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Figure 1: Efficient video feature encoding for Zero-shot Natural Language Temporal Video
Grounding (NLTVG). (a) The naive video encoding approach has a high computational cost when
computing dense frame features, which are crucial for precise temporal grounding. (b) Our Resid-
ualViT significantly reduces this cost, enabling both efficient and accurate temporally dense feature
extraction. (c) Comparing with state-of-the-art methods, we achieve a striking balance between com-
pute cost (x-axis) and accuracy (y-axis) for the NLTVG task (here on the Charades-STA dataset).

ABSTRACT

The goal of this work is to efficiently compute frame-level features from videos
for the Zero-Shot Natural Language Temporal Video Grounding (NLTVG) task.
The contributions of this work are three-fold. First, we introduce a novel vision
transformer (ViT) architecture, dubbed ResidualViT, that capitalizes on the large
temporal redundancies in video. Our architecture incorporates (i) learnable resid-
ual connections that ensure temporal consistency across consecutive frames and
(ii) a token reduction module for enhancing processing speed by selectively dis-
carding temporally redundant information. Second, we describe a lightweight
distillation strategy that enables learning parameters of ResidualViT from exist-
ing frame encoders without additional manual annotation. Finally, we validate the
effectiveness of our approach across three diverse datasets, demonstrating signifi-
cant reductions in computational cost (up to 60%) and improvements in inference
speed (up to 2.5× faster), all while observing marginal accuracy reduction with
respect to the teacher model.

1 INTRODUCTION

Video content has become ubiquitous across various platforms, driving the need for effective meth-
ods to parse and understand video data at scale. This is particularly crucial for applications such
as search and retrieval, where the ability to quickly locate specific content within videos based on
natural language queries can significantly enhance the user experience. Recent advancements in
dual-encoder foundation models (Radford et al., 2021) have shown promising results in addressing
these needs through zero-shot learning approaches, making them highly versatile. We argue that the
zero-shot setting holds great merits as it favors developing a single strong model that can general-
ize to multiple tasks and datasets, enabling scalable, flexible, and easily maintained smart services
for users and eliminating the need for task-specific finetuning. However, deploying such models
in video understanding tasks, especially over extensive datasets, presents substantial computational
challenges. Videos are notoriously data-heavy, and applying high-capacity models naively to every
video frame is computationally prohibitive (Figure 1a). For instance, using CLIP’s ViT-L/14 model
to compute visual features for every frame in a 2.5M 30-second videos dataset on high-end A100
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GPUs would require over 300 GPU days (or over 7000 GPU hours). Therefore, reducing the com-
putational demands of current large-scale pretrained foundation models is imperative for enabling
the practical and scalable deployment of video understanding technologies.

Prior approaches for reducing the compute cost of a pre-trained model primarily aim to distill a
model’s representation directly into a lower-capacity model (Dehghani et al., 2023; Hao et al., 2022;
Heo et al., 2019; Wu et al., 2022b). While these efforts result in a more efficient model, distilling
all the information from the larger model into the smaller one is challenging and often leads to a
degradation in recognition accuracy. Moreover, these approaches naively treat video frames inde-
pendently and do not explicitly take advantage of the temporal redundancy inherent in videos, which
could further optimize processing.

To overcome these limitations, this work aims to compute video frame features efficiently given a
pretrained vision transformer (ViT) model. As illustrated in Figure 1b, our solution capitalizes on
the observation that nearby frames are often visually similar. Drawing inspiration from standard
video compression techniques, which store a sparse set of I-frames (self-contained, fully-formed
frames) and a denser set of P-frames (differences or changes from the previous frame), where the
latter have high compression ratios (up to two orders of magnitude (Wu et al., 2018)), we adopt a
similar strategy.

Our first contribution is an approach that computes the full ViT model representation on a sparse set
of frames while providing an efficient approximation for representing the dense set of nearby frames.
This strategy effectively mirrors the I-frame and P-frame method used in video encoding, leading to
significant reductions in computational demand. We refer to the two sets of output representations
as I-features (self-contained computed via a regular full ViT model) and P-features (efficiently com-
puted using I-features and exploiting the temporal continuity of video). To compute the efficient
P-features, we propose a novel vision transformer architecture (dubbed ResidualViT) that comprises
two changes to the architecture of the pretrained ViT encoder. First, we compute a learnable residual
token given a nearby I-feature. This residual token allows the ResidualViT encoder to exploit the
temporal continuity of nearby video frames by incorporating their computed features. Second, we
include a token reduction module (Ding et al., 2023; Haurum et al., 2023; Hou et al., 2022a; Bolya
et al., 2022) in the ResidualViT encoder that significantly reduces the number of tokens used to
compute P-features, substantially reducing their encoding costs. Combining these modules allows
the ResidualViT encoder to efficiently and accurately approximate the target features.

As our second contribution, we propose a student-teacher distillation training objective that mini-
mizes the loss between the vision-language embedding similarities produced by our efficient Resid-
ualViT encoder and the features obtained from CLIP’s pretrained Vision Transformer (ViT) back-
bone. This setup enables our ResidualViT encoder to replicate features from CLIP. The training
is lightweight, as only the residual tokenizer module is learned while the ViT encoder weights re-
main frozen. This strategy allows us to fully harness the capabilities of CLIP without the need for
large-scale training.

As our third contribution, we demonstrate the potential for practical and efficient search in videos
provided by ResidualViT for the natural language temporal video grounding (NLTVG) task. Our
model significantly reduces frame encoding costs with minimal search accuracy degradation (Fig-
ure 1c) on three diverse benchmarks. A thorough ablation study complements and validates our pro-
posed solution. Lastly, ResidualViT’s visual representations are tested on the complementary task
of Automatic Audio Description generation (Han et al., 2023), achieving comparable performance
to the CLIP baseline at a lower computational cost and demonstrating the strong generalization
capabilities of our proposed architecture.

2 RELATED WORK

Image Foundation Models for Video Applications. The analysis of video data introduces many
technical challenges arising from its inherent temporal and spatial complexities, large data volume,
and high temporal redundancy. As a way to mitigate these challenges and ease the development of
new tools, the research community has resorted to applying image-based models (He et al., 2016;
Radford et al., 2021; Simonyan & Zisserman, 2014) to video tasks (Castro & Heilbron, 2022; Di-
wan et al., 2023; Luo et al., 2022; Nam et al., 2021; Soldan et al., 2022; 2021) with much success
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despite the image-based architectures’ inability to reason about the temporal dimension. Moreover,
dedicated temporal modeling (Liu et al., 2023a; Ma et al., 2022; Tu et al., 2023; Xue et al., 2022)
can offer potential accuracy gains at the expense of increased computational demands, highlighting
a nuanced balance of efficiency and efficacy. Our work capitalizes on the CLIP image founda-
tion model (Radford et al., 2021) to build an efficient video feature extraction framework that can be
adopted for multiple downstream video tasks. We choose CLIP because of its excellent performance
on multiple tasks (Radford et al., 2021; Shen et al., 2021; Lin et al., 2022) and native multi-modality
(image and text), which can be adapted for video processing. Previous approaches leveraging CLIP
for video tasks have utilized various strategies. These include applying temporal aggregation over
frame representations (Buch et al., 2022; Luo et al., 2022; Ni et al., 2022), fine-tuning the model
to capture motion patterns in videos (Castro & Heilbron, 2022; Weng et al., 2023), and employing
carefully designed spatial and temporal adapters to harness the valuable pre-trained weights without
modification (Lin et al., 2022; Pan et al., 2022; Yang et al., 2023; Park et al., 2023). Additionally,
some methods have introduced prompt learning as a mechanism for domain adaptation (Ju et al.,
2022). In a similar spirit, our work seeks to leverage pre-trained network weights without modi-
fication; however, we focus on reducing the computational cost of encoding individual frames by
minimizing redundant temporal computations while preserving essential semantic details.

Efficient Video Representations and Distillation. Prior work has also looked at distilling into a
lower-capacity model (Dehghani et al., 2023; Hao et al., 2022; Heo et al., 2019; Wu et al., 2022b)
or developing efficient video representations for tasks such as semantic video segmentation (Liu
et al., 2020b) or video recognition (Lin et al., 2019; Wu et al., 2022a; 2018). The former approaches
result in a degradation of recognition accuracy due to the difficulty of distilling to a small model
from a larger model. The latter approaches have investigated how to efficiently compute convo-
lution in time (Lin et al., 2019), leverage the video compression representation in a convolutional
network (Wu et al., 2018), or avoid computing the cross-attention in time for long videos (Wu et al.,
2022a). Additionally, other methods tackle the efficient inference challenge through network prun-
ing (Fang et al., 2023; Molchanov et al., 2016; He et al., 2017) reducing the number of parameters in
convolutional networks and, consequently, the computational cost of pre-trained models. In contrast,
we focus on the recent transformer-based ViT architectures (Dosovitskiy et al., 2020) (rather than
convolutional models) that have demonstrated excellent scaling properties. Moreover, we focus on
single-frame representations (such as CLIP (Radford et al., 2021)) that are often the video represen-
tation of choice for their versatility in large-scale practical setups involving natural language (Castro
& Heilbron, 2022; Luo et al., 2022; Soldan et al., 2022), and consider the task of natural language
video grounding, discussed next.

Natural Language Temporal Video Grounding. Natural language grounding in videos (Hendricks
et al., 2017; Gao et al., 2017; Krishna et al., 2017) has emerged as a multi-modal generalization of
the temporal activity localization task (Caba Heilbron et al., 2015) by replacing action classes with
natural language sentences. Both tasks share common challenges, such as: (i) the annotation process
is labor-intensive, which limits the size of benchmarks. (ii) The necessity for fine-grained tempo-
ral resolution demands dense frame sampling, resulting in significant computational requirements.
To mitigate the annotation challenge, research has transitioned from conventional fully supervised
methodologies (Barrios et al., 2023; Escorcia et al., 2019; Liu et al., 2020a; Mun et al., 2020; Soldan
et al., 2021; Xu et al., 2023; Zeng et al., 2020; Zhang et al., 2020; Zhao et al., 2021) towards more
flexible frameworks such as weak supervision (Chen et al., 2020; Huang et al., 2021; Zheng et al.,
2022a;b) and zero-shot learning (Diwan et al., 2023; Gao & Xu, 2021; Holla & Lourentzou, 2023;
Kim et al., 2023; Luo et al., 2024; Nam et al., 2021; Soldan et al., 2022; Wang et al., 2022a; Zheng
et al., 2023). In a fully supervised setting, models are trained using videos, sentences, and temporal
boundaries, while in weakly supervised approaches the temporal annotations are not to be available.

