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ABSTRACT

Recent large-scale 3D diffusion models have achieved remarkable success in gen-
erating high-quality and detailed 3D objects. However, due to their reliance on
randomized initial noise sampling, these models often produce 3D objects that,
while visually similar to input images, lack precise consistency with them. We at-
tribute this limitation to the fundamental tension between generative modeling and
faithful reconstruction. We argue that the image-to-3D task should be the combi-
nation of reconstruction at known views and completion at unknown views. To
address this challenge, we propose Consistent3DGen, a training-free framework
that ensures consistency for existing 3D diffusion models. Our approach lever-
ages state-of-the-art pixel-aligned point cloud reconstruction algorithms, such as
VGGT, to obtain geometrically consistent 3D point clouds from input images. We
then introduce a mechanism to map these front-facing point clouds into the VAE
latent space of 3D diffusion models, and design a novel algorithm for completing
the back part by front-partial denoising guidance. Extensive experiments demon-
strate that our method achieves high consistency in the face-forward direction of
3D models, especially in situations where consistency is required, e.g., characters.

1 INTRODUCTION

The recent release of large-scale 3D datasets, particularly Objaverse (Deitke et al., 2023b;a), has
catalyzed significant advances in 3D diffusion models (Lu et al., 2024; Li et al., 2025b). These de-
velopments have profound implications for automated 3D asset creation, promising to substantially
reduce costs across diverse industries, including gaming, e-commerce, film production, and beyond.

Recent advances in 3D diffusion models have explored diverse latent representations to enhance
generation quality and controllability. Early approaches (Zhang & Wonka; Zhang et al., 2024) pri-
marily employed latent sets or VecSets (Zhang et al., 2023) as the foundational representation for
VAE latent spaces. Subsequently, a paradigm shift toward sparse voxel has emerged, enabling ex-
tremely high spatial resolution and achieving remarkable fidelity in geometric details (Ren et al.,
2024b; Xiang et al., 2025; Wu et al., 2025; Li et al., 2025b; Chen et al., 2025). These explicit
representations also provide enhanced controllability. Despite these significant advances, a critical
limitation persists: the stochastic nature of initial noise sampling leads to substantial variability in
the generated 3D objects, particularly when viewed from the input image perspective. This inherent
randomness, while beneficial for diversity, fundamentally undermines the user’s ability to obtain
a precise 3D object that they want. This phenomenon can be characterized as a form of 3D visual
hallucination, analogous to hallucination problems in the field of image generation (Lyu et al., 2025)
and LLM (Achiam et al., 2023).

We identify this limitation as stemming from a fundamental tension between generative modeling
and faithful reconstruction. Generative modeling prioritizes learning rich distributions. Its stochas-
tic nature, which relies on sampling from random initial noise, inherently introduces variability that
enhances creative generation. In contrast, faithful reconstruction demands strict adherence to the ob-
served evidence, requiring the model to precisely match the input view. This contradiction presents
a significant challenge: how can we harness the powerful generative capabilities of diffusion models
while ensuring strict consistency with input observations?
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(b) Our Solution
Input Direct3D-S2 Trellis Sparc3D

VAE Encoded Forward FacePoint Cloud from VGGT Back Completion

(a) Baselines

Figure 1: (a) Though baseline methods can produce highly detailed 3D objects from images, there
is still a lack of detail-consistency. (b) We introduce a pixel-aligned 3R model, VGGT, to produce
a consistent foreground surface, while using a diffusion model to complete its back.

To address this fundamental challenge, we propose a training-free framework, that elegantly recon-
ciles the precision of deterministic reconstruction with the creative power of generative diffusion.
Our key insight lies in decoupling the reconstruction and generation tasks: we leverage state-of-
the-art deterministic reconstruction models to establish geometrically faithful constraints for visible
regions, while preserving the diffusion model’s generative capabilities for completing unobserved ar-
eas. Specifically, we harness recent advances in pixel-aligned reconstruction, such as VGGT (Wang
et al., 2025a), which produces highly accurate front-facing 3D surface point clouds. To integrate
these geometric priors into the denoise process, we develop a novel point-to-latent mapping algo-
rithm that transforms the front-facing surface point cloud into the latent space of 3D diffusion mod-
els. Building upon this foundation, we introduce a front-partial denoising guidance mechanism that
strategically steers the diffusion process to converge toward the predetermined partial latent for vis-
ible regions, while allowing unconstrained generation for occluded areas. This dual-mode approach
ensures that the final 3D output maintains strict consistency with the input view without compro-
mising the model’s ability to synthesize plausible completions. Extensive experiments validate the
effectiveness of our framework.

