
Meta-Designing Quantum Experiments with Language Models

Sören Arlt 1 Haonan Duan 2 Felix Li 3 Sang Michael Xie 4 Yuhuai Wu 5 Mario Krenn 1

Abstract

Artificial Intelligence (AI) has the potential to sig-
nificantly advance scientific discovery by finding
solutions beyond human capabilities. However,
these super-human solutions are often unintuitive
and require considerable effort to uncover under-
lying principles, if possible at all. Here, we show
how a code-generating language model trained
on synthetic data can not only find solutions to
specific problems but can create meta-solutions,
which solve an entire class of problems in one
shot and simultaneously offer insight into the
underlying design principles. Specifically, for
the design of new quantum physics experiments,
our sequence-to-sequence transformer architec-
ture generates interpretable Python code that de-
scribes experimental blueprints for a whole class
of quantum systems. We discover general and pre-
viously unknown design rules for infinitely large
classes of quantum states. The ability to automat-
ically generate generalized patterns in readable
computer code is a crucial step toward machines
that help discover new scientific understanding –
one of the central aims of physics.

1. Introduction
Quantum physics is a notoriously unintuitive field of study.
Despite this, it has developed to a point where some of
its most difficult-to-conceptualize effects - such as entan-
glement - could become the basis of a new generation
of technological development. These applications include
quantum imaging (Lemos et al., 2014; Kviatkovsky et al.,
2020; Moreau et al., 2019; Aslam et al., 2023), quantum
metrology (Pezzè et al., 2018; Polino et al., 2020; DeMille
et al., 2024), quantum communication (Flamini et al., 2018;
Couteau et al., 2023), quantum simulation (Aspuru-Guzik &

1Max Planck Institute for the Science of Light 2University
of Toronto, Vector Institute 3UC Berkeley 4Stanford University
5xAI. Correspondence to: Sören Arlt <soeren.arlt@mpl.mpg.de>,
Haonan Duan <haonand@cs.toronto.edu>, Yuhuai Wu
<yuhuai@x.ai>, Mario Krenn <mario.krenn@mpl.mpg.de>.

Walther, 2012; Cornish et al., 2024), and quantum computa-
tion (Madsen et al., 2022). Due to difficulties in designing
experimental setups by hand, researchers have started to
utilize algorithmic optimization and AI techniques to dis-
cover experimental setups in quantum physics (Krenn et al.,
2020).
Conventional computational design can deliver solutions,
which surpass designs by human experts. E.g. for a given
target quantum state, a machine could design the experi-
mental setup which creates the state, but interpretation and
generalization of the results is left to the researcher and is
often an exceptionally hard challenge, if possible at all.

Here we introduce the process of meta-design, which takes
computational design to a higher level of abstraction. In-
stead of designing one solution for a single target (i.e. one
experimental setup for the creation of one quantum state),
our algorithm designs a meta-solution which generates so-
lutions for an infinitely large class of targets (a class of
quantum state). In our case, these meta-solutions have the
form of programming codes, which generate different exper-
imental setups for different values of an integer variable N.
At the heart of our method lies a language model (sequence-
to-sequence transformer) which is able to propose meta-
solutions in the form of Python codes. Our approach is
successful in designing meta-solutions for many interesting
classes of quantum states, several of which were not known
previously. Due to the readability of the solutions that stem
from their Python code representation, it is easy to uncover
the underlying principles of the generalized meta-solutions.
Therefore, our technique is a step towards AI methods that
can help to gain new understanding in physics (De Regt,
2017; Krenn et al., 2022; Barman et al., 2024).

2. Related Work
AI for discovery in quantum physics. AI techniques
have been previously applied to the search for experimental
setups in quantum physics (Krenn et al., 2016; Knott, 2016;
Nichols et al., 2019; Wallnöfer et al., 2020; Prabhu et al.,
2020; Krenn et al., 2021; Ruiz-Gonzalez et al., 2023; Goel
et al., 2024; Landgraf et al., 2024), nanophotonic structures
(Molesky et al., 2018; Sapra et al., 2020; Ma et al., 2021;
Gedeon et al., 2023), and quantum circuits (Ostaszewski
et al., 2021; Nägele & Marquardt, 2023; Kottmann, 2023;

1

Meta-Designing Quantum Experiments with Language Models

Figure 1. Meta-designing a class of experiments via code generation avoids exploding computational costs for the design of larger
experiments. Left side: Our process takes the first three states from a class of target quantum states and - when successful - produces a
Python code which generates the correct experimental setup for arbitrary sizes. For this, a sequence-to-sequence transformer is trained
purely on randomly generated pairs of sequences. Right side: Designing an experimental setup which produces a target quantum state is
very fast for small particle numbers. But the computational cost explodes as the target state grows.

Zen et al., 2024; MacLellan et al., 2024). All of these works
have in common that the algorithm produces only a single
solution and not a meta-solution that represents large classes
of solutions.

LLMs for program synthesis Language models have
been explored in the field of program synthesis. One ap-
proach is to pre-train these models directly on massive
datasets of programming language data, such as GitHub pull
requests, Kaggle notebooks, and code documentation. Mod-
els like StarCoder (Li et al., 2023; Lozhkov et al., 2024), and
CodeGeeX (Zheng et al., 2023) fall into this category. An
alternative strategy is to take existing large natural language
models and then fine-tune them on code data. For exam-
ple, Codex (Chen et al., 2021) fine-tuned GPT3 (Brown
et al., 2020) on the source code from the public available
sources, and CodeGemma is an adpation from the Gemma
(Gemma-Team, 2024) models. There has also been research
exploring the use of program synthesis techniques as a tool
to enhance the algorithmic reasoning capabilities of large
language models. Methods like PAL (Gao et al., 2023)
and PoT (Chen et al., 2022) prompt language models to
break down reasoning problems into a series of interme-
diate steps. These step-by-step decompositions are then
offloaded to an external runtime environment, such as a
Python interpreter, to execute and solve each step program-
matically. Another technique called Think-and-Execute
(Chae et al., 2024) follows a similar philosophy, where
the language model is tasked with generating high-level
pseudocode that outlines the solution approach for a given
problem. This pseudocode is then simulated and executed,
allowing the model to reason through the problem in a struc-
tured, interpretable manner. In addition, program synthesis
has been used to explore mechanistic interpretability for

LLMs. Michaud et al. (2024) translate algorithms encoded
by machine-learning models into human-readable Python
code. LLMs have been used to generate programs to solve
mathematical problems (Romera-Paredes et al., 2024) and
to discover scientific equations from data (Shojaee et al.,
2024).