Closer to our research is the setup in which the textual or temporal labels are unavailable. In this
setting, prior work has leveraged off-the-shelf concept detectors (objects, actions, and scenes) (Gao
& Xu, 2021; Nam et al., 2021; Wang et al., 2022a) to automatically generate pseudo-annotations
(sentence and temporal boundaries) on a target downstream task dataset and train a grounding model
on such data. Other sources of pseudo supervision come from pretrained visual-language embedding
spaces (Kim et al., 2023), commonsense sources (Holla & Lourentzou, 2023; Speer et al., 2017), and
captioning methods (Zheng et al., 2023). Additionally, methods leverage complex proposal schemes
based on feature clustering (Holla & Lourentzou, 2023; Kim et al., 2023; Nam et al., 2021) or sliding
windows (Wang et al., 2022a), paired with strategies for supervised feature refinement. Although
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Figure 2: Model overview. (a) Video frames are processed via two visual encoders EV and ES in an
interleaved manner. For each frame encoded via the ViT EV , N subsequent frames are encoded using
our lightweight ResidualViT ES , significantly reducing the computational cost. (b) ResidualViT
incorporates a token reduction module R for reducing the computation and the residual tokenizer A
to ensure temporal consistency by propagating information from preceding frames.

these approaches do not use manually annotated labels, they still adapt (and learn) parameters on the
training dataset for the target downstream task; therefore, we refer to them as pseudo-supervised.
Differently from these works, we devise an all-purpose ResidualViT model for efficient video frame
embedding computation without training on the downstream task dataset, which is effective for the
task of natural language grounding in videos.

3 INTERLEAVED FEATURES FOR EFFICIENT NATURAL LANGUAGE
TEMPORAL VIDEO GROUNDING

We investigate efficient video representation for the natural language temporal video grounding
(NLTVG) task, which is formalized as follows: given an untrimmed video and a natural language
query describing a specific moment, the goal is to predict the temporal span (τs, τe) that corre-
sponds to the described moment (Hendricks et al., 2017; Gao et al., 2017). This precise temporal
moment localization requirement presents two major challenges. First, it requires the dense extrac-
tion of visual features from large volumes of video data. Second, it requires language and visual
understanding to enable querying the model through natural language queries.

To address these challenges, we propose to adapt dual-encoder transformer-based pretrained models,
focusing on making the visual encoder (ViT) (Dosovitskiy et al., 2020) more efficient for computing
a temporally dense set of video features. Our approach capitalizes on the temporal redundancy
inherent in videos, where consecutive frames often share redundant visual and semantic content
as actions and scenes continuously evolve in time. This setting entails that naively encoding each
frame independently leads to unnecessary computational overhead. In our study, we adapt the visual
encoder from the dual-encoder vision-language model CLIP (Radford et al., 2021), which is well-
known for its excellent performance in vision-language tasks. CLIP offers a versatile foundation
for our visual encoder and provides a paired language encoder, allowing us to effectively model the
nuanced visual-linguistic relationships needed for addressing the NLTVG task.

Figure 2a outlines our efficient visual encoding pipeline. Consider a video comprised of nv frames
decoded at a constant frame rate, denoted as X = {xt}nv

t=1 with xt ∈ RH×W×C , where H , W
and C are the height, width, and number of channels of each frame. In alignment with standard
vision transformer data processing, we convert each frame into a set of K tokens, denoted by T =
{tj}Kj=1 with tj ∈ Rd, where d is the token dimension. The embedding process for frame xt for
(t − 1) mod (N + 1) = 0 consists of applying the visual encoder EV : R|T |×d → Rb on all
frame tokens Tt to obtain an I-feature representation, ft = EV(Tt) ∈ Rb, where b is the feature
dimension. The subsequent N frames {xt+k}Nk=1 are encoded using our ResidualViT encoder ES :

Rb×R|T |×d → Rb to obtain P-features. Formally, we compute the P-features for those N frames as
ft+k = ES(ft, Tt+k) ∈ Rb, where I-feature ft from frame xt is routed through the temporal residual
connection (shown in red in Figure 2) to the ResidualViT encoder ES as temporal context. We define
N as the interleave factor, as it governs the interleaving of I-features and P-features. Note that in
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our work, we use the output representation of the [CLS] token from the transformer architecture as
our feature representation.

The following provides a detailed explanation of the design of our ResidualViT architecture
(Sec. 3.1) and the associated training strategy (Sec. 3.2). Please see Appendix C for an in-depth
discussion of our zero-shot watershed-based grounding algorithm, which operates atop both visual
and language features.

3.1 RESIDUALVIT ARCHITECTURE

Our technical solution involves equipping the ViT encoder with two key components, as illustrated
in Figure 2b: (i) a token reduction module (R) and (ii) a residual tokenizer module (A). The token
reduction module selectively prunes input tokens to the ViT, retaining only the most informative
ones, to significantly reduce the encoding computational cost. Concurrently, the residual tok-
enizer module propagates information from the last I-feature to the current P-feature compensating
for the information discarded by the token reduction process.

Following standard ViT implementations, each frame xt is transformed into a set of patches
{x(t,i)}|T |

i=1 and projected to an embedding space Rd, yielding a set of tokens Tt. The number of
patches and, therefore, the number of tokens |T | depends on the frame size (H , W ) and the patch
size (P ): |T | = H×W/P 2. The tokens are given to the transformer encoder, which processes them
with a self-attention mechanism, where the computational cost scales directly with the number of
tokens. Reducing the token count can, therefore, save computation, but determining which tokens
to safely discard to minimize loss of information remains a challenge.

In this work, we explore several token reduction strategies, including token dropping (or Patch-
Dropout) (Ding et al., 2023; Haurum et al., 2023; Hou et al., 2022a; Liu et al., 2023b), which
discards a subset of tokens based on a token dropping probability p. We also investigate token merg-
ing (Bolya et al., 2022), which progressively reduces the number of tokens at each transformer layer
by a factor of r, and frame resolution reduction, which decreases the number of patches extracted
from each frame. For detailed descriptions of the different token dropping strategies (e.g., random,
uniform, center, and motion-based), please refer to Appendix A. A comprehensive ablation study,
presented in Appendix E, shows that token dropping offers the best trade-off between computational
efficiency and model performance.

In our ResidualViT architecture, the token reduction module is used during both training and in-
ference to reduce computational overhead. This setup implies that part of the visual information is
discarded. Yet, thanks to the temporal redundancy of consecutive frames, we seek to exploit the
semantic information present in the feature computed at time step t to recover the missing spatial
information induced by the token reduction operation at time step t+ k. In detail, the ResidualViT
architecture takes as input I-feature ft from frame xt via the temporal residual connection and trans-
forms this feature into a residual token as A(ft) ∈ Rd via a learnable mapping A : Rb → Rd.
This transformation is necessary to learn a token representation that is compatible with the visual
encoder EV and can propagate useful information from the previous I-feature. The residual token
is then concatenated with the [CLS] token and a small subset of frame tokens output by the token
reduction module R(Tt+k). The resulting concatenated tokens are then fed into the visual encoder
EV to obtain P-feature ft+k. In our work, we implement the residual tokenizer A as a linear transfor-
mation. The addition of the residual token to the input of the transformer encoder adds a negligible
computational overhead of about 0.1 GFLOPS (i.e., 0.1% of the frame encoding cost using the CLIP
ViT-L/14 backbone). Despite the mapping A being a small linear layer, our solution is capable of
providing informative cues even when most frame tokens are unavailable.

Following our design, when token dropping is used, the average embedding cost of our pipeline can
be approximated as:

C =
CEV +NCES

N + 1
≈ CEV

1 + (1− p)N

N + 1
, (1)

where CEV and CES are the costs of encoding a frame using the visual encoder EV and ES , re-
spectively. Here, the interleave factor N corresponds to the number of frames encoded by the
ResidualViT with the reduced cost, and p is the token reduction probability. It should be noted
that when N > 0 and p > 0, the average embedding cost C is strictly lower than CEV . For em-
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Figure 3: ResidualViT training (JL→V loss). We supervise the training of the residual token
projection A via feature distillation. The loss encourages the output features of ResidualViT (fS

i,t+k)
to approximate those of the pre-trained ViT encoder (fV

i,t+k).

pirical evidence demonstrating the reduction in wall-clock time for frame encoding when utilizing
ResidualViT compared to a standard ViT, refer to Appendix F.

3.2 TRAINING RESIDUALVIT

The objective of our training is to supervise the residual tokenizer module A, our only trainable
component, such that the output frame feature computed by our ResidualViT ES closely approx-
imates the feature computed via the original ViT encoder EV for the same frame. The challenge
lies in the fact that the ViT encoder has access to every token Tt+k from the input frame while the
transformer encoder of our ResidualViT only receives a sparse set of frame tokens due to the token
reduction module R(Tt+k) together with the residual token A(ft) (Figure 2b). We achieve this ob-
jective via feature distillation (Heo et al., 2019; Hinton et al., 2015; Ilharco et al., 2021), where the
original foundation model serves as a “teacher” network while our ResidualViT acts as the “student”
network. In our study, we leverage the powerful CLIP (Radford et al., 2021) foundation model to
initialize the transformer encoders (e.g., ViT-B/32, ViT-B/16, or ViT-L/14). We fully exploit the
CLIP model by including its language encoder EL in the feature distillation pipeline and perform
the training using paired video and language samples.

We illustrate the training process in Figure 3. Let B = {(Xi, ℓi)}Bi=1 be a batch of videos Xi, and
their corresponding textual descriptions ℓi. From each video Xi, we decode NTrain + 1 frames at a
constant frame rate starting at time step t. These frames are then encoded via the ViT EV (teacher)
and ResidualViT ES (student) and the corresponding features f (V)

i,t+k and f
(S)
i,t+k are output for each

time step t + k for k ∈ {1, . . . , NTrain}. Furthermore, let g ∈ Rb×B be a matrix of features with
dimension b computed from all the textual descriptions {ℓi} in the batch using the language encoder
EL. We aim to train the ResidualViT encoder to match soft targets, which are the similarities between
the ViT encoder (teacher) features and the language features. To achieve this goal, we optimize a
cross-entropy loss over the softmax inner product between the vision features fi,t+k and language
features g,

JL→V = −
B∑
i=1

NTrain∑
k=1

B∑
j=1

σj

(
g⊺f

(V)
i,t+k

)
log

(
σj

(
g⊺f

(S)
i,t+k

))
, (2)

where σj(x) = exp(xj)/
∑

c exp(xc) is the j-th component of the softmax function of vector x.
Here, the sum over c in the denominator of the softmax ensures that for a given image feature fi,t+k

similarities to all language descriptions g in the batch sum to one, converting them to a probability
distribution. The inner sum in equation 2 sums over the language descriptions j in the batch; the
middle sum adds losses for all the frames k in each video; and finally, the outer sum sums over all
videos i in the batch. Please note that due to the softmax normalization over the language features,
the computation is asymmetric. Hence, we also define in an analogous manner a video to language
loss JV→L where the sigmoid normalization is over the vision features in the batch.

