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ABSTRACT

The ex ante equilibrium for two-team zero-sum games, where agents within each
team collaborate to compete against the opposing team, is known to be the best a
team can do for coordination. Many existing works on ex ante equilibrium solu-
tions are aiming to extend the scope of ex ante equilibrium solving to large-scale
team games based on Policy Space Response Oracle (PSRO). However, the joint
team policy space constructed by the most prominent method, Team PSRO, cannot
cover the entire team policy space in heterogeneous team games where teammates
play distinct roles. Such insufficient policy expressiveness causes Team PSRO
to be trapped into a sub-optimal ex ante equilibrium with significantly higher ex-
ploitability and never converges to the global ex ante equilibrium. To find the
global ex ante equilibrium without introducing additional computational complex-
ity, we first parameterize heterogeneous policies for teammates, and we prove that
optimizing the heterogeneous teammates’ policies sequentially can guarantee a
monotonic improvement in team rewards. We further propose Heterogeneous-
PSRO (H-PSRO), a novel framework for heterogeneous team games, which
integrates the sequential correlation mechanism into the PSRO framework and
serves as the first PSRO framework for heterogeneous team games. We prove
that H-PSRO achieves lower exploitability than Team PSRO in heterogeneous
team games. Empirically, H-PSRO achieves convergence in matrix heterogeneous
games that are unsolvable by non-heterogeneous baselines. Further experiments
reveal that H-PSRO outperforms non-heterogeneous baselines in both heteroge-
neous team games and homogeneous settings.

1 INTRODUCTION

In this paper, we focus on a class of multiplayer games where a team of agents competes against
an adversarial team. Specifically, we focus on a team of heterogeneously skilled agents against an
opposing team, which is referred to as heterogeneous team games. These games model competitions
between two entities (the team and the opponent team) and are natural extensions of two-player
games to multiplayer games. To this day, algorithms have achieved superhuman performance in
two-player games, including Go (Silver et al., 2017) and heads-up no-limit Texas hold’em poker
games (Bowling et al., 2015; Brown & Sandholm, 2018).

Heterogeneous team games introduce distinct challenges not presented in two-player games, espe-
cially in terms of coordinating team members with distinct roles. For example, in StarCraft, how
should distinct species (e.g., Marine, Stalker, and Medivac), each with unique skills, collaborate
to defeat an opposing team? Similarly, in soccer, how can forwards, midfielders, and defenders,
who cannot communicate during the game except through public observable actions, play optimally
against their opponents? A common solution for these challenges is that of ex ante coordination
introduced by Celli & Gatti (2018), in which team members can correlate their strategies before
the game starts but cannot communicate during the gameplay. This form of ex ante coordination
is known to be the best a heterogeneous team can do for coordination and makes the problem of
optimization convex. However, computing an ex ante equilibrium in heterogeneous team games
is inapproximate in polynomial time (Celli & Gatti, 2018) even though it is equivalent to a Nash
equilibrium in a two-player zero-sum game (McAleer et al., 2023).

Existing methods for two-team zero-sum games either can solve only small to mediated-sized het-
erogeneous team games, or can scale to large games but only in a setting of homogeneous team-
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Figure 1: Procedure of the homogeneous PSRO framework in Team Rock-Paper-Scissors, which is a
typical heterogeneous team game, with four agents, two teams T1 = {M1,M2} and T2 = {O1,O2},
one state, and joint action spaces A1 = A2 = {a, b}2. Agents play Rock-Paper-Scissors between
the teams: if player M1 in team T1 (or O1 in team T2) chooses action b, then the team plays Scissors
no matter the choice of the other player in the team; if both players choose action a, then the team
plays Rock; otherwise, the team plays Paper. The two players in team T1 or opponent team T2 are
heterogeneous because the actions a and b serve different functions for them. Specifically, player
M1 (or O1) can unilaterally choose the team decision Scissors by playing action b, while player
M2 (or O2) must coordinate with the other player to choose Paper by playing action b.

mates. On one hand, some researchers model the problem of solving ex ante equilibria in two-team
zero-sum games as a linear program and resort to Column Generation (CG) algorithms (Celli &
Gatti, 2018; Farina et al., 2018; Zhang & An, 2020; Farina et al., 2021; Zhang et al., 2021; Zhang
& Sandholm, 2022; Zhang et al., 2022a; Zhang et al., 2022b; Zhang et al., 2024) to solve it. CG
algorithms iteratively compute a joint distribution as the optimal ex ante team coordination strat-
egy and can be naturally extended to solve heterogeneous team games. However, since the jointly
coordinated team strategy space grows exponentially with the increasing number of teammates,
scaling CG to large heterogeneous team games becomes challenging. On the other hand, McAleer
et al. (2023) solve large-scale team games by extending a reinforcement learning-based equilib-
rium solver–Policy Space Response Oracle (PSRO) (Lanctot et al., 2017)–from two player zero-
sum games to two-team zero-sum games and utilizing a homogeneous agent-based method for team
coordination. This homogeneous method computes the optimal ex ante team coordination strategy
by sharing a policy among teammates, and enables efficient team coordination as the increasing
number of agents does not introduce much computational and sample complexity burden. However,
this homogeneous PSRO framework (McAleer et al., 2023) cannot converge in heterogeneous team
games.

We identify and analyze the convergence issues of early termination and sub-optimal equilibrium
trap that homogeneous PSRO framework encounters in heterogeneous team games, and show that
the primary reason is its heavy reliance on the policy sharing mechanism for team coordination.
Specifically, the policy sharing mechanism requires players in both teams to be homogeneous (e.g.,
share the same observation space and action space, and play similar roles in a cooperation task).
When applied to heterogeneous team games, this mechanism cannot represent all the team policies.
For example, a pure strategy of joint action (a, b) in the team joint action space {a, b} × {a, b} is
excluded from team policies with a shared distribution (x, 1 − x), because it requires x = 1 and
1 − x = 1 to hold at the same time. Since an ex ante equilibrium is a pair of correlated team
strategies, such an insufficient policy expressive ability further makes the equilibrium space with
policy sharing unable to cover the whole equilibrium space, leading to insufficient equilibrium
expressive ability. As a result, the homogeneous PSRO framework can only converge to a sub-
optimal equilibrium with significantly higher exploitability in heterogeneous team games.

In heterogeneous team games, the homogeneous PSRO framework may terminate early, being
trapped into a sub-optimal ex ante equilibrium with significantly higher exploitability, because the
Best Response policy does not exist in the team policy space under the condition of insufficient pol-
icy expressiveness. For example, in a typical heterogeneous team game Team Rock-Paper-Scissors
in Figure 1, the Best Response to a meta policy of the pure strategy Rock cannot be represented by
the policy sharing mechanism, making the homogeneous framework trapped in a Rock policy and
never find the global ex ante equilibrium. To address the above convergence issue caused by in-
sufficient policy expressiveness, one straightforward idea is to parameterize heterogeneous policies
for each player. That is, we jointly optimize over multiple players’ policy spaces to find an optimal
ex ante coordination strategy. However, optimizing over multiple players’ policy spaces simultane-
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ously is significantly harder than optimizing over a single shared player’s policy space (Zhang et al.,
2022b). To find the global ex ante equilibrium without introducing high computational complex-
ity, we serialize the optimization process of heterogeneous policies and prove that optimizing the
heterogeneous policies sequentially can guarantee a monotonic improvement on the team rewards.
With this sequential correlation, the policy spaces of two teams grow linearly, avoiding the expo-
nential increase with the increasing number of agents. Inspired by these results, we propose a novel
framework for heterogeneous team games, Heterogeneous-PSRO (H-PSRO), which integrates the
sequential correlation mechanism into an iterative procedure and serves as the first PSRO frame-
work for computing an ex ante equilibrium in heterogeneous team games. We prove that H-PSRO
achieves lower exploitability than Team PSRO in heterogeneous team games. As a result, H-PSRO
framework shows empirical convergence in matrix heterogeneous games that are unsolvable by its
homogeneous-counterparts. Further results on a suite of large scale benchmark games show that
H-PSRO can be implemented for large scale games and surprisingly outperforms the homogeneous
framework in not only heterogeneous team games, but also homogeneous settings.