Transformers for math and physics Transformer archi-
tectures have demonstrated remarkable success in solving
a wide range of mathematics and physics reasoning tasks.
Lample & Charton (2019) and Kamienny et al. (2022) show
that a transformer-based sequence-to-sequence model can
tackle symbolic math problems such as symbolic integration,
differential equations and symbolic regression. AlphaGeom-
etry (Trinh et al., 2024) has achieved remarkable perfor-
mance in solving geometry problems at an olympiad level.
Alfarano et al. (2023) finds that by training transformers
on synthetic data, they can accurately predict the Lyapunov
functions of polynomial and non-polynomial dynamical sys-
tems. In the field of theoretical high-energy physics, Cai
et al. (2024) applies transformers to compute scattering am-
plitudes. Furthermore, Alnuqaydan et al. demonstrates that
a transformer model, when trained on symbolic sequence
pairs, can correctly predict the squared amplitudes of Stan-
dard Model processes. Language models have also been
used in quantum simulation (Melko & Carrasquilla, 2024),
albeit not as a generative model for symbolic language as in
our or the other works mentioned here.

3. Background Quantum Optics
We choose the design of quantum optics experiments as
proof of concept and point to the great potential in applying
the approach in other fields. Quantum optics is concerned

2

Meta-Designing Quantum Experiments with Language Models

Figure 2. Exploiting asymmetric cost for data generation. A
random code (sequence B) is generated. Executing it for the values
N = 0, 1, 2 produces in three different experimental setup. Each
setup produces a state. The three states are concatenated to make
sequence A, which is the input for the model.

with photons, the fundamental particles of light. A photon
can have different polarization modes, e.g. horizontal (mode
0) or vertical (mode 1). A basic property of quantum parti-
cles is that they can be in a superposition of multiple modes,
i.e. they can be considered to be two things at the same time.
The state |ψ⟩ of one photon in equal superposition can be
expressed in Dirac notation as

|ψ⟩ = |0⟩+ |1⟩ . (1)

We omit the normalization factor for all quantum states
shown in this work for readability. It can be assumed that
all states are normalized. Another important concept in
quantum physics is entanglement, where multiple photons
are in a state where they cannot be described independently,
such as the superposition of three particles being in the
superposition of either all particles being in mode 0 or all
particles being in mode 1,

|ψ⟩ = |000⟩+ |111⟩ . (2)

This state is called the GHZ state (Greenberger et al., 1990;
Pan et al., 2000).
In quantum optics, highly entangled states can be created by
combining probabilistic photon pair sources. The number
of possible experimental setups increases combinatorically
with the number of photons for a given target state. This
makes it very difficult to design experiments by hand and
thus computational techniques have been successfully ap-
plied to the problem (Ruiz-Gonzalez et al., 2023). For suffi-
ciently large systems, these tasks become too difficult even
for current methods as they become too computationally
expensive (see right side of Fig. 1).

4. Methods
We introduce meta-design, the idea of generating a meta-
solution that can solve a whole class of solutions (in our case,
for design problems of quantum states). Our meta-solutions
are Python codes that can generate blueprints of experimen-
tal setups. We train a sequence-to-sequence transformer on

synthetic data to translate from a class of quantum states to
Python code and sample the model to discover programs for
a collection of target classes.

Solving classes of problems via meta-solutions – High-
level programming languages like python are universally
computationally expressive and are human-readable, mak-
ing them perfect to express general concepts. Let’s consider
a simple example: Let’s say we want to describe the action
of drawing a polygon (triangle, square, pentagon, ...) for an
arbitrary number of sides N ≥ 3.

def draw_polygon(N):
for i in range(N):

draw_forward()
turn_left(360 / N)

where draw forward() draws a straight line of a given
length and turn left(angle) rotates the drawing di-
rection. This simple program expresses a whole class that
follows a pattern. The class contains an infinite number
of shapes. For the problem Draw a polygon with 7 sides,
the above code for N = 7 is a solution. The code itself
with the variable N , however, is a meta-solution that can
produce many different solutions (in this case, a prescription
to draw a polygon with a specific number of sides N). This
principle can be generalized, and we use it to address design
questions for general cases.

Meta-design for Quantum Experiments A famous class
of quantum states are the GHZ states, which are written
expressed in ket notation as

|GHZ4⟩ = |0000⟩+ |1111⟩
|GHZ6⟩ = |000000⟩+ |111111⟩
|GHZ8⟩ = |00000000⟩+ |11111111⟩

They are superposition of particles being either in mode
0 or mode 1 with an increasing number of photons (4, 6,
8, ...). We can state the design of quantum optics experi-
ments for all GHZ states as a meta-design problem as in
the previous paragraph. A meta-solution for this problem is
a program construct setup(N) which generates the
correct experimental setup for a given N ≥ 0. This is
possible because the GHZ states follow a specific pattern.
The solution to the problem is shown in Fig. 1. The setup
for n particles consists of n paths leading to n detectors.
The function call C(p1,p2,m1,m2,w) denotes placing
a photon pair source at a crossing of paths p1 and p2, creat-
ing photons with modes m1 and m2 (shown as color) and a
weight w (introducing possible phases). After constructing
the setup, we can compute the expected quantum state that
emerges at the detectors. The code shown in Fig. 1 will
generate the correct experimental setups for arbitrarily high
particle numbers. Much like the program for N-polygons,

3

Meta-Designing Quantum Experiments with Language Models

Figure 3. Success of meta-design on validation data. pass@k is
the probability for producing a correct solution within k samples.
We show the metric for different criteria. The task is considered
solved when the states generated by the predicted code match the
states generated by the target code for the first M states.

this code can express the correct experiments for an entire
class of quantum states.

The goal of this work is to show that it is possible to use
language models for the discovery of programs, which solve
classes of quantum states such as the GHZ state.

A→B hard, B→A easy On an abstract level, we can describe
the subject of our work as dealing with two sequences, A (a
list of three quantum states) and B (python program). Di-
rection B→A (computing the resulting quantum states from
experimental setups) follows clear instructions and can be
considered easy. Direction A→B is highly non-trivial. De-
signing just a single experiment can be very difficult, let
alone finding a code which solves the entire class of states.

An instructive example for this asymmetry is the problem
of finding the integral vs. the derivative of a mathematical
function. This has been previously explored by Lample &
Charton (2019). As there exist clear rules for differentia-
tion, the authors could generate a large number of random
functions and compute their derivatives. They then trained a
sequence to sequence transformer to translate in the reverse
direction, which is the more difficult task of integration.

Similar to the approach by Lample & Charton (2019), we
want to train a sequence to sequence transformer to trans-
late in the hard direction (from quantum states to python
code). Because the opposite direction is a straightforward
computation, we can produce a large amount of data to train
the model by generating random codes (see Fig. 2).

Data (generate random B, compute A) Our training data
consists of two sequences for each sample. The process of
translating sequence A (list of states) to sequence B (meta-

solution in form of python code) is the difficult direction,
which the model is trained to do.

