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ABSTRACT

Recent advancements in generative AI have enabled the creation of highly realistic
synthetic audio, posing significant challenges in voice authentication, media veri-
fication, and fraud detection. While deep learning models are frequently used for
fake audio detection, they often struggle to generalize to unseen and complex ma-
nipulations, particularly partial fake audio, where real and synthetic segments are
seamlessly combined. This paper explores the use of Spiking Neural Networks
(SNNs) for fake and partial fake audio detection, an area that has not yet been
investigated. SNNs, known for their energy-efficient computation and ability to
process temporal data, offer a promising alternative to traditional Artificial Neural
Networks (ANNs). We propose an SNN-based approach for fake audio detection
and comprehensively evaluate its performance through a series of experiments, in-
cluding hyperparameter tuning, cross-dataset generalization and partial fake audio
detection. Our results show that SNNs achieve accuracy comparable to state-of-
the-art ANN models with fewer number of parameters. Although, SNNs did not
offer significant improvements in generalization capabilities, they provided ad-
vantages such as reduced model sizes and computational efficiency, making them
more suitable for resource-constrained and real-time voice authentication appli-
cations. This study lays the groundwork for further exploration of SNNs in au-
dio spoofing countermeasures, providing a foundation for future advancements in
security-critical voice applications.

1 INTRODUCTION

Rapid advancements in generative AI have led to the creation of highly realistic synthetic media, in-
cluding images, video, and audio. These technologies are proving to be highly useful across various
domains such as entertainment, customer service, education, and healthcare (Ramdurai & Adhithya,
2023). However, the ease of generating convincing artificial content also introduces significant eth-
ical, security, and societal challenges. While much attention has been focused on synthetic images
and deepfake videos (Rana et al., 2022) synthetic speech and audio technologies are emerging as
equally critical, particularly in areas where voice authenticity is essential, such as voice authentica-
tion systems, customer service, and media. Specifically, modern Text-to-Speech (TTS) (Shen et al.,
2018; Dieleman et al., 2016; Ren et al., 2020) and Voice Conversion (VC) technologies (Kameoka
et al., 2018; Qian et al., 2019; Hsu et al., 2016), which are driven by generative AI models, leverage
advanced Deep Learning (DL) architectures to generate speech that is nearly indistinguishable from
natural human voices (Mai et al., 2023; Prudký et al., 2023). The ability to produce such realistic
synthetic speech has enabled malicious activities such as impersonation, fraud, and disinformation
(Bleisch, 2024; Hickey, 2023). Moreover, one particularly concerning development is the seamless
merging of synthetic and genuine audio segments, resulting in partial fake audio (Zhang et al., 2021)
which further complicates the distinction between authentic and altered content.

The current approaches for detecting fake audio, or synthetic speech, initially relied on Machine
Learning (ML) algorithms and have since evolved to incorporate advanced Deep Leaning (DL) mod-
els (Dixit et al., 2023). The performance of these models also relies heavily on the quality of the
training datasets. Among various options, the ASVSpoof-2019 (Wang et al., 2020b) and Fake
or Real (Reimao & Tzerpos, 2019) datasets are widely used benchmarks for fake audio detection.
Certain models proposed in the literature such as RawNet2 (Jung et al., 2020) and DeepSonar (Wang
et al., 2020a) have shown considerable performance on these datasets because of their sophisti-
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cated deep neural network (DNN) architectures over earlier traditional machine learning approaches
(Singh & Singh, 2021; Rodríguez-Ortega et al., 2020). However, despite these advances, recent
studies reveal that existing models continue to struggle with generalization to newer/previously un-
seen audio content generated by TTS and VC techniques (Chen et al., 2020). Although deep models
are effective at learning complex patterns, they may overfit to specific datasets and fail to generalize
well to unseen or evolving attack methods. In addition, the detection of partial fake audio—where
real and synthetic audio segments are seamlessly merged—remains an underexplored area. This
poses an additional challenge, as existing models typically assume fully fake or real audio, leaving
them ill-equipped to handle such complex cases.

In light of these challenges, this paper explores the use of Spiking Neural Networks (SNNs) as a novel
approach for detecting both fully fake and partial fake audio. While traditional Artificial Neural Net-
works (ANNs) have been extensively applied to this domain, SNNs have not yet been explored for
fake audio detection. SNNs are inherently designed to process temporal data due to their ability to
capture the timing and sequence of events, which makes them particularly suitable for tasks involv-
ing audio, which has rich temporal dynamics (Baek & Lee, 2024). By leveraging these capabilities,
our work explores the feasibility of using SNNs for fake audio detection and comprehensively eval-
uate their performance across various tasks, including cross-dataset generalizability evaluation and
the detection of partial fake audio. Our study aims to provide insights into how well SNNs may
be suited for fake audio detection, offering lessons on their strengths and limitations in handling
complex, evolving audio manipulation techniques. These insights can help guide future work on
enhancing voice authentication, media verification, and fraud detection systems, where reliable and
efficient detection of audio manipulations is increasingly important.