2 PRELIMINARIES

Two-team zero-sum game (Littman, 1994) 1 can be defined as a tuple G = (T ,O,A, R, P, γ),
where we write the team set as T = {T1, T2}, where T1 is a finite set of players playing cooper-
atively against an adversary team denoted by T2. Let O = O1 × O2 be the product of locaob-
servation spaces of two teams, namely the joint observation space, where O1 = ×n1

i=1O1,i and
O2 = ×n2

j=1O2,j denote the product of local observation spaces of the players in team T1 and T2,
namely team’s joint observation space. O1,i, O2,j is the local observation spaces of players i ∈ T1

and j ∈ T2. A = A1 × A2 is the product of action spaces of two teams, namely the joint ac-
tion space, where A1 = ×n1

i=1A1,i and A2 = ×n2
j=1A2,j denote the product of action space of

players in team T1 and T2, namely team’s joint action space. Ak,i is the action spaces of players
i ∈ Tk ∈ T . We define the joint action of team Tk as ak = (a1k, ...a

nk

k ) ∈ Ak. A team strat-
egy is a vector of individual strategies of team players, denoted by π⃗k = (πk,1, ..., πk,n1), where
πk,i ∈ Πk,i : Ok,i → ∆Ak,i is an individual strategy of player i ∈ Tk. R is a pair of reward
functions (R1, R2), where we use the notation of Rt : O × A → [−Rmax, Rmax], t ∈ {1,2} to
represent the reward function of two teams. Note that players within the same team share the team
reward with Rk,1 = Rk,2 = · · · = Rk,nk

= Rk/nk, and the rewards of two teams sum to zero
R1 + R2 = 0. Let P : O × A × O → R be the transition probability function, and γ ∈ [0, 1).
The transition probabililty function P , team policy π⃗1, opponent team policy π⃗2, and the initial
observation distribution d, induce a marginal observation distribution at time t, denoted by ρtπ⃗1,π⃗2

.
At time step t ∈ R, team Tk observes its local observations ok,t ∈ Ok (ok,t = (o1k,t, ..., o

nk

k,t) is the
“joint” observations) and take team joint actions ak,t ∈ Ak according to its policy π⃗k. At each time
step, two teams take actions simultaneously based on their observations with no sequential depen-
dency. At the end of each time step, team Tk receives its joint reward Rk(ok,t,ak,t,ok,t,ak,t), and
observes ok,t+1. Following this process infinitely long, team T1 and T2 earn a discounted cumula-
tive return of Rγ

1 ≜ Σ∞
t=0γ

tR1(o1,t,a1,t,o2,t,a2,t) and of Rγ
2 ≜ Σ∞

t=0γ
tR2(o1,t,a1,t,o2,t,a2,t)

respectively. The expected reward of the team can be written as the following function:

R1 (π⃗1, π⃗2) := Eo1,0:∞,o2,0:∞∼ρ0;∞
π⃗1,π⃗2

,a1,0:∞∼π⃗1,a2,0:∞∼π⃗2

[ ∞∑
t=0

γtR1(o1,t,a1,t,o2,t,a2,t)

]
.

Heterogeneous team games are a specialized subset of two-team games where each team is com-
posed of agents with differing characteristics and abilities. Formally, ∃i, i′ ∈ Tk ∈ T such that
player i and player i′ perform distinct roles and are not exchangeable. Consequently, the distribu-
tion of observation space Ok,i is different from the distribution of observation space Ok,i′ . Further,
Ak,i ∩Ak,i′ ̸= Ak,i ∪Ak,i′ . This diversity in observation and action spaces reflects the varied roles
and capabilities that agents bring to the team, causes a requirement of πk,i ̸= πk,i′ .

TMECor as a Maxmin Problem. The central solution concept in heterogeneous team games is the
Team-Maxmin Equilibrium with correlation (TMECor) (Basilico et al., 2017; Celli & Gatti, 2018).
TMECor is a Nash equilibrium where the team T1 plays according to the ex ante coordinated strategy

1Our methods mostly apply to stochastic games including Google Research Football mentioned in Sec-
tion 5.2.3. Normal-form games can be considered as special cases of stochastic games with |O| = 1.
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π1 ∈ Π1 : O1 → ∆A1 and the opponent team T2 plays according to the ex ante coordinated
strategy π2 ∈ Π2 : O2 → ∆A2. According to definition, a TMECor is reached if, for each team
T ∈ T , its coordinated team strategy is a best response to the coordinated team strategies of teams
∈ T \T . Upon reaching a TMECor (π∗

1,π
∗
2), players in both T1 and T2 cannot cooperatively deviate

from their team strategies to obtain a higher team reward:

R1(π
∗
1 ,π

∗
2) ≥ R1(π1,π

∗
2) ∀π1 ∈ Π1, (1a)

R2(π
∗
1 ,π

∗
2) ≥ R2(π

∗
1 ,π2) ∀π2 ∈ Π2. (1b)

Define the exploitability of a pair of coordinated team strategies (π1,π2) as e(π1,π2) =
R2(π1,BR(π1)) + R1(BR(π2),π2), where BR(π1) is the coordinated opponent team strat-
egy which achieves the highest reward responding to the team coordinated strategy π1 and BR(π2)
is the coordinated team strategy that achieves the highest reward responding to the coordinated op-
ponent team strategy π2. A coordinated team strategy pair (π1,π2) is a TMECor if e(π1,π2) = 0,
and is an ϵ−approximate TMECor if e(π1,π2) ≤ ϵ.

Policy Space Response Oracle (PSRO) PSRO (Lanctot et al., 2017) provides an iterative mecha-
nism for finding a Nash equilibrium approximation in two-player zero-sum games. These algorithms
work in expanding a restricted policy set Πr

k for each team Tk ∈ T iteratively. At each epoch, a
local TMECor σ = (σk, σ−k) is computed for a restricted game which is formed by a tuple of re-
stricted policy sets Πr =

(
Πr

k,Π
r
−k

)
. Then, a best response to the local TMECor σ−k is computed

and added to team Tk’s restricted policy set Πr
k = Πr

k ∪ {BR (σ−k)}. When the iteration termi-
nates with {BR (σ−k)} ⊆ Πr

k and {BR (σk)} ⊆ Πr
−k, the local TMECor σ∗ = (σ∗

1, σ
∗
2) for the

restricted game is approximating an TMECor in the original team game.

3 RELATED WORK

Team Games as Two Player Games To compute TMECor in heterogeneous team games, it is
straightforward to treat each heterogeneous team as a single player with a joint strategy space
(Carminati et al., 2022). By transforming a heterogeneous team game into an equivalent two-player
zero-sum game (2p0s), the problem of finding a TMECor becomes equivalent to the problem of
finding a Nash equilibrium in two-player zero-sum games, thus more amenable to the techniques
that have been developed over the past 80 years (Robinson, 1951; McMahan et al., 2003; Zinkevich
et al., 2007; Lanctot et al., 2017; McAleer et al., 2020; Liu et al., 2021; Zhou et al., 2022). Celli
& Gatti (2018) propose Column Generation (CG), which designs a hybrid representation to reduce
the space of the join team plans and builds a subset of jointly-reduced plans progressively to avoid
enumerating the whole space. While these algorithms perform well in small to medium-scale het-
erogeneous team games, scaling them to larger games is challenging because the joint policy space
of both teams grows exponentially with the increasing number of players.

Team Games as MARL Problems Another perspective for solving heterogeneous team games is
to formulate it as a multiplayer cooperative challenge, e.g., considering opponent team part of the
environment and modeling the problem of solving TMECor as an optimization problem, which aims
to maximize the reward of team T1 and find an optimal ex ante correlation solutions for heteroge-
neous players in T1. To achieve this goal, various Multi-Agent Reinforcement Learning (MARL)
algorithms (Yu et al., 2022; Kuba et al., 2022; Wen et al., 2022; Wang et al., 2023) have been pro-
posed. While these algorithms achieve remarkable performance in games like StarCraft II, they
suffer from unsteady performance when applied to real-world scenarios, where diverse opponent
teams are encountered (see results in Table 2).

Team Games as Mixed Cooperative-Competitive Games To overcome the above challenges, re-
searchers model team games as mixed cooperative-competitive games and integrate the cooperative
reinforcement learning techniques with competitive frameworks like Policy Space Response Ora-
cle (PSRO) (Lanctot et al., 2017) to solve the mixed cooperative-competitive games. For example,
McAleer et al. (2023) integrate PSRO with a homogeneous-agent based cooperative algorithms,
iteratively constructing a population of shared policies to find an approximate TMECor. However,
it requires players in both teams to be homogeneous, and cannot converge when applied to hetero-
geneous team games as shown in Section 4.1 and Section 4.2.

For further discussion about the technical details, please refer to Appendix D.
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4 COMPUTING TMECOR IN HETEROGENEOUS TEAM GAMES

We focus on the problem of computing a global TMECor in heterogeneous team games. One of
the most promising algorithms that can scale to large team games is Team PSRO (McAleer et al.,
2023). However, Team PSRO heavily relies on a policy sharing mechanism for team coordination,
which causes Team PSRO to be trapped into a sub-optimal ex ante equilibrium with significantly
higher exploitability and never converges to the global TMECor in heterogeneous team games. In
this section, we analyze and formulate the convergence problem that Team PSRO encounters in het-
erogeneous team games, and propose the first PSRO framework for heterogeneous team games to
address the convergence issue. We analyze the reasons that cause the convergence issue of Team
PSRO in heterogeneous team games in Section 4.1; then we formulate the convergence issue in
general heterogeneous team games in Section 4.2. To address the convergence problem and find a
global TMECor in heterogeneous team games, we maintain heterogeneous policies for teammates
and propose a mechanism to reduce the high complexity brought by optimizing over multiple play-
ers’ policy spaces in Section 4.3. Inspired by this, we propose a general framework named het-
erogeneous PSRO (H-PSRO) for heterogeneous team games in Section 4.4 and prove that H-PSRO
achieves lower exploitability than Team PSRO in heterogeneous team games.