The final loss is then the sum of the two losses. The overall learning problem is then formulated
as the following minimization minA (JL→V + JV→L), where A are the parameters of the residual
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Residual Charades-STA Avg. Cost
Token Interleave Tokenizer R@1 Feature/sec

Reduction Factor (Distilled) IoU=0.5 IoU=0.7 (GFLOPs)

a. 42.9 24.1 233.4
b. ✓ 28.5 14.5 35.7(−85%)

c. ✓ ✓ 38.9 22.8 102.0(−56%)

d. ✓ ✓ ✓ 41.5 23.8 102.6(−56%)

Table 1: Architecture ablation. We ablate the
main components of our architecture: the token
reduction module, the interleave factor, and the
distilled residual tokenizer. We set the token re-
duction probability p to 85%, N = 2, and use the
ViT-L/14 backbone.
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Figure 4: Interleaving frames (N ). The cost
vs. performance trade-off for varying N. Our
ResidualViT (orange) almost retains CLIP’s
(red) performance for N = 1 and 2 while re-
ducing cost by 56%.

tokenizer module. Please note that this loss not only encourages the visual representation of the
two models to be close to each other but also supervises the feature distillation to preserve the joint
vision-language space of the original CLIP model as the language features are shared between the
teacher ViT encoder and the student ResidualViT encoder. We optimize the loss over samples from
a paired video-language dataset. Please note that as we are learning (distilling) only a small number
of parameters of the residual tokenizer A, which is a single linear layer, our learning formulation
does not require huge training datasets often required in typical distillation set-ups when an entire
large model is distilled into another (smaller) model.

4 EXPERIMENTS

Evaluation Metrics. Following (Hendricks et al., 2017; Gao et al., 2017), grounding accuracy is
measured via Recall@K for IoU=θ with K=1 and θ ∈ {0.5, 0.7}. The computational cost of video
encoding is measured in GFLOPs, reflecting the average cost per second based on the frame rate
and the cost to encode a single frame. We direct the reader to Appendix G for complementary
information on the metrics, Appendix H for implementation and distillation training details, and
Appendix C for the presentation of the zero-shot grounding algorithm and inference details.

Evaluation Datasets. We evaluate our approach on the Charades-STA (Gao et al., 2017),
ActivityNet-Captions (Krishna et al., 2017) and MAD (Soldan et al., 2022) datasets.

The Charades-STA dataset is built atop the Charades dataset (Sigurdsson et al., 2016) and consists
of unedited videos of human activities that follow predefined scripts. We evaluate on the testing set
(1334 videos and 3720 textual annotations). The ActivityNet-Captions dataset is built atop the Ac-
tivityNet dataset (Caba Heilbron et al., 2015) and comprises edited videos scraped from the internet
containing a clear taxonomy of human activities, augmented with temporally grounded language
descriptions. We evaluate on the val-02 split (4885 videos and 17031 sentences). The MAD dataset,
based on audio descriptions from movie data, consists of long videos with an average duration of
110 minutes. We report performance on the test set, which includes over 72K sentences grounded
in 112 movies. As we operate in a zero-shot manner, we do not utilize the training sets of the above
datasets in this study.

4.1 ABLATION STUDY

In this section, we perform multiple ablations to assess the impact of our design choices. We report
performance on the Charades-STA dataset using the ViT-L/14 backbone. When token reduction is
used, we employ the motion-based strategy (Appendix A) with probability p = 85%. For all ex-
periments that interleave frames, we set N=2. Five additional ablations are detailed in Appendix
E. These ablations investigate (i) the token drop strategy for token reduction, (ii) token drop prob-
ability, (iii) the adoption of token merging for token reduction, (iv) the impact of frame resolution
reduction as an alternative to token reduction and (v) replacing the distillation objective.

Architecture Ablation. In Table 1, we analyze the contribution of the main architecture compo-
nents of our model to downstream task performance. With an average frame encoding cost of 233.4
GFLOPs, the CLIP baseline (a. in Table 1) establishes our upper bound grounding accuracy. When
we apply token reduction across all frames (b.), we observe an 85% decrease in computational cost.
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Use Avg. Cost ActivityNet Avg. Cost
Supervision Downstream Charades-STA Feature/sec Captions Feature/sec

Task Data IoU=0.5 IoU=0.7 (GFLOPs) IoU=0.5 IoU=0.7 (GFLOPs)

2D-TAN (Zhang et al., 2020) Full ✓ 39.8 23.3 74.2 44.0 27.4 19.3
CPNet (Li et al., 2021) Full ✓ 60.3 38.7 638.3 40.6 21.6 38.5
CRaNet (Sun et al., 2023) Full ✓ 60.9 41.3 296.8 47.3 30.3 19.3

WSTG (Chen et al., 2020) Weak ✓ 27.3 12.9 38.5 23.6 − 38.5
CRM (Huang et al., 2021) Weak ✓ 34.8 16.4 638.3 32.2 − 23.2
CPL (Zheng et al., 2022b) Weak ✓ 49.2 22.4 445.2 31.4 − 115.5

U-VMR (Gao & Xu, 2021) Pseudo ✓ 20.1 8.3 289.5 26.4 11.6 962.5
PSVL (Nam et al., 2021) Pseudo ✓ 31.3 14.2 638.1 30.1 14.7 38.5
PZVMR (Wang et al., 2022a) Pseudo ✓ 33.2 18.5 638.1 31.3 17.8 38.5
CORONET (Holla & Lourentzou, 2023) Pseudo ✓ 34.6 17.9 638.1 28.2 12.8 38.5
LFVL (Kim et al., 2023) Pseudo ✓ 37.2 19.3 638.1 32.6 15.4 38.5
SPL (Zheng et al., 2023) Pseudo ✓ 40.7 19.6 166.5 27.2 15.0 83.3

UniVTG (Lin et al., 2023) Zero-Shot ✗ 25.2 10.0 70.0 − − −
MR-FVLM (Luo et al., 2024) Zero-Shot ✗ 42.9 20.1 1370.0 27.9 11.6 370.0
CLIP (B/32) Zero-Shot ✗ 35.9 18.7 13.2 27.8 13.9 4.4
ResidualViT (B/32) (ours) Zero-Shot ✗ 34.2 17.7 6.1(−53%) 27.3 13.7 2.0(−53%)

CLIP (B/16) Zero-Shot ✗ 37.7 21.2 50.7 28.1 13.8 16.9
ResidualViT (B/16) (ours) Zero-Shot ✗ 37.8 21.0 22.4(−56%) 27.5 13.8 7.5(−56%)

CLIP (L/14) Zero-Shot ✗ 42.9 24.1 233.4 29.1 13.8 77.8
ResidualViT (L/14) (ours) Zero-Shot ✗ 41.5 23.8 102.6(−56%) 28.3 13.5 34.2(−56%)

Table 2: Short video state-of-the-art comparison. We compare our approach against state-of-
the-art methods using different levels of supervision. Our ResidualViT reduces the cost of frame
encoding by 56% while closely retaining the performance of the CLIP model. The best method in
each block of directly comparable methods is bolded, and the second-best method is underlined.

However, this setting induces marked absolute declines in grounding accuracy of 14.4% and 9.6%
in our metrics, which translates to a relative drop of 34−40%. The introduction of our interleave
strategy (c.), which alternates encoding one frame without token reduction and N frames with to-
ken reduction (where N = 2), shows an increase in grounding accuracy of 10.4% and 8.3% while
only using 44% of the original computational budget, which is a first step in closing the grounding
accuracy gap with respect to the target performance. Compared to the full CLIP model, the ground-
ing accuracy drop narrows to a modest 4 and 1.3 percentage points (5−9% relative drop), yet this
configuration only incurs 44% of the original computational cost. Further, adding the residual tok-
enizer learned via distillation (d.) comes at a negligible compute cost but further boosts grounding
accuracy closer to the target CLIP model, showing only a minor ∼1% absolute drop.

Interleave Factor N and Benefits of Distillation. In Figure 4, we explore the relationship between
grounding accuracy and computational cost as we vary the number of interleaved frames (N ). In
this visualization, the baseline CLIP model is shown in red, while our ResidualViT, applied with
and without the distilled residual tokenizer module, is shown in orange and blue, respectively. We
vary N ∈ {1, 2, 3, 5, 10}. When setting N = 1, grounding accuracy is marginally impacted, yet a
large computational cost reduction is already achieved (42%). Notably, we see a further accuracy
drop when the residual tokenizer is removed (blue), demonstrating the importance of the distillation
training. At N = 2, the cost savings increases to 56% with virtually no accuracy change for Resid-
ualViT. However, the importance of the learnable residual connection (via the residual token learnt
by the distillation training) becomes more evident as the difference between the two configurations
widens with substantial drops when the residual token is not employed. Increasing N beyond this
point sees diminishing returns in cost savings, now at 63%, and a noticeable decrease in accuracy.
This decline is attributed to the growing temporal gap between I-features and P-features, leading to
a weakened visual correlation and, thus, reduced efficacy. We regard N = 2 as the best trade-off.

4.2 COMPARISON WITH THE STATE OF THE ART

In this section, we present a comparison of our proposed ResidualViT against the state-of-the-art
methods for the NLTVG task. Our evaluation spans three benchmarks, considering both short and
long video datasets. We assess the performance of ResidualViT in terms of grounding accuracy
and computational efficiency, demonstrating its effectiveness. We also explore ResidualViT’s gen-
eralization capabilities by applying it to the complementary task of Automatic Audio Description
generation (Han et al., 2023).
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Avg. Cost
R@1 Feature/sec

IoU=0.1 IoU=0.3 IoU=0.5 (GFLOPs)

CLIP (B/32) (Soldan et al., 2022) 6.6 3.1 1.4 21.8

ResidualViT (B/32) (ours) 8.6 5.4 3.1 10.2
ResidualViT (B/16) (ours) 10.1 6.4 3.7 37.3
ResidualViT (L/14) (ours) 10.7 7.3 4.3 171.0

Table 3: Long-form video state-of-the-art
comparison. ResidualViT outperforms the pre-
vious art both in accuracy and computational cost
on the challenging long-form MAD dataset. In
these experiments, ResidualViT was configured
with N=2, a token dropping probability p=85%,
and the center token dropping strategy.
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Figure 5: Qualitative results. We present a
qualitative example in which our zero-shot al-
gorithm can correctly ground the sentence in the
video. We showcase the comparison between the
ground truth annotation (green) and our top−1
prediction (orange).

Natural Language Temporal Video Grounding (NLTVG) in Short Videos. Table 2 summarizes
the comparison against state-of-the-art grounding methods covering fully supervised, weakly super-
vised, pseudo-supervised, and zero-shot techniques for the short video setup. Our approach is di-
rectly comparable to the zero-shot methods (CLIP (Radford et al., 2019), UniVTG (Lin et al., 2023),
MR-FVLM (Luo et al., 2024)) that do not train on downstream task data. Note that, in contrast to
our approach, methods labeled as “Pseudo” use additional supervision for the temporal grounding
task. While they do not use the existing annotations from the benchmarks’ training sets, they employ
readily available detectors for objects, actions, and scenes to assemble pseudo-sentences for anno-
tating temporal locations in the downstream task training video datasets. These pseudo-sentences,
together with their corresponding temporal locations, are used to train a grounding model in a fully
supervised manner. See Section 2 for more details. Differently from these works, we do not use
the training sets of the downstream benchmarks and, therefore, our model has not seen any of the
downstream task data, which is a set-up that often happens in practical scenarios.