In this work, we propose two specific SNN models based on their suitability for handling temporal
patterns in audio: a four-layer feed-forward SNN and a hybrid convolutional SNN. The feed-forward
model is selected for its simplicity and efficiency in processing sequential data, making it an appro-
priate baseline for evaluating the core capabilities of SNNs in this context. The hybrid convolutional
SNN, on the other hand, incorporates convolutional layers to capture more complex spatial-temporal
features in the audio signal, making it more-suited for detecting intricate manipulations like partial
fakes. Our result show that the proposed SNN and CSNN models performed comparably to ANN
models when trained and tested on the same dataset, but struggled with cross-dataset generaliza-
tion, similar to other baselines and prior works. Nevertheless, our CSNN model achieved 16.55%
improvement over the state-of-the-art (SOTA) model (Firc et al., 2024) when trained on Fake or
Real dataset and tested on ASVspoof-2019 dataset. For the more challenging partial fake au-
dio detection task, we achieve an accuracy of 85.59% on partial fake audio dataset created using
Fake or Real dataset. To the best of our knowledge, this is the first work to apply SNNs to
the task of fake audio detection, highlighting their potential in this rapidly evolving field. Our main
contributions are as follows.

• Propose two novel SNN models for detecting both fake and partial fake audio, including a feed-
forward SNN and a hybrid convolutional SNN model.

• Conduct comprehensive hyperparameter tuning experiments for SNN models, optimizing sur-
rogate gradients (Fast Sigmoid, Arctangent), and loss functions (CE-count, CE-rate) to maximize
performance in fake audio detection.

• Perform a cross-dataset generalization study using the Fake or Real and
ASVspoof-2019 datasets to assess robustness of SNNs in detecting fake audio across
diverse and unseen data.

• Develop and evaluate on a new partial fake audio dataset, combining real and synthetic sam-
ples from the Fake or Real dataset, demonstrating SNNs’ effectiveness in detecting partial
fake audio at the frame level.

2 RELATED WORK

Fake Audio Detection Pipeline for fake audio detection typically involves feature extraction from
input audio and classification. The traditional classification methods used handcrafted features such
as MFCCs, CQCCs, and LPCCs, combined with machine learning classifiers such as Gaussian Mix-
ture Models (GMMs) (Todisco et al., 2016). With the rise of deep learning, several models now
employ end-to-end architectures that can learn features directly from raw audio, eliminating the
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Table 1: A summary of related works.

Model Dataset Accuracy (%) EER (%)
Residual CNN (Alzantot et al., 2019)

ASVspoof

- 6.02
ASSERT (Lai et al., 2019) - 6.70

ResNet (Aravind et al., 2020) - 5.32
Siamese CNN (Lei et al., 2020) - 8.72

RawNet2 (Tak et al., 2021) - 1.12
Stacked TCN (Firc et al., 2024) - 23.37

ASVspoof Baseline1 (Wang et al., 2020b) - 9.57
ASVspoof Baseline2 (Wang et al., 2020b) - 8.09

CNN (Wijethunga et al., 2020)

FoR

94.00 -
VGG19 (Reimao & Tzerpos, 2021) 52.02 -

TCN (Khochare et al., 2021) 92.00 -
STN (Khochare et al., 2021) 80.00 -

Stacked TCN (Firc et al., 2024) - 6.99

need for explicit feature extraction. For instance, RawNet2 (Tak et al., 2021) leverages a deep con-
volutional neural network (CNN) to learn representations from audio data without requiring manual
feature engineering. Recent deep learning models have achieved considerable success in detecting
fake audio on benchmark datasets such as ASVspoof-2019 and Fake or Real datasets. Ta-
ble 1 summarizes the performance of these models in the research literature on both these benchmark
datasets. Among these models, only models that have been evaluated using cross-dataset setting on
both ASVspoof-2019 and Fake or Real datasets are selected for performance comparison in
section 6.

Despite these advancements, there is limited research involving cross-dataset evaluations for fake
audio detection. Many SOTA models, while effective on the datasets they were trained on, struggle
with generalizing to unseen TTS or VC models (Chen et al., 2020). This generalization problem
is particularly concerning as synthetic audio generation technologies continue to evolve, producing
increasingly realistic audio that can evade detection. Therefore, enhancing the generalization ability
of detection models is critical for improving the security of voice-based systems. Given these chal-
lenges, this work investigates the potential of SNNs to address the generalization issue in fake audio
detection, particularly in scenarios involving unseen TTS and VC models.

Partial Fake Audio Detection Partial fake audio consists of a mixture of fake and real utterances,
making it particularly difficult for deep learning models to detect. The existing models in literature,
typically trained on datasets containing entirely fake or entirely real samples, struggle to identify the
manipulated portions when genuine audio is present (Rahman et al., 2022). This limitation arises
because most current models are designed for binary classification and they lack the granularity to
detect individual fake/real segments within a single audio file. Time-variant models, such as those
based on DNNs with variable input and output lengths, have been proposed to address this challenge.
For instance, Zhang & Sim (2022) implements a three-stage approach to localize partial fake seg-
ments within an audio sample. While this approach shows promise, its multi-stage nature introduces
latency, making it less suitable for real-time applications where fast processing is rather important.
Furthermore, there is a significant lack of open-source datasets containing diverse range of attacks
designed by utilizing partial fake audio, which limits the development and evaluation of more ad-
vanced models capable of detecting specific manipulated segments. Currently, the PartialSpoof
dataset (Zhang et al., 2021), which was created using the ASVspoof-2019 dataset, is the only
publicly available dataset containing partially fake audio. However, PartialSpoof dataset also
labels partially fake audio as fully fake audio instead of labeling individual segment of audio into
fake or real.