4.1 INSUFFICIENT EQUILIBRIUM EXPRESSIVE ABILITY OF NON-HETEROGENEOUS
ALGORITHMS

Team PSRO relies on a policy sharing mechanism for team correlation. That is, players in team
Tk ∈ T share a policy πk,share, which forms a team policy π⃗k,share = {πk,share, . . . , πk,share}.
We define the space of team policy π⃗k,share as Πk,share. Team PSRO iteratively expands a re-
stricted policy set Πr

k,share by computing a best response to the meta policy σ−k and adding it to
the restricted policy set Πr

k,share = Πr
k,share ∪ {BRk,share(σ−k)}, where the Best Response Ora-

cle under a policy sharing based correlation is defined as BRk,share : Π−k → Πk,share. When
BRk,share(σ−k) already exists in Πr

k,share,∀Tk ∈ T , Team PSRO terminates with a pair of meta
policies σ∗

share = (σ∗
k,share, σ

∗
−k,share) ∈ ∆Πr

1,share × ∆Πr
2,share. While this mechanism does not in-

troduce additional computational complexity when the number of teammates increases, it causes
insufficient policy expressive ability and insufficient equilibrium expressive ability in heterogeneous
team games.

Example 1. Let us consider the heterogeneous team game Team Rock-Paper-Scissors shown in
Figure 1. In team RPS, TMECor is reached when both teams choose Rock, Paper, and Scissors
with equal probability. Let the shared policies be π1,share := (x, 1 − x) and π2,share := (y, 1 − y).
Team PSRO maintains two populations of shared policies denoted by Πr

1,share and Πr
2,share. Initially,

Πr
1,share = {π1

1,share} with π1
1,share = (1, 0) representing a team policy of Rock, Πr

2,share = {π1
2,share}

with π1
2,share = (1, 0) representing an opponent team policy of Rock. To expand the population

Πr
1,share, the Best Response to meta policy π1

2,share of opponent team T2, a Paper policy, should be
added to Πr

1,share. However, the Paper policy cannot be represented in the form of the shared policy.
This is because team T1 makes a Paper decision with a probability of 1.0 if and only if the player
M1 chooses action a with a probability of 1.0 (x = 1.0) and the player M2 chooses action b with a
probability of 1.0 (x = 0.0), which is impossible at the same time. As shown by our experimental
results in Figure 2, the Team PSRO algorithm is trapped into a Rock policy and never finds a global
TMECor in Team RPS, even though such a solution exists. This example illustrates the convergence
issue of Team PSRO due to the insufficient policy expressive ability and insufficient equilibrium
expressive ability.

Definition 1 The Policy Expressive Ability of team T1 is defined as PEA1,c =
|Π1,c|
|Π1| ≤ 1, where

Π1,c is the corresponding team policy space under a correlation method c, and Π1 is the entire team
policy space.

Definition 2 A TMECor is a vector of distributions over policy spaces of team T1 and opponent
team T2. We define the set of TMECor within the joint policy space S = Π1 ×Π2 as E, and the
set of TMECor within the corresponding joint policy space Sc = Π1,c ×Π2,c under a correlation
method c as Ec, where Πk,c is the team policy space of Team Tk ∈ T under the correlation method
c.
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Proposition 1 In any two team games, Policy Expressive Ability of team T1 under a policy sharing
based correlation PEA1,share < 1, and Policy Expressive Ability of opponent team T2 under a policy
sharing based correlation PEA2,share < 1, leading to insufficient policy expressive ability.

For proof see Appendix A.1.

Proposition 2 In heterogeneous team games, at most Eshare ⊆ E; in some cases, Eshare ̸= E, leading
to insufficient equilibrium expressive ability.

For proof see Appendix A.1.

4.2 CONVERGENCE ISSUE OF NON-HETEROGENEOUS ALGORITHMS

Due to the insufficient policy expressive ability and equilibrium expressive ability caused by policy
sharing, the non-heterogeneous PSRO framework encounters severe convergence issue in hetero-
geneous team games. There are two primary reasons. Firstly, the homogeneous PSRO framework
iteratively computes a Best Response policy within team policy space Π1,share and Π2,share, and ter-
minates if and only if Best Response policies of team Tk already exist in Πr

k,share,∀Tk ∈ T . When
the iteration terminates, it does not mean convergence to a TMECor in the original game because it
is highly possible that the Best Response policy is in the space Πk\Πk,share because the policy ex-
pressive ability PEA1 < 1 and PEA2 < 1 (Proposition 1). Secondly, due to the insufficient equi-
librium expressive ability, the homogeneous PSRO framework can only converge to a sub-optimal
TMECor with no guarantee that deviating to policies within Π1\Π1,share (or Π2\Π2,share) will not
decrease (or increase) the team reward R1.

Proposition 3 In heterogeneous team games, the homogeneous PSRO framework is trapped into a
sub-optimal TMECor within a subset of joint policy space Sshare & S.

For proof see Appendix A.1.

4.3 THEOREM FOR CORRELATING HETEROGENEOUS POLICIES

To tackle the convergence issues described in Section 4.2, which is caused by insufficient policy
expressive ability and equilibrium expressive ability under a policy sharing based correlation, one
straightforward idea is to parameterize heterogeneous policies for teammates. For example, we can
parameterize π1,i by ϑi, which, together with other agents in team T1, forms a joint team policy π⃗1

parameterized by ϑ1 = (ϑ1, . . . , ϑn1). We prove that a global TMECor can be achieved with the
heterogeneously parameterized policies.

Theorem 1 The joint policy space with heterogeneous policies under PSRO framework is equal to
S, therefore enabling the PSRO framework to achieve a global TMECor.

For proof see Appendix A.2.

However, the heterogeneous policies bring in new difficulties for finding the optimal ex ante corre-
lated solution. Optimizing over multiple players’ policy space simultaneously is significantly harder
than optimizing over a single shared policy space (e.g., ∆P

2 -complete) (Zhang et al., 2022b), and
optimizing over the correlated team policy space consisting of heterogeneous policies makes the
optimization space grow exponentially with the increasing number of players. To find an optimal ex
ante correlation solution for heterogeneous policies without introducing additional complexity, we
propose a sequential correlation method for the Best Response Oracle (BRO) for computing a best
response ex ante correlation strategy for a given opposing team’s strategy. The proposed sequential
correlation method is based on the observation in Lemma 1 (see Appendix A.1).

Lemma 1 confirms that a sequential update is an effective approach for sequential BRO to search for
the direction of ex ante coordination improvement (i.e., joint actions with positive advantage values)
in two-team games given the opposing team’s policy. That is, agents take actions sequentially by
following an arbitrary order i⃗1:n1 = (i1, . . . , in1) = T1 (or j⃗1:n2 = (i1, . . . , in2) = T2). Let agent
i1 ∈ T1(or j1 ∈ T2) take action a1,i1(or a2,j1) such that the value of the advantage function of
taking action a1,i1 (or the value of the advantage function of taking action a2,j1 ) is positive, and
then, for the remaining m = 2, . . . , n1(or n2), each agent im ∈ T1(or jm ∈ T2) takes an action
a1,im(or a2,im) such that the advantage function value of taking action a1,im (or a2,jm ) conditioned
on the joint action a⃗1,i1:im−1 (or a⃗2,j1:jm−1 ) is positive. For the induced joint action a⃗1(or a⃗2), as
shown in Lemma 1, the advantage function value of taking action a⃗1 (or a⃗2) is positive, thus the
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coordination performance of both team T1 and opponent team T2 is guaranteed to improve. Such
a sequential correlation offers a solution for monotonic improvement towards optimal ex ante team
correlations with a linearly growing optimization space with the increasing number of teammates.
The detailed process of such a sequential BRO is summarized in Algorithm 2 in Appendix E.

Lemma 2 In any two team games, Πk,share & Πk,seq holds for all Tk ∈ T , where Πk,share is the
policy search space of team Tk with a policy sharing based BRO, and Πk,seq is the policy search
space of team Tk with sequential BRO.

For proof see Appendix A.1. Lemma 2 shows that the search space of sequential BRO contains and
is larger than the search space of the policy sharing based BRO. With lemma 2, we claim a theorem
of superior ex ante correlation property of the sequential BRO.

Theorem 2 Given an opponent team policy π2 ∈ Π2 (or a team policy π1 ∈ Π1),
the sequential BRO can achieve better ex ante team coordination than the policy sharing
based BRO with R1(BR1,seq(π2),π2) ≥ R1(BR1,share(π2),π2) and R2(π1,BR2,seq(π1)) ≥
R2(π1,BR2,share(π1), where BRk,share : Π−k → Πk,share is the policy sharing based BRO
of team Tk ∈ T , and BRk,seq : Π−k → Πk,seq is the sequential BRO of team Tk ∈ T .
In some cases, R1(BR1,seq(π2),π2) > R1(BR1,share(π2),π2) and R2(π1,BR2,seq(π1)) >
R2(π1,BR2,share(π1)) hold.

For proof see Appendix A.3. As a natural result of lemma 2, the sequential BRO can find an ex ante
coordinated team strategy with higher team reward than the policy sharing based BRO, as proved in
Theorem 2. This theorem provides an idea about how sequentially correlated heterogeneous policies
can have superior performance than the correlated shared policies. Note that this property holds with
no requirement on the specific order by which teammates make their updates.

Algorithm 1: Heterogeneous PSRO
1 input : initial policy sets for teams Πr

1,hete,Π
r
2,hete

2 for t = {1, 2, · · ·T} do
3 Compute utilities U1×2 for each joint π⃗1,hete ∈ Πr

1,hete, π⃗2,hete ∈ Πr
2,hete.

4 (σ1,seq, σ2,seq) = MetaSolver(U1×2)
5 for team Tk ∈ T do
6 π⃗k,hete = SequentialBRO(σ−k,seq,Π

r
−k,hete). // see Algo. 2 in Appx. E.

7 Πr
k,hete = Πr

k,hete ∪ {π⃗k,hete}.

