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Abstract
Recovering human trajectories from incomplete
or missing data is crucial for many mobility-based
urban applications, e.g., urban planning, trans-
portation, and location-based services. Existing
methods mainly rely on recurrent neural networks
or attention mechanisms. Though promising,
they encounter limitations in capturing complex
spatial-temporal dependencies in low-sampling
trajectories. Recently, diffusion models show po-
tential in content generation. However, most of
proposed methods are used to generate contents
in continuous numerical representations, which
cannot be directly adapted to the human location
trajectory recovery. In this paper, we introduce
a conditional diffusion-based trajectory recovery
method, namely, DiffMove. It first transforms
locations in trajectories into the embedding space,
in which the embedding denoising is performed,
and then missing locations are recovered by an
embedding decoder. DiffMove not only improves
accuracy by introducing high-quality generative
methods in the trajectory recovery, but also care-
fully models the transition, periodicity, and tem-
poral patterns in human mobility. Extensive exper-
iments based on two representative real-world mo-
bility datasets are conducted, and the results show
significant improvements (an average of 11% in
recall) over the best baselines.

1. Introduction
Mobility data plays a prominent role in many urban applica-
tions, e.g, next location recommendations (Feng et al., 2018;
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Han et al., 2025), epidemic prevention (Tang et al., 2023)
and urban planning (Yuan et al., 2014). However, due to pri-
vacy concerns or device malfunctions, users may not report
their locations to the service provider continuously, which
makes human trajectories sparsely distributed in space and
unevenly observed in time, and thus affects the effectiveness
of downstream applications. Accurate recovery of missing
trajectory points is also vital for related trajectory-modeling
tasks; for example, on-road trajectory modeling frameworks
such as MMTraj+ (Liu et al., 2025) rely on complete se-
quence inputs to learn trajectory patterns and destination
cues via multi-task learning. Recovered human trajectories,
especially those involving Points of Interest (POIs), can
greatly benefit downstream applications such as POI recom-
mendation, targeted advertising, and ride-sharing services
by enabling more personalized and context-aware decisions.
For this reason, human trajectory recovery, which infers
human trajectories at a fine-grained level, raised more and
more attention recently.

Existing human trajectory recovery work leverages Recur-
rent Neural Network (Liu et al., 2016; Wang et al., 2019)
or attention mechanism (Xia et al., 2021) for capturing the
spatial-temporal dependencies and resort sparse time in-
terval encoding modules for handling unevenly observed
trajectory records. Recent studies (Xia et al., 2021; Sun
et al., 2021; Deng et al., 2023) further found that explicitly
utilizing historical trajectory can enhance the performance
due to the strong periodicity nature of the human trajectories.
However, these approaches face significant limitations in
handling other key characteristics of human mobility. First,
they struggle to capture intricate spatial-temporal dependen-
cies - the interplay between spatial relationships (proximity
and spatial transitions between locations) and temporal pat-
terns (sequential dependencies or periodicity of behaviors
in historical trajectory). Second, it is difficult for modeling
uncertainty caused by sparse or incomplete observations,
which is common in real-world mobility data. Most de-
terministic methods produce a single imputation sample,
potentially oversimplifying the variability in human behav-
ior.

Although existing methods achieve appealing performance,
these approaches all made the traditional predictive recov-
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ery, which has above limitations in complex and uncertain
scenarios inherently in human mobility. Consequently, the
recovery accuracy and scenarios of downstream applica-
tions are limited. For instance, a person may follow some
routines from home to office daily but occasionally he/she
may follow different routes or change his/her preference.
In such scenarios, traditional methods typically provide a
biased deterministic imputed trajectory. However, with a
generative approach to inference, a set of imputed trajec-
tory locations can be generated through sampling or various
averaging techniques on imputation samples.

To address these fundamental limitations, we leverage dif-
fusion models, which have shown superior performance in
many tasks against other generative models, e.g., image gen-
eration (Ho et al., 2020) and audio synthesis (Kong et al.,
2021). Furthermore, conditional diffusion models are re-
cently developed for the time-series imputation (Tashiro
et al., 2021) given observed entries as input, which inspires
us to design a trajectory recovery model in the conditional
diffusion manner.

However, it is non-trivial to apply the conditional diffusion
model to solve the trajectory recovery problem due to two
issues. Firstly, the imputation targets of conventional dif-
fusion models are continuous numerical values, which can
be directly obtained via the denoising process, while those
in trajectory recovery are discrete ID-represented locations
(e.g., POI locations or geographical grid cells) - in this case,
the transition and periodicity patterns of human trajectories
are required to be fully exploited. Secondly, the model must
simultaneously consider those abovementioned limitations
in handling key characteristics of human mobility - both
temporal dependencies and the complex spatial relation-
ships between current and historical trajectories during the
denoising process.

To tackle these issues, we propose a novel conditional
diffusion model for human trajectory recovery, namely,
DiffMove. Our model incorporates these specialized com-
ponents: 1) a novel embedding-based (with encoding and
decoding) conditional diffusion framework that handles dis-
crete locations while preserving spatial relationships, 2) a
Spatial Conditional Block equipped with diffusion-oriented
graph neural network and attention mechanism, which cap-
tures the sparse spatial transition patterns and periodicity
temporal patterns from the current trajectories and historical
trajectories. 3) a Target Conditional Block that effectively
utilizes historical information despite sparse sampling. 4)
a Denoising Network Block to handle uncertainty. Our
contributions are three-fold:

• We propose a trajectory recovery framework DiffMove1,

1The code of this paper will be released in the link
https://github.com/KaijunL/DiffMove

which provides a solution to impute discrete locations
leveraging diffusion models by performing the denoising
process in embedding space and decoding the inferred
embeddings back to discrete locations. To the authors’
knowledge, we are the first to design spatial temporal con-
ditional diffusion models for human trajectory recovery
task.

• We design Spatial Conditional Block, Target Conditional
Block and Denoising Network Block to fully fuse the
knowledge of the current trajectories and historical trajec-
tories during the conditional diffusion process and tackle
the above challenges.

• Extensive experiments on two real-world mobility
datasets demonstrate that DiffMove significantly outper-
forms state-of-the-art baselines, achieving an average im-
provement of 11% in Recall.