For each method, we report the grounding accuracy on the Charades-STA (Gao et al., 2017) and
ActivityNet-Captions (Krishna et al., 2017) datasets, along with the average embedding cost per
second. Previous methods have employed visual backbones like ResNet152, C3D, BLIP, VGG-19,
and I3D (Carreira & Zisserman, 2017; He et al., 2016; Li et al., 2022; Simonyan & Zisserman,
2014; Tran et al., 2015) with respective costs of 11.6, 38.5, 55.5, 143.7, and 148.4 GFLOPs per
feature. Table 2 also reports the grounding accuracy using the vanilla CLIP and our ResidualViT
features across different backbones. For ResidualViT, we use motion-based token reduction with
probability p = 85% and set the interleave parameter to N = 2. Our ResidualViT closely matches
CLIP’s grounding accuracy while reducing frame encoding costs by approximately 56% across all
ViT backbones. Particularly, on the Charades-STA dataset with the ViT-B/16 backbone, our method
exhibits a negligible accuracy decrease compared to the standard CLIP encoding, whereas, for ViT-
B/32 and L/14, we observe minor drops in the accuracy of 1%−1.5%. For the ActivityNet-Captions
dataset, our method is on par with the directly comparable CLIP methods and achieves significant
computational cost reduction; the accuracy decrease is less than 1% across all configurations. When
comparing against the two existing zero-shot methods, we find that UniVTG (Lin et al., 2023)
significantly underperforms across all metrics compared to our results. In contrast, MR-FVLM (Luo
et al., 2024) achieves comparable accuracy to our model, particularly at IoU=0.5 on the Charades-
STA dataset, but at a substantially higher computational cost of 1337 GFLOPs per feature, compared
to our 102.6 GFLOPs. This high cost in MR-FVLM is due to its use of the C3D backbone and the
InternVideo-MM-L-14 model (Wang et al., 2022b).

Lastly, even though our approach has not trained on the downstream task data, our accuracy
is, nevertheless, competitive against the previous art that has trained on both datasets. For the
Charades-STA dataset, our approach achieves the best cost vs. accuracy trade-off over all the pseudo-
supervised methods. For the ActivityNet-Captions dataset, the accuracy of our method with the B/16
backbone is on par or higher than 3 of the pseudo-supervised methods at a lower computational cost.

Natural Language Temporal Video Grounding (NLTVG) in Long Videos. In Table 3, we present
additional results on the challenging long-form video MAD dataset (Soldan et al., 2022), contrast-
ing our ResidualViT against the only zero-shot grounding baseline available, which is described
in (Soldan et al., 2022). This existing zero-shot grounding algorithm employs a proposal-based ap-
proach, utilizing a multi-scale sliding window technique to generate potential video segment propos-
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als. For each proposal, a single feature representation is computed by average pooling frame features
whose temporal locations fall within the proposal’s span. Finally, cosine similarity is computed be-
tween each sentence feature representation and each proposal feature representation. In contrast, our
grounding algorithm (Appendix C) requires the number of similarity computations to be equal to the
number of encoded frames, which significantly reduces the computational complexity. Specifically,
the proposal-based method demands approximately 20× more similarity computations compared to
our approach.

Our results demonstrate that the grounding algorithm combined with ResidualViT visual features
significantly outperforms the existing state-of-the-art. When using the same backbone (ViT B/32),
our approach achieves relative improvements ranging from 43% at IoU=0.1 to 128% at IoU=0.5,
while also being 53% more efficient in feature extraction and requiring one order of magnitude
fewer similarity computations. Additionally, accuracy consistently increases with the use of more
computationally demanding backbones. For example, using the ViT B/16 backbone, our method
achieves a 160% increase in accuracy at IoU=0.5, despite a 73% higher feature extraction cost com-
pared to the baseline (Soldan et al., 2022). These findings highlight an excellent tradeoff between
computational cost and improved accuracy. Additional comparisons and metrics can be found in
Appendix D.

Automatic Audio Description Task. We benchmark the generalization capabilities of our Residu-
alViT by employing its feature representation on an additional downstream task related to long video
understanding: Automatic Audio Description (Han et al., 2023). This task is akin to dense video
captioning and aims to generate textual descriptions of relevant video moments, detailing the events
and characters involved.

The approach for this task proposed in (Han et al., 2023) leverages two large-scale pre-trained mod-
els, such as CLIP (Radford et al., 2021), for visual feature extraction, and GPT-2 (Radford et al.,
2019), for textual caption generation, connecting the two via a learned transformer encoder that
aligns the visual and language features. To evaluate the quality of the ResidualViT visual repre-
sentations, we replace the default CLIP visual features with ResidualViT features and perform the
inference without any model fine-tuning. The evaluation is performed on a subset of the MAD
dataset, specifically MAD-eval-Named (more details can be found in Section 4 of the AutoAD
manuscript (Han et al., 2023)). Following the AutoAD setup, we extract visual features at five
frames per second using the ViT-B/32 backbone. For ResidualViT, we set N = 2 and p = 85%,
achieving a 53% reduction in frame encoding cost compared to CLIP. Moreover, to isolate the con-
tribution of the visual features to the task solution, we evaluate the performance when no context
audio descriptions or context subtitles are provided. No pretraining data is used, and the visual
temporal context is set to 8 frames.

Under these conditions, the original CLIP features achieved a CIDEr score of 7.5, while our Resid-
ualViT features resulted in a CIDEr score of 7.2. This experiment suggests that ResidualViT offers
an excellent cost-performance tradeoff, with only a marginal performance reduction compared to
the upper-bound performance of CLIP while significantly reducing the feature encoding cost.

Note that this experiment was conducted using a pre-trained model provided by the authors of (Han
et al., 2023). This provided model differs from the one evaluated in the original AutoAD manuscript,
so the performance results do not exactly match those reported in (Han et al., 2023). Nonethe-
less, this result provides evidence that our ResidualViT’s visual representations are applicable to
another video understanding task, video captioning, which is complementary to natural language
video grounding, showcasing our model’s flexibility and generalization capabilities.

4.3 QUALITATIVE RESULTS

Figure 5 presents a qualitative example of temporal grounding from the Charades-STA dataset,
where our zero-shot grounding algorithm accurately predicts the temporal span corresponding to the
textual query, “the person is eating a sandwich”. This prediction is driven by the cosine similarity
profile between the visual and language features, along with the watershed threshold, as illustrated
in the figure. See Appendix C for details on the watershed threshold and the overall grounding
algorithm. Appendix J shows additional visualizations and examples of failure cases.
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5 CONCLUSION

We have developed a new approach for the efficient computation of transformer-based video fea-
tures, exploiting temporal redundancy in videos via learnable temporal residual connections. The
proposed approach is lightweight as it trains only a small number of parameters in the residual mod-
ule while keeping the encoder fixed and does not require any additional training data as it is trained
via distillation from existing (but costly) video encoders. We have demonstrated the benefits of the
proposed approach on the natural language grounding task showing a significant reduction (up to
60%) in compute cost with marginal accuracy reduction. We believe that our work opens up the pos-
sibility of extending the distillation objective to incorporate richer interactions between visual and
language representations, as well as exploring additional large-scale pre-trained models that natively
model temporal relationships.
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APPENDIX

We provide the following additional information:

• Token Dropping Strategies: We present the different token dropping strategies that can
be adopted in the token reduction module in Appendix A.

• Motion-based Token-dropping Strategy: Insights into the motion-based token-dropping
strategy are provided in Appendix B, explaining the additional RAM requirements and the
pre-processing of raw motion vectors.

• Zero-shot Grounding Algorithm: A thorough explanation of the implementation details
of the zero-shot temporal grounding algorithm is presented in Appendix C.

• Additional Comparison for Long-Form NLTVG Additional analysis on the MAD
dataset are available in Appendix D.

• Supplementary Ablations: In Appendix E, we conduct additional ablations on Resid-
ualViT, exploring different token reductions strategies as presented in Appendix A and
discussing the role of token-dropping probability. Additionally, we investigate two distinct
strategies for computational savings: token merging and reduction of the spatial resolu-
tion of the input frames. We ablated the design of the distillation approach and showcased
how different distillation objectives can achieve competitive performance. We conclude by
ablating the interleave factor during distillation training.

• Video Encoding Latency: Appendix F empirically validates the wall-clock timings of
ResidualViT, demonstrating significant time savings compared to a standard ViT model,
despite requiring two forward passes.

• Evaluation Metrics: Appendix G details the metrics used to assess performance.

• Implementation Details: Appendix H provides useful implementation details.

• Limitations: In Appendix I we discuss the inherent limitations of our solution.

• Qualitative Results: We conclude with a showcase of several qualitative results in Ap-
pendix J, highlighting the practical effectiveness of our approach.

• Feature Comparison under Full Supervision Setup: As an additional test of the quality
of our ResidualViT features, we investigate the performance of CG-DETR (Moon et al.,
2023) when replacing the original CLIP features with our ResidualViT ones in Appendix
K.

• Additional task - Action Recognition: In this Supplementary experiment, we test the per-
formance of CLIP features against ResidualViT features on the task of action recognition
on the Kinetics 400 dataset. Results are reported in Appendix L.

• Additional task - Temporal Activity Localization: In this Supplementary experiment, we
test the performance of CLIP features against ResidualViT features on the task of temporal
activity localization on the ActivityNet dataset. Results are reported in Appendix M.

APPENDIX A TOKEN DROPPING STRATEGIES

In Section 3.1, we introduced the ResidualViT architecture, which consists of the token reduction
module (R), the residual tokenizer (A), and the transformer encoder (EV ). Here, we explore four
practical implementations of the token reduction module when adopting the token dropping strat-
egy (Ding et al., 2023; Haurum et al., 2023; Hou et al., 2022a; Liu et al., 2023b).

For a given frame xt, which is transformed into a set of tokens T , each strategy retains (1 − p) ×
|T | tokens, where p is the token reduction probability. Figure 6 visually depicts the four token
reduction approaches we investigate. (i) The random strategy randomly samples tokens from the
set. Conversely, (ii) the uniform strategy selects tokens from patches that are evenly distributed
across the 2D grid of image patches, ensuring that the selected patches are spaced at regular intervals
throughout the frame. (iii) The center strategy is designed to retain tokens of patches from the center
of the frame. This strategy takes into consideration that, when shooting a video, we tend to center
the frame around the subject or action being recorded. Finally, we design a data-dependent (iv)
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(a) Random.

© 2023 Adobe. All Rights Reserved. Adobe Confidential.

(b) Uniform.

© 2023 Adobe. All Rights Reserved. Adobe Confidential.

