
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Meta-Designing Quantum Experiments with Language Models

Anonymous Authors1

Abstract

Artificial Intelligence (AI) has the potential to sig-
nificantly advance scientific discovery by finding
solutions beyond human capabilities. However,
these super-human solutions are often unintuitive
and require considerable effort to uncover under-
lying principles, if possible at all. Here, we show
how a language model trained on synthetic data
can not only find solutions to specific problems
but can create meta-solutions, which solve an en-
tire class of problems in one shot and simulta-
neously offer insight into the underlying design
principles. Specifically, for the design of new
quantum physics experiments, our sequence-to-
sequence transformer architecture generates inter-
pretable Python code that describes experimental
blueprints for a whole class of quantum systems.
We discover general and previously unknown de-
sign rules for infinitely large classes of quantum
states. The ability to automatically generate gen-
eralized patterns in readable computer code is a
crucial step toward machines that help discover
new scientific understanding – one of the central
aims of physics.

1. Introduction
Quantum physics is a notoriously unintuitive field of study.
Despite this, it has developed to a point where some of
its most difficult-to-conceptualize effects - such as entan-
glement - could become the basis of a new generation
of technological development. These applications include
quantum imaging (Lemos et al., 2014; Kviatkovsky et al.,
2020; Moreau et al., 2019; Aslam et al., 2023), quantum
metrology (Pezzè et al., 2018; Polino et al., 2020; DeMille
et al., 2024), quantum communication (Flamini et al., 2018;
Couteau et al., 2023), quantum simulation (Aspuru-Guzik &
Walther, 2012; Cornish et al., 2024), and quantum computa-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tion (Madsen et al., 2022). Due to difficulties in designing
experimental setups by hand, researchers have started to uti-
lize algorithmic optimization and AI techniques to discover
of experimental setups in quantum physics (Krenn et al.,
2020).
Conventional computational design can deliver solutions,
which surpass designs by human experts. E.g. for a given
target quantum state, a machine could design the experi-
mental setup which creates the state, but interpretation and
generalization of the results is left to the researcher and is
often an exceptionally hard challenge, if possible at all.

Here we introduce the process of meta-design, which takes
computational design to a higher level of abstraction. In-
stead of designing one solution for a single target (i.e. one
experimental setup for the creation of one quantum state),
we design a meta-solution which generates solutions for an
infinitely large class of targets (a class of quantum state). In
our case, these meta-solutions have the form of program-
ming code, which generates different experimental setups
for different values of an integer variable N. At the heart of
our method lies a language model (sequence-to-sequence
transformer) which is able to propose meta-solutions in the
form of Python codes. Our approach is successful in design-
ing meta-solutions for many interesting classes of quantum
states, several of which were not known previously. Due to
the readability of the solutions that stem from their Python
code representation, it is easy to uncover the underlying
principles of the generalized meta-solutions. Therefore, our
technique is a step towards AI methods that can help to gain
new understanding in physics (De Regt, 2017; Krenn et al.,
2022; Barman et al., 2024).

2. Related Work
AI for discovery in quantum physics. AI techniques
have been previously applied to the search for experimental
setups in quantum physics (Krenn et al., 2016; Knott, 2016;
Nichols et al., 2019; Wallnöfer et al., 2020; Krenn et al.,
2021; Ruiz-Gonzalez et al., 2023; Goel et al., 2024; Land-
graf et al., 2024), nanophotonic structures (Molesky et al.,
2018; Sapra et al., 2020; Ma et al., 2021), and quantum cir-
cuits (Ostaszewski et al., 2021; Nägele & Marquardt, 2023;
Zen et al., 2024; MacLellan et al., 2024; Kottmann, 2023).
All of these works have in common that the algorithm pro-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Meta-Designing Quantum Experiments with Language Models

Figure 1. Meta-designing a class of experiments via code generation avoids exploding computational costs for the design of larger
experiments. Left side: Our process takes the first three states from a class of target quantum states and - when successful - produces a
Python code which generates the correct experimental setup for arbitrary sizes. For this, a sequence-to-sequence transformer is trained
purely on randomly generated pairs of sequences. Right side: Designing an experimental setup which produces a target quantum state is
very fast for small particle numbers. But the computational cost explodes as the target state grows.

duces only a single solution and not a meta-solution that
represents large classes of solutions.

LLMs for program synthesis Language models have
been explored in the field of program synthesis. One ap-
proach is to pre-train these models directly on massive
datasets of programming language data, such as GitHub pull
requests, Kaggle notebooks, and code documentation. Mod-
els like StarCoder (Li et al., 2023; Lozhkov et al., 2024), and
CodeGeeX (Zheng et al., 2023) fall into this category. An
alternative strategy is to take existing large natural language
models and then fine-tune them on code data. For exam-
ple, Codex (Chen et al., 2021) fine-tuned GPT3 (Brown
et al., 2020) on the source code from the public available
sources, and CodeGemma is an adpation from the Gemma
(Gemma-Team, 2024) models. There has also been research
exploring the use of program synthesis techniques as a tool
to enhance the algorithmic reasoning capabilities of large
language models. Methods like PAL (Gao et al., 2023)
and PoT (Chen et al., 2022) prompt language models to
break down reasoning problems into a series of interme-
diate steps. These step-by-step decompositions are then
offloaded to an external runtime environment, such as a
Python interpreter, to execute and solve each step program-
matically. Another technique called Think-and-Execute
(Chae et al., 2024) follows a similar philosophy, where
the language model is tasked with generating high-level
pseudocode that outlines the solution approach for a given
problem. This pseudocode is then simulated and executed,
allowing the model to reason through the problem in a struc-
tured, interpretable manner. In addition, program synthesis
has been used to explore mechanistic interpretability for
LLMs. Michaud et al. (2024) translate algorithms encoded
by machine-learning models into human-readable Python

code. LLMs have been used to generate programs to solve
mathematical problems (Romera-Paredes et al., 2024) and
to discover scientific equations from data (Shojaee et al.,
2024).