2. Related works
Human Trajectory Recovery: The human trajectory re-
covery problem we address focuses on free-space settings,
unlike MTrajRec (Ren et al., 2021) and RNTrajRec (Chen
et al., 2023b), which focus on vehicles’ trajectories con-
strained by road networks (road segments). Human trajec-
tory recovery can be categorized into two types: the former
treats missing locations in trajectories as continuous two
dimensional values, i.e., latitude and longitude, to be im-
puted (Alwan & Roberts, 1988; Moritz & Bartz-Beielstein,
2017; Wang et al., 2019), while the latter infers locations
from a discrete candidate location pool (Liu et al., 2016;
Xia et al., 2021). The former is suitable to recover trajecto-
ries with high sampling frequency, e.g., vehicle trajectories,
where the local context plays a more important role for
the imputation, while the latter is more feasible for highly
sparse trajectories, e.g., human trajectories, where the tran-
sition and periodicity dependency modeling are the main
focus. In human trajectory recovery, the de-facto approach
is to explicitly utilize historical trajectory when imputat-
ing the current trajectory. For example, AttnMove (Xia
et al., 2021) utilizes a multi-stage attention mechanism to
recover missing locations. PeriodicMove (Sun et al., 2021)
constructs day-level graphs to model complex transition
patterns among locations. TRILL (Deng et al., 2023) is a
trajectory recovery model utilizing graph convolutional net-
works, combining global and local mobility patterns. Chen
et al. (2023a) proposes a framework called TERI, to tackle
trajectory recovery in a two-stage process, with a different
problem setting focusing on addressing the special cases
of irregular time interval. Ours is more addressing on the
generative manner using diffusion model to solve the regu-
lar trajectory recovery problem. Existing human trajectory
recovery work imputes missing locations in a deterministic
manner, which omits the uncertain nature of trajectories
and thus constrains the recovery accuracy and scenarios
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of downstream applications. In addition, the relationship
between locations to be imputed and historical trajectories
are not well-modeled.

Diffusion Model for Temporal and Spatio-temporal
Data: Diffusion models have found extensive applications
in tasks related to time series and spatio-temporal data gen-
eration (Wang et al., 2024), imputation (Tashiro et al., 2021),
and forecasting (Wen et al., 2023) due to their competence
in modeling high-dimensional data distributions. From the
time series generation aspect, diffusion models can be used
for the synthesis of electronic health records (EHR) (Alcaraz
& Strodthoff, 2023; He et al., 2023; Yuan et al., 2023). Many
of these studies adopt the denoising network architecture
initially proposed in DiffWave (Kong et al., 2021), which
utilizes bidirectional dilated convolution to capture corre-
lations between different time steps. CSDI (Tashiro et al.,
2021) leverages diffusion models for probabilistic time se-
ries imputation, i.e., generating missing values conditioned
on observed data points. DiffTraj (Zhu et al., 2024) repre-
sents the first attempt to generate GPS trajectories using an
unconditioned diffusion probabilistic model. However, it
focuses on generating task of raw GPS data in continuous
space instead of discrete sparse locations that human trajec-
tories always involve. TrajGDM (Chu et al., 2023) employs
a diffusion model to capture universal mobility patterns, for
trajectory generation, but it focuses on simulating synthetic
human mobility instead of recovery task on current trajec-
tory. A recent work DiffSTG (Wen et al., 2023) studied the
spatial-temporal graph forecasting problem and introduced
a denoising network UGnet, which is capable of capturing
spatial-temporal dependencies among various geographical
locations. However, DiffSTG focuses on predicting numeri-
cal readings of geographical sensors in different locations
across different time, while we focus on recovering discrete
locations in human trajectories.

3. Preliminaries
3.1. Problem Statement
Definition 1 (Trajectory). The trajectory is a chronological
sequence of a user’s locations within a single day. Let
T j
u : lj,1u → lj,2u ... → lj,ku ... → lj,Ku represent the trajectory

of user u on the j-th day, where lj,ku denotes the visited
location during the k-th time slot within a specified time
interval. If the location for the k-th time slot is not observed,
lj,ku is marked as null, i.e., lj,ku is missing.
Definition 2 (Current and Historical Trajectory). For a
given targeted day J and user u’s trajectory T J

u , we define
T J
u as the user’s current trajectory, while the historical

trajectories comprise u’s trajectories in the past (J − 1)
days, denoted as {T 1

u , T 2
u , ..., T J−1

u }.

We follow (Xia et al., 2021) to formulate the human trajec-
tory recovery problem as follows:
Problem Definition. Given user u’s trajectory T J

u along

with historical trajectories T 1
u , T 2

u , ..., T J−1
u , the task is to

recover the missing locations, i.e., ∀ null in T J
u , thereby

reconstructing the complete trajectory for the current day.

3.2. Denoising Diffusion Probabilistic Model

Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al., 2020) are deep generative models, which map data
from the normal distribution to another distribution via a
learnable denoising network step by step so that we can eas-
ily generate a data sample following the similar distribution
of q(x0) by sampling a random Gaussian noise. DDPM is
composed of a forward process and a reverse process.

In the forward process, Gaussian noise is gradually added to
the data sample x0 ∼ q(x0) by a Markov chain. A closed
form exists to transform the initial data sample x0 to the data
sample xt at arbitrary time step t by the reparameterization
trick: xt =

√
ᾱtx0 +

√
1− ᾱtϵ (1)

where ᾱt = α1α2 . . . αt, αt = 1− βt, βt ∈ (0, 1) denotes
the noise level and ϵ is sampled from a Gaussian noise
N (0, I).