Spiking Neural Networks Recently, SNNs have gained attention as a biologically inspired alter-
native to traditional ANNs due to their temporal dynamics and energy efficiency (Yamazaki et al.,
2022). Due to recurrent nature of spiking neurons, SNNs are well-suited for handling temporal data,
and have been successfully applied to tasks such as sound localization and classification (Baek &
Lee, 2024). Convolution-based SNNs, in particular, have demonstrated strong performance in im-
age processing by combining the strengths of both ANNs and SNNs (Mozafari et al., 2019; Zhou
et al., 2020; Kirkland et al., 2020). While SNNs have proven effective in sound-related tasks, their
application to fake or partially fake audio detection remains largely unexplored. This work aims to
bridge that gap by investigating their potential in this area.
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Figure 1: Overview of the proposed SNN based approach for fake and partial fake audio detection.

3 PRELIMINARIES

SNNs can be represented using various models, such as the Leaky Integrate-and-Fire (LIF) model,
Hodgkin-Huxley model, and Spike Response Model, each capturing distinct aspects of neuronal
dynamics and behavior. Given its proven effectiveness for power-efficient deep learning (Rozenberg
et al., 2019), our work employs the LIF model for implementing SNNs.

Leaky Integrate and Fire Neuron The LIF neuron is a simplified model of a biological neuron,
widely used in computational neuroscience to simulate the electrical activity of neurons in a network
(Dayan & Abbott, 2001). The LIF neuron has a membrane potential U(t) which increases with input
I(t) (synaptic current or stimulus) and decay with membrane potential decay rate β. The neuron
“fires” or generates a spike when the membrane potential reaches a certain threshold and resets its
membrane potential according to reset mechanism. Popular reset mechanisms include subtracting
with threshold potential and setting membrane potential to zero. The membrane potential of a neuron
can be described by the following equation:

U(t+ 1) = β × U(t) + I(t+ 1)−R(β × U(t) + I(t+ 1)) (1)

where R is the reset mechanism for reset to zero. R is set to 1 when the neuron fires, and 0 otherwise.

Surrogate Gradient Descent Training SNNs through supervised learning is challenging due to the
discrete nature of spikes. During the forward pass, spikes are represented using a shifted Heaviside
step function. To calculate gradients (partial derivative of the loss with respect to parameters) during
the backward pass, spikes are approximated using a smooth surrogate functions such as Fast Sigmoid
(FS) (Zenke & Ganguli, 2018) and Arctangent (Fang et al., 2021).

Loss Functions To train SNN models for classification task, two commonly used loss functions
for backpropagation are Cross Entropy Spike Count (CE-count) and Cross Entropy Rate (CE-rate).
The CE-count loss function calculates the total spike count over time for the output neurons of
each class. The predicted spike counts are compared to the target spike counts, which are derived
by multiplying the ground truth labels by the number of time steps. These values are then passed
through the CE function to compute the loss. This approach encourages consistent spiking of the
correct class throughout the time steps while minimizing spikes from incorrect classes. On the other
hand, the CE-rate loss function processes spike outputs sequentially at each time step. At each
time step, the spike outputs and the corresponding ground truth values are passed through the CE
function, with the resulting losses accumulated over time. Similar to CE-count, CE-rate promotes
consistent spiking of the correct class and suppresses incorrect spikes, but it does so by considering
spike activity at each individual time step rather than across the entire time sequence.

4 METHODOLOGY

Figure 1 provides a high-level overview of the proposed approach. The key components of the
approach include the datasets, feature extraction, and classification using the proposed model.

4.1 FEATURE EXTRACTION

The raw audio samples in the datasets that we use in our experiments (detailed in section 4.4) are
2 seconds in length and sampled at a rate of 16 kHz, resulting in 32,000 floating point values per
sample. Directly passing these floating points as an input can significantly increase the number of
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Figure 2: CNN and CSNN model architecture.

parameters in the input layer of the neural network models, leading to computational inefficien-
cies. To mitigate this, we pass frequency-temporal features - Mel-Frequency Cepstral Coefficients
(MFCCs) as input to the models. MFCCs are computed by transforming an audio signal into the
power spectrum using Short Term Fourier Transform (STFT), applying a Mel filter bank, taking the
logarithm of the filter energies, and then performing a discrete cosine transform (DCT) to extract the
most relevant coefficients. In this study, for the STFT, a window length of 2048 samples and a hop
length of 512 samples (25% overlap) are used. The input is zero-padded on both sides to ensure that
each frame of the STFT output is centered with the corresponding position in the original signal.
Consequently, the output contains 63 time frames (columns), each representing 128milliseconds
of input audio. From the Mel-filtered spectrum, 40 MFCCs are extracted, resulting in 40 channels
(rows) in the input features. Lastly, MFCCs are normalized using Lp-norm normalization, prevent-
ing those with larger scales from disproportionately influencing the learning process.

4.2 ARTIFICIAL NEURAL NETWORK MODELS

Due to the lack of cross-dataset evaluation studies on assessing the generalization ability of ANNs
for fake audio detection problem, we implemented three representative ANN models, MLP, CNN,
and TE. This aims to establish baseline performance by ANN models that utilize similar resources,
including datasets, as those employed by SNN models. Model details are as follows.

