see that LLM, as an optimizer, has a rough sense of direction, given a history235

of past explorations. In Figure 2 (a), we note that in both loss landscapes, although GPT-3.5 often236

fails to find the minimal point without feedback (green lines), GPT-4 is able to understand the past237

history and make new proposals of x that incrementally minimizes J(x). This suggests that even238

though there is no explicit gradient computation, LLM can be asked to “improve” based on a history239

of observations.240

RQ2 Does directional Feedback help the optimization process? Do other types of feedback help as241

much?242

We designed the prompt space for the LLM-based optimizer ∆ to insert feedback text right after the243

observation text and with an additional wording that reads, “You should incorporate the suggestion.”244

Besides this change, the optimizer agent prompt stays the same between no feedback and with245

feedback conditions. The full prompt is available in the Appendix.246

From Figure 2 (b) and Figure 3, we can see that both GPT-3.5 and GPT-4 are able to take advantage247

of the additional feedback information and improve their search direction. Feedback can help both a248

weaker model (GPT-3.5) and a strong model (GPT-4). A stronger model can improve more, even249

if the feedback has less information (see the comparison between Non-directional Feedback and250

Directional Feedback in Section 3.1).251

Cumulative Regret with Feedback Types Simple Regret with Feedback Types

GPT-3.5 GPT-4(a) GPT-3.5 GPT-4(b)

No Feedback
Non-Dir Feedback

Directional Feedback
Synthetic Feedback

Figure 4: We plot out the average Cumulative Regret and Simple Regret of each condition over 10
trials and compare different feedback types. Synthetic Feedback is generated by the same LLM as
the optimizer.

7

Although loss minimization is a challenging task for LLMs, with some amount of feedback, LLMs252

are able to find a final x that is similar to a classic optimization algorithm like SGD (see Figure 3b)253

– the simple regret is similar. It is worth noting that GPT-4’s final proposed x is not as close to the254

optimal as GPT-3.5. This is potentially because both models decide their own step size, and we are255

limiting the optimization horizon to 10 steps.256

RQ3 If directional feedback is missing, can we replace it with an LLM module to enhance whatever257

feedback is available?258

Oftentimes, direct and useful feedback might be missing from the environment. In this experiment,259

we design a feedback synthesizer module (described in Sec 3.2) that can take the output from the260

model and the reward and try to provide feedback that can improve the next output. Different from261

methods such as self-reflection, self-criticism, or thinking step-by-step, the feedback synthesizer asks262

questions similar to “How should I change about x that will result in a larger change in y?”, where263

self-reflection usually asks the model to reflect upon past “mistakes” on what they did wrong.264

In Figure 4, we show that we can synthesize feedback from a history of past outputs and rewards265

that is able to guide the optimizer LLM to find a better solution. Synthesized feedback is not as266

informative as directional feedback that comes from the environment, but it can easily outperform267

settings where no feedback is given.268

4.2 Poem Generation269

Now, we have validated the importance of feedback. We want to validate our optimization setup on a270

more challenging domain, where now we have to optimize over a prompt that controls how another271

LLM-based agent produces output. An easy constrained optimization problem to set up is poem272

generation. A formal poem is a writing assignment that requires the creation of a poem to satisfy273

some requirements regarding its form. For example, Haiku is a type of formal poem that asks for274

three lines that form a 5-7-5 syllable pattern. This is a challenging task for both GPT-3.5 and GPT-4,275

but easy for us to verify whether the generated poem has satisfied the constraint.276

1. Task: Generate a poem with a given constraint sampled from a set of constraints.277

2. Optimizable variable: Ptunable: This is the prompt ptunable for the LLM-based agent that we want to278

update and optimize.279

3. Output process O: the LLM agent takes the prompt ptunable and follows its suggestion and a task280

description ptask to produce a poem o.281

4. Reward R: The fraction of lines in the generated poem that satisfy the constraint described by282

ptask. r ∈ [0, 1].283

5. Feedback F :284

• Directional Feedback: We print out the number of syllables in the current line and whether285

LLM needs to increase or decrease the number of syllables in that line.286

• Non-directional Feedback: We print out how many lines violate the poem writing constraints.287

In the following experiment, we use the full setup of Algorithm 1. We allow each agent to take 10288

optimization steps. We name our agent OptAgent. It produces an instruction that will be sent to the289

0 2 4 6 8
Horizon (Interactions)

0.00

0.25

0.50

0.75

1.00

R
ew

ar
d

PoemSyllable 7

0 2 4 6 8
Horizon (Interactions)

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

PoemSyllable 8

0 2 4 6 8
Horizon (Interactions)

0.0

0.2

0.4

0.6

R
ew

ar
d

PoemSyllable 9

0 2 4 6 8
Horizon (Interactions)

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

PoemSyllable 10

OptAgent
ReflexionAgent

Figure 5: We show the reward for each policy after each round of interaction with the environment.
OptAgent (our algorithm) is in red.