The reverse process iteratively denoises a pure Gaussian
noise xT ∼ N (0, I) to generate the data sample x0 follow-
ing the similar distribution of q(x0). The transformation be-
tween data of two consecutive steps can be formulated as fol-
lows: pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)I) (2)

where θ is shared among different denoising time steps.
The parameters of pθ(xt−1|xt) are calculated as fol-
lows: µθ(xt, t) =

1
ᾱt
(xt − βt√

1−ᾱt
ϵθ(xt, t)), σ

2
θ(xt, t) =

1−ᾱt−1

1−ᾱt
βt (3)

where ϵθ is the denoising network, which takes the noise-
added data xt and the time step t as inputs and produces
the predicted noise. By iteratively sampling according to
Eq. (2), the generated data x̂0 is finally obtained. During the
training stage, the denoising network parameters θ can be
learned by minimizing L(θ) = E||ϵ− ϵθ (xt, t) ||22, where
xt can be obtained given x0 based on Eq. (1).

4. Methodology
The main idea of diffusion-based trajectory recovery is to
first transform discrete locations in trajectories into the
dense embedding space, then generate the recovered lo-
cation embeddings via a diffusion model, and finally rebuild
the missing locations by an embedding matching process.

To generate satisfactory location embeddings, the true con-
ditional data distribution q(eta0 | T J

u , {T 1
u , T 2

u , ..., T J−1
u })

in the embedding space should be estimated well, where
eta0 are embeddings of missing locations. Incorporating
those conditions, based on the idea of the diffusion model,
we need to learn the conditional transformation between
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Figure 1. Overview of training stage of DiffMove.

consecutive steps (from t to t− 1):

pθ(e
ta
t−1 | etat , T J

u , {T 1
u , T 2

u , ..., T J−1
u }) = N (etat−1;

µθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }),

σθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u })I)

(4)

Specifically, the parameterization of DDPM in Eq. (3) is
also extended to the conditional case below similar to the
proof in Tashiro et al. (2021):

µθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }) =

µDDPM(etat , t, ϵθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u })),

σθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }) = σDDPM(etat , t)

(5)

where µθ(xt, t) and σθ(xt, t) in Eq. (3) are denoted as
µDDPM(et, t, ϵθ(et, t)) and σDDPM(et, t) here respectively,
and general variable x is replaced by the embedding of
missing location e.

As can be observed, it essentially requires our denoising
network ϵθ to incorporate observations in the current tra-
jectory and historical trajectories. To well encode those
conditions and realize the diffusion-based trajectory recov-
ery, we present DiffMove, the training stage of which is
shown in Figure 1. As the existing imputation work (Xia
et al., 2021) did, DiffMove is trained in a self-supervised
manner, which randomly masks some observed locations
in the current trajectory and treats them as supervision sig-
nals, i.e., missing locations. To facilitate the description
DiffMove, we decompose the whole process into three com-
ponents: Trajectory Location Encoder (TLE), Conditional
Embedding Denoiser (CED) and Missing Location Decoder
(MLD).

4.1. Trajectory Location Encoder (TLE)

Trajectory Location Encoder (TLE) takes the current tra-
jectory and historical trajectories of J − 1 days as inputs,

and gives the embeddings of observed locations eob0 and
missing locations etat in the current trajectory, and historical
trajectories ehist, which is shown in the left part of Figure 1.
During the training stage, etat is obtained by adding random
Gaussian noise to embeddings of masked locations, while
during the inference stage, etat is directly sampled from
the Gaussian distribution. We now elaborate on its training
stage in detail as follows.

As shown in Figure 1, the blue and white location icons
in trajectories represent observed and missing locations re-
spectively. During the training stage, we first randomly
mask some observed locations in the raw current trajectory
as imputation targets, and thus separate it into the current
trajectory (which is the actual input during the inference
stage) and pseudo missing locations (icons in orange), i.e.,
masked locations lta. Locations in trajectories l ∈ L are
represented by discrete IDs, and we also assign a special ID
to the missing location, i.e., “null”. After that, we feed the
current trajectory, masked locations and historical trajecto-
ries into a location embedding layer, where each location l
would be transformed into a dense representation el ∈ Rd

by an embedding layer: el = EmbeddingL(l) (note: other
embedding methods are also welcome). The imputation
target embeddings eta0 are added with a Gaussian noise by
Eq. (1) to form noisy target embeddings etat .

Finally, historical location embeddings ehist, observed lo-
cation embeddings eob0 and noisy target embeddings etat
would be fed into Conditional Embedding Denoiser for
the noise estimation. The learned embedding table, i.e.,
El ∈ R(|L|+1)×d would also be used to perform matching
to recover missing locations, which would be introduced
later in Section 4.3.

4.2. Conditional Embedding Denoiser (CED)
Conditional Embedding Denoiser (CED) takes diffusion
time step t, noisy target embeddings etat and conditions
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Figure 2. The Architecture for Conditional Embedding Denoiser

(i.e., historical location embeddings ehist, observed location
embeddings eob0 ), and estimates the noise added to the target
embeddings etat−1 at the time step, which is shown in the
top right part of Figure 1. To fully exploit the power of
conditions, Spatial Conditional Block is devised to model
the transition and periodicity patterns, Target Conditional
Block is designed to capture the relationship between the
missing locations and historical trajectories, and Denoising
Network Block is developed to capture the local context and
produce the noise estimation. The design of each block is
elaborated as follows.

Spatial Conditional Block. Spatial Conditional Block takes
eob0 , ehist and diffusion step t, and gives the spatial con-
dition espa, which captures the transition and periodicity
patterns from historical trajectories. In addition to espa, an
intermediate result, i.e., the diffusion time step embedding
eT , is also passed to Denoising Network Block, and a his-
torical trajectory embedding ehistG is also obtained to better
capture the relationship between the missing locations and
historical trajectories in Target Conditional Block.

Since graph neural network (GNN) has demonstrated its
capability to capture the consecutive relationship between
different entities (Xu et al., 2019; Wu et al., 2019) and
attention mechanism is good at capturing the periodicity
information (Liang et al., 2018), we propose to use GNN to
learn the transition pattern and attention mechanism to learn
the periodicity pattern. Since the degree of noise among
different diffusion time steps is different, the importance
of spatial conditions may also vary, we further incorporate
the diffusion time step into the spatial condition learning.
Considering above insights, we give the detailed structure
of Spatial Conditional Block in Figure 2B. Firstly, we
construct location transition graphs for both historical and
current trajectories. For each trajectory, we construct an in-
coming and an outgoing transition graph, where all unique
locations appearing in it serve as graph nodes, embeddings
of locations from TLE serve as node embedding, and con-
secutive locations together form two adjacency matrices,
i.e., AI and AO, similar to (Xu et al., 2019).

