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ABSTRACT

Large language models (LLMs) can easily generate biased and discriminative
responses. As LLMs tap into consequential decision-making (e.g., hiring and
healthcare), it is of great importance to develop strategies for mitigating these
biases. This paper focuses on social bias, tackling the association between demo-
graphic information and LLM outputs. We propose a Causality-Guided Debiasing
Framework that utilizes causal understandings of (1) the data-generating process
of the training corpus fed to LLMs; and (2) the internal reasoning process of LLM
inference, to guide the design of prompts for debiasing LLM outputs through selec-
tion mechanisms. Our framework unifies existing debiasing prompting approaches
such as inhibitive instructions and in-context contrastive examples, and sheds light
on new ways of debiasing through bias-free reasoning. Our strong empirical perfor-
mance on real-world datasets demonstrates that our framework provides principled
guidelines on debiasing LLMs even with only black-box access.

1 INTRODUCTION

Large Language Models (LLMs) trained on massive text corpora have been found to exhibit concern-
ing levels of social biases Sheng et al. (2019); Gonen & Goldberg (2019); Schick et al. (2021); Bender
et al. (2021); Dodge et al. (2021). The unchecked biases can potentially perpetuate and amplify
societal inequities, leading to unfair or even unethical outcomes. This issue is particularly significant
as LLMs become more capable and start to serve as foundational components in decision-making
systems across various sectors such as healthcare and education. Many debiasing approaches have
been proposed to tackle this issue, for instance, direct fine-tuning of model parameters (Kaneko
& Bollegala, 2021; Garimella et al., 2021; Lauscher et al., 2021; Guo et al., 2022), modifying the
decoding steps (Schick et al., 2021), and prompting-based techniques (Si et al., 2022; Tamkin et al.,
2023; Oba et al., 2023; Ganguli et al., 2023). For various reasons such as security and business inter-
ests, the most capable LLMs are often closed-sourced (e.g., GPT-4, Gemini, Claude 2.0), where the
general public do not have access to models’ internal structures or parameters. Thus, prompting-based
techniques largely become the only viable option to mitigate bias on closed-sourced LLMs.

In this work, we focus on prompting techniques to steer LLMs towards unbiased responses. To study
this, we notice that obtaining unbiased responses essentially boils down to the process of selecting
proper pieces from the model’s internal representations and knowledge. Consider a simple task of
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resolving the coreference of a gender pronoun in a given sentence. A model may output a biased
answer for the use of a gender shortcut potentially learned from the imbalanced representations in
the training data. For example, in Figure 1(a)(a), the model may associate the pronoun “he” with
“physician” rather than “secretary” due to social biases reflected in the training data about gender
distributions in occupations. We denote the above decision-making process as biased reasoning,
where the model selects internal representations in an improper way.1

(a) (b)

Figure 1: (a). Different reasoning to answer a coreference question. A biased answer may be due to
the use of a gender shortcut, while a bias-free answer is made by considering proper world knowledge
given the circumstances2; (b). prompting-based methods employ one or both strategies: reduce ([-])
biased reasoning, and encourage ([+]) bias-free reasoning.

Most of the existing prompting-based debiasing methods focus on reducing biased reasoning (e.g.,
using explicit prompts to avoid biased associations or prohibiting the utilization of gender information).
While these approaches help to some extent, one overlooked strategy is to encourage bias-free
reasoning by only selecting pieces related to the nature of the question. For example, Figure 1(a)(b)
demonstrates one way of conducting bias-free reasoning by comparing the likelihood of two situations
occurring in real life and drawing on the more plausible situation to infer the coreference resolution.

We reveal the essential role of selection mechanisms in the interplay between LLM’s internal reasoning
process and different designs of the external prompts. In addition to a detailed causal model on
the data generation process of the training corpus to identify ways biases may be smuggled in the
pretraining phase, we also construct a causal model of the LLM’s potential reasoning process, and
connect them by analyzing how the LLM’s output could be modulated by different input prompts
through selection mechanisms. Building upon the above causal understandings, we introduce a
causality-guided framework to debias LLMs, underpinned by two principles: a). reducing biased
reasoning and b). encouraging bias-free reasoning. Current prompting-based debiasing methods can
also be viewed as employing one or both of these strategies, as illustrated in Figure 1(b).

We further conduct systematic empirical studies, where we design prompts employing one or both
of the principles to analyze their effectiveness in practice. We find that prompts combining both
principles for debiasing significantly outperform existing methods, which demonstrates that our
framework can effectively guide how to debias LLMs’ responses even with only black-box accesses.