Transformers for math and physics Transformer archi-
tectures have demonstrated remarkable success in solving
a wide range of mathematics and physics reasoning tasks.
Lample & Charton (2019) and (Kamienny et al., 2022) show
that a transformer-based sequence-to-sequence model can
tackle symbolic math problems such as symbolic integration,
differential equations and symbolic regression. AlphaGeom-
etry (Trinh et al., 2024) has achieved remarkable perfor-
mance in solving geometry problems at an olympiad level.
Alfarano et al. (2023) finds that by training transformers
on synthetic data, they can accurately predict the Lyapunov
functions of polynomial and non-polynomial dynamical sys-
tems. In the field of theoretical high-energy physics, Cai
et al. (2024) applies transformers to compute scattering am-
plitudes. Furthermore, Alnuqaydan et al. demonstrates that
a transformer model, when trained on symbolic sequence
pairs, can correctly predict the squared amplitudes of Stan-
dard Model processes. Language models have also been
used in quantum simulation (Melko & Carrasquilla, 2024),
albeit not as a generative model for symbolic language as in
our or the other works mentioned here.

3. Background Quantum Optics
We choose the design of quantum optics experiments as
proof of concept and point to the great potential in applying
the approach in other fields. Quantum optics is concerned
with photons, the fundamental particles of light. A photon
can have different polarization modes, e.g. horizontal (mode

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Meta-Designing Quantum Experiments with Language Models

Figure 2. Exploiting asymmetric cost for data generation. A
random code (sequence B) is generated. Executing it for the values
N = 0, 1, 2 produces in three different experimental setup. Each
setup produces a state. The three states are concatenated to make
sequence A, which is the input for the model.

0) or vertical (mode 1). A basic property of quantum parti-
cles is that they can be in a superposition of multiple modes,
i.e. they can be considered to be two things at the same time.
The state |ψ⟩ of one photon in equal superposition can be
expressed in Dirac notation as

|ψ⟩ = |0⟩+ |1⟩ . (1)

We omit the normalization factor for all quantum states
shown in this work for readability. It can be assumed that
all states are normalized. Another important concept in
quantum physics is entanglement, where multiple photons
are in a state where they can not be described independently,
such as the superposition of three particles being in the
superposition of either all particles being in mode 0 or all
particles being in mode 1,

|ψ⟩ = |000⟩+ |111⟩ . (2)

This state is called the GHZ state (Greenberger et al., 1990;
Pan et al., 2000).
In quantum optics, highly entangled states can be created by
combining probabilistic photon pair sources. The number
of possible experimental setups increases combinatorically
with the number of photons for a given target state. This
makes it very difficult to design experiments by hand and
thus computational techniques have been successfully ap-
plied to the problem (Ruiz-Gonzalez et al., 2023). For suffi-
ciently large systems, these tasks become too difficult even
for current methods as they become too computationally
expensive (see right side of Fig. 1).

4. Methods
We introduce meta-design, the idea of generating a meta-
solution that can solve a whole class of solutions (in our case,
for design problems of quantum states). Our meta-solutions
are Python codes that can generate blueprints of experimen-
tal setups. We train a sequence-to-sequence transformer on
synthetic data to translate from a class of quantum states to

Python code and sample the model to discover programs for
a collection of target classes.

Solving classes of problems via meta-solutions – High-
level programming languages like python are universally
computationally expressive and are human-readable, mak-
ing them perfect to express general concepts. Let’s consider
a simple example: Let’s say we want to describe the action
of drawing a polygon (triangle, square, pentagon, ...) for an
arbitrary number of sides N ≥ 3.

def draw_polygon(N):
for i in range(N):

draw_forward()
turn_left(360 / N)

where draw forward() draws a straight line of a given
length and turn left(angle) rotates the drawing di-
rection. This simple program expresses a whole class that
follows a pattern. The class contains an infinite number
of shapes. For the problem Draw a polygon with 7 sides,
the above code for N = 7 is a solution. The code itself
with the variable N , however, is a meta-solution that can
produce many different solutions (in this case, a prescription
to draw a polygon with a specific number of sides N). This
principle can be generalized, and we use it to address design
questions for general cases.

Meta-design for Quantum Experiments A famous class
of quantum states are the GHZ states, which are written
expressed in ket notation as

|GHZ4⟩ = |0000⟩+ |1111⟩
|GHZ6⟩ = |000000⟩+ |111111⟩
|GHZ8⟩ = |00000000⟩+ |11111111⟩

They are superposition of particles being either in mode
0 or mode 1 with an increasing number of photons (4, 6,
8, ...). We can state the design of quantum optics experi-
ments for all GHZ states as a meta-design problem as in
the previous paragraph. A meta-solution for this problem is
a program construct setup(N) which generates the
correct experimental setup for a given N ≥ 0. This is
possible because the GHZ states follow a specific pattern.
The solution to the problem is shown in Fig. 1. The setup
for n particles consists of n paths leading to n detectors.
The function call e(p1,p2,c1,c2,w) denotes placing
a photon pair source at a crossing of paths p1 and p2, creat-
ing photons with modes c1 and c2 (shown as color) and a
weight w (introducing possible phases). After constructing
the setup, we can compute the expected quantum state that
emerges at the detectors. The code shown in Fig. 1 will
generate the correct experimental setups for arbitrarily high
particle numbers. Much like the program for N-polygons,

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Meta-Designing Quantum Experiments with Language Models

Figure 3. Success of meta-design on validation data. pass@k is
the probability for producing a correct solution within k samples.
We show the metric for different criteria. The task is considered
solved when the states generated by the predicted code match the
states generated by the target code for the first N states.

this code can express the correct experiments for an entire
class of quantum states.

The goal of this work is to show that it is possible to use
language models for the discovery of programs, which solve
classes of quantum states such as the GHZ state.

A→B hard, B→A easy On an abstract level, we can describe
the subject of our work as dealing with two sequences, A (a
list of three quantum states) and B (python program). Direc-
tion B→A (computing the resulting quantum states) follows
clear instructions and can be considered easy. Direction
A→B is highly non-trivial. Designing just a single experi-
ment can be very difficult, let alone finding a code which
solves the entire class of states.

An instructive example for this asymmetry is the problem
of finding the integral vs. the derivative of a mathematical
function. This has been previously explored by (Lample &
Charton, 2019). As there exist clear rules for differentia-
tion, the authors could generate a large number of random
functions and compute their derivatives. They then trained a
sequence to sequence transformer to translate in the reverse
direction, which is the more difficult task of integration.

Similar to the approach by (Lample & Charton, 2019), we
want to train a sequence to sequence transformer to trans-
late in the hard direction (from quantum states to python
code). Because the opposite direction is a straightforward
computation, we can produce a large amount of data to train
the model by generating random codes (see Fig. 2).