Multi Layer Perceptron We implement a 5-layer Fully-Connected Feed-Forward Neural Network
(FC-FFNN). The layers contain 2520 (input), 256, 128, 10, and 2 (output) neurons, respectively.
A Rectified Linear Unit (ReLU) activation function is used at each hidden layer to introduce non-
linearity allowing the model to learn complex patterns. The input to the network consists of flattened
MFCCs of size 40 × 65 = 2520. The output of the final layer is used for binary classification (real
or fake audio).

Convolutional Neural Network We then implement a CNN model as demonstrated in fig. 2. The
convolution layer in the model uses 1D convolutional and 1D max-pooling, applied over the time
domain, to extract deep features from the MFCCs of input audio. 40 MFCCs are treated as 40 input
channels. The subsequent convolutional layers have 20, 20, and 10 channels, respectively. In both
the convolutional and max-pooling layers, a stride of one and padding (zero-padding) of one is used
to preserve the temporal dimensions of the data. The output from the final max-pool layer is flattened
into a 630-dimensional vector and fed into a FC-FFNN for classification. The FC-FFNN consists of
three layers with 630, 10, and 2 neurons, respectively, where the ReLU activation function is applied
to the intermediate layers. The output of the final layer is used for binary classification (real or fake
audio).

Transformer Encoder We also implement a TE model which uses the self attention mechanism
proposed by Vaswani (2017) to encode input MFCCs. Encoding layer consist of 6 encoding blocks,
each with 8 attention heads and a feed-forward network with dimension 1024. The encoded input
maintains the same shape as the input MFCCs (40×63). Flattened encoded input is than passed
through FC-FFNN for classification. FC-FFNN consist of 4 layers with 2520 (flattened), 1024, 10
and 2 (output) neurons with ReLU activation function in between the hidden layers. Similar to
previous ANN models, the final output layer is used for binary classification.
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4.3 SPIKING NEURAL NETWORK MODELS

SNN Compared to traditional ANNs, SNNs differ in the way they process and transmit information.
Instead of using continuous values to represent activation, SNNs communicate via discrete spikes,
where each spike represents a binary value of 1 (spike) or 0 (no spike). In this work, for the purpose
of detecting fake and partial fake audio, we propose a SNN model consisting of an input layer
with 40 neurons, followed by four spiking layers containing 256, 126, 10, and 2 (output) neurons,
respectively. Each spiking layer comprises a Fully Connected (FC) layer from an ANN model and
a corresponding Leaky layer. The leaky layer consists of LIF neurons, which are connected one-
to-one with the neurons in the preceding FC layer, similar to the ReLU activation function in ANN
models. The leaky layer serves as an activation mechanism, outputting either a spike (1) or no spike
(0). We set the decay parameter (β) for the LIF neurons to 0.9, and the spike threshold is learned
during training. The input is processed sequentially, with the 40 MFCCs from one time frame
passed into the network at a time. This sequential input allows the SNN model to capture temporal
dependencies, making it independent of input length. Additionally, the membrane potential of the
LIF neurons is preserved across time frames, introducing a recurrent component that enables the
model to retain information over multiple time steps. These temporal and recurrent properties allow
the SNN to effectively model the dynamic nature of audio signals. In SNN, input audio is classified
based on spike count of two output neurons for binary classification. For the partial fake audio
detection problem, each time frame is classified based on output of two output neurons at each time
step.

Convolutional SNN While models such as the TE are computationally and power-intensive, simpler
models such as MLP may lack the complexity needed to effectively capture subtle patterns in large
audio datasets (Müller et al., 2022). CNNs strike a balance by efficiently extracting complex features
through convolutional layers while utilizing smaller fully connected layers for classification. On
the other hand, while SNNs are generally energy efficient, they may also lack complexity to fit
diverse datasets. To this end, we propose a novel Convolutional Spiking Neural Network (CSNN)
based approach that combines the feature extraction power of CNNs with the temporal processing
capabilities of SNNs for the task of fake and partial fake audio detection. As shown in fig. 2, CSNN
retains the CNN architecture up to the final maxpool layer, where deep features are extracted from
the MFCCs. These deep features are then passed through three spiking layers containing 128, 10,
and 2 neurons, respectively. Similar to the earlier SNN model, we set the decay parameter (β) to
0.9, and the spike threshold is learned during training. Fake and partial fake audios are classified
using mechanism similar to the SNN model.

4.4 DATASETS

To evaluate the proposed fake audio detection models, we use two publicly available datasets,
ASVspoof-2019 (Wang et al., 2020b) and Fake or Real (Reimao & Tzerpos, 2019). The
primary motivation for selecting multiple large-scale datasets is to evaluate and compare the gener-
alization capabilities of the ANNs and the proposed SNN models.

ASVspoof-2019 The first ASVspoof dataset was released as a part of Automatic Speaker Verifi-
cation (ASV) challenge in 2015 (Wu et al., 2014). Updated versions of the dataset are released
every two years, with the latest being ASVspoof-2021 (Yamagishi et al., 2021). In this study, we
utilize the ASVspoof-2019 dataset, as it specifically focuses on spoofing countermeasures. The
ASVspoof-2019 dataset is divided into two subsets: Logical Access (LA) and Physical Access
(PA). The LA subset addresses spoofing attacks where the attacker can access the target device re-
motely, while the PA subset focuses on attacks where the attacker has physical access to the device.
For this study, we focus exclusively on the LA subset (referred to as ASVspoof for the remainder
of the paper), where spoofed samples are generated using 4 TTS and 2 VC models for the training
and validation sets followed by 7 TTS and 6 VC models for testing set (Wang et al., 2020b). The
audio samples in this dataset are sampled at 16 kHz.