Our contributions are trifold: (a) We construct detailed causal modelings for both the data-generating
processes of the training corpus and the LLM reasoning process, in which selection mechanisms
play an essential role in identifying how the LLM’s output could be modulated by different prompts;
(b) We formulate a causality-guided debiasing framework, revealing principled strategies in prompt
design; and (c) Using these strategies, we show strong empirical results on debiasing various social
biases with different LLMs, demonstrating the clear benefit of our framework.

2 CAUSALITY-GUIDED DEBIASING FRAMEWORK

Our debiasing framework is guided by causal understandings of involved data-generating processes.
In this section, we present detailed causal models of both the underlying data-generating process w.r.t.
the training corpus, and the LLMs’ reasoning process. The LLM’s reasoning process is essentially

1We model selection mechanisms in more detail in Section 2.
2The use of demographic information does not necessarily indicate the reasoning is biased: sometimes certain

demographic information (e.g., gender) should be considered for situations such as making medical decisions.
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Figure 2: Causal graphs with respect to different data-generating processes. Panel (a) presents the
underlying data-generating process of the training data corpus. Panels (b) – (c) present the reasoning
process of the LLM. Since the conditions specified by the prompt are always conditioned upon when
LLM generates the output, the internal reasoning is modulated by the external prompt. In panel (c) we
include annotations to highlight causal pathways along which the information flow from demographic
representation to LLM potential output is not regulated.

an interplay between its internal representations and conditions specified by the external prompt
designs, in which selection mechanisms play a key role. Appendix C outlines conditions for creating
debiasing prompts, which leads to strategies that are both intuitive and theoretically supported. Also,
a brief introduction to causal modeling and reasoning can be found in Appendix B.

Underlying Data Generating Process of Text in Training Data Corpus The training data corpus
often reflects historical discriminations, and selection mechanisms are commonly involved. For
instance, gender stereotype in occupations arises not due to the existence of a direct causal relation
or a common cause between gender and occupation, but due to an underlying selection mechanism.
Specifically, in the training data, among all possible combinations between gender (e.g., male and
female) and occupation (e.g., CEO and secretary), there is a tendency to associate CEO more often
with male, and secretary with female. This is because the training data is a subset selected from an
imaginary data corpus that is ideally diverse and comprehensive.

Figure 2(a) models the causal relations in the underlying data-generating process of training data
corpus (e.g., text scraped from the internet). Other than demographic information (e.g., race, gender,
age), the causal graph contains additional variables of interest: ‘scenario” represents the practical
situation or context denoting the background (e.g., medical care, hiring); “entity” denotes the
participants involved in the scenario, for instance, a patient may be an entity in the medical care
scenario. The selection variable S explicitly models the association between demographic information
and entity, which is recognized as a major type of stereotype in NLP (Sweeney, 2013; Bolukbasi
et al., 2016; Zhao et al., 2018; Tamkin et al., 2023). There are different types of texts in Figure 2(a).
“Demographic-agnostic fact” denotes the text that does not explicitly contain demographic information.
“Derivational text based on fact” denotes the text derived from fact, e.g., inference according to
definition, fact-check Q&A, and restatement without altering factual contents. “Demographic-aware
text” denotes the text where demographic information appears explicitly.

Reasoning Process of LLMs Above, we characterize how discrimination is instantiated in LLMs’
training data corpus. Since LLM models is expected to capture dependence patterns in the data corpus
after training, we assume that the internal reasoning process of LLMs shares similarities with the
underlying data-generating process of data corpus. Under this mild assumption, we formulate the
reasoning process of how LLMs generate outputs based on input prompts in Figure 2(b). In particular,
we reveal the interplay between internal representations and conditions specified by external inputs,
and more importantly, how LLM outputs are shaped and modulated by different prompt designs
through selection mechanisms.

Figure 2(b) uses dotted contours to distinguish LLMs’ internal representations from the actual external
information in the data corpus, e.g., the contrast between “demographic representation” in Figure 2(b)
and “demographic information” in Figure 2(a). Note that the internal nodes are not directly observable
or accessible. Double-stroke contours indicate selection mechanisms. Directed edges represent direct
causal relations. Dashed edges with hollow arrowheads denote selection mechanisms.