Using a simple set of rules, we can generate a random
python code, which contains instructions for how to set up
an experiment. Each code contains the variable index N .
This means that the code will result in a different experimen-
tal setup for each value of N . Simulating the experiment for
N = 0, 1, 2, we produce three states (see Fig. 2). After com-
puting the states, sequence A has the form <SOS>[state
1]<SEP>[state 2]<SEP>[state 3]<EOS> and
sequence B is <SOS>[python code]<EOS>. <SOS>
and <EOS> are the start-of-sequence and end-of-sequence
tokens and <SEP> is a separation token.

The maximum length for both sequences during data gen-
eration is 640 tokens. Both sequences are tokenized by a
hand-picked vocabulary dictionary. We spend about 50,000
CPU hours on generating 56 million samples.

For the model to successfully generalize to unseen targets,
it is advised to select the distribution of the synthetic data
carefully (Charton, 2021). A simple example is that a model
trained on random samples containing states with three po-
larizational modes can have difficulties solving a task con-
taining states with only two modes, even though would
be expected to be easier, because it is a subspace. To en-
sure performance on a diverse range of possibly interesting
subspaces, we generate separate datasets at different levels
of difficulty and specialization (length of states and codes,
number of modes, constraints on phase parameters) and
combine them to one final training dataset.

Training (learn A→B) We train the model with a standard
encoder-decoder transformer architecture (Vaswani et al.,
2017), with Pre-Layer Normalization (Xiong et al., 2020)
and learned positional encoding (Gehring et al., 2017). We
choose the dimensions nemb = 512, nlayer = 18, nheads =
8. We use a learned positional encoding, as we are not
attempting to apply our model to unseen lengths. The model
has approximately 133 million parameters and is trained
for 750k steps with a batch size of 256 (approximately 2.5
epochs on a dataset of 56 million samples). The learning rate
of the Adam optimizer (Kingma & Ba, 2014) was 10−4 for
the first epoch and was then lowered to 10−5. The training
was performed on four A100-40GB GPUs.

Sampling Details We perform top-p sampling with the
trained model. This means, that we generate the output
sequence by choosing each token randomly according to
the probability distribution given by the model at each step.
We choose the value p = 0.5, which means that we only
consider the top ranked tokens with a cumulative proba-
bility less than 0.5. We choose a temperature value 0.2,
which can be adapted to vary the diversity of output. The

4

Meta-Designing Quantum Experiments with Language Models

Figure 4. Our approach discovers two previously unknown and
four previously known generalizations. We show the resulting
fidelities of the best produced code for 14 of the 20 target classes.
The green line represents the six target classes which our approach
produces codes which correctly extrapolate beyond the first three
elements. The blue lines show classes for which the best generated
codes have fidelity one for the first three elements of the class, but
do not extrapolate beyond. These cases are interesting as the model
is still successful in generating a code which matches the three
states provided as an input sequence, but the output for N ≥ 3
does not match what we expect. The orange and red line are
representatives of the 8 cases, for which the model was not able
to predict correct solutions up to N = 3. The full table of target
classes with their maximum correct N is shown in the appendix.

chosesn parameter values have performed well in other code
generation tasks (Chen et al., 2021; Li et al., 2023). We eval-
uate the codes produced by the model by executing them to
produce experimental setups for N = 0, 1, 2, 3, 4 (training
data was generated only for N = 0, 1, 2). We compute the
states which are produced by these setups and compute their
fidelity with respect to the corresponding target state. A
fidelity value of 1 means that the state is produced perfectly.
The lowest possible value for the fidelity is 0, which means
that the target state and the resulting state are perpendicular.

Application to unknown targets Our goal is now to apply
the trained model to targets for which the code (sequence B)
is unknown. Random generated data is abundant and is thus
useful to train our model, but our aim is to discover codes
for quantum state classes of particular interest (because of
particular mathematical or physical properties). We have

compiled a collection of twenty target classes based on a
collection of quantum states found in (Ruiz-Gonzalez et al.,
2023) – all of these states have exceptional properties that
have been studied previously, for example in the context of
quantum simulations or quantum communication.

The first three states of each target class are explicitly shown
in the appendix. They are expressed as strings in the same
way in which they are given to the model as input.

For four out of the 20 targets, meta-solutions were hand-
crafted by researchers in the past. For 16 of the 20 target
classes, no meta-solution was known before our work. Fur-
thermore, we do not even know whether a solution can exist
at all with the quantum-physical resources we provide (e.g.
number of particles necessary to realize a state, and amount
of quantum entanglement). Thus, every meta-solution from
these 16 states is not a rediscovery, but a genuine unbiased
discovery.

5. Results
Model performance on validation data To evaluate our
model on samples from the validation dataset, we produce
200 code predictions for 200 random samples from the
validation dataset. We compute the pass@k metric for
1 ≤ k ≤ 100 according to an estimator formula given in
(Chen et al., 2021). This metric describes the probability
for a task to be solved within k predictions made by the
model. Since there is no straightforward way to proving
that two codes are equivalent for arbitrary M , we consider
a prediction to be successful if the produced states match
the first M elements of the target class. In Fig. 3 we show
the results of this evaluation. We observe that the likelihood
of a correct prediction for the first M states decreases with
higher M , but as M grows, the metric seems to converge
towards a line which could be considered the true measure
of a code, which perfectly matches the target code in all
states it produces.

Successful meta-design of codes (6 out of 20 cases) Be-
fore training the model we prepared a set of 20 classes of
quantum states as targets for our method. The condition for
a class of states to be considered here are that there exists a
clear rule for expressing the wave function |ψ(N)⟩ in terms
of a positive integer N . We require the number of parti-
cles in |ψ(N)⟩ to be less than or equal to 2N + 2 as this is
the maximum system size which we allow for during data
generation.

For each target, we sample the model for four hours on
one RTX 6000 GPU, which produces 800-2500 samples
(depending on the target class).