Secondly, a Diffusion Step T Gated Graph Neural Net-
work (TGGNN) is proposed to make diffusion-time-step-
aware spatial pattern learning. Two TGGNN are intro-
duced to learn patterns from current trajectory and histor-
ical trajectories, separately. We first transform the diffu-
sion time step into a dense representation estep by sinu-
soidal functions DiffEmbedT (t) (Kong et al., 2021; Tashiro
et al., 2021), following by a fully connected layer: eT =
DiffEmbedT (t)W

T + bT . Then, embeddings of current
and historical trajectories would be passed into TGGNN
for several times. In the s-th layer of TGGNN as shown in
Figure 3 , (1) the information propagation from neighbor-
hood is performed based on node embeddings of s-th layer[
e1s, . . . , e

N
s

]
and two adjacency matrices, i.e., AI and AO

to obtain incoming/outgoing aggregated node embedding
eI,s/eO,s, respectively; (2) an intermediate representations
as+1 is created by concatenating those aggregated node em-
beddings with embedded diffusion time step eT to enhance
the representations; (3) a gating mechanism (Li et al., 2016)
is used to fuse the node embeddings of the s-th layer and
(s+1)-th layer:

eI,s =
(
AI

i

([
e1s, . . . , e

N
s

]
WI + bI

))
eO,s =

(
AO

i

([
e1s, . . . , e

N
s

]
WO + bO

))
as+1 = eI,s ∥ eO,s ∥ eT, els+1 = Gates(as+1, es)

(6)

where ∥ is the concatenation, WI , WO, WT ∈ Rd×d are
learnable parameters, and bI , bO, bT ∈ Rd are bias vectors,
N is the number of unique locations in the trajectory, and
Gates denotes several gates (Li et al., 2016), i.e., update
gate, reset gate, to fuse node embeddings in consecutive
layers. We denote the final node embedding of TGGNN as
el for simplicity. By pooling final node embeddings from
the historical branch, the historical trajectory embedding
ehistG is derived.

Figure 3. Design of TGGNN.

Thirdly, we employ CrossAttention (Xia et al., 2021) to
capture the periodicity among the current trajectory and
historical trajectories. For each user u, the headh calculate
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the cross attention between the i-th time slot of the current
trajectory embedding (eJ,iu ) and the k-th time slot of the
j-th historical trajectory embedding (ej,ku ). The final spatial
condition espa is generated by a linear projection of the
concatenation of H number of heads as shown in Eq. (7).

headh = CrossAttention(eJ,iu , ej,ku )

espa = ReLU(W(head1 ∥ . . . ∥ headH) + eJ,iu ) (7)

Target Conditional Block. Target Conditional Block takes
target ID mask, temporal length k and historical trajectory
embedding ehistG , and gives eind, which captures the corre-
lations between the missing locations and historical trajec-
tories to help the inference. The target ID mask represen-
tations are in one-hot form: non-target locations are repre-
sented with all zeros, while target locations are represented
with ones. This method creates a placeholder embedding
that signifies the absence of data at specific positions. This
embedding is then concatenated with ehistG and will be fused
with the output of the Temporal Length Embedding layer.
We incorporate temporal length embedding k = {k1:K} as
auxiliary information. We adopt a 128-dimensional tem-
poral embedding, consistent with prior research (Vaswani
et al., 2017; Zuo et al., 2020):

kembedding(kl) =

(
sin(kl/τ

0/64), . . . , sin(kl/τ
63/64),

cos(kl/τ
0/64), . . . , cos(kl/τ

63/64)

)
(8)

Here, τ = 10000. This temporal length embedding en-
riches the model with sequential information, enhancing
its ability to recover trajectories. Finally, the concatenated
representation forms eind.

Denoising Network Block. This block is the function of
DiffMove to model ϵθ in Eq. (5). It receives the inputs
from TLE together with eT , espa, and eind. The concate-
nation of eob0 and etat from TLE as well as espa are passed
through a 1D convolution layer and a ReLU, and the results
of both would be added to eT to form the the total input of
a temporal transformer (Tashiro et al., 2021) (with multi-
head self-attentions) to learn the temporal sequence features.
Then it will be passed through a 1D convolution layer and
added with the 1D convoluted result of eind. Following
a gated activation unit (Ramachandran et al., 2017), part
of outputs is directed to the next residual layer as input,
whereas the remainder is incorporated into the final output
via a skip connection. The Conv1 × 1 blocks in the net-
work facilitate the mapping of data to suitable dimensions.
Ultimately, the output ϵ̂ is the culmination of data passed
through skip-connections from each residual layer.

4.3. Missing Location Decoder (MLD)
Missing Location Decoder (MLD) leverages CED to re-
cover locations. It consists of two steps: Embedding Im-

putation, which transforms noises into meaningful location
embeddings based on the estimated noise from CED, and
Embedding Decoding, which decodes the estimated target
embeddings to locations to recover the trajectory.

Embedding Imputation. Embedding Imputation is to ob-
tain robust estimated target embeddings, we perform target
embeddings generation for M times, and the means of tar-
get embeddings ¯̂eta0 are used for the location decoding. For
each time of generation, a random noise etaT is sampled from
N (0, I), then we perform the reverse process of diffusion
from step T to 1 gradually according to Eq. (4) and Eq. (5)
to obtain one estimated target embedding êta0 .

Embedding Decoding. After the mean imputed target em-
beddings ¯̂eta0 are obtained, we calculate the inner product
between ¯̂eta0 and location embeddings in embedding table
E

′

l ∈ R|L|, which is from El in TLE after excluding the em-
bedding of “null” item. For each imputed target embedding
¯̂eta,i0 , its similarities to different locations ẑtai ∈ R|L| are
calculated as follows: ẑtai = ¯̂eta,i0 E

′⊤
l

Subsequently, we apply a softmax function to obtain the
location likelihood vector ŷi for each imputation target:
ŷi = softmax (ẑtai ). During the inference stage, the loca-
tion with the highest probability would be used to recover
the trajectory.