Data (generate random B, compute A) Our training data
consists of two sequences for each sample. The process of
translating sequence A (list of states) to sequence B (meta-

solution in form of python code) is the difficult direction,
which the model is trained to do.

Using a simple set of rules, we can generate a random
python code, which contains instructions for how to set up
an experiment. Each code contains the variable index N .
This means that the code will result in a different experimen-
tal setup for each value of N . Simulating the experiment for
N = 0, 1, 2, we produce three states (see Fig. 2). After com-
puting the states, sequence A has the form <SOS>[state
1]<SEP>[state 2]<SEP>[state 3]<EOS> and
sequence B is <SOS>[python code]<EOS>. <SOS>
and <EOS> are the start-of-sequence and end-of-sequence
tokens and <SEP> is a separation token.

The maximum length for both sequences during data gen-
eration is 640 tokens. Both sequences are tokenized by a
hand-picked vocabulary dictionary. We spend about 50,000
CPU hours on generating 56 million samples.

For the model to successfully generalize to unseen targets,
it is advised to select the distribution of the synthetic data
carefully (Charton, 2021). A simple example is that a model
trained on random samples containing states with three po-
larizational modes can have difficulties solving a task con-
taining states with only two modes, even though would
be expected to be easier, because it is a subspace. To en-
sure performance on a diverse range of possibly interesting
subspaces, we generate separate datasets at different levels
of difficulty and specialization (length of states and codes,
number of modes, constraints on phase parameters) and
combine them to one final training dataset.

Training (learn A→B) We train model with a standard
encoder-decoder transformer architecture. We choose the
dimensions nemb = 512, nlayer = 18, nheads = 8. We use
a learned positional encoding, as we are not attempting to
apply our model to unseen lengths (where non-learned po-
sitional encoding RoPE may be more suitable). The model
has approximately 133 million parameters and is trained
for 750k steps with a batch size of 256 (approximately 2.5
epochs on a dataset of 56 million samples). The learning
rate of the Adam optimizer was 10−4 for the first epoch and
was then lowered to 10−5. The training was performed on
four A100-40GB GPUs.

Sampling Details We perform top-p sampling with the
trained model. This means, that we generate the output
sequence by choosing each token randomly according to
the probability distribution given by the model at each step.
We choose the value p = 0.5, which means that we only
consider the top ranked tokens with a cumulative probability
less than 0.5. We choose a temperature value 0.2, which can
be adapted to vary the diversity of output. The chosesn pa-
rameter values have performed well in other code generation

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Meta-Designing Quantum Experiments with Language Models

Figure 4. Our approach discovers two previously unknown and
four previously known generalizations. We show the resulting
fidelities of the best produced code for 14 of the 20 target classes.
The green line represents the six target classes which our approach
produces codes which correctly extrapolate beyond the first three
elements. The blue lines show classes for which the best generated
codes have fidelity one for the first three elements of the class, but
do not extrapolate beyond. These cases are interesting as the model
is still successful in generating a code which matches the three
states provided as an input sequence, but the output for N ≥ 3
does not match what we expect. The orange and red line are
representatives of the 8 cases, for which the model was not able
to predict correct solutions up to N = 3. The full table of target
classes with their maximum correct N is shown in the appendix.

tasks (Chen et al., 2021; Li et al., 2023). We evaluate the
codes produced by the model by executing them to produce
experimental setups for N = 0, 1, 2, 3, 4. We compute the
states which are produced by these setups and compute their
fidelity with respect to the corresponding target state. A
fidelity value of 1 means that the state is produced perfectly.
The lowest possible value for the fidelity is 0, which means
that the target state and the resulting state are perpendicular.

Application to unknown targets Our goal is now to apply
the trained model to targets for which the code (sequence B)
is unknown. Random generated data is abundant and is thus
useful to train our model, but our aim is to discover codes
for quantum state classes of particular interest (because of
particular mathematical or physical properties). We have
compiled a collection of twenty target classes based on a
collection of quantum states found in (Ruiz-Gonzalez et al.,

2023) – all of these states have exceptional properties that
have been studied previously, for example in the context of
quantum simulations or quantum communication.

The first three states of each target class are explicitly shown
in the appendix. They are expressed as strings in the same
way in which they are given to the model as input.

For four out of the 20 targets, meta-solutions were hand-
crafted by researchers in the past. For sixteen of the 20 target
classes, no meta-solution was known before our work. Fur-
thermore, we do not even know whether a solution can exist
at all with the quantum-physical resources we provide (e.g.
number of particles necessary to realize a state, and amount
of quantum entanglement). Thus, every meta-solution from
these 16 states is not a rediscovery, but a genuine unbiased
discovery.

5. Results
Model performance on validation data To evaluate our
model on samples from the validation dataset, we produce
200 code predictions for 200 random samples from the
validation dataset. We compute the pass@k metric for
1 ≤ k ≤ 100 according to an estimator formula given in
(Chen et al., 2021). This metric describes the probability
for a task to be solved within k predictions made by the
model. Since there is no straightforward way to proving
that two codes are equivalent for arbitrary N , we consider
a prediction to be successful if the produced states match
the first N elements of the target class. In Fig. 3 we show
the results of this evaluation. We observe that the likelihood
of a correct prediction for the first N states decreases with
higher N , but as N grows, the metric seems to converge
towards a line which could be considered the true measure
of a code, which perfectly matches the target code in all
states it produces.

Successful meta-design of previously unknown codes
Before training the model we prepared a set of 20 classes
of quantum states as targets for our method. The condition
for a class of states to be considered here are that there
exists a clear rule for expressing the wave function |ψ(N)⟩
in terms of a positive integer N . We require the number of
particles in |ψ(N)⟩ to be less than or equal to 2N + 2 as
this is the maximum system size which we allow for during
data generation.

For each target, we sample the model for four hours on
one RTX 6000 GPU, which produces 800-2500 samples
(depending on the target class).