A “prompt” serves as an input to LLMs but not as a direct cause of internal representations, because
the internal knowledge and representations exist beforehand, making them irrelevant to whether a
specific prompt is provided. The prompt also does not act as an indicator for causal interventions.
Because internal nodes are not directly observable or accessible, one cannot set them to certain values
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via hard interventions (Spirtes et al., 1993; Pearl, 2009; Peters et al., 2017; Hernán & Robins, 2020),
or change the functional behavior of causal modules via soft interventions (Eberhardt & Scheines,
2007; Huang et al., 2020; Correa & Bareinboim, 2020). However, the prompt directly changes the
selection variable “prompt properly considered” (PPC) through its designs. Just like the motivating
example in Appendix B.2 where selection can reshape dependence patterns among involved variables,
the prompt can impact the LLM reasoning process by specifying conditions in selection mechanisms.

3 RESULTS AND ANALYSIS

We demonstrate how the two approaches (a) encouraging bias-free reasoning (Strategy I in Appendix
C) and (b) reducing biased reasoning (Strategy II and Strategy III in Appendix C) could effectively
steer pretrained LLMs toward unbiased responses on various aspects of social bias (e.g., gender, race,
and age). Our experiments are done on two datasets: WinoBias (Zhao et al., 2018) and Discrim-Eval
dataset (Tamkin et al., 2023). The WinoBias dataset (gender bias) evaluates how likely models will
assign stereotypical gender pronouns to occupations under coreference resolution tasks (Section 3.1
and Appendix F.1). The Discrim-Eval dataset (demographic bias) encompasses a varied collection of
scenarios, each depicting a hypothetical case where a decision is required (Appendix F.2).

3.1 GENDER BIAS: WINOBIAS

The sentences in WinoBias are designed to be structurally parallel but differ in the gender pronouns. It
contains two sets of sentences: pro sentences with the pro-stereotypical gender pronouns (e.g., nurses
as she, engineers as he), and anti sentences with anti-stereotypical gender pronouns (e.g., nurses as
he, engineers as she). The dataset also has two types of tasks with different levels of difficulties:
coreference decisions in Type I task are challenging and must be made using world knowledge about
given circumstances, whereas Type II task can be resolved using only syntactic information.

For each sentence in WinoBias, we define the original question as “Who does [gender
pronoun] refer to in the sentence ‘[original sentence]’?”, and we measure the performance of four
large language models across the above two types of coreference tasks (Type I and Type II).

Baselines and Evaluation Metrics There are a few existing works employing prompting techniques
to mitigate the bias in LLMs, and we have listed our baselines in Appendix ??. We measure the
performances of LLMs on pro and anti sentences in terms of accuracy, and the gap between the two
indicates the level of gender bias exhibited by the models (a smaller gap is better).

Our Method We propose Reduce + Fact as one way of encouraging bias-free reasoning
collectively with reducing biased reasoning. As shown in Figure 1(b), we first create two gender-
agnostic sentences by replacing the gender pronoun with the two occupations that appeared in the
original sentence. Then we ask the model a factual question: which sentence is more likely to
happen in real life, as this question does not contain any gender-related information. We then include
its answer when asking the original question. This allows us to distill LLM’s non-gender-
related world knowledge and nudge it to explicitly reason with this knowledge during coreference
resolution (Strategy I). One caveat of using LLM’s world knowledge is that the performance of
Reduce + Fact will increase as the capabilities of the LLM grow, since better world knowledge
will further help its performance on both types of sentences. On top of encouraging bias-free
reasoning (approach Fact), we also tell the model that both occupations are equally likely to be male
or female to counteract its existing selection bias (Strategy II for Reduc[ing] biased reasoning).

Main Results (Type I Task) In Table 1, the Default prompting shows significant biases, with
large gaps in accuracy between pro sentences and anti sentences for all models. The method
Zero-shot COT, marginally reduces the bias, as seen in the smaller gaps, but its performance is
lower on both pro and anti scenarios for GPT-3 and GPT-3.5 models when compared with Default,
and it only marginally improved the general performance when applied with more capable models
(Claude 2 and GPT-4). For ICL with constrastive examples, although the gap became
larger on less capable models (GPT-3 and GPT-3.5), with more capable LLMs (Claude 2 and GPT-4),
it can further reduce bias, especially in GPT-4 with a gap of 9.23%.
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Table 1: Performance comparison of various debiasing methods on WinoBias. We show that combining
encouraging bias-free reasoning and reducing biased reasoning together (Reduce + Fact) greatly decreases
the gender bias on the Type I coreference task, which requires world knowledge. Pro stands for coreference with
pro-stereotypical pronouns, and Anti stands for anti-stereotypical pronouns. A lower gap indicates less bias.

