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Abstract

Protecting against adversarial attacks is a common multiagent problem. Attackers
in the real world are predominantly human actors, and the protection methods often
incorporate opponent models to improve the performance when facing humans.
Previous results show that modeling human behavior can significantly improve the
performance of the algorithms. However, modeling humans correctly is a complex
problem, and the models are often simplified and assume humans make mistakes
according to some distribution or train parameters for the whole population from
which they sample. In this work, we use data gathered by psychologists who
identified personality types that increase the likelihood of performing malicious
acts. However, in the previous work, the tests on a handmade game could not show
strategic differences between the models. We created a novel model that links its
parameters to psychological traits. We optimized over parametrized games and
created games in which the differences are profound. Our work can help with
automatic game generation when we need a game in which some models will
behave differently and to identify situations in which the models do not align.

1 Introduction

The real world poses multiple challenging problems in the multiagent security domain. Designing
game theoretic algorithms for planning security routes in the airport or for patrol boats near the
coastline and other domains are problems already tackled by previous work [2, 16, 7, 8]. Network
security is also a topic where multiagent systems are frequently used [11, 1]. Many previous works
search for an optimal strategy when the opponent acts rationally [19, 12]. However, in the real world,
the main attacker is often human or some automatic system with limited rationality. Therefore, it
is desirable to model the opponent, and many works show that modeling the opponent significantly
improves performance against humans [22, 23, 17].

However, modeling humans is a complex problem, and the models often attempt to model some
mistake distribution, for example, quantal response or quantal level-k [23]. More complex models
add a subjective utility function, which, in conjunction with a quantal response, is used in SUQR and
later SHARP and tries to link the model with some basic psychological traits [17, 14]. Furthermore,
existing models attempt to model the population as a whole, which improves the performance of
the algorithms but has its limits. We follow work proposing to divide humans further and focus on
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personality types with a higher chance of committing criminal activities [6, 9]. However, in the work,
the authors could not demonstrate the strategic differences between the chosen personality types. The
results showed that designing a game that would showcase the differences and enable studying the
situations in which the personality types behave differently is not trivial. We aim to create such a
game automatically.

To determine if the types are strategically different, we first needed to model them since repeating
the human experiment multiple times would be expensive. We took known models and created
a new model where the parameters better correspond to the psychological traits of humans so
that a researcher can interpret the parameters and even set them manually. We showed that our
model performs comparably to the other models on small games. Furthermore, since we base it on
reinforcement learning, it is slower on smaller games, but unlike the other models, it can scale very
well to larger games.

Finally, we proposed a method where we train the models to represent the personality types. This can
be done by having some data on how the types played or by setting the parameters of the models
with the help of psychologists. We had data from the previous experiments and trained the models on
the data. Next, we designed a class of games that can be easily parametrized and optimized over the
parameters of the games with fixed models. This gives us a general method that can automatically
generate games on which we can prove the strategic differences of some personality types and also
show where those differences come from.

2 Background

We model the games as factored observation stochastic games (FOSG) [15]. In FOSG, we have world
states in which all players can play, and a combination of actions transfers the players to a new world
state using the transition function with some probability distribution. After each step, both players
receive a reward. Strategy σi is a collection of tuples for all world states and observation histories,
where each tuple describes how a player i will act in some world state with particular observation
history, possibly with some probability distribution over actions. Expected utility is a sum of all
the rewards given to both players following some fixed strategy. Best response to a strategy σ1 is a
strategy that maximizes expected utility against σ1 [10].

3 Model

In this section, we describe the new model. We based the model on reinforcement learning and
chose the distributional q-learning [21, 4]. Q learning uses parameters that nicely correspond to a
few human traits. We have γ, used mostly for convergence in reinforcement learning, but changing γ
changes the fixed point to which we converge. Since γ affects our weight of the future state, it nicely
reflects how much the agent plans. By changing γ, we can effectively create agents with a lookahead
of only a few steps or even agents who decide solely on the immediate reward.

Next, we have α, which affects how fast the agents learn and often causes problems with convergence.
We can use α in the training phase in the same way as in standard q-learning. However, in the test
phase, we can have an agent who can try to adapt to the opponent’s strategy, which humans tend to
do, and we would still do some training with different values of α. This would correspond to the
adaptability of the human.

Finally, we have parameters that are not part of the original q-learning but correspond to some
psychological aspect. First is a different perception of rewards and losses. Humans generally tend to
give greater value to losses than to rewards, while psychopaths, on the other hand, tend to disregard
the possible losses completely [20, 5]. We introduce ρ, which can have a value between 0 and 1, where
0 completely disregards the positive rewards, and 1 completely disregards the negative rewards. If we
call positive reward R and negative reward (penalty) P , the resulting utility is U = ρR+ (1− ρ)P .
This is simplified, and we disregard the so-called framing problem and manually set the reference
point by defining a reward and a penalty. In future work, somehow learning the reference point would
be beneficial.

Next, we have a rationality parameter λ, the most common parameter in the other models. In our
model, it is used similarly as in quantal response, and after we have the expected utilities for actions,
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we sample one using a soft-max with the λ. This allows us to model the mistake-making while still
retaining the ability to disregard the soft-max by setting very high lambda and only keeping the other
biases.