In Fig. 4 we show the fidelities of the best sample for
fourteen of the twenty target classes. The best sample is
chosen by filtering for samples with the highest N such
that all fidelities up to order N are equal to one and then

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Meta-Designing Quantum Experiments with Language Models

Figure 5. Experimental setups for previously unknown solutions exhibit comprehensible patterns. In the two top rows we show two
previously unknown constructions discovered by our approach. For the spin 1

2
states and the Majumdar-Gosh states (described in more

detail in (Ruiz-Gonzalez et al., 2023)). For each of the two examples, the code produces the correct experimental setup for the three states
used to prompt the model but also for higher particle numbers, indicating that the model was able to pick up on the pattern and write a
correct code for the entire class of states. We highlight in green the ’building blocks’, which are repeated multiple times as the particle
number grows (stemming from lines written in the for loop). The bottom row shows a code for the Dyck 1 state. The setups generated by
this code produce the correct state up to the third iteration, but are missing terms for indices N > 2. This means that the model was able
to solve the task it was trained to do (match the first three states), but failed at the meta task of picking up on the pattern we intended it to
match beyond the first three examples. It is also notable that in contrast to the other two examples, all setups produced for the Dyck 1 state
also contained additional crystals which did not actually contribute to the resulting quantum state. We have omitted them by covering
them by a grey rounded rectangle.

choosing the one with the highest average fidelity for all
N ≤ 4. We find six target classes that our model can solve
perfectly. For these classes, the output extrapolates beyond
what the model was trained to do, i.e. match the states
for N = 0, 1, 2. Out of the six classes which our method
successfully solves, two classes were previously not known
to us.

For four famous classes of quantum states (GHZ, W 2d-Bell
and 3d-Bell), we knew that there exists a construction rule
for experiments with 2N+2 particles for arbitraryN , which
act as a baseline check for the capability of our method. Our
model rediscovered all four meta-solutions of these states.

We also find six target classes, for which our model produces
the correct code for the first three states, but does not match
the target class forN ≥ 3. Interestingly, all classes that were
correct for N = 3 (going one step beyond the three input
states), were correct also for larger states, i.e. the model
discovered an apparently perfect symbolic generalization.

The best output for the eight other classes is only correct up
to order 1 or 2. These cases could be either too complex for
the model to give the correct prediction, or it there do not
exist any solutions in the training data distribution (defined
by available operations and other constraints on syntax).

Codes which fail at extrapolation We find that for four
of the 20 target classes the model produces codes, which
generate the correct states for the first three elements of the
class. These cases are interesting to examine because the
model successfully performs the task it was trained for, as
the first three states match the input sequence. The fact that
it does not continue to match the target beyond N = 3 is
due to a degree of ambiguity that exists for the continuation
of any pattern. Any infinite sequence is underdetermined
if only a finite number of elements is given. A possible
way to narrow (but not remove) this ambiguity in our ap-
plication would be to train the model on more than three
elements. Further, the output is highly influenced by the

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Meta-Designing Quantum Experiments with Language Models

synthetic data. The model will be more likely to produce an
output, which is closer represents the distribution of data it
was trained on. One example, the Dyck 1 states, is shown
and analyzed in Fig. 5. This is an example which does not
follow the intended pattern for N ≥ 3, but produces valid
states regardless, which randomly generated experimental
setups generally do not do. There is potential in examine
these cases in more detail to see if the pattern they follow
is interesting regardless, as they might represent new unex-
plored classes of quantum states. In other cases the code
fails in the extrapolation range by generating setups which
do not produce a valid quantum state.

6. Discussion
We demonstrate how a language model can produce a meta-
solution for a physical design task. The meta-solution is de-
scribed in the form of computer code, which itself produces
solutions to large generalizations of the design question.
In our examples, we discover previously unknown gener-
alizations of experimental setups for interesting quantum
states. The ability to automatically create generalizations
also offers a decisive advantage over conventional AI-driven
design in terms of computational costs.

Our method is not constrained to quantum physics but can
be directly implemented in other domains, such as the dis-
covery of new microscopes (Rodrı́guez et al., 2023), new
gravitational wave detectors (Krenn et al., 2023), new ex-
perimental hardware for high-energy physics (Baydin et al.,
2021), or the design of new functional molecules (Pollice
et al., 2021).

At a more abstract level, we see that the application of a
powerful intermediate language that can be written and read
by both machines and humans can significantly enhance the
understandability of AI-discovered solutions. Additionally,
it can automatically present solutions to wider classes of
problems simultaneously. Such capabilities are not limited
to the design of quantum physics experiments but extend
to a wide array of scientific tasks. These include symbolic
regression for deriving physical laws and the AI-driven
discovery of physical symmetries.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alfarano, A., Charton, F., Hayat, A., and des Ponts Paristech,

C.-E. Discovering lyapunov functions with transformers.

In The 3rd Workshop on Mathematical Reasoning and AI
at NeurIPS’23, 2023.

Alnuqaydan, A., Gleyzer, S., Prosper, H. B., Reinhardt,
E. A., Anand, N., and Charton, F. Symbolic machine
learning for high energy physics calculations.

Aslam, N., Zhou, H., Urbach, E. K., Turner, M. J.,
Walsworth, R. L., Lukin, M. D., and Park, H. Quan-
tum sensors for biomedical applications. Nature Reviews
Physics, 5(3):157–169, February 2023.

Aspuru-Guzik, A. and Walther, P. Photonic quantum simu-
lators. Nature physics, 8(4):285–291, 2012.

Barman, K. G., Caron, S., Claassen, T., and De Regt, H.
Towards a benchmark for scientific understanding in hu-
mans and machines. Minds and Machines, 34(1):1–16,
2024.

Baydin, A. G., Cranmer, K., de Castro Manzano, P., Delaere,
C., Derkach, D., Donini, J., Dorigo, T., Giammanco, A.,
Kieseler, J., Layer, L., Louppe, G., Ratnikov, F., Strong,
G., Tosi, M., Ustyuzhanin, A., Vischia, P., and Yarar, H.
Toward machine learning optimization of experimental
design. Nuclear Physics News, 31(1):25–28, 2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877–1901, 2020.

Cai, T., Merz, G. W., Charton, F., Nolte, N., Wilhelm, M.,
Cranmer, K., and Dixon, L. J. Transforming the bootstrap:
Using transformers to compute scattering amplitudes in
planar n= 4 super yang-mills theory. arXiv:2405.06107,
2024.

Chae, H., Kim, Y., Kim, S., Ong, K. T.-i., Kwak, B.-w.,
Kim, M., Kim, S., Kwon, T., Chung, J., Yu, Y., and Yeo, J.
Language models as compilers: Simulating pseudocode
execution improves algorithmic reasoning in language
models. arXiv:2404.02575, 2024.