(c) Center.

© 2023 Adobe. All Rights Reserved. Adobe Confidential.

(d) Motion.

Figure 6: Token reduction strategies. We implement three data-independent token reduction strate-
gies (a-c) and one data-dependent one (d).

motion strategy. This strategy further exploits the characteristics of video data, which describes
how characters, objects, and scenes evolve in time. We argue that motion is a valuable source of
information readily accessible from encoded video files, providing information on which parts of
the frame at time step t + k differ from the frame at time step t. Consequently, we discard tokens
representing patches with minimal motion, assuming their change relative to previous frames is
negligible, and their information can be recovered through the residual token. See Appendix B for
additional details about motion preprocessing and memory overhead.

APPENDIX B IMPLEMENTATION DETAILS FOR MOTION-BASED TOKEN
REDUCTION STRATEGY

Motion is a valuable and readily available source of information for determining which spatial re-
gions of a frame have changed with respect to the previous one. To harness this information, our
method employs a compressed video reader (AcherStyx, 2020) that extracts motion vectors directly
from compressed video streams. Nevertheless, it is important to acknowledge that motion vectors
extracted from raw video data typically exhibit a moderate level of noise, attributable to the inherent
sparsity and optimization mechanisms of standard video compression techniques. To counteract this
effect and derive a more reliable motion estimation, we compute the average motion across a short
temporal window surrounding a target frame xt. Specifically, we construct a set of motion vectors
Mv = {mi}t+WM/2

i=t−WM/2, where each vector mi ∈ RH′×W ′×C′
corresponds to the motion informa-

tion of frame i. Here, H ′ = H/4 and W ′ = W/4 are the reduced height and width dimensions,
respectively, and C ′ = 4 signifies the channels in the motion vector, capturing the (∆x,∆y) dis-
placement of pixels with respect to adjacent frames (previous and following ones). The parameter
WM denotes the size of the temporal window over which the motion is aggregated. As we are inter-
ested in the magnitude of the motion and not its direction, we compute the average L1 norm along
dimension C ′ in the window WM . Note that, at the start of the video (t < WM ) and at the end
(t > T −WM , where T is the timestamp of the last frame), the window is reduced so that only the
available motion vectors are aggregated, avoiding the need for padding.
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Figure 7: Optimal WM Hyperparameter Value.
The plot shows the average percentage of zero-
valued motion vectors on the Charades-STA
dataset as the aggregation window size WM

varies. The trend flattens beyond WM = 11, indi-
cating diminishing returns. Therefore, we choose
WM = 11 as our default parameter.

We then upsample the computed motion magni-
tudes to the frame resolution (H , W ) and select
the 1− p frame tokens with the highest motion
magnitudes at their patch’s spatial location.

In our implementation, we set the motion win-
dow size WM = 11. This setting implies
that we incur an additional RAM memory con-
sumption that is proportional to the cost of
storing a frame in memory. We can esti-
mate the memory cost as follows. The mem-
ory consumption of a frame can be expressed
as MF=H×W×3, while for motion vectors
MMv=(H/4)×(W/4)×4×Mv , resulting in a
total memory cost MF +MMv/MF = ∼1.9×.
Note that this memory overhead does not affect
GPU memory availability as the motion vectors
are not required to be moved to such a device
for processing. To determine the value of WM ,
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we measure the average percentage of zero-value motion vectors in the Charades-STA dataset. As
shown in Figure 7, we find that for WM = 1, roughly 50% of motion vectors are zero while con-
sidering WM = 11 reduces this value to less than 15%. We do not observe a significant reduction
beyond WM = 11. For simplicity, we keep this parameter constant across datasets.

Finally, note that we utilize motion information to identify frame patches that have likely undergone
significant transformations relative to preceding frames. This strategy enables us to provide the
transformer encoder of ResidualViT (ES ) with patches expected to exhibit less redundancy with
previous frames. Importantly, this approach does not supply the encoder with motion information,
meaning the network remains unaware of explicit motion patterns.

APPENDIX C ZERO-SHOT GROUNDING ALGORITHM

As discussed in Section 3, this work focuses on the task of natural language video grounding, which
involves temporally localizing a natural language description within a single video. Given the fine-
grained temporal localization requirements of the task, dense frame sampling and encoding are
indispensable, making it an ideal testbed for our efficient ResidualViT approach. This section details
feature encoding and describes the motivations for addressing the task in a zero-shot setting.

We argue that the zero-shot setting holds valuable properties. Firstly, algorithms evaluated in a
zero-shot manner are not prone to be affected by the inherent biases of the downstream datasets,
which have shown to be a danger for this task (Otani et al., 2020; Soldan et al., 2022; Zhang et al.,
2021). Additionally, models exhibiting strong zero-shot capabilities typically demonstrate enhanced
generalization to unseen datasets, thereby increasing their versatility and utility. Secondly, from a
practical standpoint, relying on multiple specialized models for each new dataset can severely limit
the scalability and versatility of systems. In contrast, a unified model that excels in zero-shot set-
tings streamlines system architecture and boosts scalability and adaptability. Such models simplify
the maintenance and deployment of deep learning applications and readily adjust to new challenges
without the need for extensive retraining. Third, the zero-shot approach promotes environmental
sustainability. This approach significantly curtails the computational demands by drastically re-
ducing the necessity for ongoing retraining on possibly extensive datasets, thus lowering energy
consumption and the associated carbon footprint. Employing large pre-trained models in a zero-
shot manner optimizes their efficacy while minimizing further environmental impacts. We strive to
pursue zero-shot evaluation in this work for all these reasons.

Visual Encoding. Our algorithm begins with encoding a set of video frames X = {xt}nv
t=1 through

a designated visual encoder (either a standard ViT or our ResidualViT). This process generates a se-
ries of frame features {ft}nv

t=1. When employing ResidualViT, in line with the approach illustrated
in Figure 2a, we utilize a sliding window mechanism that concurrently processes N + 1 frames.
The first frame in each window is encoded by the foundation model encoder EV , with the resulting
features stored for subsequent use. The following N frames are processed by encoder ES (Figure
2b), which takes as input the frame tokens and the cached feature of the first frame of the window.
The residual feature is first transformed into the residual token via the residual tokenizer. Subse-
quently, in the reduction module, frame tokens are reduced according to a particular strategy and
token reduction probability p. Finally, these sparse visual tokens are concatenated with the residual
token and forwarded to the visual encoder EV .

Language Encoding. The language encoder is kept frozen throughout our experiments and ini-
tialized with CLIP weights corresponding to the specific version of the visual encoder (ViT-B/32,
ViT-B/16, or ViT-L/14). To solve the task, each sentence s is first tokenized and then processed
through the language encoder to derive a single sentence feature gl.

Grounding Algorithm. For the grounding task, cosine similarity between each frame embedding
and the sentence embedding is calculated, creating a temporal sequence of similarity scores {St}nv

t=1.
We post-process the similarity profiles with a moving average smoothing operation with window size
WMA.

Finally, inspired by methods in prior work such as (Diwan et al., 2023; Lei et al., 2021a), we imple-
ment a watershed algorithm (Roerdink & Meijster, 2000) for moment prediction. In this step, group
consecutive timesteps where the similarity scores exceed a given threshold, effectively delineating
temporally contiguous segments. The start and end timesteps of these segments constitute our mo-
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Use Avg. Cost
Grounding Algorithm Downstream Features Visual R@1 R@5 Feature/sec

Task Data Backbone IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5 (GFLOPs)

DenoiseLoc (Xu et al., 2023) ✓ CLIP ViT-B/32 1.1 0.9 0.5 4.1 3.3 2.2 21.8
2D-TAN (Zhang et al., 2020) ✓ CLIP ViT-B/32 3.2 2.5 1.6 11.9 9.3 5.7 21.8
Moment-DETR (Lei et al., 2021b) ✓ CLIP ViT-B/32 3.6 2.8 1.7 13.0 9.9 5.6 21.8
VLG-Net (Soldan et al., 2021) ✓ CLIP ViT-B/32 3.6 2.8 1.7 11.7 9.3 6.0 21.8
CONE (Hou et al., 2022b) ✓ CLIP ViT-B/32 8.9 6.9 4.1 20.5 16.1 9.6 21.8
SOONet (Pan et al., 2023) ✓ CLIP ViT-B/32 11.3 9.0 5.3 23.2 19.6 13.1 21.8
SnAG (Mu et al., 2024) ✓ CLIP ViT-B/32 10.4 8.5 5.5 24.4 20.3 13.4 21.8
RGNet (Hannan et al., 2023) ✓ CLIP ViT-B/32 12.4 9.5 5.6 25.1 18.7 10.9 21.8

Proposals (Soldan et al., 2022) ✗ CLIP ViT-B/32 6.6 3.1 1.4 15.1 9.9 5.4 21.8
Watershed ✗ CLIP ViT-B/32 8.7 5.5 3.2 21.1 13.0 7.3 21.8
Watershed (ours) ✗ ResidualViT ViT-B/32 8.6 5.4 3.1 20.5 12.6 6.9 10.2(−53%)

Watershed ✗ CLIP ViT-B/16 10.8 6.8 3.9 24.5 15.2 8.5 84.3
Watershed (ours) ✗ ResidualViT ViT-B/16 10.1 6.4 3.7 23.5 14.6 8.1 37.3(−56%)

Watershed ✗ CLIP ViT-L/14 13.3 8.6 5.0 28.5 18.2 10.3 389.2
Watershed (ours) ✗ ResidualViT ViT-L/14 10.7 7.3 4.3 24.4 16.6 9.3 171.0(−56%)

Table 4: Long-form video state-of-the-art comparison. ResidualViT outperforms the previous
art both in accuracy and computational cost on the challenging long-form MAD dataset. In these
experiments, ResidualViT was configured with N=2, a token dropping probability p=85%, and the
center token dropping strategy.

ment predictions. Multiple predictions are sorted based on the highest frame-sentence similarity in
their span.

For short-video datasets, such as Charades-STA and ActivityNet-Captions, we compute the thresh-
old as a scaled average of the scores, given by α

nv

∑nv

t=1 St, where α is a scaling factor. Conversely,
for the long-form MAD dataset, we normalize the scores to the range [0, 1] and apply a fixed thresh-
old β, an approach that mitigates the influence of low-relevance similarities in longer sequences
that can otherwise skew the average similarity score. Appendix J presents several qualitative results
showcasing the aforementioned similarity profile.

APPENDIX D ADDITIONAL COMPARISON IN LONG-FORM NLTVG

In this section, we present additional grounding results for the long-form MAD dataset. Table 4
builds on Table 3 from the main paper by incorporating results from supervised state-of-the-art
methods and zero-shot watershed accuracy using CLIP features.