In Fig. 4 we show the fidelities of the best sample for
fourteen of the twenty target classes. The best sample is

5

Meta-Designing Quantum Experiments with Language Models

Figure 5. Experimental setups for previously unknown solutions exhibit comprehensible patterns. In the two top rows we show two
previously unknown constructions discovered by our approach. For the spin 1

2
states and the Majumdar-Gosh states (described in more

detail in (Ruiz-Gonzalez et al., 2023)). For each of the two examples, the code produces the correct experimental setup for the three states
used to prompt the model but also for higher particle numbers, indicating that the model was able to pick up on the pattern and write a
correct code for the entire class of states. We highlight in green the ’building blocks’, which are repeated multiple times as the particle
number grows (stemming from lines written in the for loop). The bottom row shows a code for the Dyck 1 state. The setups generated by
this code produce the correct state up to the third iteration, but are missing terms for indices N > 2. This means that the model was able
to solve the task it was trained to do (match the first three states), but failed at the meta task of picking up on the pattern we intended it to
match beyond the first three examples. It is also notable that in contrast to the other two examples, all setups produced for the Dyck 1 state
also contained additional crystals which did not actually contribute to the resulting quantum state. We have omitted them by covering
them by a grey rounded rectangle.

chosen by filtering for samples with the highest N such
that all fidelities up to order N are equal to one and then
choosing the one with the highest average fidelity for all
N ≤ 4. We find six target classes that our model can solve
perfectly. For these classes, the output extrapolates beyond
what the model was trained to do, i.e. match the states for
N = 0, 1, 2.

For four famous classes of quantum states (GHZ, W 2d-Bell
and 3d-Bell), we knew that there exists a construction rule
for experiments with 2N+2 particles for arbitraryN , which
act as a baseline check for the capability of our method. Our
model rediscovered all four meta-solutions of these states.

Most importantly, two out of six classes which our method
successfully solves, were previously unknown and thus con-
stitute a genuine discovery. The first previously unknown
case is the general Spin-12 state. There, no two neighboring
spin-ups appear in the ground state. In Rydberg-atom ex-
periment, this situation occurs due to the Rydberg blockade

(Ruiz-Gonzalez et al., 2023; Bernien et al., 2017), however
so far it was unknown how to build such an entangled class
for photonic systems. The second novel class contains the
states of the famous Majumdar-Gosh Model in condensed
matter physics . In this one-dimensional Heisenberg chain,
the value of the next-nearest-neighbor interaction is half the
value of the nearest-neighbor antiferromagnetic exchange
interaction (Ruiz-Gonzalez et al., 2023; Chhajlany et al.,
2007).

Interestingly, all classes that were correct for N = 3 (going
one step beyond the three input states), were correct also for
larger states, i.e. the model discovered an apparently perfect
symbolic generalization.

Codes with unexpected generalizations (6 out of 20 cases)
For these cases the model produces codes, which generate
the correct states for the first three elements of the class,
but produces experiments that produce states other than
the expected ones. These cases are interesting to examine

6

Meta-Designing Quantum Experiments with Language Models

because the model successfully performs the task it was
trained for, as the first three states match the input sequence.
The fact that it does not continue to match the target beyond
N = 3 is due to a degree of ambiguity that exists for the
continuation of any pattern. Any infinite sequence is under-
determined if only a finite number of elements is given. A
possible way to narrow (but not remove) this ambiguity in
our application would be to train the model on more than
three elements. Further, the output is highly influenced by
the synthetic data. The model will be more likely to produce
an output, which is closer represents the distribution of data
it was trained on. One example, the Dyck 1 states, is shown
and analyzed in Fig. 5. This is an example which does not
follow the intended pattern for N ≥ 3, but produces valid
states regardless, which randomly generated experimental
setups generally do not do. There is potential in examine
these cases in more detail to see if the pattern they follow is
interesting from a physics side, as they might represent new
unexplored classes of quantum states.

Codes which fail to match the first three states (8 out
of 20 cases) Four classes match the first two states of the
input. Another four classes only match the first state of
the input states. There were no examples where the model
could not match any input states. These also include cases
for which the setups generated by the output code do not
produce a valid quantum state at higher indices N . These
cases could be either too complex for the model to give the
correct prediction, or generalisations cannot exist at all for
physical reasons, given the amount of quantum resources
we provide.

6. Discussion
We demonstrate how a language model can produce a meta-
solution for a physical design task. The meta-solution is de-
scribed in the form of computer code, which itself produces
solutions to large generalizations of the design question.
In our examples, we discover previously unknown gener-
alizations of experimental setups for interesting quantum
states. The ability to automatically create generalizations
also offers a decisive advantage over conventional AI-driven
design in terms of computational costs.

Our method is not constrained to quantum physics but can
be directly implemented in other domains, such as the dis-
covery of new microscopes (Rodrı́guez et al., 2023), new
gravitational wave detectors (Krenn et al., 2023), new ex-
perimental hardware for high-energy physics (Baydin et al.,
2021), or the design of new functional molecules (Pollice
et al., 2021).

At a more abstract level, we see that the application of a
powerful intermediate language that can be written and read
by both machines and humans can significantly enhance the

understandability and generalizability of AI-driven discov-
eries.

Acknowledgements
The authors thank Ben Newman for useful discussions.

References
Alfarano, A., Charton, F., Hayat, A., and des Ponts Paristech,

C.-E. Discovering lyapunov functions with transformers.
In The 3rd Workshop on Mathematical Reasoning and AI
at NeurIPS’23, 2023.

Alnuqaydan, A., Gleyzer, S., Prosper, H. B., Reinhardt,
E. A., Anand, N., and Charton, F. Symbolic machine
learning for high energy physics calculations.

Aslam, N., Zhou, H., Urbach, E. K., Turner, M. J.,
Walsworth, R. L., Lukin, M. D., and Park, H. Quan-
tum sensors for biomedical applications. Nature Reviews
Physics, 5(3):157–169, February 2023.

Aspuru-Guzik, A. and Walther, P. Photonic quantum simu-
lators. Nature physics, 8(4):285–291, 2012.

Barman, K. G., Caron, S., Claassen, T., and De Regt, H.
Towards a benchmark for scientific understanding in hu-
mans and machines. Minds and Machines, 34(1):1–16,
2024.

Baydin, A. G., Cranmer, K., de Castro Manzano, P., Delaere,
C., Derkach, D., Donini, J., Dorigo, T., Giammanco, A.,
Kieseler, J., Layer, L., Louppe, G., Ratnikov, F., Strong,
G., Tosi, M., Ustyuzhanin, A., Vischia, P., and Yarar, H.
Toward machine learning optimization of experimental
design. Nuclear Physics News, 31(1):25–28, 2021.

Bernien, H., Schwartz, S., Keesling, A., Levine, H., Om-
ran, A., Pichler, H., Choi, S., Zibrov, A. S., Endres, M.,
Greiner, M., et al. Probing many-body dynamics on a
51-atom quantum simulator. Nature, 551(7682):579–584,
2017.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877–1901, 2020.

Cai, T., Merz, G. W., Charton, F., Nolte, N., Wilhelm, M.,
Cranmer, K., and Dixon, L. J. Transforming the bootstrap:
Using transformers to compute scattering amplitudes in

7

Meta-Designing Quantum Experiments with Language Models

planar n= 4 super yang-mills theory. arXiv:2405.06107,
2024.