Charton, F. Linear algebra with transformers. arXiv preprint
arXiv:2112.01898, 2021.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder,
N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M.,
Winter, C., Tillet, P., Petroski Such, F., Cummings, D.,

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Meta-Designing Quantum Experiments with Language Models

Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program of
thoughts prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. arXiv:2211.12588,
2022.

Cornish, S. L., Tarbutt, M. R., and Hazzard, K. R. A. Quan-
tum computation and quantum simulation with ultracold
molecules. Nature Physics, 20(5):730–740, 2024.

Couteau, C., Barz, S., Durt, T., Gerrits, T., Huwer, J.,
Prevedel, R., Rarity, J., Shields, A., and Weihs, G. Ap-
plications of single photons to quantum communication
and computing. Nature Reviews Physics, 5(6):326–338,
2023.

De Regt, H. W. Understanding scientific understanding.
Oxford University Press, 2017.

DeMille, D., Hutzler, N. R., Rey, A. M., and Zelevinsky, T.
Quantum sensing and metrology for fundamental physics
with molecules. Nature Physics, 20(5):741–749, May
2024.

Flamini, F., Spagnolo, N., and Sciarrino, F. Photonic
quantum information processing: a review. Reports on
Progress in Physics, 82(1):016001, 2018.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Gemma-Team. Gemma: Open models based on gemini
research and technology. arXiv:2403.08295, 2024.

Goel, S., Leedumrongwatthanakun, S., Valencia, N. H., Mc-
Cutcheon, W., Tavakoli, A., Conti, C., Pinkse, P. W., and
Malik, M. Inverse design of high-dimensional quantum
optical circuits in a complex medium. Nature Physics, pp.
1–8, 2024.

Greenberger, D. M., Horne, M. A., Shimony, A., and
Zeilinger, A. Bell’s theorem without inequalities. Amer-
ican Journal of Physics, 58(12):1131–1143, December
1990.

Kamienny, P.-a., d'Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers. In

Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 10269–10281.
Curran Associates, Inc., 2022.

Knott, P. A search algorithm for quantum state engineering
and metrology. New Journal of Physics, 18(7):073033,
2016.

Kottmann, J. S. Molecular quantum circuit design: A graph-
based approach. Quantum, 7:1073, August 2023.

Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., and
Zeilinger, A. Automated search for new quantum experi-
ments. Physical review letters, 116(9):090405, 2016.

Krenn, M., Erhard, M., and Zeilinger, A. Computer-inspired
quantum experiments. Nature Reviews Physics, 2(11):
649–661, September 2020.

Krenn, M., Kottmann, J. S., Tischler, N., and Aspuru-Guzik,
A. Conceptual understanding through efficient automated
design of quantum optical experiments. Physical Review
X, 11(3):031044, 2021.

Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-
Lierta, A., Friederich, P., dos Passos Gomes, G., Häse,
F., Jinich, A., Nigam, A., Yao, Z., and Aspuru-Guzik,
A. On scientific understanding with artificial intelligence.
Nature Reviews Physics, 4(12):761–769, 2022.

Krenn, M., Drori, Y., and Adhikari, R. X. Digital dis-
covery of interferometric gravitational wave detectors.
arXiv:2312.04258, 2023.

Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolo-
maeus, H., and Ramelow, S. Microscopy with undetected
photons in the mid-infrared. Science Advances, 6(42):
eabd0264, 2020.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. arXiv:1912.01412, 2019.

Landgraf, J., Peano, V., and Marquardt, F. Automated
discovery of coupled mode setups. arXiv preprint
arXiv:2404.14887, 2024.

Lemos, G. B., Borish, V., Cole, G. D., Ramelow, S., Lap-
kiewicz, R., and Zeilinger, A. Quantum imaging with
undetected photons. Nature, 512(7515):409–412, 2014.

Li, R., Ben Allal, L., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang,
Z., Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov,

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Meta-Designing Quantum Experiments with Language Models

D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhat-
tacharyya, U., Yu, W., Singh, S., Luccioni, S., Villegas,
P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J.,
Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson,
C. J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C. M., Hughes,
S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.
Starcoder: may the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,
Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,
Z., Liu, Q., Abulkhanov, D., Paul, I., Li, Z., Li, W.-D.,
Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii,
E., Dade, N. O. O., Yu, W., Krauß, L., Jain, N., Su, Y.,
He, X., Dey, M., Abati, E., Chai, Y., Muennighoff, N.,
Tang, X., Oblokulov, M., Akiki, C., Marone, M., Mou,
C., Mishra, M., Gu, A., Hui, B., Dao, T., Zebaze, A.,
Dehaene, O., Patry, N., Xu, C., McAuley, J., Hu, H.,
Scholak, T., Paquet, S., Robinson, J., Anderson, C. J.,
Chapados, N., Patwary, M., Tajbakhsh, N., Jernite, Y.,
Muñoz Ferrandis, C., Zhang, L., Hughes, S., Wolf, T.,
Guha, A., von Werra, L., and de Vries, H. Starcoder 2
and the stack v2: The next generation. arXiv:2402.19173,
2024.

Ma, W., Liu, Z., Kudyshev, Z. A., Boltasseva, A., Cai, W.,
and Liu, Y. Deep learning for the design of photonic
structures. Nature Photonics, 15(2):77–90, 2021.

MacLellan, B., Roztocki, P., Czischek, S., and Melko,
R. G. End-to-end variational quantum sensing.
arXiv:2403.02394, 2024.

Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F.,
Vincent, T., Bulmer, J. F. F., Miatto, F. M., Neuhaus, L.,
Helt, L. G., Collins, M. J., Lita, A. E., Gerrits, T., Nam,
S. W., Vaidya, V. D., Menotti, M., Dhand, I., Vernon, Z.,
Quesada, N., and Lavoie, J. Quantum computational ad-
vantage with a programmable photonic processor. Nature,
606(7912):75–81, 2022.

Melko, R. G. and Carrasquilla, J. Language models for
quantum simulation. Nature Computational Science, 4:
11–18, 2024.

Michaud, E. J., Liao, I., Lad, V., Liu, Z., Mudide, A.,
Loughridge, C., Guo, Z. C., Kheirkhah, T. R., Vukelić,
M., and Tegmark, M. Opening the ai black box: program
synthesis via mechanistic interpretability. arXiv preprint
arXiv:2402.05110, 2024.