8 Output : local TMECor (σ1,seq, σ2,seq) in the current restricted game

4.4 A GENERAL FRAMEWORK FOR HETEROGENEOUS TEAM GAMES

Inspired by the results in Section 4.3, we introduce a general framework, Heterogeneous PSRO
(H-PSRO). H-PSRO integrates the sequential correlation mechanism derived from lemma 1 into
an iterative procedure and serves as the first PSRO framework for heterogeneous team games. We
prove that H-PSRO can achieve lower exploitability than the homogeneous PSRO framework in
heterogeneous team games. H-PSRO iteratively expands a restricted set of team policies Πr

k,hete
for team Tk ∈ T , where each team policy consists of coordinated heterogeneous policies denoted
by π⃗k,hete = {πk,1, πk,2, . . . , πk,nk

}, where heterogeneous policies πk,1, πk,2, . . . , πk,nk
are played

independently and we define the space of team policy π⃗k,hete as Πk,hete ⊆ Πk. As proved in
Theorem 1, the joint policy space under the PSRO framework Shete = ∆Πr

1,hete × ∆Πr
2,hete = S,

thus mitigating the problem of insufficient equilibrium expressive ability in Proposition 2.

H-PSRO starts with randomly initialized team policies π⃗1
1,hete, π⃗1

2,hete, and the restricted sets of team
policies and opponent team policies are Πr

1,hete =
{
π⃗1
1,hete

}
,Πr

2,hete =
{
π⃗1
1,hete

}
. Consider the re-

stricted game where the team policy space is Πr
1,hete and the opponent team policy space is Πr

2,hete.
We denote the payoff matrix of this restricted game as U1×2. If the game is symmetric, we also have
a joint population Π1+2 = Πr

1,hete ∪ Πr
2,hete, and the corresponding payoff matrix is denoted as

U1+2 = U(1+2)×(1+2). In each iteration, H-PSRO expands the restricted policy set Πr
k,hete, Tk ∈ T

by computing a Best Response policy with sequential BRO denoted by BRk,seq : Π−k → Πk,seq
against the meta policy σ−k,seq of opposing team, which is a local TMECor probability over the
restricted policy set Πr

−k,hete, and adding the best response policy to the restricted policy set

7
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Πr
k,hete = Πr

k,hete ∪ {BRk,seq(σ−k,seq)}. The detailed procedure of sequential BRO is shown in
Algorithm 2 in Appendix E. Theorem 2 proves that the sequential BRO can achieve better ex ante
team coordination than the policy sharing based BRO in the homogeneous PSRO framework. At
the end of each iteration, the payoff matrix U1×2 (or U(1+2)×(1+2))) is updated by game simula-
tions. H-PSRO terminates with a local TMECor σ∗

seq = (σ∗
1,seq, σ

∗
2,seq) ∈ ∆Πr

1,hete × Πr
2,hete after

convergence or a fixed number of training steps. The process is summarized in Algorithm 1.

Theorem 3 In heterogeneous team games, H-PSRO achieves lower exploitability than Team PSRO.
Formally, e(σ∗

1,seq, σ
∗
2,seq) ≤ e(σ∗

1,share, σ
∗
2,share).

For proof see Appendix A.4. The superior ex ante correlation property (Theorem 2), achieved
through the sequential updates and sequential BRO, provided us with a guarantee on the better
convergence to the global TMECor, as shown in Theorem 3. The proof is finalised by excluding a
possibility that the search space of sequential BRO Πk,seq cannot cover all pure team strategies for
any team Tk ∈ T .

5 EXPERIMENTS

The main purpose of the experiments is to compare H-PSRO with existing state-of-the-art PSRO
variants in terms of approximating a full game TMECor. The baseline methods include Team PSRO
(McAleer et al., 2023), PSRO (Lanctot et al., 2017), Indep-PSRO2, Self Play, Fictitious Self Play
(FSP) (Heinrich et al., 2015). The benchmarks consist of single-state heterogeneous team games
(Team Rock-Paper-Scissors and Matrix heterogeneous Team games) and complex stochastic hetero-
geneous team games (Competitive StarCraft and Google Research Football). For Team Rock-Paper-
Scissors, Matrix heterogeneous Team games and Competitive StarCraft, we report the exploitability
of the meta TMECor or learning trajectories through the training process. For Google Research
Football where the exact exploitability is intractable, we report the performance of the final strate-
gies. First, we analyze the empirical convergence performance of H-PSRO and several baselines in
a case study of Team Rock-Paper-Scissors, which is an extended heterogeneous team games of the
classic two-player zero-sum game Rock-Paper-Scissors. In addition, we illustrate how the perfor-
mance evolves for each method using the Competitive StarCraft Benchmark in Section 5.2.2 and
the MAgent game (Zheng et al., 2018; Terry et al., 2020) in Appendix B.1, where H-PSRO is more
effective at approximating a TMECor with the enlarging task scales. An ablation study on rela-
tive performance against state-of-the-art MARL algorithms of H-PSRO in Appendix B.2 reveals
that, with different MARL opponent strategies, H-PSRO exhibits superior win rate and more steady
performance. The competitive videos against state-of-the-art MARL algorithms are available at
https://sites.google.com/view/h-psro-2024/h-psro.

5.1 A CASE STUDY: TEAM ROCK-PAPER-SCISSORS

We analyze the convergence property of H-PSRO and other baselines in Team Rock-Paper-Scissors
(team RPS), which extends the classic 2-player zero-sum game Rock-Paper-Scissors to a 4-player
heterogeneous team setting (see details in Example 1). This task requires agents in the same team
to cooperatively choose Rock, Paper, Scissors to compete against the opposing team. Clearly, this
game has a unique TMECor where the team chooses Rock, Paper, Scissors with equal probability.
However, as analyzed in Example 1, Team PSRO fails to find such a TMECor because the insuffi-
cient policy expressive ability caused by the policy sharing based correlation makes the equilibrium
set Eshare ̸= E.

We visualize the trajectories of Self Play (SP), Fictitious Self Play (FSP), Team PSRO, and H-
PSRO in Team RPS, and the learning dynamics are shown in Figure 2. The orange star in each
subfigure is the TMECor of the team RPS game. The black lines in SP subfigure are the traces of
the training policies and in FSP subfigure are the traces of their time-averaged policies. In Team
PSRO and H-PSRO subfigures are the mixed policies of current populations. As depicted in the
figure, SP transitions sequentially from Rock to Paper, to Scissors, and then back to Rock, getting
perpetually entrapped in a non-transitive cycle, FSP cycles aroung the TMECor and sees the similar
non-transitive cycle, Team PSRO, with insufficient policy expressive ability, cycles around the Rock
policy permanently, and H-PSRO quickly converges to the TMECor.

2In Indep-PSRO, teammates have heterogeneous policies and optimize their policies simultaneously with
no optimal guarantee.
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Figure 2: Trajectories of SP, FSP, Team PSRO and H-PSRO in Team RPS game (Example 1). H-
PSRO shows superior convergence to the global TMECor due to the sufficient policy expressive
ability of heterogeneous policies and the corresponding full equilibrium expressiveness under the
heterogeneous PSRO framework (see Theorem 1).

5.2 HETEROGENEOUS TEAM GAMES

In this section, we study the impacts of the insufficient policy expressive ability in different het-
erogeneous team games including a matrix heterogeneous team game, competitive StarCraft, and
Google Research Football.

5.2.1 MATRIX HETEROGENEOUS TEAM GAMES

(a) Exploitability. (b) Trajectory of Team PSRO. (c) Trajectory of H-PSRO.

Figure 3: Performance of H-PSRO and Team PSRO in a typical Matrix Heterogeneous Team Game.

We conduct our matrix experiment on a carefully designed heterogeneous team game, which in-
volves two teams: T1 = {M1,M2} and T2 = {O1,O2} with joint team action spaces A1 =
{0, 1} × {0, 2} and A2 = {0, 1} × {0, 3}, and the reward structure of this game is defined in
Eq (5). The heterogeneity lies in the different action spaces of team players in T1 and T2. The
global TMECor in this game requires team T1 to take joint action (0, 0) with probability 0.6, (0, 2)
with probability 0.4, and all other joint actions with probability 0, and requires opponent team
T2 to take joint action (0, 0) with probability 0.4, (1, 0) with probability 0.6, and all joint other
actions with probability 0. We visualize the trajectory of the 8-dimensional joint policies of two
teams in a compressed 2D space in Figure 3(b) and Figure 3(c) in order to compare the conver-
gence properties of H-PSRO and Team PSRO. The results show that Team PSRO gets stuck in
a sub-optimal point with σ1,share = (0.81, 0.09, 0.09, 0.01) and σ2,share = (1., 0., 0., 0.), where
R1(σ1,share,BR(σ1,share)) ≈ 4.0 and R2(BR(σ2,share), σ2,share) ≈ −1.05, leading to exploitability
≈ 2.95 (see Figure 3(a)). In contrast, H-PSRO approximates the global TMECor with exploitabil-
ity < 10−6. The exploitability outcomes nicely align with Theorem 3, demonstrating H-PSRO’s
superior ability to explore sufficient policy spaces, and to approximate the global TMECor in het-
erogeneous team games.