Chae, H., Kim, Y., Kim, S., Ong, K. T.-i., Kwak, B.-w.,
Kim, M., Kim, S., Kwon, T., Chung, J., Yu, Y., and Yeo, J.
Language models as compilers: Simulating pseudocode
execution improves algorithmic reasoning in language
models. arXiv:2404.02575, 2024.

Charton, F. Linear algebra with transformers.
arXiv:2112.01898, 2021.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder,
N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M.,
Winter, C., Tillet, P., Petroski Such, F., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code.
arXiv:2107.03374, 2021.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program of
thoughts prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. arXiv:2211.12588,
2022.

Chhajlany, R. W., Tomczak, P., Wójcik, A., and Richter, J.
Entanglement in the majumdar-ghosh model. Physical
Review A, 75(3):032340, 2007.

Cornish, S. L., Tarbutt, M. R., and Hazzard, K. R. A. Quan-
tum computation and quantum simulation with ultracold
molecules. Nature Physics, 20(5):730–740, 2024.

Couteau, C., Barz, S., Durt, T., Gerrits, T., Huwer, J.,
Prevedel, R., Rarity, J., Shields, A., and Weihs, G. Ap-
plications of single photons to quantum communication
and computing. Nature Reviews Physics, 5(6):326–338,
2023.

De Regt, H. W. Understanding scientific understanding.
Oxford University Press, 2017.

DeMille, D., Hutzler, N. R., Rey, A. M., and Zelevinsky, T.
Quantum sensing and metrology for fundamental physics
with molecules. Nature Physics, 20(5):741–749, May
2024.

Flamini, F., Spagnolo, N., and Sciarrino, F. Photonic
quantum information processing: a review. Reports on
Progress in Physics, 82(1):016001, 2018.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Gedeon, J., Hassan, E., and Lesina, A. C. Free-form inverse
design of arbitrary dispersive materials in nanophotonics.
arXiv:2305.00234, 2023.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin,
Y. N. Convolutional sequence to sequence learning. In
International conference on machine learning, pp. 1243–
1252. PMLR, 2017.

Gemma-Team. Gemma: Open models based on gemini
research and technology. arXiv:2403.08295, 2024.

Goel, S., Leedumrongwatthanakun, S., Valencia, N. H., Mc-
Cutcheon, W., Tavakoli, A., Conti, C., Pinkse, P. W., and
Malik, M. Inverse design of high-dimensional quantum
optical circuits in a complex medium. Nature Physics, pp.
1–8, 2024.

Greenberger, D. M., Horne, M. A., Shimony, A., and
Zeilinger, A. Bell’s theorem without inequalities. Amer-
ican Journal of Physics, 58(12):1131–1143, December
1990.

Kamienny, P.-a., d'Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 10269–10281.
Curran Associates, Inc., 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Knott, P. A search algorithm for quantum state engineering
and metrology. New Journal of Physics, 18(7):073033,
2016.

Kottmann, J. S. Molecular quantum circuit design: A graph-
based approach. Quantum, 7:1073, August 2023.

Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., and
Zeilinger, A. Automated search for new quantum experi-
ments. Physical review letters, 116(9):090405, 2016.

Krenn, M., Erhard, M., and Zeilinger, A. Computer-inspired
quantum experiments. Nature Reviews Physics, 2(11):
649–661, September 2020.

Krenn, M., Kottmann, J. S., Tischler, N., and Aspuru-Guzik,
A. Conceptual understanding through efficient automated
design of quantum optical experiments. Physical Review
X, 11(3):031044, 2021.

8

Meta-Designing Quantum Experiments with Language Models

Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-
Lierta, A., Friederich, P., dos Passos Gomes, G., Häse,
F., Jinich, A., Nigam, A., Yao, Z., and Aspuru-Guzik,
A. On scientific understanding with artificial intelligence.
Nature Reviews Physics, 4(12):761–769, 2022.

Krenn, M., Drori, Y., and Adhikari, R. X. Digital dis-
covery of interferometric gravitational wave detectors.
arXiv:2312.04258, 2023.

Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolo-
maeus, H., and Ramelow, S. Microscopy with undetected
photons in the mid-infrared. Science Advances, 6(42):
eabd0264, 2020.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. arXiv:1912.01412, 2019.

Landgraf, J., Peano, V., and Marquardt, F. Automated
discovery of coupled mode setups. arXiv:2404.14887,
2024.

Lemos, G. B., Borish, V., Cole, G. D., Ramelow, S., Lap-
kiewicz, R., and Zeilinger, A. Quantum imaging with
undetected photons. Nature, 512(7515):409–412, 2014.

Li, R., Ben Allal, L., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z.,
Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov, D.,
Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhattacharyya,
U., Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov,
M., Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding,
J., Schlesinger, C., Schoelkopf, H., Ebert, J., Dao, T.,
Mishra, M., Gu, A., Robinson, J., Anderson, C. J., Dolan-
Gavitt, B., Contractor, D., Reddy, S., Fried, D., Bahdanau,
D., Jernite, Y., Ferrandis, C. M., Hughes, S., Wolf, T.,
Guha, A., von Werra, L., and de Vries, H. Starcoder: may
the source be with you! arXiv:2305.06161, 2023.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,
Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,
Z., Liu, Q., Abulkhanov, D., Paul, I., Li, Z., Li, W.-D.,
Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii,
E., Dade, N. O. O., Yu, W., Krauß, L., Jain, N., Su, Y.,
He, X., Dey, M., Abati, E., Chai, Y., Muennighoff, N.,
Tang, X., Oblokulov, M., Akiki, C., Marone, M., Mou,
C., Mishra, M., Gu, A., Hui, B., Dao, T., Zebaze, A.,
Dehaene, O., Patry, N., Xu, C., McAuley, J., Hu, H.,
Scholak, T., Paquet, S., Robinson, J., Anderson, C. J.,
Chapados, N., Patwary, M., Tajbakhsh, N., Jernite, Y.,
Muñoz Ferrandis, C., Zhang, L., Hughes, S., Wolf, T.,
Guha, A., von Werra, L., and de Vries, H. Starcoder 2

and the stack v2: The next generation. arXiv:2402.19173,
2024.

Ma, W., Liu, Z., Kudyshev, Z. A., Boltasseva, A., Cai, W.,
and Liu, Y. Deep learning for the design of photonic
structures. Nature Photonics, 15(2):77–90, 2021.

MacLellan, B., Roztocki, P., Czischek, S., and Melko,
R. G. End-to-end variational quantum sensing.
arXiv:2403.02394, 2024.

Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F.,
Vincent, T., Bulmer, J. F. F., Miatto, F. M., Neuhaus, L.,
Helt, L. G., Collins, M. J., Lita, A. E., Gerrits, T., Nam,
S. W., Vaidya, V. D., Menotti, M., Dhand, I., Vernon, Z.,
Quesada, N., and Lavoie, J. Quantum computational ad-
vantage with a programmable photonic processor. Nature,
606(7912):75–81, 2022.