Molesky, S., Lin, Z., Piggott, A. Y., Jin, W., Vucković, J.,
and Rodriguez, A. W. Inverse design in nanophotonics.
Nature Photonics, 12(11):659–670, 2018.

Moreau, P.-A., Toninelli, E., Gregory, T., and Padgett, M. J.
Imaging with quantum states of light. Nature Reviews
Physics, 1(6):367–380, 2019.

Nägele, M. and Marquardt, F. Optimizing zx-diagrams
with deep reinforcement learning. arXiv preprint
arXiv:2311.18588, 2023.

Nichols, R., Mineh, L., Rubio, J., Matthews, J. C., and
Knott, P. A. Designing quantum experiments with a
genetic algorithm. Quantum Science and Technology, 4
(4):045012, 2019.

Ostaszewski, M., Trenkwalder, L. M., Masarczyk, W.,
Scerri, E., and Dunjko, V. Reinforcement learning for
optimization of variational quantum circuit architectures.
Advances in Neural Information Processing Systems, 34:
18182–18194, 2021.

Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H.,
and Zeilinger, A. Experimental test of quantum nonlo-
cality in three-photon greenberger–horne–zeilinger entan-
glement. Nature, 403(6769):515–519, February 2000.

Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R., and
Treutlein, P. Quantum metrology with nonclassical states
of atomic ensembles. Rev. Mod. Phys., 90, Sep 2018.

Polino, E., Valeri, M., Spagnolo, N., and Sciarrino, F. Pho-
tonic quantum metrology. AVS Quantum Science, 2(2),
2020.

Pollice, R., dos Passos Gomes, G., Aldeghi, M., Hickman,
R. J., Krenn, M., Lavigne, C., Lindner-D’Addario, M.,
Nigam, A., Ser, C. T., Yao, Z., and Aspuru-Guzik, A.
Data-driven strategies for accelerated materials design.
Accounts of Chemical Research, 54(4):849–860, 2021.

Rodrı́guez, C., Arlt, S., Möckl, L., and Krenn, M. Xlumina:
An auto-differentiating discovery framework for super-
resolution microscopy. arXiv:2310.08408, 2023.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J. R., Ellenberg,
J. S., Wang, P., Fawzi, O., Kohli, P., and Fawzi, A. Math-
ematical discoveries from program search with large lan-
guage models. Nature, 625(7995):468–475, 2024.

Ruiz-Gonzalez, C., Arlt, S., Petermann, J., Sayyad, S.,
Jaouni, T., Karimi, E., Tischler, N., Gu, X., and Krenn, M.
Digital discovery of 100 diverse quantum experiments
with pytheus. Quantum, 7:1204, 2023.

Sapra, N. V., Yang, K. Y., Vercruysse, D., Leedle, K. J.,
Black, D. S., England, R. J., Su, L., Trivedi, R., Miao,
Y., Solgaard, O., Byer, R. L., and Vučković, J. On-chip
integrated laser-driven particle accelerator. Science, 367
(6473):79–83, 2020.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Meta-Designing Quantum Experiments with Language Models

Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B., and
Reddy, C. K. Llm-sr: Scientific equation discovery via
programming with large language models. arXiv preprint
arXiv:2404.18400, 2024.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Wallnöfer, J., Melnikov, A. A., Dür, W., and Briegel, H. J.
Machine learning for long-distance quantum communica-
tion. PRX Quantum, 1(1):010301, 2020.

Zen, R., Olle, J., Colmenarez, L., Puviani, M., Müller, M.,
and Marquardt, F. Quantum circuit discovery for fault-
tolerant logical state preparation with reinforcement learn-
ing. arXiv preprint arXiv:2402.17761, 2024.

Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y.,
Wang, Z., Shen, L., Wang, A., Li, Y., Su, T., Yang, Z.,
and Tang, J. Codegeex: A pre-trained model for code
generation with multilingual evaluations on humaneval-x.
arXiv:2303.17568, 2023.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Meta-Designing Quantum Experiments with Language Models

A. Target classes
In the following table we show the hand-picked targets. These are classes of quantum states which are of interest in different
areas of quantum physics. For each class, the first three states (four, six and eight particles) are given as strings in the same
way that they are used to prompt the model. The column ”correct states” shows, up to which index N the best model output
matches the target (the first N states are correct). An infinity sign ∞ means, that the meta-solution perfectly matches the
target.

State Name size Quantum State string correct states previously
known

Spin 1/2 4 +1[xxxx] +1[xxyx] +1[xyxx] +1[yxxx] +1[yxyx] ∞ unknown
6 +1[xxxxxx] +1[xxxyxx] +1[xxyxxx] +1[xyxxxx]

+1[xyxyxx] +1[yxxxxx] +1[yxxyxx] +1[yxyxxx]
8 +1[xxxxxxxx] +1[xxxxyxxx] +1[xxxyxxxx] +1[xxyxxxxx]

+1[xxyxyxxx] +1[xyxxxxxx] +1[xyxxyxxx]
+1[xyxyxxxx] +1[yxxxxxxx] +1[yxxxyxxx]
+1[yxxyxxxx] +1[yxyxxxxx] +1[yxyxyxxx]

Majumdar-Ghosh 4 -1[xxyy] +2[xyxy] -1[xyyx] -1[yxxy] +2[yxyx] -1[yyxx] ∞ unknown
6 -1[xxyxyy] +1[xxyyxy] +1[xyxxyy] -1[xyxyyx] -1[xyyxxy] +1[xyyxyx]

-1[yxxyxy] +1[yxxyyx] +1[yxyxxy] -1[yxyyxx] -1[yyxxyx] +1[yyxyxx]
8 -1[xxyxyxyy] +1[xxyxyyxy] +1[xxyyxxyy] -1[xxyyxyxy] +1[xyxxyxyy]

-1[xyxxyyxy] -1[xyxyxxyy] +2[xyxyxyxy] -1[xyxyxyyx] -1[xyxyyxxy]
+1[xyxyyxyx] -1[xyyxxyxy] +1[xyyxxyyx] +1[xyyxyxxy] -1[xyyxyxyx]
-1[yxxyxyxy] +1[yxxyxyyx] +1[yxxyyxxy] -1[yxxyyxyx] +1[yxyxxyxy]
-1[yxyxxyyx] -1[yxyxyxxy] +2[yxyxyxyx] -1[yxyxyyxx] -1[yxyyxxyx]
+1[yxyyxyxx] -1[yyxxyxyx] +1[yyxxyyxx] +1[yyxyxxyx] -1[yyxyxyxx]