2s3z_compet 3s5z_compet MMM_compet

Figure 4: Exploitability of H-PSRO and Team PSRO in the Competitive StarCraft Benchmark.
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5.2.2 COMPETITIVE STARCRAFT

Competitive StarCraft (Leroy et al., 2022) is a variant of the classical StarCraft Multi-Agent Chal-
lenge (SMAC, Samvelyan et al., 2019), which allows both team T1 and opponent team T2 to control
their actions and naturally serves a heterogeneous team game benchmark. The Competitive StarCraft
provides a set of StarCraft II maps to evaluate the effectiveness of H-PSRO. These maps feature a
team of mostly heterogeneous ally units that aim to defeat a team of heterogeneous enemy units, and
challenges algorithms to ensure internal team cooperation while learning robust equilibrium strate-
gies that are capable of facing diverse opponent team strategies. We compare H-PSRO and Team
PSRO in Competitive StarCraft maps with different scales, including 2s3z_compet, 3s5z_compet,
and MMM_compet (see details in Table 2), and the exploitability results are shown in Figure 4.

These results show that H-PSRO achieves superior convergence with an exploitability of approx-
imate 0 across different tasks while Team PSRO converges to strategies with significant higher
exploitability. With the task scale increases, we see a larger exploitability gap between H-PSRO and
Team PSRO, which hints that the impact of insufficient policy expressive ability expands with the
game scales. Also, we can find that H-PSRO consistently converges at a faster speed than Team
PSRO.

5.2.3 GOOGLE RESEARCH FOOTBALL

Google Research Football environment is a simulation environment for real-world football games,
where each team consists of diverse players such as forwards, midfielders, defenders, and goalkeep-
ers. To further demonstrate the effectiveness of H-PSRO and the impact of insufficient policy ex-
pressive ability in more complex heterogeneous environment, we utilized Google Research Football
(GRF) (Kurach et al., 2020) as our benchmark. Specifically, we conducted training and evaluation
of H-PSRO and baseline algorithms on the full 5-vs-5 game in GRF based on the benchmark (Song
et al., 2023).

(a) Elo Rating. (b) Goal Difference. (c) Relative PP. (d) Performance Radar.

Figure 5: Performance of H-PSRO, Team PSRO and Indep-PSRO in Google Research Football.
Because the game is too complex, it is impossible to exactly calculate or approximately estimate the
exploitability of an equilibrium policy. As an alternative approach, we evaluate H-PSRO policy and
other baseline outcomes by playing against a collection of unseen benchmark policies and compare
their performance. The results are shown in Figure 5(a), Figure 5(b) and Figure 5(c), where H-PSRO
achieves superior Elo rating (Elo & Sloan, 1978), largest average goal difference against all difficulty
levels of built-in AI than Team PSRO, and highest relative population performance (Relative PP)
(Vinyals et al., 2019). Furthermore, H-PSRO also significantly outperforms Team PSRO in terms
of specific behaviours, including cooperative behaviour Pass, Tackle, Move, and goal possession
behaviours Reward, Move, and Reward, as shown in Figure 5(d). These results show that H-PSRO
can scale to complex heterogeneous team games, while Team PSRO’s performance is hindered by
the severely insufficient policy expressive ability.

6 CONCLUSION

In this work, we introduced Heterogeneous-PSRO (H-PSRO), a framework addressing limitations
in computing ex ante equilibria in heterogeneous team games. By incorporating a sequential cor-
relation mechanism, H-PSRO expands policy expressiveness in heterogeneous settings without ex-
ponentially increasing computational complexity. We demonstrated that this leads to monotonic
improvements in team coordination, overcoming convergence issues in Team PSRO. Our theoreti-
cal analysis and empirical results confirm that H-PSRO achieves lower exploitability in both matrix
games and large-scale benchmarks, outperforming homogeneous baselines in both scenarios. How-
ever, the reliance on sequential optimization may limit its efficiency in highly complex games with a
large number of agents. Additionally, the scalability of the method to games with continuous action
spaces requires further investigation. Despite these limitations, H-PSRO shows strong potential to
scale and deliver robust solutions in complex multiplayer environments.
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A PROOF

A.1 USEFUL LEMMAS

Proposition 1 In any two team games, Policy Expressive Ability of team T1 under a policy sharing
based correlation PEA1,share < 1, and Policy Expressive Ability of opponent team T2 under a policy
sharing based correlation PEA2,share < 1, leading to insufficient policy expressive ability.

Proof. Consider any two team games where each team contains at least two players, at any obser-
vations, joint policy space Π1,share = {x1 for a1, x2 for a2|x1 ∈ [0, 1], x2 ∈ [0, 1], x1 + x2 ≤ 1},
and Π2,share = {y1 for b1, y2 for b2|y1 ∈ [0, 1], y2 ∈ [0, 1], y1 + y2 ≤ 1}. The PEA1,share < 1 be-
cause any pure policies where action a1 is played by one player and a2 is played by another player
requires x1 = 1, x2 = 1 to hold at the same time, which is impossible, making these pure policies
∈ Π1\Π1,share ̸= ∅. Similarly, PEA2,share < 1 because pure policies where b1 is played by one
player and b2 is played by another player ∈ Π2\Π2,share ̸= ∅.

Proposition 2 In heterogeneous team games, at most Eshare ⊆ E; in some cases, Eshare ̸= E, leading
to insufficient equilibrium expressive ability.

Proof. According to the definition of TMECor, Eshare ⊆ E if and only if the following conditions
hold for all (π∗

1,π
∗
2) ∈ Eshare:

R1(π
∗
1,π

∗
2) ≥ R1(π1,π

∗
2), ∀π1 ∈ Π1\Π1,share, (2a)

R2(π
∗
1,π

∗
2) ≥ R2(π

∗
1,π2), ∀π2 ∈ Π2\Π2,share. (2b)

Otherwise, if ∃(π∗
1,π

∗
2) ∈ Eshare and (π∗

1,π
∗
2) does not satisfy the requirements of TMECor within

the whole equilibrium space S, Eshare ̸= E. In another case where ∃(π∗
1,π

∗
2) ∈ E and (π∗

1,π
∗
2) ∈

S\Sshare, the global TMECor (π∗
1,π

∗
2) does not exist in Eshare, also making Eshare ̸= E.

Proposition 3 In heterogeneous team games, the homogeneous PSRO framework is trapped into a
sub-optimal TMECor within a subset of joint policy space Sshare & S.

Proof. Firstly, the homogeneous PSRO framework iteratively computes a Best Response policy
within team policy space Π1,share and Π2,share, and terminates if and only if Best Response policies
of team Tk already exist in Πr

k,share for all Tk ∈ T . When the iteration terminates, it does not mean a
convergence to a TMECor in the original game because it is highly possible that the Best Response
policy is in the space Πk\Πk,share (Proposition 1).

Further, let σ∗
share = (σ∗

1,share, σ
∗
2,share) be a local TMECor found by the homogeneous PSRO frame-

work, where each σ∗
k,share ∈ ∆Πr

k,share is the local policy for team Tk ∈ T that maximizes the

13
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minimal expected utility of the meta policy of its opposing team σ−k,share. The local policy profile
σ∗

share = (σ∗
1,share, σ

∗
2,share) satisfies the following condition:

R1(σ
∗
1,share, σ

∗
2,share) = max

σ1,share∈∆Πr
1,share

min
σ2,share∈∆Πr

2,share

R1(σ1,share, σ2,share),

where Πr
k,share ⊆ Πk,share is the restricted set of team policies of Tk ∈ T , and ∆Πr

k.share is the set
of distributed policies over Πr

k,share. According to Proposition 1, Πk,share & Πk,∀Tk ∈ T , and
apparently σk,share ∈ Πk,share for all σk,share ∈ ∆Πk,share. As a result, (σ∗

1,share, σ
∗
2,share) is a local

TMECor within a subset of joint policy space Π1,share ×Π2,share, and there is no guarantee that:

R1(σ
∗
1,share, σ

∗
2,share) ≥ R1(σ1,share, σ

∗
2,share) ∀σ1,share ∈ Π1\Π1,share, (3a)

R2(σ
∗
1,share, σ

∗
2,share) ≥ R2(σ

∗
1,share, σ2,share) ∀σ2,share ∈ Π2\Π2,share. (3b)

Lemma 1 (Teammates Advantage Decomposition) (Kuba et al., 2022) In any two team games,
given a confronting joint policy of the opposing team π⃗2(or π⃗1), for any observation o1(or o2),
and any agent sequence i1:m ⊆ T1(or j1:m ⊆ T2), the value of advantage functions of taking ac-
tion ai1:m

1 = (ai11 , ai21 , . . . , aim1 ) or (aj1:m
2 = (aj12 , aj22 , . . . , ajm2 )) following the joint team policy

π⃗1(or π⃗2) is equal to the sum of the advantage function of taking action a1,im (or a2,jm ) and taking
joint action a

i1:m−1

1 (or aj1:m−1

2 ), where an advantage function denoted by Ai1:m
π⃗1

(o1,a
i1:m
1 |π⃗2) (or

Aj1:m
π⃗2

(o2,a
j1:m
2 |π⃗1)) quantifies the expected gain from taking a particular action ai1:m

1 (or aj1:m
2 ) or

following the optimized strategy relative to the policy before optimization, and an advantage func-
tion denoted by Ail

π⃗1

(
o1,a

i1:l−1

1 , ail1 | π⃗2

)
(or Ajl

π⃗2

(
o2,a

j1:l−1

2 , ajl2 | π⃗1

)
) quantifies the expected

gain from taking an action ail1 (or ail2 ) conditioned on the joint action a
i1:l−1

1 (or aj1:l−1

2 ) that has
been chosen (see details in Eq (6)). Formally,

Ai1:m
π⃗1

(
o1,a

i1:m
1 | π⃗2

)
=

m∑
l=1

Ail
π⃗1

(
o1,a

i1:l−1

1 , ail1 | π⃗2

)
, (4a)

Aj1:m
π⃗2

(
o2,a

j1:m
2 | π⃗1

)
=

m∑
l=1

Ajl
π⃗2

(
o2,a

j1:l−1

2 , ajl2 | π⃗1

)
. (4b)

Proof. By the definition of teammate advantage function and state-action value function in Ap-
pendix D.2,

Ai1:m
π⃗k

(
ok,a

i1:m
k |π⃗−k

)
= Qi1:m

π⃗k

(
ok,a

i1:m
k |π⃗−k

)
− Vπ⃗k

(ok|π⃗−k)

=

m∑
l=1

[
Qi1:l

π⃗k

(
ok,a

i1:l
k |π⃗−k

)
−Q

i1:l−1

π⃗k

(
ok,a

i1:l−1

k |π⃗−k

)]
=

m∑
l=1

Ail
π⃗k

(
ok,a

i1:l−1

k , ailk |π⃗−k

)
,∀Tk ∈ T }

which finishes the proof.