We begin by emphasizing that our zero-shot watershed-based grounding algorithm, detailed in Sec-
tion Appendix C, significantly outperforms the proposal-based method introduced by Soldan et al.
(2022). By comparing rows 9 and 10 of the table, where both algorithms utilize the same visual
backbone (CLIP ViT-B/32), we isolate and evaluate their individual contributions. Our zero-shot
watershed-based approach demonstrates superior accuracy, with relative improvements ranging from
43% to 128%. Remarkably, our zero-shot results are comparable with, or even surpass, several fully
supervised methods listed in rows 1 through 8.

Table 4 also enables a direct comparison of different backbone features while keeping the grounding
algorithm fixed, thereby contrasting CLIP with our ResidualViT. For ResidualViT, we utilize con-
figurations of N = 2, p = 85%, and a center token dropping strategy, resulting in an embedding
cost reduction of 53% to 56%.

When using the ViT-B/32 backbone (rows 10-11), ResidualViT reduces computational costs by ap-
proximately 53%, with an average performance degradation of just 0.1% compared to CLIP weights,
a negligible decrease. Similarly, employing the ViT-B/16 backbone (rows 12-13) ResidualViT
achieves a 56% reduction in computation with respect to CLIP, accompanied by an average perfor-
mance drop of 0.5%. For the larger ViT-L/14 backbone, the average performance drop is 1.5%, with
the most significant decrease occurring for the less stringent metric (R@1 IoU=0.1). These results
demonstrate that ResidualViT offers an excellent performance-to-cost reduction trade-off across all
ViT variants within the MAD dataset.
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Drop
Strategy

Charades-STA Avg. Cost Memory Cost
R@1 per Feature per Feature

IoU=0.5 IoU=0.7 (GFLOPs) (normalized)

V
iT

-L
/1

4 − 42.9 24.1 233.4 1×
Random 40.8 23.3 102.6 1×
Uniform 39.6 22.5 102.6 1×
Center 38.6 21.1 102.6 1×
Motion 41.5 23.8 102.6 1.9×

Table 5: Token reduction strategy ablation
for ResidualViT. We ablate four different to-
ken reduction strategies on the Charades-STA
dataset. For all, we fix the token reduction prob-
ability to 85%. Memory cost is normalized ac-
cording to the baseline memory footprint.

Drop
Strategy

Charades-STA Avg. Cost Memory Cost
R@1 per Feature per Feature

IoU=0.5 IoU=0.7 (GFLOPs) (normalized)

V
iT

-L
/1

4 − 42.9 24.1 233.4 1×
Random 20.8 9.5 102.6 1×
Uniform 21.0 10.6 102.6 1×
Center 25.8 13.2 102.6 1×
Motion 28.5 14.5 102.6 1.9×

Table 6: Token reduction strategy ablation
for CLIP. We ablate four different token re-
duction strategies on the Charades-STA dataset.
For all, we fix the token reduction probability to
85%. Memory cost is normalized according to
the baseline memory footprint.

APPENDIX E ADDITIONAL ABLATIONS

In this section, we delve deeper into the design choices of ResidualViT by performing ablation
studies on its token reduction mechanisms and distillation strategy. We begin by testing several
designs for token-dropping strategies as presented in Appendix A and discussing the role of token-
dropping probability. Next, we explore an alternative approach to the token reduction module by
replacing token-dropping with a token merging strategy (Bolya et al., 2022). We then assess the
impact of reducing input frame resolution on the total number of tokens, providing insights into its
effectiveness as a computational saving technique. Finally, we investigate an alternative distillation
objective that eliminates the need for language annotations.

Note that, while semantically aware token reduction strategies (Ding et al., 2023) could be incor-
porated, we leave this for future work due to their additional computational demands (i.e., complex
token relevance computation at each level of the transformer encoder).

Token Reduction Module Ablation - Token Drop Strategy. Here, we ablate the different token
reduction strategies presented in Appendix A. In Table 5, we contrast the grounding accuracy of
the CLIP model (first row) against our ResidualViT encoder. The lowest grounding accuracy is
achieved by the center token reduction strategy with relative drops (vs. the CLIP model, first row)
in the range of 10 − 12%. Uniform sampling produces slightly better accuracy with relative drops
in the range of 6 − 7%. The second-best performing method is random, which decreases the drop
to 3 − 5%. Finally, the motion-based strategy closely matches the grounding accuracy of the CLIP
baseline with a relative drop in the range of 1− 3%. Given the fixed token reduction probability, all
settings result in a cost reduction of 56% with respect to the naive CLIP frame encoding baseline.

Additionally, in Table 6, we report the accuracy when the different token reduction strategies are
applied to the CLIP model. In this case, we observe much wider differences between different token
reduction strategies, where random and uniform strategies perform the worst with a relative accuracy
drop in the range of 50−60%. The center token reduction strategy provides better accuracy, reducing
the losses to 40− 45%, while motion provides the best trade-off with a 34− 40% drop.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Token drop probability (%)

20

30

40

R
@
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U
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)

ResidualViT
CLIP

Figure 8: Token drop probability ablation. We
showcase the performance of CLIP (black) and
our ResidualViT (orange) when progressively in-
creasing the token drop probability.

It is important to observe that our model (Ta-
ble 5) provides a certain level of resilience to
the type of token reduction strategy compared
to the baseline CLIP model (Table 6). This
finding suggests that for ResidualViT, token re-
duction strategies that avoid motion computa-
tion can serve as viable alternatives, especially
in scenarios with limited memory or restricted
computational resources. We attribute this find-
ing to the learnable temporal residual connec-
tion, which enables the model to effectively
compensate for the discarded tokens.

Token reduction probability. Here, we assess
how varying the token reduction probability af-
fects the performance of both the baseline CLIP

22
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(b) Drop vs Merge ablation.

Figure 9: Token dropping vs merging. (a) We illustrate the relationship between the ViT layer
index and the number of tokens resulting from the token merging operation for several canonical
merging factors (r). (b) We compare the cost (GFLOPs) vs performance (R@1-IoU=0.5) for CLIP
and ResidualViT. We present CLIP without any token reduction strategy (red), against our Residu-
alViT when the token reduction is token dropping (orange) or token merging (purple). The ablation
can conclude that token merging is less favourable due to lower performance at a comparable cost
reduction.

model and our ResidualViT model. As depicted in Figure 8, the CLIP model (black) demonstrates
a degree of robustness to the dropped tokens, maintaining relatively stable grounding accuracy until
the token reduction probability reaches 35 − 40%. Beyond this setting, we observe a gradual de-
cline in accuracy, which becomes more pronounced when the probability exceeds 80%. In contrast,
thanks to our model design, ResidualViT (orange) exhibits a higher tolerance to dropped tokens,
retaining relatively high grounding accuracy up to p=85% of dropped tokens.

Token Reduction Module Ablation - Token Merging. Our ResidualViT is agnostic to the im-
plementation of the token reduction method. Therefore, we ablate replacing the token dropping
strategy (Liu et al., 2023b; Hou et al., 2022a) with token merging (Bolya et al., 2022), which has
shown promising results in reducing the inference time of pre-trained ViT models.

This solution opts for merging a fixed number of tokens per layer, denoted by the r parameter.
Within each transformer block, the set of frame tokens at layer l, denoted as T l, is divided into
two subsets: T l

odd, containing tokens at odd indices, and T l
even, containing tokens at even indices. A

bipartite matching is computed over the two sets by calculating the cosine similarity between the
key embeddings of tokens derived from the self-attention mechanism. The r edges of the bipartite
graph characterized by the highest similarity define the assignment. The connected tokens are then
merged together via a weighted sum, where each token weight represents how many tokens were
previously aggregated in it. Note that neither the [CLS] token nor the residual token is merged with
the frame tokens. Following the bipartite assignment, the maximum number of token mergers per
layer is limited to half of the total number of tokens available at layer l (min(|T l|/2, r)).
This token-reduction strategy has the potential to reduce the information loss that affects the token
dropping strategy, as the content of the tokens is retained even if their number is reduced. However,
it presents other limitations. (i) Due to the progressive nature of the merging operation (after each
transformer layer), to achieve a comparable cost reduction to token dropping, the r parameter must
be large. (ii) When the r factor is moderately large, the majority of the tokens are merged together.
This effect is showcased in Figure 9a, where we see that for higher values of r, the number of tokens
reduces to one quite early in the network (e.g., around the depth of layer 8 for r = 45).

In Figure 9b, we conduct a comparative analysis of the token dropping and token merging strategies.
For both strategies, we employ the ViT-B/16 backbone model. We set p = 85% and used the motion-
based strategy for token dropping. We set r = 40 for token merging. We report R@1-IoU=0.5
grounding accuracy on Charades-STA. We compare the CLIP baseline in red against ResidualViT
equipped with token dropping (orange) or token merging (purple).

Figure 9b shows token merging achieves overall lower grounding accuracy and incurs a significantly
higher computation cost for its highest grounding accuracy setting (∼30 GFLOPs for token merging
with N=1 versus ∼17 GFLOPs for token dropping with N=3). Nonetheless, both strategies are
capable of effectively reducing the cost with respect to the CLIP baseline (red). This result validates
our design choices for the token reduction module of our ResidualViT.
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(b) Token Drop vs. lower resolution input ablation.

Figure 10: Token drop vs lower resolution. (a) We illustrate the relationship between frame reso-
lution and number of tokens as a function of three canonical patch sizes. (b) We compare the cost
(GFLOPs) vs performance (R@1-IoU=0.5) for CLIP and ResidualViT. We present CLIP without
any token reduction strategy (red), against our ResidualViT with token drop (orange) or with lower
input resolution (green). For the lower resolution setting, we additionally explore using LoRa (Hu
et al., 2021) adapters to finetune the input 2D convolution that implements the patchyfication oper-
ation.

Spatial Resolution Ablation. An alternative to directly manipulating the number of frame tokens
involves adjusting the spatial resolution of input frames. This strategy has proven effective in dual-
branch architectures (Feichtenhofer et al., 2019), where one branch processes a few high-resolution
frames, and the other handles many low-resolution frames. In this section, we compare our approach
against this strategy.

In particular, we forward the full resolution I-frame to the ViT encoder EV and N low-resolution P-
frames to the ResidualViT encoder ES . The number of tokens |T | for an input frame with resolution
(H,W ) is calculated as |T | = H×W

P 2 , where P denotes the patch size. Consequently, reducing
the frame resolution directly decreases the total number of tokens produced from the frame. We
provide the relationship between frame resolution, patch size, and number of tokens in Figure 10a,
examining trends across three canonical patch sizes: P ∈ {14, 16, 32}.

Subsequently, in Figure 10b, we contrast the performance of two variations of ResidualViT. One
variant employs token dropping (orange), while the other utilizes a reduced input frame resolution
(green), both using the ViT-B/16 backbone model. For the token dropping variant, we set p = 85%,
and for reduced resolution, we adjust the spatial dimensions to H = W = 96 pixels (as opposed
to the default H = W = 224). These modifications yield comparable reductions in computational
cost, as demonstrated by the alignment of the data points along the x-axis. However, our results
indicate that reducing the input resolution is less effective than employing token dropping in terms
of performance (y-axis). Note that, in all experiments where the token reduction module is modified,
we re-train the residual tokenizer to ensure consistent performance evaluation.