Bell pairs 2d 4 +1[xxxx] +1[xxyy] +1[yyxx] +1[yyyy] ∞ known
6 +1[xxxxxx] +1[xxxxyy] +1[xxyyxx] +1[xxyyyy]

+1[yyxxxx] +1[yyxxyy] +1[yyyyxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[xxxxxxyy] +1[xxxxyyxx] +1[xxxxyyyy]

+1[xxyyxxxx] +1[xxyyxxyy] +1[xxyyyyxx] +1[xxyyyyyy]
+1[yyxxxxxx] +1[yyxxxxyy] +1[yyxxyyxx] +1[yyxxyyyy]
+1[yyyyxxxx] +1[yyyyxxyy] +1[yyyyyyxx] +1[yyyyyyyy]

Bell pairs 3d 4 +1[xxxx] +1[yyxx] +1[zzxx] ∞ known
6 +1[xxxxxx] +1[xxyyxx] +1[xxzzxx] +1[yyxxxx] +1[yyyyxx]

+1[yyzzxx] +1[zzxxxx] +1[zzyyxx] +1[zzzzxx]
8 +1[xxxxxxxx] +1[xxxxyyxx] +1[xxxxzzxx] +1[xxyyxxxx]

+1[xxyyyyxx] +1[xxyyzzxx] +1[xxzzxxxx] +1[xxzzyyxx] +1[xxzzzzxx]
+1[yyxxxxxx] +1[yyxxyyxx] +1[yyxxzzxx] +1[yyyyxxxx]
+1[yyyyyyxx] +1[yyyyzzxx] +1[yyzzxxxx] +1[yyzzyyxx] +1[yyzzzzxx]
+1[zzxxxxxx] +1[zzxxyyxx] +1[zzxxzzxx] +1[zzyyxxxx] +1[zzyyyyxx]
+1[zzyyzzxx] +1[zzzzxxxx] +1[zzzzyyxx] +1[zzzzzzxx]

GHZ 4 +1[xxxx] +1[yyyy] ∞ known
6 +1[xxxxxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[yyyyyyyy]

W 4 +1[xxxy] +1[xxyx] +1[xyxx] +1[yxxx] ∞ known
6 +1[xxxxxy] +1[xxxxyx] +1[xxxyxx] +1[xxyxxx]

+1[xyxxxx] +1[yxxxxx]
8 +1[xxxxxxxy] +1[xxxxxxyx] +1[xxxxxyxx] +1[xxxxyxxx]

+1[xxxyxxxx] +1[xxyxxxxx] +1[xyxxxxxx] +1[yxxxxxxx]

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Meta-Designing Quantum Experiments with Language Models

State Name size Quantum State string correct states previously
known

GHZ x W 4 +1[xxxy] +1[xxyx] +1[yyxy] +1[yyyx] 3 unknown
6 +1[xxxxxy] +1[xxxxyx] +1[xxxyxx] +1[yyyxxy]

+1[yyyxyx] +1[yyyyxx]
8 +1[xxxxxxxy] +1[xxxxxxyx] +1[xxxxxyxx] +1[xxxxyxxx]

+1[yyyyxxxy] +1[yyyyxxyx] +1[yyyyxyxx] +1[yyyyyxxx]
W x W 4 +1[xyxy] +1[xyyx] +1[yxxy] +1[yxyx] 3 unknown

6 +1[xxyxxy] +1[xxyxyx] +1[xxyyxx] +1[xyxxxy] +1[xyxxyx]
+1[xyxyxx] +1[yxxxxy] +1[yxxxyx] +1[yxxyxx]

8 +1[xxxyxxxy] +1[xxxyxxyx] +1[xxxyxyxx] +1[xxxyyxxx]
+1[xxyxxxxy] +1[xxyxxxyx] +1[xxyxxyxx] +1[xxyxyxxx]
+1[xyxxxxxy] +1[xyxxxxyx] +1[xyxxxyxx] +1[xyxxyxxx]
+1[yxxxxxxy] +1[yxxxxxyx] +1[yxxxxyxx] +1[yxxxyxxx]

Dicke 2 4 +1[xzzx] +1[zxzx] +1[zzxx] 3 unknown
6 +1[xxzzxx] +1[xzxzxx] +1[xzzxxx] +1[zxxzxx] +1[zxzxxx] +1[zzxxxx]
8 +1[xxxzzxxx] +1[xxzxzxxx] +1[xxzzxxxx] +1[xzxxzxxx] +1[xzxzxxxx]

+1[xzzxxxxx] +1[zxxxzxxx] +1[zxxzxxxx] +1[zxzxxxxx] +1[zzxxxxxx]
GHZ x GHZ 4 +1[xxxx] +1[xxyy] +1[yyxx] +1[yyyy] 3 unknown

6 +1[xxxxxx] +1[xxxyyy] +1[yyyxxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[xxxxyyyy] +1[yyyyxxxx] +1[yyyyyyyy]

Dyck 2 4 +1[yyzz] +1[yzyz] 3 unknown
6 +1[yyyzzz] +1[yyzyzz] +1[yyzzyz] +1[yzyyzz] +1[yzyzyz]
8 +1[yyyyzzzz] +1[yyyzyzzz] +1[yyyzzyzz] +1[yyyzzzyz] +1[yyzyyzzz]

+1[yyzyzyzz] +1[yyzyzzyz] +1[yyzzyyzz] +1[yyzzyzyz] +1[yzyyyzzz]
+1[yzyyzyzz] +1[yzyyzzyz] +1[yzyzyyzz] +1[yzyzyzyz]

Dyck 1 4 +1[yzxx] 3 unknown
6 +1[yyzzxx] +1[yzyzxx]
8 +1[yyyzzzxx] +1[yyzyzzxx] +1[yyzzyzxx] +1[yzyyzzxx] +1[yzyzyzxx]

Dicke 1 4 +1[xzxx] +1[zxxx] 2 unknown
6 +1[xxzzxx] +1[xzxzxx] +1[xzzxxx] +1[zxxzxx] +1[zxzxxx] +1[zzxxxx]
8 +1[xxxzzzxx] +1[xxzxzzxx] +1[xxzzxzxx] +1[xxzzzxxx] +1[xzxxzzxx]