Lemma 2 In any two team games, Πk,share & Πk,seq holds for all Tk ∈ T , where Πk,share is the
search space of team Tk with a policy sharing based BRO, and Πk,seq is the search space of team Tk

under with sequential BRO.

Proof. The BRO of team Tk ∈ T under a policy sharing based correlation is defined as BRk,share :
Π−k → Πk,share, and the sequential BRO of team Tk ∈ T is defined as BRk,seq : Π−k → Πk,seq.
Given an opponent team strategy π−k ∈ Π−k, the policy sharing based BRO computes a best re-
sponse of coordinated shared strategy BRk,share(π−k) = argmaxπ⃗k,share∈Πk,share Rk(π⃗k,share,π−k),
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while the sequential BRO computes a best response of coordinated heterogeneous strategy
BRk,seq(π−k) = argmaxπ⃗k,hete∈Πk,seq Rk(π⃗k,hete,π−k). With the sequential update mechanism in
Algorithm 2 in Appendix E, the search space Πk,seq = {(πk,1, πk,2, . . . , πk,nk

)|πk,1 ∈ Πk,1, πk,2 ∈
Πk,2, . . . , πk,nk

∈ Πk,nk
}. The search space Πk,share = {(πk,1, πk,2, . . . , πk,nk

)|πk,1 = πk,2 =
· · · = πk,nk

, πk,1 ∈ Πk,1, πk,2 ∈ Πk,2, . . . , πk,nk
∈ Πk,nk

} is a subset of Πk,seq. On the other hand,
∃π⃗k,hete ∈ Πk,seq and π⃗k,hete /∈ Πk,share, making Πk,share ̸= Πk,seq. As a result, Πk,share & Πk,seq.

A.2 PROOF OF SUFFICIENT EQUILIBRIUM EXPRESSIVE ABILITY OF HETEROGENEOUS
TEAM POLICIES

Theorem 1 The joint policy space with heterogeneous policies under PSRO framework is equal to
S, therefore enabling the PSRO framework to achieve a global TMECor.

Proof. With heterogeneous policies, for example, π⃗1,hete = (π1,1, . . . , π1,n1), and its policy space
Π1,hete, the meta policy σ1,hete ∈ ∆Πr

1,hete under the PSRO framework is a probabilistic strategy
over the restricted policy population Πr

1 = {π⃗1
1, π⃗

2
1, . . . , π⃗

n
1} with π⃗i

1 ∈ Π1,hete,∀i ∈ {1, . . . , n}.
Together with the meta policy σ2,hete ∈ ∆Πr

2,hete, the space of restricted meta policies ∆Π1,hete ×
∆Π2,hete can cover equilibrium set E, and thus guarantee an global TMECor.

For example, consider a condition where π1,i and π2,j represent deterministic policies. With the
iteration of the PSRO framework going (see details in Section 4.4), the restricted policy set Πr

1,hete
and Πr

2,hete expands. When Πr
1,hete and Πr

2,hete grow to contain all deterministic policies, then
the space of distributions over the restricted policy sets ∆Πr

1,hete and ∆Πr
2,hete can represent any

probabilistic policy over the team policy space Π1 and Π2. This is to say, meta policy σ1,hete and
σ2,hete can represent any joint policy of team T1 and opponent team T2. As a result, with iteration
going, ∆Πr

1,hete ×∆Πr
2,hete can cover the whole TMECor set E, and therefore is able to achieve the

global TMECor.

A.3 PROOF OF BETTER EX ANTE COORDINATION OF SEQUENTIAL BRO

Theorem 2 Given an opponent team policy π2 ∈ Π2 (or a team policy π1 ∈ Π1), the
sequential BRO can achieve better ex ante team coordination than the policy sharing based
BRO with R1(BR1,seq(π2),π2) ≥ R1(BR1,share(π2),π2) and R2(π1,BR2,seq(π1)) ≥
R2(π1,BR2,share(π1), where BRk,share : Π−k → Πk,share is the policy sharing based BRO
of team Tk ∈ T , and BRk,seq : Π−k → Πk,seq is the sequential BRO of team Tk ∈ T .
In some cases, R1(BR1,seq(π2),π2) > R1(BR1,share(π2),π2) and R2(π1,BR2,seq(π1)) >
R2(π1,BR2,share(π1)) hold.

Proof. Given a meta policy of opponent team T2 (or of team T1) π2 (or π1), the Best Response
computed by sequential BRO is BR1,seq(π2) (or BR2,seq(π1)) and the Best Response com-
puted by sequential BRO is BR1,share(π2) (or BR2,share(π1)). Then R1(BR1,seq(π2),π2) ≥
R1(BR1,share(π2),π2), and similarly R2(π1,BR2,seq(π1)) ≥ R2(π1,BR2,share(π1)). This
is because: 1) when the best response BR(π2) = argmaxR1(BR(π2),π2) ∈ Π1,share &
Π1, BR(π2) = BR1,seq(π2) = BR1,share(π2) and therefore R1(BR1,seq(π2),π2) =
R1(BR1,share(π2),π2); 2) when the best response BR(π2) = argmaxR1(BR(π2),π2) ∈
Π1\Π1,share, BR1,seq(π2) ̸= BR1,share(π2) and R1(BR1,seq(π2),π2) > R1(BR1,share(π2),π2).
Since the team policy set Π1\Π1,share ̸= ∅ and the opponent team policy set Π2\Π2,share ̸= ∅
(Proposition 1), the sequential BRO achieves better ex ante team coordination than the BRO with
policy sharing with R1(BR1,seq(π2),π2) > R1(BR1,share(π2),π2) and R2(π1,BR2,seq(π1)) >
R2(π1,BR2,share(π1)) holding in the second case.

A.4 PROOF OF CONVERGENCE OF H-PSRO

Theorem 3 In heterogeneous team games, H-PSRO achieves lower exploitability than Team PSRO.
Formally, e(σ∗

1,seq, σ
∗
2,seq) ≤ e(σ∗

1,share, σ
∗
2,share).
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Proof. According to definition, σ∗
share = (σ∗

1,share, σ
∗
2,share) is a meta TMECor within the joint pol-

icy space Π1,share × Π2,share (see Proposition 3 in Appendix A.1), and σ∗
seq = (σ∗

1,seq, σ
∗
2,seq) is

a meta TMECor within the joint policy space Π1 × Π2 (see Theorem 1 in Appendix A.2). We
prove the theorem from two different cases: 1) if σ∗

share is a global TMECor within Π1 ×Π2, then
e(σ∗

1,share, σ
∗
2,share) = e(σ∗

1,seq, σ
∗
2,seq) since σ∗

seq is also a global TMECor; 2) however, σ∗
share may not

be a global TMECor with Πk,share & Πk holding for all Tk ∈ T (see Lemma 2 in Appendix A.1).
In case that σ∗

share is not a global TMECor, e(σ∗
1,seq, σ

∗
2,seq) = 0 and e(σ∗

1,share, σ
∗
2,share) > 0, making

e(σ∗
1,seq, σ

∗
2,seq) < e(σ∗

1,share, σ
∗
2,share) hold. As a result, e(σ∗

1,seq, σ
∗
2,seq) ≤ e(σ∗

1,share, σ
∗
2,share), and

e(σ∗
1,seq, σ

∗
2,seq) < e(σ∗

1,share, σ
∗
2,share) in the second case.

B ABLATION STUDIES

We illustrate how the performance evolves for H-PSRO and other baseline methods using the MA-
gent game (Zheng et al., 2018; Terry et al., 2020) in Appendix B.1, where H-PSRO is more ef-
fective at approximating a TMECor with the enlarging task scales. An ablation study on relative
performance against state-of-the-art MARL algorithms of H-PSRO in Appendix B.2 reveals that,
with different MARL opponent strategies, H-PSRO exhibits superior win rate and more steady
performance. The competitive videos are available at https://sites.google.com/view/
h-psro-2024/h-psro.