4.4. Model Training
Since trajectory recovery results are discrete, which can-
not be easily obtained by the denoising network, multiple
losses are introduced as shown in Figure 1 when we train
DiffMove.

The first loss is diffusion loss Ldiffu, which calculates noise
estimation accuracy. We sample a noise ϵ and obtain the
noisy target embeddings etat at the diffusion time step t by
Eq. (1). Then, DiffMove estimates the added noise condi-
tioned on observed locations in the current trajectory and the
historical trajectories. The expectation of the mean squared
error between the actual noise and the estimated noise is
served as Ldiffu, which is defined as follows:

Ldiffu(θ) =Eeta
0 ∼q(eta

0 ),ϵ∼N (0,I),t||(ϵ−

ϵθ(e
ta
t , t | T J

u , {T 1
u , T 2

u , ..., T J−1
u }))||22 (9)

The second loss characterizes the location recovery accuracy,
which is the cross entropy loss. Given the one-hot repre-
sentations of masked locations in the raw current trajectory
Y = {y1,y2, ...,yKta} and the predicted likelihood of
the imputed locations Ŷj = {ŷ1, ŷ2, ..., ŷKta} (Kta is the
number of masked locations in the raw current trajectory),
LCE is defined as

LCE(Y, Ŷ) = −
Kta∑
j=1

|L|∑
i=1

yji log(ŷ
j
i ) (10)
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The third loss is an L2 loss for regularization, which is
suggested in (Gong et al., 2022). It regularizes the learning
of the location embeddings of the raw current trajectory, i.e.,

LL2(e
ta
0 , eob0 ) =

1

Kd
(

Kta∑
i=1

||eta,i0 ||2 +
K−Kta∑
j=1

||eob,j0 ||)2

(11)
Consequently, DiffMove is trained end to end by jointly

optimizing the above three types of losses: LE2E = Ldiffu +
λ1LCE + λ2LL2, where λ1 and λ2 are multi-task learning
weights.

5. Experiments
5.1. Datasets

• Foursquare2: This dataset (Yang et al., 2014) was ob-
tained from the Foursquare API, covering the period from
April 2012 to February 2013. Each record in the dataset in-
cludes user ID, timestamp, GPS location, and POI ID. We
standardize the timestamps to a one-week format while
preserving the original trajectory order.

• Geolife3: This publicly available dataset is sourced from
the Microsoft Research Asia Geolife project (Zheng et al.,
2010), involving 182 users and spanning from April 2007
to August 2012 globally. Each trajectory is represented by
a sequence of time-stamped points, providing longitude
and altitude information (Zheng et al., 2010).

5.2. Baselines

We evaluate the proposed approach against baseline meth-
ods, including both traditional approaches grounded in our
understanding of human mobility and advanced deep learn-
ing models capable of capturing intricate mobility patterns.
We evaluate the proposed approach against below baselines:
Rule-based methods: 1): Top, 2) Markov (Gambs et al.,
2012), 3) PMF (Mnih & Salakhutdinov, 2007). Deep learn-
ing based methods: 4) LSTM (Liu et al., 2016), 5) BiL-
STM (Zhao et al., 2018), 6) DeepMove (Feng et al., 2018),
7) AttnMove (Xia et al., 2021), 8) PeriodicMove (Sun et al.,
2021), 9) TRILL (Deng et al., 2023). Selections of base-
lines are to ensure fair comparisons in the same setting of
free-space human trajectory recovery. More details about
baselines will be provided in the Appendices.

5.3. Experimental Settings

Following (Deng et al., 2023), we mask randomly 10 time
slots per day for both the Geolife and Foursquare dataset.
The trajectories are split chronologically into training (60%),

2https://sites.google.com/site/yangdingqi/home/foursquare-
dataset/

3https://www.microsoft.com/en-us/research/project/geolife-
building-social-networks-using-human-location-history/

validation (20%) and test (20%) sets. We utilize the widely
adopted metrics Recall@K and Mean Average Precision
(MAP) (Wang et al., 2019). Recall@K measures whether
the ground truth is present in the top K predictions, averaged
over all test cases. MAP evaluates the overall ranking qual-
ity by considering the entire prediction list. Larger values
for both metrics indicate better performance. Additionally,
we use Distance@K, which computes the smallest geograph-
ical distance between the centers of locations in the top-K
ranked list and the ground truth, averaged across test cases.
Lower Distance@K signifies better performance. We report
experimental results for Recall@K and Distance@K at K =
1, 5 and 10. This allows a comprehensive assessment of our
model’s ability to rank ground truth locations.

5.4. Experiment Results

As shown in Table 1, firstly, rule-based methods fail to
achieve high accuracy, exhibiting the worst performance
for all evaluation metrics on both datasets. Secondly, RNN-
based methods perform better than rule-based methods as
they can model simple sequential patterns among locations.
Bidirectional RNNs perform better than unidirectional ones,
indicating the importance of spatial-temporal constraints
for human mobility recovery. State-of-the-art deep learning
methods, including AttnMove, PeriodicMove and TRILL
achieve satisfactory performance by capturing sequential
patterns and simple periodicity of human mobility. However,
DiffMove outperforms all the baselines for all evaluation
metrics on both datasets. Specifically, for Recall, DiffMove
outperforms the best baseline, TRILL, by 9.57% on Geolife
dataset and by 11.56% on Foursquare dataset. For Distance,
DiffMove outperforms the best baseline, TRILL, by 19.66%
on Geolife dataset and by 7.93% on Foursquare dataset.
For MAP, DiffMove outperforms the best baseline, TRILL,
by 7.05% on Geolife dataset and by 9.56% on Foursquare
dataset. These significant improvements indicate that our
proposed DiffMove can better learn spatial temporal pat-
terns of both current and historical trajectories and recover
the details of human mobility. We also change the number
of generated samples M (in Section 4.3) from 4 to 1, which
simulates the normal single prediction method. We observe
the reduced performances in Table 1 (-1.85% Recall@1 on
Geolife and -1.7% Recall@1 on Foursquare) due to lack-
ing probabilistic generation and sampling, which highlights
the significance of the probabilistic generation instead of
deterministic single imputed embedding.