To summarize, our contributions are listed as follows:

• We propose Consistent3DGen, a training-free framework that guarantees consistency be-
tween input views and generated 3D objects.

• We design an algorithm to map the surface point cloud to partial latent and a front-partial
denoising guidance mechanism.

• We propose a method that can complete the back part for a given foreground geometry.

2 RELATED WORKS

3D Diffusion Models. With the introduction of a large-scale 3D dataset (Deitke et al., 2023b), 3D
Generative Models achieve remarkable performance in image-to-3D generation tasks. In these meth-
ods, the most prominent direction is diffusion-based models, achieving unbelievable details gener-
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ation. 3DShape2VecSet (Zhang et al., 2023) proposes a VAE architecture, enabling the 3D shape
compression with latent representation. Based on this latent design, LaGeM (Zhang & Wonka),
Clay (Zhang et al., 2024), CraftsMan3D (Li et al., 2025a), etc, propose different diffusion model
designs from different aspects. Besides, the latent set, some researchers focus on sparse data struc-
tures, such as sparse voxels, which only store and compute at the partial voxels. These methods can
generate much higher spatial resolution 3D models by removing the cost for empty voxels in the
space. XCube (Ren et al., 2024a) is the first work to train VAE and Diffusion based on sparse voxel
representation. Trellis (Xiang et al., 2025) designs a representation, Structured LATent (SLAT) ar-
chitecture, as the data structure for the VAE latent space. To further release the potential of the sparse
voxel, Direct3D-S2 (Wu et al., 2025) develops a simplified self-attention mechanism to reduce the
computational cost introduced byO(n2) complexity in vanilla self-attention, supporting 10243 spa-
tial resolution training. Ultra3D (Chen et al., 2025) also designs a similar part-level self-attention
mechanism. Sparc3D (Li et al., 2025b) optimizes the dense-based mesh extraction algorithm for
sparse voxel. Different from maximizing the spatial resolution, Hi3DGen (Ye et al., 2025) proposes
to utilize the normal maps as the bridge from RGB to 3D, achieving higher 3D accuracy. In this
paper, we propose an algorithm that can make the generated mesh aligned with the input image in
a training-free manner. Therefore, following the progress of 3D diffusion models, our method can
evolve together.

Other 3D Generative Models. Besides diffusion models, there are some other kinds of 3D genera-
tive models, such as GAN (Schwarz et al., 2020; Jiang et al., 2023; Chan et al., 2021), feed-forward
models (Hong et al., 2023; Jiang et al., 2025; Xu et al., 2024), auto-regressive models (Siddiqui
et al., 2024; Tang et al.; Zhao et al., 2025), etc. In the early era of 3D generative models, there were
not large-scale 3D datasets. Therefore, the researchers train 3D-aware GAN models (Goodfellow
et al., 2014) using 2D image datasets, like FFHQ (Karras et al., 2019). These models can only gen-
erate 3D models for a single class. After the release of a large-scale 3D dataset, Objaverse (Deitke
et al., 2023b;a), LRM (Xie et al., 2024) is the first method that trains a single-image-to-3D feed-
forward model for arbitrary objects’ generation. Following this pipeline, numerous works are mak-
ing progress. For example, InstantMesh (Xu et al., 2024) implements a mesh feed-forward model
from 6 sparse views. MeshFormer (Liu et al., 2024) re-designs the framework based on sparse voxel
to improve the spatial resolution. PRM (Ge et al., 2024) introduces the physically-based rendering
into this pipeline for photorealistic input and rendering. Nonetheless, these methods struggle in
generating detail-abundant meshes compared with diffusion models. More recently, auto-regressive
models have received huge attention due to the great success of Large Language Models. Differ-
ent from previous methods, with an iso-surface extraction algorithm, auto-regressive models aim at
real-world application generation. However, limited by the tokenization algorithm for mesh faces,
the useful training data is limited and can not generate fine-detail meshes with a large number of
faces. Considering these disadvantages, we focus on improving the 3D diffusion models.