B.1 HOMOGENEOUS TEAM GAME

MAgent Battle (Zheng et al., 2018; Terry et al., 2020) is a gridworld game where a red team of
N homogeneous agents fight against a blue homogeneous team. At each step, agents can move
to one of the 12 nearest grids or attack one of the 8 surrounding grids of themselves. The game
terminates if all agents in the same team are killed or reaches a maximum number of steps. To
compare the scalability of H-PSRO, Team PSRO (McAleer et al., 2023) and PSRO (Lanctot et al.,
2017) in homogeneous team games, we run algorithms in MAgent Battle games of different scales,
including 6-vs-6, 12-vs-12, 16-vs-16. Since the exploitability cannot be exactly calculated in this
games, we estimate the Single Side Reward (SSR) of the final equilibrium policies against random
policies and differently correlated Best Response as opponent team policies. The averaged results
over 3 seeds are shown in Table 1.

Notably, H-PSRO agents achieve the lowest SSR in large scale MAgent Battles (e.g., 12-vs-12 and
16-vs-16) and comparable performance to PSRO and Team PSRO in mediated scale games (e.g., 6-
vs-6). This is because in mediated scale homogeneous team games, such as 6-vs-6 MAgent Battle,
TMECor can be found by enumerating all possible attacking strategies with PSRO. However, in
larger scale games, the policy space (see Table 1) becomes exponentially enormous, making PSRO
methods very inefficient. On the other hand, the impacts of insufficient policy expressive ability (see
Proposition 1 in Appendix A.1) becomes more severe as the game scale increases, making Team
PSRO, though efficient, struggle to approximate the global TMECor in large homogeneous team
games.

B.2 HETEROGENEOUS PSRO VS MARL ALGORITHMS

We compare the win rate of H-PSRO and Team PSRO (McAleer et al., 2023) against several state-
of-the-art MARL algorithms, including MAPPO (Yu et al., 2022), HAPPO (Kuba et al., 2022), and
MAT (Wen et al., 2022) in Competitive StarCraft Benchmark (Leroy et al., 2022). The experimen-
tal results are shown in Table 2, where H-PSRO achieves significantly higher win rate than Team
PSRO when they are against HAPPO and MAT, and achieves comparable win rate of approximate
100 when they are against the homogeneous coordination algorithm MAPPO, which inherits an
insufficient policy expressive ability (see Proposition 1 in Appendix A.1). We also observe that
H-PSRO achieves relative steady performance against diverse opponent strategies while the MARL
algorithms and Team PSRO suffer from severe performance instability, indicating a sub-optimal
TMECor.
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Table 1: Performance of H-PSRO, Team-PSRO and PSRO in MAgent (Zheng et al., 2018; Terry
et al., 2020). MAgent (Zheng et al., 2018; Terry et al., 2020) is a gridworld battle scenario where
each player has 21 actions. When increasing the number of teammates, the team joint action space
explodes exponentially. We show in larger games (e.g., 12v12, 16v16), H-PSRO is capable of
finding equilibrium policies with lower SSR when confronting opponent teams with different ex-
ploitation ability. Due to the symmetric team setting, we use a metric named Single Side Reward
(SSR) SSR(π1,π2) = 2R1(π1,BR(π1)) to measure the performance of the population.

GAME SETTING TEAM JOINT ACTION SPACE ALGORITHM
SSR (WINRATE) OVER DIFFERENT OPPONENTS

SEQUENTIAL CORRELATION JOINT CORRELATION SYNCHRONIZED CORRELATION NO CORRELATION RANDOM

H-PSRO 20.223 (0.66) 11.074 (0.48) 11.153 (0.56) 7.01 (0.43) -4.640 (0)
6V6 8.58E+7 TEAM PSRO 23.877 (0.73) 18.390 (0.62) 13.581(0.56) 14.842 (0.61) -2.980 (0)

PSRO 13.439 (0.56) 6.691 (0.33) 3.263 (0.11) 6.302 (0.26) -5.377 (0)

H-PSRO 12.964 (0.55) -1.172 (0) -2.062 (0.01) 0.403 (0.14) -7.749 (0)
12V12 7.36E+15 TEAM PSRO 28.182 (0.69) 4.931 (0.24) 6.676 (0.32) 16.060 (0.55) -4.650 (0.01)

PSRO 16.222 (0.55) 2.488 (0.08) 2.138 (0.24) 7.418 (0.33) -4.992 (0)

H-PSRO 13.449 (0.43) -1.711 (0.03) -10.198 (0.09) -0.563 (0.24) -6.854 (0.01)
16V16 1.43E+21 TEAM PSRO 25.412 (0.60) -1.454 (0.01) -7.941 (0.13) 16.767 (0.48) -3.394 (0.01)

PSRO 26.929 (0.80) 0.597 (0.04) 6.396 (0.37) 22.239 (0.69) -2.656 (0)

Table 2: Performance of H-PSRO, Team-PSRO in Competitive StarCraft2 (Leroy et al., 2022). Com-
petitive StarCraft2 is a battle game where each team consists of units from three species (Marines,
Stalkers, Zealots), and each unit has 9 actions. We consider heterogeneous scenarios where the units
within each team are heterogeneous and the units in both teams are the symmetric, as shown below.
We evaluate H-PSRO and Team PSRO by comparing the win rate against the strategies of several
state-of-the-art MARL algorithms, including MAT (Wen et al., 2022), HAPPO (Kuba et al., 2022),
and MAPPO (Yu et al., 2022).

MAPS TYPE TEAM UNITS ALGORITHM
WIN RATE OVER DIFFERENT OPPONENTS

MAT HAPPO MAPPO

2S3Z_COMPETE (5V5) HETEROGENEOUS & SYMMETRIC 2 STALKERS & 3 ZEALOTS H-PSRO 34.0 56.0 98.0
TEAM PSRO 7.0 7.0 100.0

3S5Z_COMPETE (8V8) HETEROGENEOUS & SYMMETRIC 3 STALKERS & 5 ZEALOTS H-PSRO 89.0 72.0 99.0
TEAM PSRO 18.0 1.0 100.0

MMM_COMPETE (10V10) HETEROGENEOUS & SYMMETRIC 1 MEDIVAC, 2 MARAUDERS & 7 MARINES H-PSRO 59.0 85.0 100.0
TEAM PSRO 20.0 10.0 95.0

C EXAMPLES OF CONVERGENCE ISSUE IN HETEROGENEOUS TEAM GAMES

Example 2. Consider a heterogeneous team game with two teams T1 = {M1,M2}, T2 = {O1,O2},
one state and joint action spaces A1 = {0, 1} × {0, 2}, A2 = {0, 1} × {0, 3}, where the reward is
given by:

R1 =

{
4 π

(0)
1,M1

= π
(2)
1,M2

= 1, π
(0)
2,O1

= π
(0)
2,O2

= 1,

ν2 − ν1 + 1 otherwise,
(5a)

R2 = −R1. (5b)

where ν1 = 2π
(1)
1,M1

+ 2π
(2)
1,M2

and ν2 = 2π
(1)
2,O1

+ 3π
(3)
2,O2

. Here, π(0)
1,M1

denotes the probability of
action 0 for player M1 ∈ T1. An TMECor in this case is a probabilistic policy over both teams’
joint action space: team T1 takes joint action (0, 0) with probability 0.6, (0, 2) with probability
0.4, and other actions with probability 0, and opponent team T2 takes (0, 0) with probability 0.4,
(1, 0) with probability 0.6 and other actions with probability 0. However, we show that policy
sharing among teammates constrains the team joint policies to a small subset of the entire policy
space, and excludes the above TMECor solution. A shared policy is a vector of shared action
distribution, which can be denoted by π1,share = (x1, x2) or π2,share = (y1, y2). With a shared action
distribution, the team joint policy will be constrained to a subset of the whole joint action distribution
denoted by Π1,share = {(x2

1, x1x2, x2x1, x
2
2)|x1 ∈ [0, 1], x2 ∈ [0, 1], x1 + x2 = 1.0} & ∆A1 or

Π2,share = {(y21 , y1y2, y2y1, y22)|y1 ∈ [0, 1], y2 ∈ [0, 1], y1 + y2 = 1.0} & ∆A2, in which the
probability of joint action (0, 2) is constrained to be equal to the probability of joint action (1, 0)
for team T1. However, this conflicts with the TMECor strategy of team T1, where the probability of
joint action (0, 2) is 0.4, and the probability of joint action (1, 0) is 0.0.
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D ANALYSIS OF EXISTING WORK

Team games are addressed from three different perspectives: the competitive perspective, the coop-
erative perspective, and the mixed cooperative-competitive perspective.

D.1 COMPETITIVE PERSPECTIVE

From the competitive perspective, an entire team is treated as a single player with a joint action
space, effectively transforming a two-team zero-sum game into a two-player zero-sum game (Farina
et al., 2018; Carminati et al., 2022). Consequently, finding a TMECor in a two-team zero-sum game
is equivalent to finding a Nash equilibrium in a two-player zero-sum game.