We hypothesize that reducing the input frame resolution compromises the quality of the token rep-
resentations inputted to the transformer. The process of converting image frames into tokens is
implemented through a 2D convolution where both the kernel size and stride are set to the patch
size. Previous research has indicated that although convolutional kernels can generalize to differ-
ent resolutions, substantial changes in resolution can negatively impact performance (Kannojia &
Jaiswal, 2018; Richter et al., 2021). In our experiments, to match the computational cost reductions
observed with the token reduction strategy, we decreased the resolution of inputs to the ResidualViT
encoder by a factor of four. To address the resulting resolution mismatch, we explored fine-tuning
the 2D convolutional layers using LoRa adapters (Hu et al., 2021). This adjustment helps account
for the impact of lower-resolution inputs on token representation quality. Our findings show that
incorporating LoRa adapters with lower-resolution inputs improves accuracy across all N values
and achieves accuracy comparable to the token drop strategy for N = 3. However, the token drop
strategy consistently outperforms this approach while maintaining the advantage of not requiring
any weight modifications to the encoder EV .

Distillation strategy. To evaluate our distillation approach, we replace the NCE loss (Equation 2)
with a Mean Squared Error (MSE) loss computed between the frame features ||fS

i,t+k − fV
i,t+k||2.

This alternative setup, illustrated in Figure 11a, eliminates the need for language annotations. Fig-
ure 11b presents the results, showing that the MSE loss performs competitively with the NCE loss.
Both strategies demonstrate nearly identical performance, suggesting that our distillation method’s
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(b) Downstream performance comparison.

Figure 11: Distillation loss ablation. We ablate replacing the NCE loss (Equation 2) with a Mean
Square Error (MSE) loss. (a) Depicts the distillation pipeline when the MSE loss is used. (b)
Summarizes the downstream performance comparison. The red represents CLIP’s performance,
while the orange and blue curves represent the performance of ResidualViT on the Charade-STA
dataset when the distillation uses the original NCE loss or the MSE loss respectively. We perform
this ablation adopting the ViT-B/32 backbone. We conclude that the MSE loss, which does not
require language annotations, produces near-identical results.

effectiveness is robust to the choice of loss function. This ablation was conducted using the ViT-B/32
backbone, with all training and testing hyperparameters held constant.
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Figure 12: Frame Rate Ablation. We compare
CLIP (blue) and ResidualViT (orange) features
on the Chardes-STA dataset for varying frame
rates. The figure presents the accuracy (y-axis)
vs. cost (x-axis) trade-off.

Frame Rate Ablation. In this section, we eval-
uate the performance-cost trade-off between
frame rate and computational cost for CLIP and
ResidualViT on the Charades-STA dataset.

Figure 12 illustrates the performance of both
models on the NLTVG task as the frame rate
varies from 0.5 to 3.0 (our default value). At
the default frame rate of 3.0, CLIP achieves
an R@1-IoU=0.5 score of 35.9, while Resid-
ualViT achieves 34.2—a slight performance
drop, but with an approximate 53% reduction
in encoding cost. As the frame rate decreases,
both methods exhibit a steady decline in accu-
racy. However, it is noteworthy that Residu-
alViT at FPS=3 incurs a lower cost than CLIP at
FPS=2 while achieving comparable accuracy.
Additionally, ResidualViT at FPS=2 outperforms CLIP at FPS=1, with similar computational cost.

Finally, we observe that the decrease in accuracy for ResidualViT as the FPS decreases becomes
steeper than for CLIP. We believe that this is due to the large temporal gap between consecutive
frames, which hinders the ability of the residual tokenizer to provide valuable information when
computing P-features.

Training Interleave Factor (NTrain) Ablation. In this section, we evaluate how varying the in-
terleave factor (NTrain) during training impacts ResidualViT’s accuracy and computational cost for
different N values during inference. Additionally, we explore whether different frame sampling
strategies during training affect the model’s final accuracy. We consider two distinct sampling ap-
proaches: (a) Sample NTrain frames per training video at a constant frame rate. (b) Extract NTrain
frames at a constant frame rate, but randomly subsample the frames before inputting them into the
network. Our findings are summarized in Figure 13, where we present the accuracy vs. cost trade-off
on the Charades-STA dataset using the B/32 backbone.

In this experiment, we train ResidualViT with varying NTrain ∈ 3, 5, 10 and test these models with
N ∈ 1, 2, 3, 5, 10. Note that NTrain = 3 is our default setting, used for all other results in the
manuscript.
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Figure 13: Training interleave factor (NTrain) ablation. We compare the accuracy of ResidualViT
when three different values of NTrain ∈ {3, 5, 10} are used, and two different frame sampling
strategies are implemented. In particular, we investigate (a) using all NTrain frames sampled at a
constant FPS= 1.0, and (b) sampling a random number of frames from the NTrain frames extracted
at a constant FPS= 1.0. Results are reported on the Chardes-STA dataset using the B/32 backbone.

Focusing on Figure 13(a), we observe that different values of NTrain produce very similar results,
with NTrain = 10 showing slightly better performance for N = 5 and N = 10 compared to models
trained with NTrain = 3.

Figure 13(b) supports the same conclusion. In this case, no clear advantage is observed for larger
NTrain, as accuracy remains very similar across all configurations. Interestingly, NTrain = 3 (our
default setting) shows slightly better accuracy for N = 1, N = 3 and N = 5.

APPENDIX F RESIDUALVIT RUNTIME
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Figure 14: Inference time comparison. When
varying the batch size, we showcase the runtime
difference of a standard ViT (blue) against our
ResidualViT (orange). We demonstrate that our
approach is ∼2.5× faster than a standard ViT.
Moreover, for the same time budget (i.e., 10 sec-
onds), we can accommodate ∼2.5× more samples
in the batch without incurring Out Of Memory is-
sues.

In our manuscript, we have focused on char-
acterizing the computational cost reductions in
terms of GFLOPs. However, our system in-
troduces a dependency where P-feature com-
putation relies on the prior computation of I-
features. Specifically, the I-features are first
processed through the ViT encoder EV , fol-
lowed by the computation of P-features via the
ResidualViT encoder ES , which also incorpo-
rates the residual token. This design necessi-
tates two sequential forward passes through dis-
tinct encoders, prompting us to examine the en-
coding latency costs inherent to this approach.
One possible way to mitigate the latency due to
this sequential dependency is via parallel pro-
cessing via batching of the I-features, followed
by batching of the P-features.

In Figure 14, we present the forward pass
wall-clock latency as a function of batch size,
comparing the timings for a standard ViT-L/14
model and our ResidualViT, which employs the
same ViT-L/14 backbone. For each batch size, the total time for ResidualViT is calculated as the
sum of the time taken to compute the I-features and the time to process the P-features.

The graph indicates that our ResidualViT is more time-efficient than the ViT baseline, benefiting
from our design optimized for efficient video encoding. In practice, our architecture requires roughly
2.5 times less wall-clock time to encode frames into features across most batch sizes. Additionally,
when the encoding time is constrained, e.g.10 seconds, the baseline model can process a batch size
of approximately 700 frames, whereas ResidualViT can handle a batch size of about 1700 frames.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Note that, in the regime of small batch sizes (i.e., ≤ 8), highlighted in the zoomed box in Figure 14,
the ViT model proves more economical compared to ResidualViT. Nonetheless, it is crucial to re-
member that our focus is on efficiently encoding numerous video frames for dense tasks, making
ResidualViT the preferred choice under these conditions.

These experiments were performed using a single NVIDIA V100 GPU. Timings for each batch
size were obtained by averaging results from 100 consecutive forward passes to ensure statisti-
cal reliability. To guarantee precise timing measurements, we employed the PyTorch function
torch.cuda.synchronize(), which halts the execution of the code until all pending GPU
operations are completed. This function is critical for avoiding discrepancies in timing due to asyn-
chronous GPU execution.

APPENDIX G EVALUATION CRITERIA

In our experimental section, we measure performance via recall at rank K for intersection over union
(IoU) larger than θ (R@K-IoU=θ). Given a ranked set of video moments, this metric measures if any
of the top-K ranked moments have an IoU larger than θ with the ground truth temporal endpoints.
Following prior work (Gao et al., 2017; Hendricks et al., 2017), we report Recall@K for IoU=θ
with K ∈ {1, 5} and θ ∈ {0.5, 0.7}.

The computational cost for video encoding is quantified using Giga Floating Point Operations per
Second (GFLOPs). This metric represents the average video encoding cost per second, calculated
as the product of the computational cost to encode a single frame and the frame rate, which denotes
the number of frames processed per second.

APPENDIX H IMPLEMENTATION DETAILS

We build on the publicly available OpenCLIP (Ilharco et al., 2021) implementation and use the
default training parameters and loss with the exceptions noted next. Our method is trained on video-
text pairs from the WebVid-2.5M dataset (Bain et al., 2021) for 5 epochs. Our batch size is 2048
for ViT-B/32 and ViT-B/16 models and 1536 for ViT-L/14. We encode one frame using the visual
encoder EV and the three subsequent frames (NTrain = 3) with ResidualViT encoder ES . For all
experiments, we use a constant learning rate of 0.0005 while weight decay and warmup are disabled.
All model training is performed on 4 V100 GPUs, while inference only requires 1 V100 GPU. For
the grounding algorithm, we set WMA = 15 and α = 1.0 for Charades-STA, WMA = 15 and
α = 0.95 for ActivityNet-Captions and WMA = 7 and β = 0.7 for MAD. At inference time,
videos are processed at 3 frames per second for Charades-STA, 1 frame per second for ActivityNet-
Captions, and 5 frame per second for MAD. GFLOPs are measured via the fvcore library (FAIR,
2020).

APPENDIX I LIMITATIONS

We acknowledge several technical limitations of our approach. Firstly, our method is specifically
designed for the Vision Transformer (ViT) architecture, making it less applicable to other architec-
tures, such as convolutional or recurrent neural networks. Nonetheless, we argue that transformer-
based models have proven to be among the most versatile and scalable options in the deep learning
landscape, supporting their continued adoption and adaptation.

Secondly, ResidualViT is optimized for dense video processing tasks, which may limit its efficacy in
scenarios that benefit from sparse frame sampling, such as action recognition or video retrieval. For
such applications, the semantic continuity captured by the residual token across temporally distant
frames may not be sufficient, suggesting a potential area for future research.

Thirdly, our solution’s effectiveness heavily relies on the quality of the underlying large pre-trained
foundation model, such as CLIP (Radford et al., 2021). Consequently, any inherent biases or limi-
tations in the pre-trained model’s weights could adversely affect our method’s performance.
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(a) Grounding example. We observe an IoU = 0.93 between the ground truth moment and the predicted
one.
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(b) Grounding example. We observe an IoU = 0.93 between the ground truth moment and the predicted one.