3D Reconstruction Models. Different traditional 3D reconstruction methods, such as Structure-
from-Motion and Neural-based per-scene optimization methods (Mildenhall et al., 2021; Kerbl et al.,
2023), recent methods exhibit a clear evolution towards transformer-based and pixel-aligned generic
feed-forward models. For each pixel in the input image, the 3D reconstruction models predict the
point coordinate in 3D space. A pioneering method, DUSt3R (Wang et al., 2024), introduces a
transformer-based paradigm that requires no prior camera calibration, effectively relaxing classical
projective constraints and unifying monocular and stereo reconstruction in one framework. Subse-
quent works improve this method from many aspects, including accuracy (Smith et al., 2025; Dong
et al., 2025) and scene scale (Yang et al., 2025; Wang et al., 2025b;a). Among these methods,
VGGT (Wang et al., 2025a) achieves the current best performance both on the large-scale scene
reconstruction and sparse-view reconstruction, demonstrating a huge potential. The pixel-aligned
nature significantly facilitates the accuracy corresponding to the input image. Therefore, we incor-
porate this nature into 3D generative models for a better alignment to user input.

3 METHOD

In this section, we first introduce the necessary components of our training-free inference system
(Sec. 3.1). Then, we introduce our whole pipeline (Sec. 3.2).
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3.1 BACKGROUND

3.1.1 SPARSE VOXEL

Unlike conventional dense voxel grids that allocate memory for every cell in the volume, a sparse
voxel representation stores only the occupied cells. Formally, a dense grid with spatial resolution
H ×W × D and C feature channels is a tensor X ∈ RH×W×D×C . In contrast, the sparse form
comprises (i) an index tensor I ∈ NNa×3 containing integer coordinates (x, y, z) of the Na active
voxels, and (ii) a feature tensor F ∈ RNa×C storing the corresponding features. For example, when
H = W = D = 64 and C = 16, the dense representation is 64 × 64 × 64 × 16, whereas if only
Na = 30,000 voxels are active, the sparse representation stores a 30,000 × 3 index tensor and a
30,000 × 16 feature tensor. This design substantially reduces memory footprint and, by restricting
computation to the active set, avoids unnecessary operations in empty regions; consequently, both
storage and compute scale with Na rather than with the full grid volume H ×W ×D.

3.1.2 SPARSE-VOXEL-BASED 3D DIFFUSION MODELS

We begin by explaining the sparse-voxel-based 3D diffusion model. We chose Direct3D-S2 (Wu
et al., 2025) as our base model, the SoTA publicly available 3D diffusion model. This model uses a
flow matching approach with three stages: one dense stage followed by two sparse super-resolution
stages. The model works through the following steps:

Stage 1: Dense Processing First, we sample a random Gaussian noise:
xdense
t ∈ R16×16×16×16 ∼ N (0, 1). (1)

Given an input image I ∈ RH×W×3, a flow-matching DiT model ϵdense(·) denoises xdense
t iteratively:

xdense
t−1 = xdense

t − ϵdense(xdense
t , I, t). (2)

After obtaining xdense
0 , the dense-stage VAE decoder maps it to an occupancy grid Odense ∈

R64×64×64.

Stage 2: 512 Resolution We select sparse voxel coordinates Index512-stage ∈ NN1×3 at locations
where Odense > 0.2, where N1 is the number of selected voxels. We then sample the initial sparse
noise as the feature of the sparse voxel:

x512-stage
t ∈ RN1×16 ∼ N (0, 1). (3)

The sparse latent is denoised iteratively as

x512-stage
t−1 = x512-stage

t − ϵ512-stage({x512-stage
t , Index512-stage}, I, t). (4)

Next, x512-stage
0 is decoded into an SDF grid S512 ∈ R512×512×512. Then, the 512-stage mesh is

extracted from S512 using the marching cube algorithm.

Stage 3: 1024 Resolution We form Index1024-stage ∈ NN2×3 by selecting grid points whose dis-
tance to the 512-stage surface is below a threshold, where N2 is the number of selected voxels. We
sample:

x1024-stage
t ∈ RN2×16 ∼ N (0, 1). (5)

Then, the sparse latent is denoised iteratively by

x1024-stage
t−1 = x1024-stage

t − ϵ1024-stage({x1024-stage
t , Index1024-stage}, I, t). (6)

Next, x1024-stage
0 is decoded into an SDF grid S1024 ∈ R1024×1024×1024. Finally, the final mesh is

extracted from S1024 using the marching cube algorithm.