Figure 6 (in appendix A) shows the distribution of sample lengths for both fake and real audio
samples in the dataset, indicating that the average length of both fake and real samples are around
3 seconds. To ensure consistency across both the datasets used in this study, all audio samples in the
dataset are standardized to a length of 2 seconds. Samples longer than 2 seconds are trimmed, while
shorter samples are padded with zeros (silence) to match the required length. As it can be seen in
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table 3 (in appendix A) and fig. 6, there is a severe class imbalance between real and fake samples
in the ASVspoof dataset. To mitigate this imbalance, we reduce the fake samples in the training
set to 2,580 (by randomly selecting 430 samples from each of the 4 TTS and 2 VC spoofing models
used in the training set).

Fake or Real This dataset (detailed in appendix A.1) was designed for the evaluation of spoofing
countermeasures in ASV systems (Reimao & Tzerpos, 2019). For our experiments, we utilize the
FoR-2seconds (referred to as FoR for the remainder of the paper) variation of the dataset as
it provides samples of uniform length of 2 seconds, ensuring consistency. As it can be seen in
table 3 (in appendix A) the distribution of samples in the training, validation, and testing sets of
the FoR dataset are perfectly balanced. The testing set contains previously unseen fake samples
(generated using Google Cloud TTS with Wavenet), along with previously unseen real samples. To
further assess whether the proposed models can adapt TTS audio generated using new algorithms,
inspired by Reimao & Tzerpos (2021) we created the FoR-mix dataset. The FoR-mix dataset is
constructed by removing 200 randomly selected samples from the test set and adding them into the
training set of the FoR dataset.

Partial Fake Audio Dataset We then create a partial fake-audio dataset (PFA dataset) to assess the
performance of the baseline ANN models and our proposed SNN models in the presence of partial
fake audio. Additionally, we utilize this newly created dataset to train SNN models to classify audio
inputs by segmenting them into shorter temporal frames, rather than classifying the entire audio
sample as a whole. The ground truth of each audio sample is created by aggregating the ground
truth of each time frame. This approach also eliminates the constraint of classifying an entire audio
sample based on a fixed initial length. For example, an adversary could attempt to bypass spoofing
detection by appending fake audio after an initial segment of real audio. By segmenting the audio
into shorter temporal frames and classifying them all, a model can analyze the entire audio sample,
improving its ability to detect such spoofing attempts and making it more robust against partial fake
audio based evasion strategies. The dataset consists of four types of audio samples: (1) two-second
fake, (2) two-second real, (3) one second fake followed by one second real, and (4) one second real
followed by one second fake. Samples are generated using fake and real samples from the FoR
dataset.

The training, validation, and test sets are constructed using samples explicitly from the training,
validation, and test sets of the FoR dataset. Table 4 (in appendix A.3) shows the balanced class dis-
tribution in the newly constructed PFA dataset. To achieve the objective of improving generalization
to TTS audio generated by new algorithms, we applied a similar strategy (to FoR-mix dataset cre-
ation) by removing 800 randomly selected samples from the test set and adding them to the training
set.

5 EXPERIMENTS

We design three experiments to assess the proposed SNN and CSNN model performance in fake and
partial fake audio detection. All experiments were run on a Nvidia L40S GPU and implementation
details are provided in appendix B. The experiments are evaluated based on two key metrics: Equal
Error Rate (EER) and accuracy (as detailed in appendix C).

5.1 EXPERIMENT 1: HYPERPARAMETER TUNING

This experiment aimed to identify the optimal hyperparameters for SNN and CSNN models in
fake audio detection. The hyperparameters tested included two loss functions—CE-rate and CE-
count—and two surrogate gradients—Fast Sigmoid (FS) and Arctangent. Both SNN and CSNN
models were trained with all four combinations of these loss functions and surrogate gradients, us-
ing the ASVspoof and FoR datasets independently. For each dataset, the optimal hyperparameters
were selected based on model performance on the validation set. These selected models were then
utilized in subsequent experiments.
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5.2 EXPERIMENT 2: FAKE AUDIO DETECTION

Spoofed or fake data generated by newer and more advanced TTS or VC models can easily evade
detection in older spoofing detection systems (Müller et al., 2022). Consequently, it is essential to
assess spoofing detection model’s ability to identify and adapt to spoofed audio generated by spoof-
ing algorithms that were not encountered during training. To address this challenge, this experiment
assesses the generalization capability of SNN and CSNN models for fake audio detection by testing
their performance on datasets different from those used during training. To this end, we train and
test the baseline ANN models and the proposed SNN models on the ASVspoof and FoR datasets
in a cross-dataset setting. Spoofed samples in the ASVspoof test set are created using 11 unknown
spoofing models (TTS and VC) and 2 known spoofing models (TTS and VC). Whereas, in the FoR
test set, fake samples are created using previously unseen more commercialized sourced services
such as Google Cloud TTS with WaveNet (Reimao & Tzerpos, 2019). Furthermore, the real utter-
ances in both test sets are distinct from the real utterances in both train sets. This type of diversity
in test sets further challenges proposed models’ generalization ability. Additionally, to evaluate
proposed models’ ability to learn spoofed samples generated using previously unseen spoofing al-
gorithms, proposed models are trained and evaluated using FoR-mix dataset (see section 4.4).