Algorithm 1: sub-rational distributional q-learning
initialize Z(s, a),∀s ∈ S, ∀a ∈ A(s) as zero distributions (based on the chosen approximation)
for each episode do

S = initial state;
choose next action A based on Z (for example epsilon greedy/soft-max);
for each step in the episode do

take action A and observe reward R, penalty P and next state S′;
Z(S,A) = Z(S,A)+α(ρR+(1−ρ)P+γ(Z(S′, argmaxa PT[Z(S′, a)])−Z(S,A)));

choose next action A based on Z (for example epsilon greedy/soft-max);
S = S′;

end
end

4 Method

This section describes the method used to generate the games. First, we need to train the models. We
can either have set parameters by some experts, or we can have data of games played, and if we know
which types played which games, we can train the model on that type’s part of the data.

The experimental data from previous works contain humans playing against a uniform random
strategy in a flip-it game [3]. The game has five nodes starting under the defender’s control. The game
has five rounds. The attacker can attack one node in each round with an option to pass. The defender
can defend one of the nodes, and if they both select the same node, it does not change ownership;
when they select different nodes, they flip the node they choose to their side. Attacking costs the
attacker some constant Ci, and after each round, the attacker gets a reward based on all the nodes
he controls, summing rewards Ri for each controlled node. The game used had rewards structure
((10, 8), (10, 2), (4, 2), (4, 8), (10, 5)) where each tuple is a node in the format (Ri, Ci). Data comes
from 155 participants who filled the short dark triad (SD3) [13] to evaluate their types. We then
cluster those with high scores for each group and train our models on the clusters.

We explored different metrics and, for our purpose, chose a metric that should create games where
we can play well and differently against the models. The chosen metric is an expected utility against
a best response. We also use normalization of the rewards to focus on the structural properties of the
games.

The game class we optimized is a more complex version of the flip-it game, and we enhanced it by
playing on a graph. We have N nodes, and the attacker starts controlling only the first node. The
game is played through rounds, and both players simultaneously choose an action in each round. The
attacker can only attack neighboring nodes of any node he controls and pay the cost based not on
the target node but on the edge to increase the effect of strategic planning. The defender can defend
any single node, and then the game is the same, and the attacker receives a reward for each node she
controls after each round. The parameters we train over are all the costs of the edges. We also have
a threshold parameter, and the selected edge is not present in the graph when the cost is under the
threshold. Finally, the rewards for the nodes are also parameters.

Finally, we selected the metric using the difference in the expected utility of the best response
against the model. We ran hyperparameter optimization over the game’s parameters, particularly
Population-Based Bandits [18], and took the game with the highest metric. We trained for 2000
episodes and fixed α = 10−3 since we do not use adaptive learning yet.

5 Experiments

In this section, we show the results of both the model and its performance and the results on games
that significantly increase the differences in behavior between the models.
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Figure 1: Test likelihood of the models for dark triad personality types (Psychopaths, Machiavellians,
and Narcissists) compared with the likelihood of uniform strategy.

Original game Optimized game
Utility difference BR utility difference Utility difference BR utility difference

γ 0.102 0.105 0.139 0.473
λ 0.347 0.266 0.429 0.456
ρ 0.323 0.186 0.230 0.870

Table 1: Differences between the minimal and maximal metric for a sweep over each trait in the
original game [6] and our optimized game.

5.1 Model Results

We compare the model to quantal response (QR), level-k (LK), and quantal level-k (QLK). We train
the models using 400 trials of PB2 and then report testing likelihood in Figure 1. We can see that the
new proposed model is competitive, has the highest test likelihood for Machiavellians and Narcissists,
and is beaten only by QLK for Psychopaths.

5.2 Game Generation Results

We created a game with the highest score using the models to test the ability to generate games that
distinguish between models. Then, we tested the differences when we swept over the parameters used
in the model. We tried the γ, λ and risk-seeking. We compared differences in expected utility against
uniform random and expected utility against best response. We tested with γ from 0 to 1, always
raising by 0.1. We used λ from 0.1 to 12.8; each next value was double the previous one. Finally, ρ
was between 0 and 1 with 0.2 increments.

Figure 1 shows that the differences generalize over a bigger spread in the parameters. It is always
significantly better than the original game when we compare the best response utility we optimized.
On the other hand, we lose the spread in the utility against uniform, and a possible future direction
would be multi-objective optimization over both.

6 Conclusion

Modeling opponents when facing humans in adversarial attacks is an important part of the solutions,
and previous works show a significant increase in performance. However, most of the previous work
models humans as a whole when significant psychological research suggests significant differences
between personality types. We created a new model to model different human personality types, and
the model better corresponds to psychological traits. We trained the model on data from humans.
We proposed a method to generate games that show differences between the models and where they
behave differently and can then be used in full-scale human experiments. We want to promote this
direction in research as it can be a promising direction to further increase the performance of the
algorithms in the real world when facing adversarial human agents. In future work, we plan to test
our generated games on a full human experiment and look further into the framing problem for the
risk aversion parameter of the model.
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