3.1.3 3D RECONSTRUCTION MODELS

We now introduce the point-map-based 3D reconstruction model. We choose the currently most
robust model, VGGT (Wang et al., 2025a), as the base model. Given the input image I , VGGT
model can predict a 3D coordinate of point’s position for each pixel in the image with a confidence.

Pinit, C = VGGT(I) (7)
Then, we filter out the low-confidence area by a threshold to get the single-layer object shape from
the input direction.
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Figure 2: The framework of Consistent3DGen. (a) We first use the point map prediction model,
VGGT, to get the foreground target and transform it into an SDF Field. (b) Next, we encode it into
the latent space and use this information to guide the back completion.

3.2 CONSISTENT3DGEN

We argue that the image-to-3D task is equal to the combination of reconstruction at known views and
generation at unknown views. Next, we introduce how we implement this training-free framework
based on this idea.

3.2.1 FOREGROUND EXTRACTION

As illustrated in Fig. 2 (a), our inference pipeline proceeds as follows. Given an input image I , we
first apply VGGT to predict a dense point map P . To obtain a continuous surface representation
amenable to downstream processing, we convert the point map, an [H,W, 3] dimension tensor, into
a triangle mesh. Specifically, we connect neighboring pixels into faces wherever a validity mask is
satisfied. The mask is obtained from the confidence in the VGGT prediction and the sudden change
of coordinates. The face-construction routine is detailed in Alg. 1. Finally, we can compute the SDF
value using the estimated mesh surface.

3.2.2 BACK COMPLETION

As shown in Fig. 2 (b), this section explains how we inject reconstruction signals into the diffusion
denoising process. We start from the SDF Field obtained from the last section. Firstly, we use
the 512-stage VAE encoder and the 1024-stage VAE encoder to encode the SDF field and cut off
the back-half part to get the target sparse latent x512-stage

fg and x1024-stage
fg for the direction of the user

input, whose spatial resolution are 643 and 1283 respectively. Next, we use the dense-stage VAE
encoder to encode the occupancy grid, which is from the sparse index of x512-stage

fg , into dense latent
xdense
fg , whose spatial resolution is 16. We then use this latent as the initial latent to call the dense-

stage DiT to denoise this latent for completing the missing part of this object. After decoding the
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Algorithm 1 Mesh Face Generation Algorithm

Require: rows: number of grid rows, cols: number of grid columns, mask: boolean mask array
Ensure: faces: list of triangular face indices

1: faces← ∅ ▷ Initialize face list
2: for i← 0 to rows− 2 do
3: for j ← 0 to cols− 2 do
4: p1 ← i× cols+ j ▷ Top-left vertex
5: p2 ← i× cols+ (j + 1) ▷ Top-right vertex
6: p3 ← (i+ 1)× cols+ j ▷ Bottom-left vertex
7: p4 ← (i+ 1)× cols+ (j + 1) ▷ Bottom-right vertex
8: if mask[i][j] ∧mask[i][j + 1] ∧mask[i+ 1][j] ∧mask[i+ 1][j + 1] then
9: faces.APPEND([p1, p2, p3]) ▷ First triangle

10: faces.APPEND([p2, p3, p4]) ▷ Second triangle
11: end if
12: end for
13: end for
14: return faces

denoised latent, we can obtain a new occupancy grid with 643 spatial resolution. We compute the
union set of the index where occupancy is greater than 0.5 and the index of x512-stage

fg as the sparse
index Index512-stage ∈ RN1×3. According to these sparse positions, we randomly sample the initial
latent use Eq. 3. But different from the original Direct3D-S2 (Wu et al., 2025), we design a method
to partially guide the denoising process using the previously encoded surface latent x512-stage

fg ∈
RN ′

1×16, where N ′
1 < N1. Specifically, we denote the position maskM ∈ RN1 , where the position

in x512-stage
fg is set to 1 and the other is set to 0. In this stage, the original flow-matching denoising

equation could be written as Eq. 4. Since we have the part target, we could obtain the partial update
direction at timestep t as

∆t = (x512-stage
t ⊙M)− x512-stage

fg . (8)

Therefore, to iteratively influence the final result, i.e., making the partial area generate our wanted
shape with the other area is denoised naturally, our final denoising equation is as follows

x512-stage
t−1 = x512-stage

t − (ϵ512-stage({x512-stage
t , Index512-stage}, I, t) + λ∆t), (9)

where λ ∈ R is a coefficient to control the guiding strength. For 1024-stage denoising, the proce-
dures are similar to those of the 512-stage. After these injections, we can get a consistent object at
the input direction.