Melko, R. G. and Carrasquilla, J. Language models for
quantum simulation. Nature Computational Science, 4:
11–18, 2024.

Michaud, E. J., Liao, I., Lad, V., Liu, Z., Mudide, A.,
Loughridge, C., Guo, Z. C., Kheirkhah, T. R., Vukelić, M.,
and Tegmark, M. Opening the ai black box: program syn-
thesis via mechanistic interpretability. arXiv:2402.05110,
2024.

Molesky, S., Lin, Z., Piggott, A. Y., Jin, W., Vucković, J.,
and Rodriguez, A. W. Inverse design in nanophotonics.
Nature Photonics, 12(11):659–670, 2018.

Moreau, P.-A., Toninelli, E., Gregory, T., and Padgett, M. J.
Imaging with quantum states of light. Nature Reviews
Physics, 1(6):367–380, 2019.

Nägele, M. and Marquardt, F. Optimizing zx-diagrams with
deep reinforcement learning. arXiv:2311.18588, 2023.

Nichols, R., Mineh, L., Rubio, J., Matthews, J. C., and
Knott, P. A. Designing quantum experiments with a
genetic algorithm. Quantum Science and Technology, 4
(4):045012, 2019.

Ostaszewski, M., Trenkwalder, L. M., Masarczyk, W.,
Scerri, E., and Dunjko, V. Reinforcement learning for
optimization of variational quantum circuit architectures.
Advances in Neural Information Processing Systems, 34:
18182–18194, 2021.

Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H.,
and Zeilinger, A. Experimental test of quantum nonlo-
cality in three-photon greenberger–horne–zeilinger entan-
glement. Nature, 403(6769):515–519, February 2000.

Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R., and
Treutlein, P. Quantum metrology with nonclassical states
of atomic ensembles. Rev. Mod. Phys., 90, Sep 2018.

9

Meta-Designing Quantum Experiments with Language Models

Polino, E., Valeri, M., Spagnolo, N., and Sciarrino, F. Pho-
tonic quantum metrology. AVS Quantum Science, 2(2),
2020.

Pollice, R., dos Passos Gomes, G., Aldeghi, M., Hickman,
R. J., Krenn, M., Lavigne, C., Lindner-D’Addario, M.,
Nigam, A., Ser, C. T., Yao, Z., and Aspuru-Guzik, A.
Data-driven strategies for accelerated materials design.
Accounts of Chemical Research, 54(4):849–860, 2021.

Prabhu, M., Roques-Carmes, C., Shen, Y., Harris, N., Jing,
L., Carolan, J., Hamerly, R., Baehr-Jones, T., Hochberg,
M., Čeperić, V., et al. Accelerating recurrent ising ma-
chines in photonic integrated circuits. Optica, 7(5):551–
558, 2020.

Rodrı́guez, C., Arlt, S., Möckl, L., and Krenn, M. Xlumina:
An auto-differentiating discovery framework for super-
resolution microscopy. arXiv:2310.08408, 2023.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J. R., Ellenberg,
J. S., Wang, P., Fawzi, O., Kohli, P., and Fawzi, A. Math-
ematical discoveries from program search with large lan-
guage models. Nature, 625(7995):468–475, 2024.

Ruiz-Gonzalez, C., Arlt, S., Petermann, J., Sayyad, S.,
Jaouni, T., Karimi, E., Tischler, N., Gu, X., and Krenn, M.
Digital discovery of 100 diverse quantum experiments
with pytheus. Quantum, 7:1204, 2023.

Sapra, N. V., Yang, K. Y., Vercruysse, D., Leedle, K. J.,
Black, D. S., England, R. J., Su, L., Trivedi, R., Miao,
Y., Solgaard, O., Byer, R. L., and Vučković, J. On-chip
integrated laser-driven particle accelerator. Science, 367
(6473):79–83, 2020.

Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B.,
and Reddy, C. K. Llm-sr: Scientific equation dis-
covery via programming with large language models.
arXiv:2404.18400, 2024.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wallnöfer, J., Melnikov, A. A., Dür, W., and Briegel, H. J.
Machine learning for long-distance quantum communica-
tion. PRX Quantum, 1(1):010301, 2020.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer

normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020.

Zen, R., Olle, J., Colmenarez, L., Puviani, M., Müller, M.,
and Marquardt, F. Quantum circuit discovery for fault-
tolerant logical state preparation with reinforcement learn-
ing. arXiv:2402.17761, 2024.

Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y.,
Wang, Z., Shen, L., Wang, A., Li, Y., Su, T., Yang, Z.,
and Tang, J. Codegeex: A pre-trained model for code
generation with multilingual evaluations on humaneval-x.
arXiv:2303.17568, 2023.

10

Meta-Designing Quantum Experiments with Language Models

A. Target classes
In the following table we show the hand-picked targets. These are classes of quantum states which are of interest in different
areas of quantum physics. For each class, the first three states (four, six and eight particles) are given as strings in the same
way that they are used to prompt the model. The column ”correct states” shows, up to which index N the best model output
matches the target (the first N states are correct). An infinity sign ∞ means, that the meta-solution perfectly matches the
target.

State Name size Quantum State string correct states previously
known

Spin 1/2 4 +1[xxxx] +1[xxyx] +1[xyxx] +1[yxxx] +1[yxyx] ∞ unknown
6 +1[xxxxxx] +1[xxxyxx] +1[xxyxxx] +1[xyxxxx]

+1[xyxyxx] +1[yxxxxx] +1[yxxyxx] +1[yxyxxx]
8 +1[xxxxxxxx] +1[xxxxyxxx] +1[xxxyxxxx] +1[xxyxxxxx]

+1[xxyxyxxx] +1[xyxxxxxx] +1[xyxxyxxx]
+1[xyxyxxxx] +1[yxxxxxxx] +1[yxxxyxxx]
+1[yxxyxxxx] +1[yxyxxxxx] +1[yxyxyxxx]

Majumdar-Ghosh 4 -1[xxyy] +2[xyxy] -1[xyyx] -1[yxxy] +2[yxyx] -1[yyxx] ∞ unknown
6 -1[xxyxyy] +1[xxyyxy] +1[xyxxyy] -1[xyxyyx] -1[xyyxxy] +1[xyyxyx]

-1[yxxyxy] +1[yxxyyx] +1[yxyxxy] -1[yxyyxx] -1[yyxxyx] +1[yyxyxx]
8 -1[xxyxyxyy] +1[xxyxyyxy] +1[xxyyxxyy] -1[xxyyxyxy] +1[xyxxyxyy]