PSRO. Policy Space Response Oracles (PSRO) (Lanctot et al., 2017; McAleer et al., 2020; Liu et al.,
2021) have been widely used to approximate Nash equilibria in large-scale two-player zero-sum
games and can be adapted to equivalent team games to approximate TMECor. To manage the large
policy space, PSRO incrementally develops a population of joint team policies to approximate the
whole team joint policy space (e.g., Π1, Π2). Initially, PSRO begins with a population Πr

k = {π1
k}

for team Tk ∈ T , which consists of a single randomly generated joint policy parameterized by ϑk.
At each iteration t, an empirical payoff matrix U is derived from simulations of current population
Πr

k and Πr
−k. This payoff matrix U is then utilized by a meta-solver to determine the meta-policy

σk, and a new policy π−k, parameterized by ϑ−k is trained to be the best response (BR) to the meta
policy σk. Then new policy π−k is added to the population Πr

k, and the process repeats. When
the newly trained BR already exists in the population, PSRO outputs a final distribution over the
population policies, effectively approximating the TMECor of the original team game.

A significant challenge from the competitive perspective is that transforming a two-team zero-sum
game into a two-player zero-sum game causes the equilibrium search space to grow exponentially
with the number of players in both teams. This makes directly applying PSRO to solve TMECor
infeasible for large team games.

D.2 COOPERATIVE PERSPECTIVE

Another perspective for solving TMECor is to model two team games as cooperative games and
treat the opposing team T2 part of the environment. From this viewpoint, solving TMECor equates
to maximizing the following objective:

J(π1) ≜ R1(π1, ·).
When the objective achieves its maximal value, no other strategy π1 ∈ Π1 can yield a higher reward,
indicating that team T1 has reached a TMECor. In the cooperative perspective, the challenge lies
in how to coordinate teammates within T1 while ensuring convergence to TMECor. To solve this,
various Multi-Agent Reinforcement Learning (MARL) algorithms (De Witt et al., 2020; Yu et al.,
2022; Kuba et al., 2022; Wen et al., 2022) have been proposed. Within these approaches, players in
T1 take the actions with the maximal value of the state-action value function Qπ1(o1,a1), which is
defined as:

Qπ1(o1,a1) ≜ Eo1,1:∞∼P,a1,1:∞∼π1 [R
γ
1 | o1,0 = o1,a1,0 = a0] .

The advantage function of π1 is defined to be

Aπ1(o1,a1) ≜ Qπ1(o1,a1)− Vπ1(o1), (6)

and Vπ1(o1) is the observation value function defined as3:

Vπ1(o1) ≜ Ea1,0:∞∼π1,o1,1:∞∼P [Rγ
1 | o1,0 = o1]

MAPPO. MAPPO (Yu et al., 2022) coordinates players in T1 by extending PPO (Schulman et al.,
2017) to multiple players. To do this, MAPPO employs a trick of policy sharing, where all agents
in team T1 share a policy π1,share, so that π⃗1,share = (π1,share, . . . , π1,share) (De Witt et al., 2020; Yu
et al., 2022). As such, the policy is updated to maximise

LMAPPO(π1,share) ≜ Eo1∼ρπold ,a1∼πold

[∑n1

i=1 min

(
π(ai

1|o
i
1)

πold (ai
1|oi1)

Aπold (o1,a1), clip

(
π(ai

1|o
i
1)

πold (ai
1|oi1)

, 1± ϵ

)
Aπold (o1,a1)

)]
,

(7)
3We write ai

1,t, a1,t and o1,t when we refer to the action, joint action and joint observation as to values,
and ai

1,t, a1,t and o1,t as to random variables.
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where the clip(, 1± ϵ) operator clips the input to 1− ϵ/1 + ϵ if it is below/above this value, thereby
preventing large policy updates and stabling the training process. Indeed, the algorithm does not
introduce much computational burden with the increasing number of teammates |T1|. Nevertheless,
the policy-sharing team strategy limits the algorithm’s applicability and could lead to its subopti-
mality (Kuba et al., 2022; Zhong et al., 2024) when agents have different roles.

HAPPO. To handle this, Heterogeneous Agent Proximal Policy Optimization (HAPPO) (Kuba et al.,
2022) was proposed. Instead of coordinating agents by sharing one policy among them, HAPPO
parameterizes each agent’s policy π1,ϑi(π1,i) by ϑi, which, together with other agents’ policies,
forms a joint team policy π⃗1,ϑ1 (π⃗1) parameterized by ϑ1 = (ϑ1, . . . , ϑn1). To optimise the ϑ1,
HAPPO follows the idea of PPO by considering only using first-order derivatives. This is achieved
by making agent im ∈ T1 choose a policy parameter ϑk+1

im
which maximises the clipping objective

of

E
o1∼ρπ⃗

1,ϑk
1

,a
i1:m−1
1 ∼π⃗

1,ϑ
k+1
i1:m−1

,aim
1 ∼π

1,ϑk
im

[
min

(
r(π1,ϑk+1

im

)Ai1:m
π⃗

1,ϑk
1

(o1,a
i1:m
1 ), clip(r(π1,ϑk+1

im

), 1± ϵ)Ai1:m
π⃗

1,ϑk
1

(o1,a
i1:m
1 )

)]
,

(8)
where r(π1,ϑk+1

m
) = π1,ϑk+1

m
(aim1 | o1)/π1,ϑk

m
(aim1 | o1) and Ai1:m

π
1,ϑk

1

(o1,a
i1:m
1 ) is the multi-agent

advantage function (Kuba et al., 2022; Wang et al., 2023) defined as:

Ai1:m
π

1,ϑk
1

(o1,a
i1:m
1 ) ≜

m∑
j=1

A
ij
π

1,ϑk
1

(
o1,a

i1:j−1

1 , a
ij
1

)
. (9)

Based on the Multi-Agent Advantage Decomposition Theorem (Kuba et al., 2022), HAPPO is
proven to enjoy monotonic improvement and guaranteed convergence to the Nash Equilibrium (NE)
when environmental conditions keep stable and opponent team strategies stay invariant.

MAT. Following this, Wen et al. (2022) take effort to build a connection between multi-agent rein-
forcement learning (MARL) problems and generic sequence models (SM), and propose Multi-Agent
Transformer (MAT), which leverages transformer architectures to model complex interactions be-
tween cooperative players in team T1.

While the aforementioned algorithms have demonstrated remarkable performance in team games
such as StarCraft II (Samvelyan et al., 2019), this performance is achieved when the opponent team
is fixed. Extending these algorithms to broader scenarios, such as when encountering different
human opponent teams, remains a significant challenge.

D.3 MIXED COOPERATIVE-COMPETITIVE PERSPECTIVE

To address the challenges from both competitive and cooperative perspectives and to approximate
TMECor in large-scale team games without losing generality, McAleer et al. (2023) extend the
PSRO framework by integrating a homogeneous cooperative reinforcement learning techniques
(e.g., MAPPO), and propose a homogeneous PSRO framework named Team PSRO. Specifically,
it iteratively constructs a population of shared policies Πr

k,share = {π⃗1
k,share, ..., π⃗

n
k,share}, where

π⃗i
k,share = (πi

k,share, ..., π
i
k,share) ∈ Πk,share, by adding the best response to the meta-policy over

Πr
k,share via Eq (7). Team PSRO eventually converges to a TMECor within Π1,share × Π2,share,

maintaining robustness against various opponent teams while not imposing additional computational
burden as the number of players in both teams increases. However, as analyzed in Section 4.1 and
Section 4.2, this homogeneous framework may encounter convergence issues in heterogeneous team
games, including terminating early and never converges to the global TMECor, and being trapped
into a sub-optimal point.

E ALGORITHM
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Algorithm 2: SequentialBRO
1 input : Unrestricted Policy Space Πk,seq, Restricted Policy Space Πr

−k,hete, Prefixed meta
strategy of opposing team σ−k,seq ∼ Πr

−k,hete
2 input : Stepsize α, batch size B, number of: agents n, episodes P , steps per episode T .
3 Initialize : Actor networks ϑ = {ϑi,∀i ∈ Tk, Tk ∈ T }, optimal V-value network {ϕ0},

Replay buffer B
4 for p = 0, 1, . . . , P − 1 do
5 Collect a set of trajectories by running the team policy π⃗k,ϑ =

(
πk,ϑ1

, . . . , πk,ϑnk

)
and

prefixed opposing team policy σ−k,seq.

6 Push transitions
{(

oik,t, a
i
k,t, o

i
k,t+1, rk,t

)
,∀i ∈ Tk, t ∈ T

}
into B.

7 Sample a random minibatch of B transitions from B.
8 Compute advantage function Â(ok,ak) based on optimal V -value network with GAE.
9 Draw a random permutation of agents i1:nk

.
10 Set M i(ok,ak) = Â(ok,ak).
11 for i ∈ Tk do
12 Update policy parameter ϑp+1

i with argmax of the objective

argmax
ϑ
p
i

1

BT

B∑
b=1

T∑
t=0

min

 πk,ϑi

(
ai
k,t|oik,t

)
πk,ϑ

p
i

(
ai
k,t|oik,t

)M1:i(ok,ak), clip

 πk,ϑi

(
ai
k,t|oik,t

)
πk,ϑ

p
i

(
ai
k,t|oik,t

) , 1± ϵ

M1:i(ok,ak)

 .

13 Compute M1:i+1(ok,ak) =
π
k,ϑ

p+1
i

(aik|o
i
k)

π
k,ϑ

p
i
(aik|o

i
k)

M1:i(ok,ak).

14 Update πk,ϑi ← π
k,ϑ

p+1
i

.

15 Update V -value network by following formula:

ϕp+1 = argmin
ϕ

1

BT

B∑
b=1

T∑
t=0

(
Vϕ (ok)− R̂t

)2

16 output : Tk’s sequentially correlated best response strategy π⃗k,ϑ
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