3.2.3 DISCUSSION

How do we encode a single-layer mesh face into SDF latent space in Direct3D-S2?

Surface

0.1 0.10.0 0.20.2

Surface

0.0 0.0-1.0 +1.0+1.0

Surface

Normalize

Unsigned Distance Signed Distance

Figure 3: We transform the single-layer surface to
a thin and watertight mesh by normalizing the un-
signed distance value to [−1, 1].

Since we can only obtain a single-layer sur-
face from Algorithm 1, it does not meet the re-
quirements of a watertight mesh for Direct3D-
S2’s VAE. To address this, we first calculate
the unsigned distance. Then, we select the area
where the distance is less than a threshold, i.e.,
the sparse voxels near the surface. We only use
these sparse voxels to finish the later computa-
tion. As illustrated in Fig. 3, within the nar-
row area near the surface, we then normalize
these values to the range of [−1, 1], where the
zero-level set emerges naturally. This transfor-
mation converts the simple surface into a thin,
watertight mesh. As shown in Fig. 4, the VAE
trained by Direct3D-S2 can encode this mesh successfully.
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Input Alg. 1 VAE Recon Input Alg. 1 VAE Recon

Figure 4: Evaluation of VAE Reconstruction.

Why do we use the front-half part of the sparse latent?

As discussed in the previous paragraph, we convert the single-layer surface into a thick, watertight
mesh. However, our goal is to retain only the front surface of this mesh. Since the latent space relies
on an explicit sparse voxel representation, we can directly use the front half of the mesh as the target
partial latent. Additionally, because the SDF has a certain thickness, failing to cut away the rear half
would result in a noticeable gap between the reconstructed back surface and the front surface.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

All experiments are conducted on a single NVIDIA A40 48GB GPU. For the foreground surface
point cloud extraction, we utilize the official VGGT-1B model, which processes 518×518 images as
input. The back completion is performed using Direct3D-S2 V1.1. The foreground Signed Distance
Field (SDF) extraction takes approximately 10 seconds. For the back completion, we apply the same
strategy as in Direct3D-S2, reducing the number of mesh faces using a remeshing algorithm with
a simplification coefficient of 0.95. As a result, the generated meshes typically contain between
300,000 and 1,000,000 faces. Consequently, the back completion process takes about 3-5 minutes,
which is consistent with the time required by Direct3D-S2.

4.2 EVALUATION OF VAE RECONSTRUCTION

As shown in Fig. 4, to demonstrate that our algorithm could transform the point-map prediction into
the 3D latent space of Direct3D-S2, we show the input image, VGGT processed output, and the
reconstructed mesh that was first encoded by the VAE encoder, and then decoded by the VAE de-
coder. Our algorithm has proven effective in generating a reliable face-forward latent representation,
with the reconstructed mesh closely matching the input image in a nearly one-to-one manner. The
reconstructed mesh match the input image nearly in a one-to-one manner. Additionally, for some
unstable outputs from VGGT, such as test case 3 (the monster) in Fig.4, small holes appear in the
point map. Surprisingly, they are removed in the VAE reconstructed mesh, which demonstrates a
strong robustness. Remarkably, these holes are eliminated in the VAE-reconstructed mesh, demon-
strating the algorithm’s robustness. These results lay a strong foundation for the subsequent guided
denoising process.

4.3 OVERALL COMPARISONS

As shown in Fig. 5, we provide a comparison with recent open-sourced SoTA 3D generative models,
including Trellis (Xiang et al., 2025), Hi3DGen (Ye et al., 2025), and Direct3D-S2 (Wu et al., 2025).
A key observation is that direct generation often leads to severe hallucinations. For instance, in

7
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Input Ours Hi3DGenTrellisDirect3D-S2 Sparc3D

Figure 5: Overall comparisons with Direct3D-S2 (Wu et al., 2025), Trellis (Xiang et al., 2025), and
Hi3DGen (Ye et al., 2025).

the first test case, where an ancient coin with four Chinese characters is used as input, all three
baseline methods fail to generate the correct characters. While they place symbols in the correct
positions, they do not match the intended characters. In contrast, our approach ensures pixel-aligned
foreground generation, allowing for a precise one-to-one correspondence between input images and
generated objects. In the second test case, other methods not only fail to map the geometric details
accurately from a frontal perspective but also introduce extraneous features that are not present in the
input. Our method, on the other hand, accurately preserves the geometric consistency on the front
side and generate the corresponding structures on the back side. In addition to the aforementioned
methods, we also include comparisons with closed-source approaches in the supplementary material.