To evaluate SNN model performance on the FoR dataset, we use the implemented ANN models and
the Stacked Temporal Convolution Network (Stacked TCN) model proposed by Firc et al. (2024)
(which provides a similar cross-dataset evaluation). Additionally, we compare against three models
presented by Reimao & Tzerpos (2021), which uses the FoR dataset. These models include Ran-
dom Forest (RF) using MFCC features, RF using CQT features, and VGG-19 using STFT features.
The first two models represent the SOTA, non-deep-learning approaches, while the VGG-19 model
provides a benchmark for deep learning. For the ASVspoof dataset, we compare our results with
the performance of Baseline 1 and Baseline 2 models by Wang et al. (2020b), as well as the Stacked
TCN model by Firc et al. (2024).

5.3 EXPERIMENT 3: PARTIAL FAKE AUDIO DETECTION

This experiment proposes a novel approach that utilizes temporal nature of SNN models to detect
partial fake audio by classifying audio at the individual time frame level. We use our newly created
PFA dataset (see section 4.4) to train the proposed SNN and CSNN models. We use the CE-rate
as the loss function due its ability to compare the predicted output of individual time frames with
their respective ground truths. Based on the hyperparameter tuning (see section 6.1), we choose
Arctangent as the surrogate gradient. The accuracy is then determined by the the number of correctly
predicted time frames over the total number of time frames. To assess how training on the PFA
dataset could enhance the models’ ability to detect partial fake audio, we compare the performance
of these models against SNN and CSNN models with similarly configured hyperparameters trained
on the FoR-mix dataset. To further demonstrate the vulnerability of ANN and SNN models to
partial fake audio, we evaluate the baseline ANN models and SNN models, trained on the FoR-mix
dataset for fake audio detection, by testing them on PFA dataset. In this experiment, only fully real
audio samples are categorized as real, while both fully fake and partially fake samples are classified
as fake.

6 RESULTS

6.1 EXPERIMENT 1: HYPERPARAMETER TUNING

Figure 3a and fig. 3b illustrate the performance of the SNN and CSNN models with different loss
functions and surrogate gradients on the FoR and ASVspoof datasets, respectively. Both mod-
els demonstrated superior performance with the CE-count loss function compared to the CE-rate
loss across both datasets. While the models performed similarly with both surrogate gradients, the
SNN achieved the highest validation accuracy of 99.47% with the FS surrogate gradient on the
FoR dataset, while the CSNN achieved 99.04% with the Arctangent surrogate gradient. On the
ASVspoof dataset, performance was measured using the EER metric due to the class imbalance in
the validation set (table 3). The SNN achieved the lowest validation EER of 6.28% with the Arc-
tangent surrogate gradient, and the CSNN achieved 5.73% with the FS surrogate gradient. Across
all experiments, the CE-count loss consistently outperformed or matched the CE-rate loss. The CE-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

CE-rate CE-count
Loss Function

90

92

94

96

98

100

Va
lid

at
io

n 
Ac

cu
ra

cy
 %

97
.3

5 99
.0

4

96
.1

4

99
.0

1

CSNN
Arctangent
Fast Sigmoid

CE-rate CE-count
Loss Function

98
.8

7

99
.3

3

98
.5

8

99
.4

7

SNN

(a)

CE-rate CE-count
Loss Function

0

2

4

6

8

10

12

Va
lid

at
io

n 
EE

R 
%

10
.7

8

6.
26

11
.6

5

5.
73

CSNN
Arctangent
Fast Sigmoid

CE-rate CE-count
Loss Function

8.
56

6.
28

10
.2

9

6.
31

SNN

(b)

Figure 3: SNN and CSNN model hyperparameter tuning for (a) FoR and (b) Asvspoof datasets.

count loss applies the loss only once after accumulating spikes, making it particularly effective for
classifying entire audio sample. In contrast, the CE-rate loss, which applies the loss at every time
step, is better suited for classifying individual time frames.

Summary: SNN and CSNN models demonstrated superior performance on both the ASVspoof
and FoR datasets using the CE-count loss. Both Arctangent and FS surrogate gradients showed
comparable results across both models and datasets.

6.2 EXPERIMENT 2: FAKE AUDIO DETECTION

Table 2: Cross-dataset testing after training using FoR and ASVspoof. Missing values indicate that
either the respective work did not present those metrics or did not perform those specific analysis.