+1[xzxzxzxx] +1[xzxzzxxx] +1[xzzxxzxx] +1[xzzxzxxx] +1[xzzzxxxx]
+1[zxxxzzxx] +1[zxxzxzxx] +1[zxxzzxxx] +1[zxzxxzxx] +1[zxzxzxxx]
+1[zxzzxxxx] +1[zzxxxzxx] +1[zzxxzxxx] +1[zzxzxxxx] +1[zzzxxxxx]

Dicke 5 4 +1[zzzx] 2 unknown
6 +1[xzzzxx] +1[zxzzxx] +1[zzxzxx] +1[zzzxxx]
8 +1[xxzzzxxx] +1[xzxzzxxx] +1[xzzxzxxx] +1[xzzzxxxx] +1[zxxzzxxx]

+1[zxzxzxxx] +1[zxzzxxxx] +1[zzxxzxxx] +1[zzxzxxxx] +1[zzzxxxxx]
AKLT 4 -1[xzxx] +1[yyxx] -1[zxxx] 2 unknown

6 -1[xyzxxx] +1[xzyxxx] +1[yxzxxx] -1[yzxxxx] -1[zxyxxx] +1[zyxxxx]
8 -1[xyyzxxxx] +1[xyzyxxxx] +2[xzxzxxxx] -1[xzyyxxxx] +1[yxyzxxxx]

-1[yxzyxxxx] -1[yyxzxxxx] +1[yyyyxxxx] -1[yyzxxxxx] -1[yzxyxxxx]
+1[yzyxxxxx] -1[zxyyxxxx] +2[zxzxxxxx] +1[zyxyxxxx] -1[zyyxxxxx]

Motzkin small 4 +1[xyxx] +1[zzxx] 2 unknown
6 +1[xyzxxx] +1[xzyxxx] +1[zxyxxx] +1[zzzxxx]
8 +1[xxyyxxxx] +1[xyxyxxxx] +1[xyzzxxxx] +1[xzyzxxxx]

+1[xzzyxxxx] +1[zxyzxxxx] +1[zxzyxxxx] +1[zzxyxxxx] +1[zzzzxxxx]

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Meta-Designing Quantum Experiments with Language Models

State Name size Quantum State string correct states previously
known

Dicke 3 4 +1[xyzx] +1[xzyx] +1[yxzx] +1[yzxx] +1[zxyx] +1[zyxx] 1 unknown
6 +1[xxyzxx] +1[xxzyxx] +1[xyxzxx] +1[xyzxxx] +1[xzxyxx] +1[xzyxxx]

+1[yxxzxx] +1[yxzxxx] +1[yzxxxx] +1[zxxyxx] +1[zxyxxx] +1[zyxxxx]
8 +1[xxxyzxxx] +1[xxxzyxxx] +1[xxyxzxxx] +1[xxyzxxxx]

+1[xxzxyxxx] +1[xxzyxxxx] +1[xyxxzxxx] +1[xyxzxxxx]
+1[xyzxxxxx] +1[xzxxyxxx] +1[xzxyxxxx] +1[xzyxxxxx]
+1[yxxxzxxx] +1[yxxzxxxx] +1[yxzxxxxx] +1[yzxxxxxx]
+1[zxxxyxxx] +1[zxxyxxxx] +1[zxyxxxxx] +1[zyxxxxxx]

Dicke 4 4 +1[xxyy] +1[xyxy] +1[xyyx] +1[yxxy] +1[yxyx] +1[yyxx] 1 unknown
6 +1[xxxxyy] +1[xxxyxy] +1[xxxyyx] +1[xxyxxy] +1[xxyxyx]

+1[xxyyxx] +1[xyxxxy] +1[xyxxyx] +1[xyxyxx] +1[xyyxxx]
+1[yxxxxy] +1[yxxxyx] +1[yxxyxx] +1[yxyxxx] +1[yyxxxx]

8 +1[xxxxxxyy] +1[xxxxxyxy] +1[xxxxxyyx] +1[xxxxyxxy]
+1[xxxxyxyx] +1[xxxxyyxx] +1[xxxyxxxy] +1[xxxyxxyx]
+1[xxxyxyxx] +1[xxxyyxxx] +1[xxyxxxxy] +1[xxyxxxyx]
+1[xxyxxyxx] +1[xxyxyxxx] +1[xxyyxxxx] +1[xyxxxxxy]
+1[xyxxxxyx] +1[xyxxxyxx] +1[xyxxyxxx] +1[xyxyxxxx]
+1[xyyxxxxx] +1[yxxxxxxy] +1[yxxxxxyx] +1[yxxxxyxx]
+1[yxxxyxxx] +1[yxxyxxxx] +1[yxyxxxxx] +1[yyxxxxxx]

GHZ 3d x GHZ 3d 4 +1[xxxx] +1[xxyy] +1[xxzz] +1[yyxx] +1[yyyy]
+1[yyzz] +1[zzxx] +1[zzyy] +1[zzzz]

1 unknown

6 +1[xxxxxx] +1[xxxyyy] +1[xxxzzz] +1[yyyxxx] +1[yyyyyy]
+1[yyyzzz] +1[zzzxxx] +1[zzzyyy] +1[zzzzzz]

8 +1[xxxxxxxx] +1[xxxxyyyy] +1[xxxxzzzz] +1[yyyyxxxx]
+1[yyyyyyyy] +1[yyyyzzzz] +1[zzzzxxxx] +1[zzzzyyyy] +1[zzzzzzzz]

Motzkin 4 +1[xyzx] +1[xzyx] +1[zxyx] +1[zzzx] 1 unknown
6 +1[xxyyxx] +1[xyxyxx] +1[xyzzxx] +1[xzyzxx] +1[xzzyxx]

+1[zxyzxx] +1[zxzyxx] +1[zzxyxx] +1[zzzzxx]
8 +1[xxyyzxxx] +1[xxyzyxxx] +1[xxzyyxxx] +1[xyxyzxxx]

+1[xyxzyxxx] +1[xyzxyxxx] +1[xyzzzxxx] +1[xzxyyxxx]
+1[xzyxyxxx] +1[xzyzzxxx] +1[xzzyzxxx] +1[xzzzyxxx]
+1[zxxyyxxx] +1[zxyxyxxx] +1[zxyzzxxx] +1[zxzyzxxx] +1[zxzzyxxx]
+1[zzxyzxxx] +1[zzxzyxxx] +1[zzzxyxxx] +1[zzzzzxxx]

13