4.4 ABLATION STUDIES

The effect of cutting off half of the sparse voxel. As shown in Fig. 6, we validate the conclusion of
the discussion in Sec. 3.2.3. If we directly use the whole foreground latent, there will be an obvious

8
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w/o w/ w/o w/

Figure 6: Ablation studies for the strategy of cutting half the foreground voxels. “w/o” represents
“without the cutting-off strategy”. “w/” represents “with the cutting-off strategy”.

𝜆 = 0.0 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 𝜆 = 0.5Input

Figure 7: Ablation studies for the foreground guiding strength λ.

gap between the foreground and the background. To maintain the naturalness of the connection, we
choose to cut off the back half of the voxel.

The effect of guiding strength λ. As shown in Fig. 7, we demonstrate the face-forward surface
denoising result. As the guiding strength λ increases, we can observe the text gradually becoming
more and more consistent with the input image. To minimize the impact on the entire system, we
select values that no longer change during convergence.

5 CONCLUSION

Current 3D generative models often struggle to generate detail-aligned and consistent 3D geom-
etry in correspondence with the input image. To address this issue, we propose a training-free
approach that mitigates these challenges. We assert that the image-to-3D task could be viewed as
foreground reconstruction with background completion. To achieve this, we leverage the recent 3R
model, which generates a pixel-aligned point map, i.e., point cloud corresponding to the input im-
age. Building on this idea, we design an algorithm that maps the foreground point cloud into the
latent space of the 3D VAE. Subsequently, we employ a paired 3D diffusion model to complete
the geometry of the object’s back side. Theoretically, our framework is adaptable to any point map
prediction model and sparse-voxel-based 3D diffusion model. As both types of models continue to
advance, the performance of our framework is expected to improve accordingly.

Limitations. As a training-free framework, our method relies heavily on the performance of the
base models. For instance, the current base model, VGGT, faces challenges with high-frequency
reconstruction, due to the limitation of 518 × 518 input resolution. Therefore, our method requires
better base models for further improvements.

Future Work. Besides developing the training-free methods, we can improve the overall perfor-
mance by 1) finetuning VGGT for better object-level performance, and 2) developing a specialized
completion network to accomplish the back completion task.
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REPRODUCIBILITY STATEMENT

Upon acceptance of the paper, we will release the project code. The code will be made available in
a public repository, such as GitHub, to ensure transparency and accessibility for future researchers.
Additionally, we will provide clear documentation, including setup instructions, dependencies, and
detailed explanations of the key algorithms and models used in the study. This will allow others
to easily replicate our experiments, validate our results, and build upon the work presented in this
paper. The results of all other methods are from their official repository or website.
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A COMPARISONS WITH CLOSED-SOURCED METHODS

We also compare the generation quality with recent state-of-the-art closed-source 3D generative
models, including Sparc3D (Li et al., 2025b), Hunyuan3D-2.5 (Lai et al., 2025), and Ultra3D (Chen
et al., 2025). As shown in Fig. 8, these models exhibit impressive detail and significantly higher
consistency compared to recent open-source methods. However, they still fail to generate accurate
Chinese characters. While characters with simple glyphs are generated correctly, inconsistencies
persist. In contrast, more complex characters are often generated incorrectly (as indicated by the
red circle in Fig. 8). In comparison, our method, which utilizes pixel-aligned foreground surfaces,
achieves much higher consistency.

Input Ours Ultra3DHunyuan3D-2.5Sparc3D

Figure 8: Comparison with closed-sourced methods.

B THE USE OF LARGE LANGUAGE MODELS (LLM)

We used OpenAI’s GPT-5 to assist with the refinement and proofreading of certain sentences in this
paper. The LLM was used exclusively to enhance the clarity and coherence of our writing. All
content contributions are made by the authors.
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