-1[xyxxyyxy] -1[xyxyxxyy] +2[xyxyxyxy] -1[xyxyxyyx] -1[xyxyyxxy]
+1[xyxyyxyx] -1[xyyxxyxy] +1[xyyxxyyx] +1[xyyxyxxy] -1[xyyxyxyx]
-1[yxxyxyxy] +1[yxxyxyyx] +1[yxxyyxxy] -1[yxxyyxyx] +1[yxyxxyxy]
-1[yxyxxyyx] -1[yxyxyxxy] +2[yxyxyxyx] -1[yxyxyyxx] -1[yxyyxxyx]
+1[yxyyxyxx] -1[yyxxyxyx] +1[yyxxyyxx] +1[yyxyxxyx] -1[yyxyxyxx]

Bell pairs 2d 4 +1[xxxx] +1[xxyy] +1[yyxx] +1[yyyy] ∞ known
6 +1[xxxxxx] +1[xxxxyy] +1[xxyyxx] +1[xxyyyy]

+1[yyxxxx] +1[yyxxyy] +1[yyyyxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[xxxxxxyy] +1[xxxxyyxx] +1[xxxxyyyy]

+1[xxyyxxxx] +1[xxyyxxyy] +1[xxyyyyxx] +1[xxyyyyyy]
+1[yyxxxxxx] +1[yyxxxxyy] +1[yyxxyyxx] +1[yyxxyyyy]
+1[yyyyxxxx] +1[yyyyxxyy] +1[yyyyyyxx] +1[yyyyyyyy]

Bell pairs 3d 4 +1[xxxx] +1[yyxx] +1[zzxx] ∞ known
6 +1[xxxxxx] +1[xxyyxx] +1[xxzzxx] +1[yyxxxx] +1[yyyyxx]

+1[yyzzxx] +1[zzxxxx] +1[zzyyxx] +1[zzzzxx]
8 +1[xxxxxxxx] +1[xxxxyyxx] +1[xxxxzzxx] +1[xxyyxxxx]

+1[xxyyyyxx] +1[xxyyzzxx] +1[xxzzxxxx] +1[xxzzyyxx] +1[xxzzzzxx]
+1[yyxxxxxx] +1[yyxxyyxx] +1[yyxxzzxx] +1[yyyyxxxx]
+1[yyyyyyxx] +1[yyyyzzxx] +1[yyzzxxxx] +1[yyzzyyxx] +1[yyzzzzxx]
+1[zzxxxxxx] +1[zzxxyyxx] +1[zzxxzzxx] +1[zzyyxxxx] +1[zzyyyyxx]
+1[zzyyzzxx] +1[zzzzxxxx] +1[zzzzyyxx] +1[zzzzzzxx]

GHZ 4 +1[xxxx] +1[yyyy] ∞ known
6 +1[xxxxxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[yyyyyyyy]

W 4 +1[xxxy] +1[xxyx] +1[xyxx] +1[yxxx] ∞ known
6 +1[xxxxxy] +1[xxxxyx] +1[xxxyxx] +1[xxyxxx]

+1[xyxxxx] +1[yxxxxx]
8 +1[xxxxxxxy] +1[xxxxxxyx] +1[xxxxxyxx] +1[xxxxyxxx]

+1[xxxyxxxx] +1[xxyxxxxx] +1[xyxxxxxx] +1[yxxxxxxx]

11

Meta-Designing Quantum Experiments with Language Models

State Name size Quantum State string correct states previously
known

GHZ x W 4 +1[xxxy] +1[xxyx] +1[yyxy] +1[yyyx] 3 unknown
6 +1[xxxxxy] +1[xxxxyx] +1[xxxyxx] +1[yyyxxy]

+1[yyyxyx] +1[yyyyxx]
8 +1[xxxxxxxy] +1[xxxxxxyx] +1[xxxxxyxx] +1[xxxxyxxx]

+1[yyyyxxxy] +1[yyyyxxyx] +1[yyyyxyxx] +1[yyyyyxxx]
W x W 4 +1[xyxy] +1[xyyx] +1[yxxy] +1[yxyx] 3 unknown

6 +1[xxyxxy] +1[xxyxyx] +1[xxyyxx] +1[xyxxxy] +1[xyxxyx]
+1[xyxyxx] +1[yxxxxy] +1[yxxxyx] +1[yxxyxx]

8 +1[xxxyxxxy] +1[xxxyxxyx] +1[xxxyxyxx] +1[xxxyyxxx]
+1[xxyxxxxy] +1[xxyxxxyx] +1[xxyxxyxx] +1[xxyxyxxx]
+1[xyxxxxxy] +1[xyxxxxyx] +1[xyxxxyxx] +1[xyxxyxxx]
+1[yxxxxxxy] +1[yxxxxxyx] +1[yxxxxyxx] +1[yxxxyxxx]

Dicke 2 4 +1[xzzx] +1[zxzx] +1[zzxx] 3 unknown
6 +1[xxzzxx] +1[xzxzxx] +1[xzzxxx] +1[zxxzxx] +1[zxzxxx] +1[zzxxxx]
8 +1[xxxzzxxx] +1[xxzxzxxx] +1[xxzzxxxx] +1[xzxxzxxx] +1[xzxzxxxx]

+1[xzzxxxxx] +1[zxxxzxxx] +1[zxxzxxxx] +1[zxzxxxxx] +1[zzxxxxxx]
GHZ x GHZ 4 +1[xxxx] +1[xxyy] +1[yyxx] +1[yyyy] 3 unknown

6 +1[xxxxxx] +1[xxxyyy] +1[yyyxxx] +1[yyyyyy]
8 +1[xxxxxxxx] +1[xxxxyyyy] +1[yyyyxxxx] +1[yyyyyyyy]

Dyck 2 4 +1[yyzz] +1[yzyz] 3 unknown
6 +1[yyyzzz] +1[yyzyzz] +1[yyzzyz] +1[yzyyzz] +1[yzyzyz]
8 +1[yyyyzzzz] +1[yyyzyzzz] +1[yyyzzyzz] +1[yyyzzzyz] +1[yyzyyzzz]

+1[yyzyzyzz] +1[yyzyzzyz] +1[yyzzyyzz] +1[yyzzyzyz] +1[yzyyyzzz]
+1[yzyyzyzz] +1[yzyyzzyz] +1[yzyzyyzz] +1[yzyzyzyz]

Dyck 1 4 +1[yzxx] 3 unknown
6 +1[yyzzxx] +1[yzyzxx]
8 +1[yyyzzzxx] +1[yyzyzzxx] +1[yyzzyzxx] +1[yzyyzzxx] +1[yzyzyzxx]