5.5. Ablation Analysis

We conduct ablations by systematically removing individual
components. The results of Foursquare dataset are presented
in Table 2. The recall, distance and MAP performance of
the first ablation with unconditional diffusion (No observed
location, no spatial, and target condition involved) drops sig-
nificantly to almost nonfunctional status. This emphasizes
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Table 1. Overall performance comparison in terms of Recall@K, Distance@K, and MAP.

Dataset Methods Recall@K Distance@K MAP

Recall@1 Recall@5 Recall@10 Distance@1 Distance@5 Distance@10

Geolife Top 0.1148 0.2451 0.3166 7863 6259 5176 0.1812
Markov 0.1417 0.3263 0.3974 6909 4974 4259 0.2304
PMF 0.1941 0.3436 0.4059 6506 4389 3555 0.2752
LSTM 0.2086 0.3917 0.4720 6318 3928 3068 0.2965
BiLSTM 0.2285 0.4538 0.5773 6209 3620 2255 0.3298
DeepMove 0.3045 0.5380 0.6371 5370 2052 1358 0.4131
AttnMove 0.3920 0.6696 0.7213 5342 2007 975 0.5046
PeriodicMove 0.4199 0.6893 0.7681 4209 1443 863 0.5385
TRILL 0.4721 0.7563 0.8364 3484 1112 603 0.5985
DiffMove w/ single gen-sample 0.4988 0.7701 0.8350 2905 973 601 0.6180
DiffMove 0.5173 0.7987 0.8578 2799 708 444 0.6407
%Improvement 9.57% 5.61% 2.56% 19.66% 36.33% 26.37% 7.05%

Foursquare Top 0.0865 0.1673 0.2268 8427 4919 3483 0.1347
Markov 0.1090 0.2010 0.2575 8345 4402 3125 0.1792
PMF 0.1215 0.2468 0.2887 8116 3971 3229 0.2358
LSTM 0.1393 0.2540 0.3143 7913 3804 2801 0.2519
BiLSTM 0.2323 0.3968 0.4703 6206 2745 1849 0.3154
DeepMove 0.2612 0.4631 0.5337 5189 2648 1649 0.3789
AttnMove 0.2975 0.5172 0.5746 4942 2396 1482 0.4078
PeriodicMove 0.3125 0.5534 0.6264 4704 1758 1197 0.4245
TRILL 0.3227 0.5636 0.6372 4639 1650 1074 0.4341
DiffMove w/ single gen-sample 0.3430 0.4614 0.5009 5206 1964 1339 0.4035
DiffMove 0.3600 0.6090 0.6876 4271 1548 989 0.4756
%Improvement 11.56% 8.06% 7.91% 7.93% 6.18% 7.91% 9.56%

the inadequacy of relying solely on the default diffusion
probabilistic model for the trajectory recovery task in la-
tent space and underscores the importance of integrating
multiple spatial and temporal related specific conditional
modules for effective learning and training. The removal of
the Temporal Transformer or Spatial Conditional Block sig-
nificantly impacts performance, emphasizing their critical
roles in reinforcing spatial and temporal constraints for miss-
ing locations, resulting in substantial improvement when
leveraging historical information. The removal of the Target
Conditional Block leads to decreased model performance,
highlighting the role of the target condition in guiding the
model to reconstruct specific embeddings in the locations
through the diffusion process. Additionally, the Missing
Location Decoder is also identified as a crucial component.
It can not be compared in the table since its removal ren-
ders the model nonfunctional, as this module plays a vital
role in converting the reconstructed embeddings of missing
locations into a decoded discrete ID space.

Table 2. Impact of components on Foursquare dataset, where δ
denoted the performance decline.

Ablation Recall(∆) Dis.(∆) MAP(∆)(m)

Unconditional 0.0416 (-88.44%) 7913 (-85.27%) 0.0944 (-80.15%)
Spatial Conditional Block 0.3382 (-6.06%) 4591 (-7.49%) 0.4496 (-5.47%)
Target Conditional Block 0.3493 (-2.97%) 4377 (-2.48%) 0.4632 (-2.61%)
Temporal Transformer 0.3023 (-16.03%) 4783 (-11.99%) 0.4166 (-12.41%)

5.6. Robustness Study

As shown in Table 3, our proposed model, DiffMove, consis-
tently outperforms the baseline models, AttnMove, Periodic-
Move and TRILL across various missing ratios. The second
best results are underlined and the improvements are listed
in the brackets. Notably, as the percentage of missing loca-
tions in historical trajectories increases from 20% to 80%,
DiffMove exhibits superior performance, achieving higher
Recall@10, lower Dist@10, and improved MAP scores
compared to the baselines. This suggests that DiffMove
is more robust in scenarios with higher missing percent-
ages of historical trajectories and sparser locations. The
significant reduction in Dist@10 for DiffMove indicates its
effectiveness in accurately recovering missing locations. Re-
markably, the Distance metric performance of our DiffMove
with 80% missing ratio even outperforms TRILL with 40%
missing rate and surpasses both PeriodicMove and Attn-
move, even when they have lower missing rates 20%. This
serves as one aspect of scalability and further reinforces the
efficacy and good potential of DiffMove in handling larger
datasets since it shows better performance even when the
model is utilizing a smaller portion of the same existing
data (larger missing ratio than those of baselines), which
provides insights into its applicability across various scala-
bility of missing ratio scenarios. These results underscore
the robust, scalable and superior performance of DiffMove
in more challenging task of trajectory recovery, making it a
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promising model for real-world applications.

Table 3. Performance w.r.t. Missing Ratios on Geolife
Methods Metrics Missing Rate

20% 40% 60% 80%
AttnMove Recall@10 0.7117 0.6985 0.6785 0.6160

Dist@10 987 1037 1174 1371
MAP 0.4815 0.4657 0.4226 0.4112

PeriodicMove Recall@10 0.7451 0.7392 0.7186 0.6857
Dist@10 884 954 1059 1176
MAP 0.5175 0.4750 0.4413 0.4076

TRILL Recall@10 0.8216 0.8038 0.7627 0.7436
Dist@10 682 720 915 1089
MAP 0.5760 0.5534 0.5111 0.5044

DiffMove Recall@10 0.8344 0.8163 0.7931 0.7863
Dist@10 507 617 681 695
MAP 0.6107 0.5730 0.5495 0.5099

5.7. Parameter Study

We also conduct some experiments to provide insights into
the performance of our model (DiffMove) across different
values of βT and embedding size.