Figure 15: Qualitative results. We present two different examples in which our zero-shot algorithm
can effectively ground the sentence in the video. We showcase the comparison between the ground
truth annotation (green) and our top-1 prediction (orange).

APPENDIX J QUALITATIVE RESULTS OF NATURAL LANGUAGE VIDEO
GROUNDING

In Figure 15-17, we present a series of qualitative results from the Charades-STA dataset, demon-
strating the efficacy of our zero-shot grounding baseline in identifying relevant event boundaries
within video content. In each example, we first show a subset of the video frames along with the
textual query on top. Then, we illustrate the temporal sequence of similarity scores {St}nv

t=1 pro-
duced by computing the cosine similarity between each frame feature and the sentence feature. We
also show the watershed threshold, which is used to determine the start and end moment predictions
as detailed in Appendix C. For each example, the figure also illustrates the top-1 predicted temporal
segment (orange) and the ground truth annotation (green).

In the examples depicted in Figures 15(a-b) and 16(a-b), our algorithm is capable of discriminating
subtle frame differences and produces very precise temporal boundaries that provide an IoU > 0.9
with the ground truth. In example 15a, the feature representations of the frames and the sentence
provide higher similarity when the television is present, in accordance with the query “The person
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(a) Grounding example. We observe an IoU = 0.98 between the ground truth moment and the predicted
one.
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(b) Grounding example. We observe an IoU = 0.95 between the ground truth moment and the predicted one.

Figure 16: Qualitative results. We present two different examples in which our zero-shot algorithm
can effectively ground the sentence in the video. We showcase the comparison between the ground
truth annotation (green) and our top-1 prediction (orange).

is watching television”. Similarly, in example 15b, the algorithm can distinguish whether the person
is holding a book despite the high resemblance among all frames, correctly predicting the temporal
span relative to the textual query “A person reads a book” with IoU = 0.93. The cosine similarity
profile in example 16a clearly differentiates between the section of the video in which the person is
eating a sandwich and when they are simply smiling at the camera, predicting the grounding of the
action “A person is eating a sandwich”, achieving IoU = 0.98. Example 16b presents a challenging
scenario,“A person is fixing a light”, where the model needs to recognize the light’s transition from
off to on. Despite these complexities, our method provides a correct prediction with an IoU = 0.95.

Nonetheless, our approach can provide meaningful predictions that, however, do not align well with
the ground truth moment. We detail one such example in Figure 17a. For the query “A person puts a
coffee cup on a shelf”, we predict a temporal span that is correctly centered to the ground truth span
but is twice as long as the ground truth moment, yielding an IoU of approximately 0.5. However,
if we pay attention to the video frames, one could argue the prediction is still correct, as it begins
when the person opens the cabinet and finishes after the person has placed the coffee cup in it.
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(a) Grounding example. An IoU = 0.5 is observed between the temporal annotation and our prediction.
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Query: Person undressing by the shelf beside the doorway.
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(b) Grounding example. Our prediction does not overlap with the ground truth moment.

Figure 17: Qualitative results. We present two different examples in which our zero-shot algorithm
can effectively ground the sentence in the video. We showcase the comparison between the ground
truth annotation (green) and our top-1 prediction (orange).

Lastly, in Figure 17b, we depict an example in which our proposed solution fails. The action de-
scribed by the query “Person undressing by the shelf beside the doorway” shows a long duration,
effectively producing a high similarity response for a good part of the video. This, in turn, affects the
watershed threshold, which is proportional to the average similarity scores. Due to the high value of
the threshold, our algorithm produces an incorrect prediction that does not overlap with the ground
truth.

APPENDIX K FEATURE COMPARISON UNDER FULL SUPERVISION SETUP

In this section, we focus on a representative fully supervised baseline for Natural Language Tem-
poral Video Grounding to evaluate the accuracy gap between CLIP and ResidualViT features. For
this experiment, we selected CG-DETR (Moon et al., 2023), a recent and well-performing publicly
available baseline that natively utilizes CLIP features for the Charades-STA dataset. The results of
our experiments are presented in Table 7, and we maintained all hyperparameters as defined by the
official implementation. Notably, features were extracted at a rate of one frame per second. For
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Avg. Cost
Features R@1 mIoU Feature/sec

IoU=0.3 IoU=0.5 IoU=0.7 (GFLOPs)

CG-DETR CLIP (B/32) 63.6 49.7 26.8 43.8 4.4
CG-DETR ResidualViT (B/32) 62.2 48.2 26.4 42.5 2.0(−53%)

CG-DETR CLIP (B/32) + SlowFast 69.6 57.1 34.5 49.0 40.5
CG-DETR ResidualViT (B/32) + SlowFast 69.2 56.5 34.0 48.7 38.1

CG-DETR* CLIP (B/32) + SlowFast 70.4 58.4 36.3 50.1 40.5

Table 7: Frame Feature Comparisons in Full Supervision Setup. This table compares the perfor-
mance of the baseline CG-DETR (Moon et al., 2023) on the Charades-STA dataset under two setups:
(i) using either CLIP (B/32) or ResidualViT (B/32) alone, and (ii) combining SlowFast features with
either CLIP (B/32) (as in the original manuscript (Moon et al., 2023)) or ResidualViT (B/32). Our
ResidualViT achieves a 53% reduction in frame encoding cost while closely maintaining the accu-
racy of the original setup. We denote with the symbol ∗ the accuracy as presented in the original
paper (last row). Note that all other rows have been trained from scratch using the original codebase.

all rows except the last one, we train CG-DETR from scratch. The last row reports the accuracy
as presented in the original paper. We find that we cannot fully reproduce those results using the
default settings.

We begin by comparing the performance when using only CLIP features versus ResidualViT fea-
tures, as shown in the first two rows of the table. For ResidualViT, we set N=2 and p=85%.
ResidualViT achieves a reduction in encoding cost of approximately 53% while maintaining accu-
racy close to the CLIP features. Specifically, we observe a marginal drop of 1.4% (relative 2.2%)
for R@1-IoU=0.3, an absolute drop of 1.5% (relative 3.0%) for R@1-IoU=0.5, and an absolute
drop of 0.4% (relative 1.5%) for R@1-IoU=0.7. These results indicate that, with an average relative
accuracy drop of only 2.2%, we can achieve more than a 50% reduction in encoding cost.

Additionally, we evaluated the performance of CG-DETR in its original configuration, where CLIP
features are channel-wise combined with SlowFast (Feichtenhofer et al., 2019) features. This setup
significantly increases computational cost, as SlowFast features alone are estimated at 36.1 GFLOPs
per feature. While the addition of SlowFast features can boost average accuracy on average of ap-
proximately 7.0%, it comes with a 9.2× increase in computational cost, representing an unfavorable
trade-off. Nonetheless, when SlowFast features are combined with ResidualViT features, the com-
putational cost is reduced by approximately 6%, with only a 0.5% absolute drop (relative 1%) in
average accuracy, providing once again a favorable balance between accuracy and cost reduction.

APPENDIX L ADDITIONAL TASK: ACTION RECOGNITION

In this section, we evaluate the task of action recognition by examining the accuracy gap between
CLIP and ResidualViT (N = 2, p = 85%) features, using the ViT-B/32 backbone for both models.
The experiments are conducted on the Kinetics-400 dataset (Kay et al., 2017) in a zero-shot setting.

The accuracy comparisons are presented in Table 8. In particular, we investigate the accuracy trends
and total encoding costs as the number of frames increases.

We observe that ResidualViT delivers competitive accuracy compared to CLIP features, with a min-
imum gap of 0.8% for Accuracy@1 at 3 frames and a maximum gap of approximately 3.2% for
Accuracy@1 at 4 frames. Similar trends are observed for Accuracy@5. However, when analyzing
the accuracy versus total encoding cost, ResidualViT demonstrates a clear advantage: with 4 frames
and a total cost of 12.8 GFLOPs, it outperforms CLIP with 3 frames and a total cost of 13.2 GFLOPs
for both Accuracy@1 and Accuracy@5. Furthermore, ResidualViT with 7 frames and a total en-
coding cost of 21.2 GFLOPs achieves nearly identical accuracy to CLIP with 5 frames, which has a
higher total cost of 22.0 GFLOPs.
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Number CLIP Total encoding ResidualViT Total encoding
of Frames Acc@1 Acc@5 cost (GFLOPS) Acc@1 Acc@5 cost (GFLOPS)

1 44.5 72.3 4.4 44.5 72.3 4.4
2 45.0 73.0 8.8 43.4 71.1 6.4
3 43.9 71.5 13.2 43.1 70.7 8.4
4 48.1 76.0 17.6 44.8 73.0 12.8
5 46.5 74.5 22.0 45.1 73.5 14.8
6 48.7 76.8 26.4 45.5 73.9 16.8
7 47.6 75.9 30.8 44.4 72.9 21.2
8 49.3 77.1 35.2 46.5 74.9 23.2
9 48.2 76.7 39.6 46.2 74.8 25.2

10 49.3 77.4 44.0 46.5 75.1 29.6

Table 8: Action Recognition. We report accuracy at 1 (Acc@1) and accuracy at 5 (Acc@5) for
CLIP and ResidualViT (N = 2, p = 85%) features on the Kinetics 400 (Kay et al., 2017) dataset
under a zero-shot setting.

This experiment demonstrates that our ResidualViT features are transferable to tasks beyond Natural
Language Temporal Video Grounding (the main focus of our work) and Automatic Audio Descrip-
tion, as discussed in Section 4.2.

For the zero-shot setup of this experiment, each frame is encoded using either CLIP or ResidualViT,
and the resulting visual feature representations are averaged. Classification is performed by com-
bining the class labels with prompt templates provided by the CLIP baseline1and encoding the text
using the language encoder. All prompt features per class are then averaged, and cosine similarity
between the visual and text representations for each class is computed. The classes are ranked by
their similarity scores, and the accuracy metric is computed accordingly.

APPENDIX M ADDITIONAL TASK: TEMPORAL ACTIVITY LOCALIZATION

In this section, we evaluate the task of temporal activity localization (TAL) by comparing the ac-
curacy of CLIP and ResidualViT (N = 2, p = 85%) features. Both models utilize the ViT-B/32
backbone, and the experiments are conducted on the ActivityNet dataset (Caba Heilbron et al.,
2015).

For this experiment, we selected ActionFormer (Zhang et al., 2022) as a recent, high-performing,
and easy-to-use baseline for TAL. The baseline is trained from scratch separately for each set of
features, with features extracted at a rate of one feature per second. Our results show that CLIP
features achieve a mean Average Precision (mAP) of 34.05%, while ResidualViT closely follows
with an mAP of 33.25%. Importantly, this result demonstrates that ResidualViT, which operates at
only 44% of the computational cost of CLIP, can deliver accuracy that is highly competitive with
the CLIP upper bound on vision-only tasks.

1Prompt templates can be found here: https://github.com/openai/CLIP/blob/main/data/
prompts.md#kinetics700
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