Accuracy (%) GPT 3 GPT 3.5 Claude 2.0 GPT 4
Anti Pro Gap↓ Anti Pro Gap↓ Anti Pro Gap↓ Anti Pro Gap↓

Default 43.01 79.24 36.23 62.96 94.03 31.07 67.57 92.13 24.56 82.50 97.96 15.47
COT (zero shot) 41.79 75.85 34.06 62.14 90.64 28.49 70.56 91.59 21.03 84.40 95.66 11.26

ICL 46.81 94.57 47.76 45.18 92.81 47.63 73.68 92.27 18.59 88.87 98.10 9.23
Reduce + Fact 73.27 73.95 0.68 72.73 84.67 11.94 74.08 75.17 1.09 94.57 96.74 2.17

Remarkably, Reduce + Fact, which encourages bias-free reasoning with the reduction of biased
reasoning, substantially decreases the bias across all LLMs. This is evidenced by the minimal gaps,
with GPT-4 exhibiting a mere 2.17% gap and 94.57% accuracy on anti sentences, signifying a
significant debiasing effect when compared to other types of prompt designs.

These experimental results suggest prompt designs that encourage bias-free reasoning and (or) reduce
biased reasoning are effective at mitigating gender biases in large language models by directing them
to rely more on non-gender-related world knowledge and less on gender shortcuts, thus promoting
fairer and less biased responses. Also, the performance gap between pro sentences and anti sentences
decreases as the LLMs become more capable, which may indicate that LLMs are less prone to assign
occupations with stereotypical gender pronouns as their general (reasoning) capabilities grow.

4 CONCLUSION

This paper presents a causality-guided and prompting-based LLM debiasing framework. In particular,
we highlight the key role of selection mechanisms in modeling data corpus bias and in formulating how
prompt designs can influence LLM outputs by specifying different selection conditions on its internal
representations. Guided by causal understandings of such interplay, we identify principled debiasing
prompting strategies. Our strong empirical results demonstrate the benefits of our framework, offering
clear intuitions and theoretical foundations for effective debiasing approaches. Future work will
naturally extend to acquiring bias-free knowledge and representations for LLMs.
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A RELATED WORKS

In this section, we provide detailed discussions on related works. We consider the combinations of
very related topics including causality, algorithmic fairness, and LLM reasoning. In Section A.1, we
consider causal notions of fairness that do not specifically pertain to the LLM context. In Section A.2,
we consider existing efforts to draw connections between causality and LLM reasoning. In Section
A.3, we consider previous works on LLM debiasing. In Section A.4, we consider previous works that
involve all three topics.

A.1 CAUSALITY AND FAIRNESS

It has been recognized in the algorithmic fairness literature that causality provides a unique tool
to facilitate a better understanding of the data-generating process, and therefore, more effective
bias quantifications and mitigations (Kilbertus et al., 2017; Kusner et al., 2017; Nabi & Shpitser,
2018; Nabi et al., 2019; Chiappa, 2019; Nabi et al., 2022; von Kügelgen et al., 2022; Tang et al.,
2023a). Previous causal fairness literature has considered notions based on estimating or bounding
various kinds of causal effects (Kilbertus et al., 2017; Kusner et al., 2017; Nabi & Shpitser, 2018;
Nabi et al., 2019; Chiappa, 2019), and also the causal modeling of the dynamics as well as the
long-term implications of bias mitigation strategies (Creager et al., 2020; Zhang et al., 2020; Tang
et al., 2023a;b).

Because of the relatively abstract definition of the variable or node in the language context, previous
approaches for characterizing and enforcing causal fairness are not directly applicable in LLM debi-
asing tasks. That being said, as we have demonstrated in our causality-guided debiasing framework,
causal understandings of the involved data-generating processes help identify effective debiasing
strategies that are both intuitively clear and theoretically grounded.

A.2 CAUSALITY AND LLMS

The intersection between causality and LLMs has drawn increasing attention. Zhang et al. (2023)
considers three types of causal questions and aims to evaluate LLMs’ abilities to identify causal
relations, discover new knowledge from data, and quantitatively estimate the consequences of actions.
Kıcıman et al. (2023) investigate LLMs’ abilities to perform causal reasoning and solve covariance-
/logic- based causal questions. They also study the failure modes of LLMs and provide techniques
to interpret the model robustness. Jin et al. (2023) propose a benchmark data set for evaluating
LLMs’ causal inference capabilities via the task of determining causal relationships from a set of
correlational statements.