Beta_end βT : Figure 4 and 5 illustrate the interplay be-
tween Recall@K, MAP, and Distance@K across different
values of βT . We vary the βT to change the noise schedule,
the Recall@1 and Distance@1 performance are more impor-
tant and seem to have increasing trends but drop when βT is
too large although there are some fluctuations for Recall@5
and Recall@10. We try to choose the optimal value at 0.6 af-
ter consideration of all tradeoffs. The relationship between
βT and spatial Distance@1 accuracy reveals specific βT

values that result in optimal spatial alignment, indicating
the importance of βT in shaping spatial aspects of trajectory
recovery performance.

Embedding Size: In addition to βT , Figure 6 and 7 illustrate
the variation in all metrics across different embedding sizes.
As expected, the initial increase of the embedding size con-
tributes to the increase of Recall@1 and Distance@1 since
more information is recorded by embedded vectors. How-
ever, too large embedding could also bring some uncertain
information and lead to saturation of prediction accuracy.
As a result, we choose the optimal value at 128.

6. Conclusion
In conclusion, this research addresses the problem of trajec-
tory recovery from sparse human mobility data by introduc-

ing a novel model, DiffMove. Leveraging an embedding-
space conditional diffusion framework, it excels in trajectory
recovery by constructing and utilizing conditional informa-
tion with trajectory spatial patterns, inter-trajectory depen-
dencies, temporal and target location patterns. The model is
innovatively designed and integrated with multiple condi-
tional feature extraction modules, tackling the complexity
of spatial temporal dependencies in a principled manner.
Our extensive experiments demonstrate that DiffMove out-
performs all state-of-the-art baselines, showcasing its effec-
tiveness in recovering missing locations. While DiffMove
demonstrates strong performance under random masking,
real-world uncertainty may involve structured missingness
(e.g., persistent gaps due to device failures). Future work
could explore models conditioned on specific missing pat-
terns.
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A. Appendix / Supplemental material
A.1. More Details on Transition Graph Construction of Spatial Conditional Block

The prior investigations (Xu et al., 2019; Wu et al., 2019; Sun et al., 2021) have demonstrated that a gated graph neural
network (GGNN) is adept at capturing intricate transition patterns among nodes. This characteristic renders the gated GNN
well-suited for addressing our specific problem. In the graph neural network layer, we handle each trajectory independently to
unveil the complex transition patterns concealed within each trajectory. To elaborate, we initiate the process by establishing
a directed graph for each trajectory. Subsequently, the gated GNN is employed on each of these directed graphs to refine the
location embeddings, thereby capturing the transition patterns into the model. Besides this, we manage to conduct data
fusion of diffusion step embedding into the gated GNN to make the transition pattern learning adaptive to the diffusion time
step.

Trajectory Graph Construction: The initial step of the graph neural network layer involves constructing a transition
graph representation for each historical and current trajectory in the context of trajectory recovery. Similar to session
recommendation, given a location IDs’ trajectory T : l1 → l2 . . . → lK , we consider each location li as a node and (li−1, li)
as an edge, representing the user’s movement from li−1 to li in the trajectory T . Consequently, each trajectory can be
conceptualized as a directed graph. The graph structure is learned by facilitating communication among distinct nodes.
Specifically, let AI,AO denote the weighted transitions of incoming and outgoing edges in the trajectory graph, respectively.
To address the possibility of repeated occurrences of locations in a trajectory, we assign each edge a normalized weight,
calculated as the edge’s occurrence divided by the outdegree of the start node of that edge. Consider transitions in a trajectory
[l1, l2, l3, l2, l4], the corresponding graph, the incoming matrix AI and the outgoing matrix AO are shown in Figure 8.

Figure 8. A example of a trajectory transition graph and the incoming and outgoing matrix A

A.2. Details on Diffusion Step Embedding

estep is the 128-dimension diffusion step embedding obtained from a special embedding layer DiffEmbedT (t) by sinusoidal
functions following previous works (Kong et al., 2021; Tashiro et al., 2021):

DiffEmbedT (t) =
(
sin(100·4/63t), . . . ,

sin(1063·4/63t), cos(100·4/63t), . . . , cos(1063·4/63t)

)
(12)

and it is further processed through a fully connected layer to obtain eT .

A.3. Details of Cross Attention in Spatial Conditional Block

Further details of Eq. (7) are elucidated in Eq. (13).
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α
(h)
i,k =

exp(ϕ(h)(eJ,iu , ej,ku ))∑K
g=1 exp(ϕ

(h)(eJ,iu , ej,gu ))
,

ϕ(h)(eJ,iu , ej,ku ) = ⟨W (h)
Q eJ,iu ,W

(h)
K ej,ku ⟩,

ẽj,i(h)u =

K∑
k=1

α
(h)
i,k (W

(h)
V ej,ku ),

ẽj,iu = ẽj,i(1)u ∥ ẽj,i(2)u ∥ · · · ∥ ẽj,i(H)
u ,

espa = ReLU(Wẽj,iu + eJ,iu ),

(13)

where W
(h)
Q ,W

(h)
K ,W

(h)
V ∈ Rd′×d are transformation matrices, and ⟨, ⟩ denotes the inner product function. Next, we

compute the representation of time slot i for each head by aggregating information from all locations in other time slots
based on the coefficients α(h)

i,k . The symbol ∥ denotes the concatenation operator, and H represents the total number of
heads.