Dicke 1 4 +1[xzxx] +1[zxxx] 2 unknown
6 +1[xxzzxx] +1[xzxzxx] +1[xzzxxx] +1[zxxzxx] +1[zxzxxx] +1[zzxxxx]
8 +1[xxxzzzxx] +1[xxzxzzxx] +1[xxzzxzxx] +1[xxzzzxxx] +1[xzxxzzxx]

+1[xzxzxzxx] +1[xzxzzxxx] +1[xzzxxzxx] +1[xzzxzxxx] +1[xzzzxxxx]
+1[zxxxzzxx] +1[zxxzxzxx] +1[zxxzzxxx] +1[zxzxxzxx] +1[zxzxzxxx]
+1[zxzzxxxx] +1[zzxxxzxx] +1[zzxxzxxx] +1[zzxzxxxx] +1[zzzxxxxx]

Dicke 5 4 +1[zzzx] 2 unknown
6 +1[xzzzxx] +1[zxzzxx] +1[zzxzxx] +1[zzzxxx]
8 +1[xxzzzxxx] +1[xzxzzxxx] +1[xzzxzxxx] +1[xzzzxxxx] +1[zxxzzxxx]

+1[zxzxzxxx] +1[zxzzxxxx] +1[zzxxzxxx] +1[zzxzxxxx] +1[zzzxxxxx]
AKLT 4 -1[xzxx] +1[yyxx] -1[zxxx] 2 unknown

6 -1[xyzxxx] +1[xzyxxx] +1[yxzxxx] -1[yzxxxx] -1[zxyxxx] +1[zyxxxx]
8 -1[xyyzxxxx] +1[xyzyxxxx] +2[xzxzxxxx] -1[xzyyxxxx] +1[yxyzxxxx]

-1[yxzyxxxx] -1[yyxzxxxx] +1[yyyyxxxx] -1[yyzxxxxx] -1[yzxyxxxx]
+1[yzyxxxxx] -1[zxyyxxxx] +2[zxzxxxxx] +1[zyxyxxxx] -1[zyyxxxxx]

Motzkin small 4 +1[xyxx] +1[zzxx] 2 unknown
6 +1[xyzxxx] +1[xzyxxx] +1[zxyxxx] +1[zzzxxx]
8 +1[xxyyxxxx] +1[xyxyxxxx] +1[xyzzxxxx] +1[xzyzxxxx]

+1[xzzyxxxx] +1[zxyzxxxx] +1[zxzyxxxx] +1[zzxyxxxx] +1[zzzzxxxx]

12

Meta-Designing Quantum Experiments with Language Models

State Name size Quantum State string correct states previously
known

Dicke 3 4 +1[xyzx] +1[xzyx] +1[yxzx] +1[yzxx] +1[zxyx] +1[zyxx] 1 unknown
6 +1[xxyzxx] +1[xxzyxx] +1[xyxzxx] +1[xyzxxx] +1[xzxyxx] +1[xzyxxx]

+1[yxxzxx] +1[yxzxxx] +1[yzxxxx] +1[zxxyxx] +1[zxyxxx] +1[zyxxxx]
8 +1[xxxyzxxx] +1[xxxzyxxx] +1[xxyxzxxx] +1[xxyzxxxx]

+1[xxzxyxxx] +1[xxzyxxxx] +1[xyxxzxxx] +1[xyxzxxxx]
+1[xyzxxxxx] +1[xzxxyxxx] +1[xzxyxxxx] +1[xzyxxxxx]
+1[yxxxzxxx] +1[yxxzxxxx] +1[yxzxxxxx] +1[yzxxxxxx]
+1[zxxxyxxx] +1[zxxyxxxx] +1[zxyxxxxx] +1[zyxxxxxx]

Dicke 4 4 +1[xxyy] +1[xyxy] +1[xyyx] +1[yxxy] +1[yxyx] +1[yyxx] 1 unknown
6 +1[xxxxyy] +1[xxxyxy] +1[xxxyyx] +1[xxyxxy] +1[xxyxyx]

+1[xxyyxx] +1[xyxxxy] +1[xyxxyx] +1[xyxyxx] +1[xyyxxx]
+1[yxxxxy] +1[yxxxyx] +1[yxxyxx] +1[yxyxxx] +1[yyxxxx]

8 +1[xxxxxxyy] +1[xxxxxyxy] +1[xxxxxyyx] +1[xxxxyxxy]
+1[xxxxyxyx] +1[xxxxyyxx] +1[xxxyxxxy] +1[xxxyxxyx]
+1[xxxyxyxx] +1[xxxyyxxx] +1[xxyxxxxy] +1[xxyxxxyx]
+1[xxyxxyxx] +1[xxyxyxxx] +1[xxyyxxxx] +1[xyxxxxxy]
+1[xyxxxxyx] +1[xyxxxyxx] +1[xyxxyxxx] +1[xyxyxxxx]
+1[xyyxxxxx] +1[yxxxxxxy] +1[yxxxxxyx] +1[yxxxxyxx]
+1[yxxxyxxx] +1[yxxyxxxx] +1[yxyxxxxx] +1[yyxxxxxx]

GHZ 3d x GHZ 3d 4 +1[xxxx] +1[xxyy] +1[xxzz] +1[yyxx] +1[yyyy]
+1[yyzz] +1[zzxx] +1[zzyy] +1[zzzz]

1 unknown

6 +1[xxxxxx] +1[xxxyyy] +1[xxxzzz] +1[yyyxxx] +1[yyyyyy]
+1[yyyzzz] +1[zzzxxx] +1[zzzyyy] +1[zzzzzz]

8 +1[xxxxxxxx] +1[xxxxyyyy] +1[xxxxzzzz] +1[yyyyxxxx]
+1[yyyyyyyy] +1[yyyyzzzz] +1[zzzzxxxx] +1[zzzzyyyy] +1[zzzzzzzz]

Motzkin 4 +1[xyzx] +1[xzyx] +1[zxyx] +1[zzzx] 1 unknown
6 +1[xxyyxx] +1[xyxyxx] +1[xyzzxx] +1[xzyzxx] +1[xzzyxx]

+1[zxyzxx] +1[zxzyxx] +1[zzxyxx] +1[zzzzxx]
8 +1[xxyyzxxx] +1[xxyzyxxx] +1[xxzyyxxx] +1[xyxyzxxx]

+1[xyxzyxxx] +1[xyzxyxxx] +1[xyzzzxxx] +1[xzxyyxxx]
+1[xzyxyxxx] +1[xzyzzxxx] +1[xzzyzxxx] +1[xzzzyxxx]
+1[zxxyyxxx] +1[zxyxyxxx] +1[zxyzzxxx] +1[zxzyzxxx] +1[zxzzyxxx]
+1[zzxyzxxx] +1[zzxzyxxx] +1[zzzxyxxx] +1[zzzzzxxx]

13