Model Parameters Trained on FoR Trained on ASVspoof
FoR ASVspoof ASVspoof FoR

Accuracy EER Accuracy EER Accuracy EER Accuracy EER
MLP 679,584 82.35 17.61 18.63 64.52 84.36 13.57 50.18 46.32
CNN 8,472 71.97 29.50 35.84 34.11 87.52 11.74 53.86 50.55
TE 3,130,000 64.80 20.04 27.30 48.16 85.21 11.38 50.00 40.26

SNN 44,708 54.96 29.23 12.93 55.35 83.54 12.98 50.00 69.39
CSNN 6,063 71.60 22.70 24.78 31.18 84.00 12.25 50.00 54.59

RF-MFCC (Reimao & Tzerpos, 2021) - 56.98 - - - - - - -
RF-CQT (Reimao & Tzerpos, 2021) - 86.94 - - - - - - -

VGG-19-STFT (Reimao & Tzerpos, 2021) - 52.02 - - - - - - -
Stacked TCN (Firc et al., 2024) - - 6.99 - 47.73 - 23.37 - 46.04

ASVspoof-Baseline1 (Wang et al., 2020b) - - - - - - 9.57 - -
ASVspoof-Baseline2 (Wang et al., 2020b) - - - - - - 8.09 - -

As shown in table 2, models trained on the FoR dataset and tested on the ASVspoof dataset demon-
strate a decline in accuracy as model complexity increases. This suggests that more complex ANN
models are prone to overfitting, which leads to reduced generalization. In contrast, the SNN and
CSNN models achieved comparable performance to the ANN models but with fewer parameters.
The CSNN model, in particular, achieved the lowest EER (31.18%) during cross-dataset evaluation
on the ASVspoof test set, outperforming the Stacked TCN (Firc et al., 2024) model by 16.55%.

When trained on the ASVspoof dataset (table 2), all models performed similarly on both the
ASVspoof and FoR test sets. However, the SNN and CSNN models showed improvements of
10.39% and 11.12%, respectively, over the stacked TCN model. The higher EERs observed on
the FoR test set highlight the difficulty in detecting fake audio generated using more advanced and
previously unseen TTS models. As illustrated in fig. 4, models trained on the FoR-mix dataset
showed significant improvements in test accuracy compared to those trained on the FoR dataset.
This suggests that the generalization ability of both ANN and the proposed SNN models is heavily
influenced by the diversity and quality of the training data.

Summary: The SNN and CSNN models performed comparably to baseline ANN models while
using fewer parameters. The CSNN model demonstrated better cross-dataset generalization after
training on the FoR dataset, outperforming both ANN and SOTA models. Training on the FoR-mix
dataset further enhanced the generalization capabilities of both SNN and ANN models, highlighting
the importance of diverse training data.
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6.3 EXPERIMENT 3: PARTIAL FAKE AUDIO DETECTION

As shown in fig. 5 (left), all models trained on the FoR-mix dataset struggled to detect partial fake
audio in the PFA dataset. Figure 5 (right) highlights the performance improvements of SNN and
CSNN models before and after training on the PFA dataset. The proposed SNN model achieved an
accuracy of 83.98% on PFA dataset, reflecting a 10.59% improvement compared to its performance
after training only on the FoR-mix dataset. Similarly, the CSNN model reached 85.59% accuracy,
representing a 15.94% improvement over its performance on FoR-mix and a 1.61% improvement
over the SNN model trained on the PFA dataset. These results suggest that while SNN models
trained to classify individual time frames using the CE rate loss and FoR-mix dataset perform
better than traditional ANN models, their performance can be further enhanced by training them on
a dataset that contains partial fake audio. The higher accuracy of the CSNN model indicates that
SNN models are strong candidates for partial fake audio detection when classifying short temporal
frames.

Summary: Both ANN and SNN models experienced a drop in accuracy when tested on the PFA
dataset after training on the FoR-mix dataset. However, after training on the PFA dataset, the
CSNN and SNN models showed significant performance improvements.
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Figure 5: Model performance on PFA dataset when trained on FoR-mix dataset (left), and trained
on PFA dataset (right).

7 CONCLUSION

In this paper, we explored the use of SNNs for the detection of fully and partially synthesized
fake audio, addressing a gap in existing research. Our experiments demonstrated that SNN mod-
els, particularly the CSNN, achieved performance comparable to ANNs and other SOTA models
with considerably lower number of parameters. Despite this efficiency, the SNN models did not
demonstrate substantial improvements in generalization in the presence of fake audio generated by
previously unseen algorithms. However, the temporal dynamics inherent to SNNs enabled a novel
approach for detecting partial fake audio at the frame level, offering a promising direction for future
advancements. This work lays the foundation for future research into enhancing the robustness and
generalization of SNN models, especially in security-critical audio manipulation detection.
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APPENDIX

A FURTHER DETAILS ON DATASETS

A.1 FOR

The FoR dataset is available in four variations: FoR-original, FoR-norm, FoR-2seconds,
and FoR-rerecorded. FoR-original contains the original, unprocessed samples.
FoR-norm consists of samples that have been converted to WAV format, normalized to 0 dBFS,
downsampled to a 16 kHz sample rate, and converted to mono. Additionally, silences at the be-
ginning and end of the utterances have been removed. FoR-2seconds includes the FoR-norm
samples truncated to 2 seconds in length, while FoR-rerecorded comprises re-recorded utter-
ances to simulate real-world attacks.

A.2 ASVSPOOF

Figure 6 shows the distribution of sample lengths for fake and real audio samples in the ASVspoof
dataset, which shows that the average length of both fake and real samples are around 3 seconds.
Figure 6 also shows the severe class imbalance that exists in real vs. fake samples in the ASVspoof
dataset (also see table 3).
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Figure 6: Class-wise audio sample length distribution in ASVspoof-2019 dataset.

Table 3: Class distribution in ASVspoof and FoR datasets.