8

poem generation agent to produce a poem. The poem-generation agent will not see the history of290

mistakes or any other information. We additionally evaluate Reflexion agent [8]. We set up four291

tasks: generating poems that contain 7, 8, 9, or 10 syllables for each line.292

We show that in Figure 5, we can reliably select prompts that improve the policy performance for293

each task. The prompt selection step in our optimization algorithm ensures that the new prompt294

will improve the performance. Otherwise, it will reject the updated prompt and keep the previous295

prompt. This differs from the Reflexion Agent in that they are not guaranteed to improve in the next296

interaction.297

5 Conclusion298

This paper argues that LLMs can successfully optimize a wide range or entities ranging from from299

mathematical functions to prompts for textual tasks if provided with directional feedback. We300

empirically show on challenging numerical optimization scenarios and constrained text generation301

tasks that utilizing either environment-provided or synthetic feedback is a crucial piece in LLM-based302

optimization. We emphasize that this is an early work on general LLM-based optimizers. LLMs’303

potential in this role is still waiting to be realized with improved methods for directional feedback304

generation.305

References306

[1] Boyd, S. P. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.307

[2] Gur, I., Furuta, H., Huang, A., Safdari, M., Matsuo, Y., Eck, D., and Faust, A. (2023). A308

real-world webagent with planning, long context understanding, and program synthesis. arXiv309

preprint arXiv:2307.12856.310

[3] Ichter, B., Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog, A., Ho, D., Ibarz, J., Irpan,311

A., Jang, E., Julian, R., Kalashnikov, D., Levine, S., Lu, Y., Parada, C., Rao, K., Sermanet, P.,312

Toshev, A. T., Vanhoucke, V., Xia, F., Xiao, T., Xu, P., Yan, M., Brown, N., Ahn, M., Cortes, O.,313

Sievers, N., Tan, C., Xu, S., Reyes, D., Rettinghouse, J., Quiambao, J., Pastor, P., Luu, L., Lee,314

K.-H., Kuang, Y., Jesmonth, S., Joshi, N. J., Jeffrey, K., Ruano, R. J., Hsu, J., Gopalakrishnan,315

K., David, B., Zeng, A., and Fu, C. K. (2023). Do as i can, not as i say: Grounding language in316

robotic affordances. In CORL.317

[4] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. (2022). Large language models are318

zero-shot reasoners. In NeurIPS.319

[5] Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.320

[6] Mockus, J. (1998). The application of bayesian methods for seeking the extremum. Towards321

global optimization, 2:117.322

[7] Pryzant, R., Iter, D., Li, J., Lee, Y. T., Zhu, C., and Zeng, M. (2023). Automatic prompt323

optimization with "gradient descent" and beam search. arXiv preprint arXiv:2305.03495.324

[8] Shinn, N., Cassano, F., Labash, B., Gopinath, A., Narasimhan, K., and Yao, S. (2023). Reflexion:325

Language agents with verbal reinforcement learning. arXiv preprint arXiv:2303.11366.326

[9] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for327

reinforcement learning with function approximation. In NeurIPS.328

[10] Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and Anandkumar, A.329

(2023). Voyager: An open-ended embodied agent with large language models. arXiv preprint330

arXiv:2305.16291.331

[11] Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and Chen, X. (2023). Large language332

models as optimizers. arXiv preprint arXiv:2309.03409.333

[12] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K. R., and Cao, Y. (2023). React:334

Synergizing reasoning and acting in language models. In ICLR.335

9

A Appendix336

A.1 Loss Optimizing Experiment Details337

We designed the prompt for two agents. The prompt is written in a Handlebar syntax, where “{{}}”338

indicate variables to be replaced. A brief guide on this syntax is available here3.339

For the LLM-Optimizer:340

{{#system~}}341

You are trying to minimize the output (y) of a function by choosing input (x).342