This line of research focuses on complex causal reasoning abilities in general settings, without specific
attention to potential fairness violations. In comparison, our causality-guided debiasing framework
does not involve assumptions/requirements on LLMs’ general-purpose causal reasoning capabilities.
We adopt a rather mild assumption that a well-trained and well-aligned LLM captures the dependence
pattern in the training data and that such a pattern is internalized and utilized during reasoning.

A.3 DEBIASING LANGUAGE MODELS

There is a large amount of work discussing bias and fairness in the context of language models
(LMs) Bordia & Bowman (2019); ?); Abid et al. (2021); Wang et al. (2023a); Liu et al. (2023); Ray
(2023); Rozado (2023), and our investigation lies on debiasing techniques with causal understandings
of the sources of biases. For debiasing approaches in the context of LMs, there are proposals involving
direct fine-tuning of model parameters (Kaneko & Bollegala, 2021; Garimella et al., 2021; Lauscher
et al., 2021; Guo et al., 2022), modifying the decoding steps (Schick et al., 2021), incorporating
Reinforcement Learning with Human Feedback (RLHF) to better align the models with human values
(Ouyang et al., 2022; Bai et al., 2022; Yao et al., 2023), and prompting-based techniques (Si et al.,
2022; Tamkin et al., 2023; Oba et al., 2023; Ganguli et al., 2023). We focus on prompting-based
techniques and identify principles for prompt designs to steer LLMs toward unbiased responses by
a). reducing biased reasoning and b). encouraging bias-free reasoning. We provide demonstrations
of how we can employ the above two principles. Works on LLMs reasoning such as Wei et al.
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(2022); Zheng et al. (2023) can also be incorporated into with our framework to encourage bias-free
reasoning.

A.4 DEBIASING LLMS FROM CAUSAL PERSPECTIVES

Most closely related literature considers LLM debiasing strategies from causal perspectives. Vig et al.
(2020) utilize causal mediation analysis and consider neuron-level intervention to investigate the
instantiation of gender bias in Transformer-based language models (Vaswani et al., 2017). Zhou et al.
(2023) propose Causal-Debias to mitigate the unwanted stereotypical association by fine-tuning
pretrained language models. The causal model they consider involves four variables: label-relevant
factor, bias-relevant factor, raw sentence, and ground-truth label. Wang et al. (2023b) pay special
attention to entity bias and propose a specific structural causal model (SCM) for easier parameter
estimations, such that the intervention-based mitigation strategy can be carried out. Their causal
model involves four variables: entity, raw text, LLM input, and LLM output.

In comparison, we provide detailed causal modelings at a sub-sentence level, considering both the
training corpus generating process and the LLM reasoning process. Furthermore, our framework
explicitly models the interplay between internal representations and external inputs through selection
mechanisms, providing a clearer picture regarding possible strategies to debias LLM outputs more
effectively. Our approach does not require white-box access or the ability to perform interventions,
making our prompting-based framework applicable to a variety of practical scenarios.

B PRELIMINARIES

In this section, we provide a brief introduction to causal modeling and causal reasoning (Section
B.1). We also provide a motivating example to illustrate how the selection mechanism can reshape
dependence patterns within the different data (Section B.2).3

B.1 A BRIEF INTRODUCTION TO CAUSALITY

For two random variables X and Y , X is a cause of Y if there is a change in the distribution of Y
when we apply an intervention on X while holding all other variables fixed (Spirtes et al., 1993;
Pearl, 2009). We can represent causal relations among variables with a directed acyclic graph (DAG),
where nodes represent variables, and edges represent direct causal relations between variables. We
denote the direct causal relation between the ordered pair (X,Y ) by a directed edge X → Y .

Local causal modules in a DAG, which characterize the causal relations between the corresponding
variable and its direct causes, do not interfere with each other because of causal modularity. This
property is also known as the exogeneity (Engle et al., 1983), or the independence of causal mechanism
(Peters et al., 2017), resulting directly from the causal Markov condition for the DAG (Spirtes et al.,
1993; Pearl, 2009).4 In the context of language processing, the definition of a variable representing
text or tokens is relatively abstract compared to the statistical notion of a random variable in tabular
data. Within the scope of this work, we use the terms “variable” and “node” interchangeably when
the context permits clear understandings.