Datasets Train Validation Test
Real Fake Real Fake Real Fake

ASVspoof (Wang et al., 2020b) 2,580 22,800 2,548 22,296 7,355 63,882
Fake or Real (Reimao & Tzerpos, 2019) 6,978 6,978 1,413 1,413 544 544

A.3 PFAD

Table 4 shows the balanced class distribution in our newly constructed PFA dataset which aids in
ensuring that the evaluated models does not become biased toward any particular class, improving
their ability to generalize.

Table 4: Class distribution in Partial Fake Audio dataset PFAD.

Partial Fake Train Validation Test
Fake 7,178 1,413 344

Fake+Real 7,178 1,413 344
Real+Fake 7,178 1,413 344

Real 7,178 1,413 344
Total 28,712 5,652 1,376
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B IMPLEMENTATION

All our experiments were implemented in Python 3.11 on a server running Ubuntu 22.04 with
350GB RAM and a Nvidia L40S (48GB VRAM), 48 CPU cores, and 400GB swap memory)
GPU. ANN models were built using the PyTorch library (Paszke et al., 2019), while SNN models
were developed using PyTorch alongside snnTorch (Eshraghian et al., 2023). All our proposed mod-
els and baseline models were trained for 200 epochs, and the epoch with the minimum validation
loss was selected for evaluation. The ANN models were trained with CE loss function, the Adam
optimizer with learning rate of 0.0001 and an L2-penalty of 0.000005 to reduce over-fitting. The
SNN models were trained with Adam optimizer and learning rate of 0.0005.

C METRICS

We use the following metrics to evaluate the performance of our proposed models.

1. Accuracy: The model’s accuracy is measured as the proportion of correctly classified instances
out of the total instances provided to the model.

2. Equal Error Rate (EER): The point where the False Positive Rate (FPR) (proportion of real
audio incorrectly classified as fake) equals the False Negative Rate (FNR) (proportion of fake
audio incorrectly classified as real). A lower EER is an indicator of a more accurate and balanced
model.

In the context of fake audio detection, accuracy can be misleading when dealing with imbalanced
datasets. Therefore, we use EER as a more reliable metric, as it balances the trade-off between FPR
and FNR. EER is particularly useful in situations where both types of errors (failing to detect fake
or real audio) are critical.

D ADDITIONAL RESULTS

D.1 EXPERIMENT 1: HYPERPARAMETER TUNING

Table 5 shows the validation accuracies and EERs obtained during the hyperparameter tuning on
the ASVspoof dataset. While accuracy provides a general overview of model performance, the
EER is a more reliable metric in this case due to the class imbalance in the ASVspoof dataset, as
it equally considers both false positives and false negatives, offering a clearer picture of detection
performance. This is evident in table 5, where certain hyperparameters with similar accuracies have
notably different EERs.

Table 5: SNN and CSNN validation results for ASVspoof.

SNN CSNN
Fast Sigmoid Arctangent Fast Sigmoid Arctangent

Accuracy % EER % Accuracy % EER % Accuracy % EER % Accuracy % EER %
CE-rate 94.86 10.29 96.15 8.56 94.83 11.65 95.31 10.78

CE-count 96.91 6.31 96.99 6.28 97.11 5.73 97.17 6.26

D.2 EXPERIMENT 2: FAKE AUDIO DETECTION

Figure 7 illustrates the trade-off between the number of parameters and accuracy for various models.
Notably, both SNN and CSNN achieved comparable performances with relatively low number of
parameters, making them more efficient compared to models such as Transformers, which require
significantly more parameters for a comparable level of accuracy.
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Figure 7: Number of parameters vs. the accuracy vs. model depth (indicated by the radius).

E FURTHER DISCUSSION

Our study highlights key areas for improvement in the development of fake audio detection models,
particularly in terms of generalizability. One major challenge revealed in our results is that the
models, including both SNNs and ANNs, often fail to generalize well when tested on data from
unseen voice synthesizing algorithms. This suggests that the models are overfitting to the specific
patterns present in the training data and struggle to adapt to novel manipulations introduced by new
algorithms. However, when the training set includes samples from these unseen algorithms, model
performance improves considerably. This indicates that the limited generalization is not necessarily
a failure of the model architecture itself, but rather a limitation of the diversity of the training data.

In adversarial settings, one of the key challenges is the unpredictability of the specific algorithm
used to generate synthetic audio, making it difficult for detection models to generalize effectively.
Attackers may use novel or customized voice synthesizing techniques that the model has never
encountered, resulting in significant detection blind spots. This is particularly problematic because
the rapid pace of advancements in TTS and VC technologies means new, highly realistic algorithms
are constantly emerging, further complicating the task for existing models. To address this challenge,
it is essential to maintain a continuously evolving, comprehensive dataset that captures a wide array
of known voice synthesizing algorithms. Another key area for further development is the creation
of more sophisticated partial fake audio datasets. There is a need for a more advanced dataset
that captures a wider range of manipulations, including more complex synthetic audio generation
techniques. Moreover, making such a dataset publicly available, with frame-level annotations for
real and fake segments, would allow other researchers to benchmark their models and drive progress
in this domain.

A potential direction for future research is to compare the power efficiency of SNNs and traditional
ANNs by implementing SNNs on neuromorphic hardware platforms, such as Intel Loihi (Davies
et al., 2018). Such a comparison could provide valuable insights into the practical advantages of
SNNs over conventional ANNs in fake audito detection, especially in large-scale deployment sce-
narios.
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