A.4. Imputation (Sampling) Algorithm with DiffMove

Algorithm 1 Imputation (Sampling) with DiffMove
1: Input: a Location Embedding sample e0, No. of generated samples M , trained denoising function ϵθ
2: Output: Imputed missing value ¯̂eta0
3: Construct observation condition of e0 as eob0
4: for m = 1 to M do
5: etaT ∼ N (0, I) where the dimension of etaT corresponds to the missing indices of e0
6: for t = T to 1 do
7: Sample êtat−1 using Eq. (4) and Eq. (5)
8: end for
9: Record êta0

10: end for
11: Calculate mean value ¯̂eta0 by mean(êta0 )

A.5. Study of Number of Generated Samples M

We change the number of generated samples M from 4 to 1 (meaning only predict one single embedding and use it directly),
which simulates the normal deterministic way as an ablation study to some extent. We observe the Table 4 results of
reduced performances of the original DiffMove (-1.85% Recall@1 on Geolife and -1.7% Recall@1 on Foursquare) due to
lack of considering effects of probabilistic generation and sampling , which highlights the significance of the probabilistic
generation instead of deterministic single imputed embedding.

A.6. Implementation Details

DiffMove is trained using batch gradient descent with the Adam optimizer (Kingma & Ba, 2014), implemented in Python
and PyTorch (Paszke et al., 2019), on a Linux server equipped with an NVIDIA RTX A5000. We set random seed as
2021. Multi-task learning weights λ1 and λ2 are set as 1 after experimental study. We employed a learning rate of 0.001
with a weight decay of 1e-6. We set the location embedding size as 128, the steps (loops) of TGGNN as 2, the number
of heads for cross attention as 4, diffusion step embedding dimension and temporal length embedding dimension are 128.

Dataset Methods Recall@1 Recall@5 Recall@10 Distance@1 Distance@5 Distance@10 MAP

Geolife DiffMove w/ single gen-sample 0.4988 0.7701 0.8350 2905 973 601 0.6180
DiffMove 0.5173 0.7987 0.8578 2799 708 444 0.6407

Foursquare DiffMove w/ single gen-sample 0.3430 0.4614 0.5009 5206 1964 1339 0.4035
DiffMove 0.3600 0.6090 0.6876 4271 1548 989 0.4756

Table 4. Performance comparison between DiffMove variants
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We set the number of residual layers as 4, residual channels as 128, and attention heads for the temporal transformer
as 8. We set the number of the diffusion step T = 50, the minimum noise level β1 = 0.0001, and the maximum noise
level βT = 0.6. We tuned hyperparameters for each dataset to achieve optimal results. Following recent studies (Song
et al., 2021; Nichol & Dhariwal, 2021), a quadratic schedule was adopted for decay of αt to enhance sample quality:

βt =
(

T−t
T−1

√
β1 +

t−1
T−1

√
βT

)2

.

A.7. Details of Baselines

We evaluate the proposed approach against several baseline methods, including both traditional approaches grounded in our
understanding of human mobility and advanced deep learning models capable of capturing intricate mobility patterns:

• Top: A straightforward counting-based method that selects the most frequently visited location in the training set as the
recovery for each user.

• Markov (Gambs et al., 2012): A commonly used method treating visited locations as states and constructing a transition
matrix to capture first-order transition probabilities.

• PMF (Mnih & Salakhutdinov, 2007): An advanced model rooted in conventional collaborative filtering, based on the
user location matrix.

• LSTM (Liu et al., 2016): A deep learning model that captures sequential patterns through recurrent neural networks,
using the predicted next time slot as recovery.

• BiLSTM (Zhao et al., 2018): An extension of LSTM with bidirectional recurrent neural networks, incorporating
spatial-temporal constraints from all observed locations.

• DeepMove (Feng et al., 2018): A model that jointly considers user preferences and sequential dependencies for
predicting the next location used for recovery.

• AttnMove (Xia et al., 2021): A method leveraging various attention mechanisms to capture the regularity and patterns
in a user’s mobility.

• PeriodicMove (Sun et al., 2021):A recent model that considers factors such as transition patterns among locations and
periodicity in human mobility.

• TRILL (Deng et al., 2023): The latest state-of-the-art model which is capturing global mobility patterns leveraging
graph convolutional networks for mobility patterns.

Table 5. Basic statistics of mobility datasets.

Dataset City #Historical #Current #Distinctive Total #IDs Processed
Trajs Trajs Locations in Training (approx.)

Foursquare Tokyo 11,430 2,286 1,411 404.9K
Geolife Beijing 15,648 3,912 1,124 563.3K

A.8. Pre-processing

For our location representation, We collect the cities’ street map data of Tokyo and Beijing from an online map source
and partition the region into distinct blocks. Each of these blocks is considered as an individual location, with an average
area size of approximately 0.25 km2 (500m x 500m for both datasets). Other pre-processings are the same as (Deng et al.,
2023). As per (Chen et al., 2019), a 30-minute time interval is employed for both datasets. Further details and statistics are
presented in Table 5. Our framework is not inherently tied to the 30-minute interval and can easily adapt to other interval
lengths, such as 10 minutes or even finer resolutions, provided the data supports such granularity. We can always treat the
time interval as a parameter to tune on the data side. This flexibility makes our method broadly applicable, as it caters to
human mobility patterns by modeling discrete location transitions effectively. Human mobility typically involves meaningful
transitions at specific timeframes (e.g., work, shopping, dining), which align naturally with discrete intervals.
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A.9. Scalability Study

Based on the experimental results shown in Figures 9 and 10, we conducted a scalability study comparing the performance
of the DiffMove and best baseline model TRILL across different scaling ratios ranging from 20% to 100% to vary the scale
of the whole training dataset. Regarding recall performance, as depicted in Figure 9, DiffMove consistently outperforms
TRILL across all scaling ratios. In terms of distance performance, illustrated in Figure 10, both models display an increasing
trend with higher scaling ratios. Notably, DiffMove maintains a lower distance value (more accurate) compared to TRILL
across all scaling ratios, indicating superior trajectory recovery accuracy. During the experiments, we also found that the
average training time per epoch ranges from 4.2s to 22.4s (scaling from 20% to 100% of full training data) which is still
comparable with the best baseline. The training time can satisfy the common requirement in company services since this
model is only for offline applications of trajectory recovery. These findings suggest that DiffMove exhibits better scalability
and accuracy to variations in different data scales, making it a promising solution for trajectory recovery tasks across diverse
datasets and scaling scenarios.
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