{{~/system}}343

344

{{#user~}}345

{{task_description}}346

347

This is what you have previously chosen for x and what the ys were:348

{{observation}}349

350

{{feedback}}351

352

You should incorporate the suggestion to output the next x.353

Please output the next x that will make this function output the smallest y.354

You cannot repeat the same x, doing so will result in a penalty.355

356

Format: x = [x1, x2]357

Output:358

{{~/user}}359

For the feedback synthesizing LLM:360

{{#system~}}361

You are trying to minimize the output (y) of a function by choosing input (x).362

{{~/system}}363

364

{{#user~}}365

You are trying to minimize the output (y) of a function by choosing input (x).366

You get to observe y once you choose the value of x, where x is a 2-dimensional vector.367

This means x = [x1, x2], where x1 and x2 are real numbers.368

The goal is to choose x such that y is as small as possible.369

370

Here is a list of x and how it affects y:371

{{#each history}}372

{{this.action}}373

{{this.observation}}374

===================375

{{~/each}}376

377

For x = [x1, x2]378

What are the suggestions you can give to the user to make y smaller?379

For example, here are some of the things you can suggest:380

- Changing x1 seems to have a bigger effect on y than changing x2.381

- Make a larger change on x2382

- Increase x1 by 1.2383

- Decrease x2 by 0.5384

- Try to increase x1 and decrease x2 at the same time385

Or any other kind of suggestion. Do not make a suggestion that's the form of a question.386

You should only make a one-sentence suggestion that's brief and short.387

388

Suggestion:389

{{~/user}}390

A.2 Poem Experiment Details391

For the LLM-agent that generates the poem, we use the following prompt:392

3https://github.com/guidance-ai/guidance

10

https://github.com/guidance-ai/guidance

{{#system~}}393

You are a student and your teacher gives you an assignment to write a poem.394

{{~/system}}395

396

{{#user~}}397

The assignment is:398

{{assignment}}399

400

{{#if exists_intrusction}}401

In addition, here are some helpful advice and guidance:402

{{instruction}}403

{{/if}}404

{{~/user}}405

For the feedback synthesizer module, we use this prompt:406

{{#system~}}
You are a helpful assistant who aims to provide feedback to a student

who's writing a poem↪→
according to some instructions.
It is important to let the student know if they did satisfy the

instruction or not and why.↪→
{{~/system}}

{{#user~}}
This is the history of past generated poems and how well they did with

respect to instructions.↪→

{{#each history}}
Instruction: {{this.observation}}

Poem:
{{this.action}}

Feedback from the teacher:
{{this.feedback}}

{{~/each}}
{{~/user}}

{{#user~}}
Now, the student writes a new poem.

New instruction: {{observation}}

Poem:
{{action}}

What changes can you make to the poem to help it conform to the
instructions?↪→

{{~/user}}

{{#assistant~}}
{{gen 'exp_feedback' temperature=0.7}}
{{~/assistant}}

For the LLM-based optimizer, we use this prompt:407

{{#system~}}
You are a helpful assistant that wants to come up with instructions to a

student to help them write a poem that is satisfactory to a teacher's
assignment.

↪→
↪→
The student's poem needs to satisfy the requirement of this assignment.
{{~/system}}

{{#user~}}

11

This is the history of how you have been helping this student and whether
your instructions have succeeded.↪→

Teacher's feedback is the most important feedback, because the student
needs to meet the teacher's criteria.↪→

However, another student's feedback can provide helpful information too.

{{#each history}}
The Assignment: "{{this.assignment}}"

Your Instruction:
{{this.prompt}}

Student's Poem:
{{this.action}}

Teacher's Feedback:
{{this.feedback}}

Feedback from another student:
{{this.exp_feedback}}

{{~/each}}
{{~/user}}

{{#user~}}

Your previous instruction didn't work -- the students didn't write a poem
that satisfied the teacher's criteria.↪→

Based on your interaction with the students, can you come up with better
instructions that can help this student write a poem that matches the
teacher's criteria?

↪→
↪→
Keep in mind that telling the student what to do step-by-step might be

very helpful!↪→
However, you need to be brief and to the point.
{{~/user}}

12

	Introduction
	Preliminaries: Prompt Optimization for LLM-based Agent
	Optimizing LLM-based Agents
	Fundamentals of LLM Optimization
	Sequential Prompt Optimization

	Experiments
	Numerical Optimization
	Poem Generation

	Conclusion
	Appendix
	Loss Optimizing Experiment Details
	Poem Experiment Details