B.2 A MOTIVATING EXAMPLE OF SELECTION MECHANISMS

Ideally, we would like samples to be drawn uniformly from the underlying population of interest.
However, in practice, it is very common that the probability of including certain data points in the
corpus depends on the characteristics of the data points themselves.

Previous literature has investigated selection mechanisms from different perspectives, for instance,
the influence of selection bias on statistical inference in economic and sociological studies (Heckman,
1979; 1990; Winship & Mare, 1992), causal discovery when there are selection variables and latent

3We discuss related works in detail in Appendix A.
4There are additional classes of graphs considered in causality literature, for example, directed cyclic graphs

(DCGs) (Spirtes, 1995), ancestral graphs (Richardson & Spirtes, 2002), and so on. In this paper, we consider
causal processes that can be modeled by a DAG. Other graph classes are beyond the scope of our work.
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common causes (Spirtes et al., 1995; Zhang, 2008), the identification and estimation of functional
causal models when selection exists (Zhang et al., 2016), the identifiability of causal effect in the
presence of selection bias from the graphical condition perspective (Bareinboim & Pearl, 2012;
Bareinboim & Tian, 2015; Correa et al., 2019) and from the potential outcome perspective (Hernán &
Robins, 2020), and the identification of the existence of selection bias from observational data under
certain functional assumptions (Kaltenpoth & Vreeken, 2023).
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Figure 3: An illustrative exam-
ple of selection mechanisms.

Let us consider an example in the context of medical care. As illus-
trated in Figure 3, observed variables (X1, X2) denote diseases, and
(Y1, Y2) denote corresponding symptoms. Apart from them, there
exist potential binary selection variables Si’s (i ∈ {1, 2, . . . , 5}),
where Si = 1 denotes being selected. X1 (X2) is the direct and only
cause of Y1 (Y2), and the two diseases are unrelated in the general
population, i.e., when none of the Si’s exists. We use solid edges
to represent causal relations among observed variables and dashed
edges for those pertaining to selection mechanisms.

For instance, S2 is an example of outcome-dependent selection (Zhang et al., 2016), which can be
selecting individuals with symptom Y1 from the general population. The conditional probability
P (Y1 | X1, S2 = 1) in the selected data typically differs from its counterpart P (Y1 | X1) in general
population (Zhang et al., 2016). As another example, S4 can denote the selection mechanism of
only considering the hospital in-patient data. This signifies the setting of the well-known Berkson’s
Paradox (Berkson, 1946), where two unrelated diseases (X1, X2) appear to be correlated in the
hospital data, simply because the data only contains selected patients who have at least one symptoms
in (Y1, Y2).

Figure 3 shows that the selection can be based solely on the cause (e.g., S1), solely on the effect (e.g.,
S2), or on both (e.g., S3). Meanwhile, the selection can be based on variables that are not causally
related in the general population (e.g., S4 and S5). Selection mechanisms can reshape dependence
patterns among involved variables, and as a consequence, potentially change downstream outputs
as well. We will see in Section 2 that such property of selection also applies to natural language
processing (NLP) contexts.

C DEBIASING GUIDED BY CAUSAL UNDERSTANDINGS

C.1 REMARK ON THE MODELED PROCESSES

Figure 2(a) and Figure 2(b) each have their own generating process of interest and distinct emphases.
Although not pertaining to LLM reasoning itself, the underlying generating process modeled in
Figure 2(a) provides hints on local causal modules of interest that prompt designs can specifically
attend to for debiasing purposes. When we consider these hints with reference to the LLM reasoning
process modeled in Figure 2(b), we can identify debiasing strategies that are both intuitive and
theoretically grounded, as we will see in more detail in Section C. The two detailed causal models
complement each other, both of which are essential for understanding the source of bias, and
furthermore, effectively debiasing LLMs.

C.2 PROMPT-BASED LLM DEBIASING FRAMEWORKS

We present our prompt-based LLM debiasing framework guided by causal understandings of the
related data generating processes. Our core idea is to formulate conditions that should be specified
in the prompt design, such that through the influence of selection mechanisms on LLM reasoning
process, one can effectively debias LLM outputs.

Figure 2(c) presents an annotated version of the LLM reasoning process (Section 2). Based on the
understanding of the underlying generating process of training data corpus, and the mild assumption
that the trained LLM captures the dependence patterns in training data, we highlight certain edges in
light coral (accompanied by annotations marked with circled red numerals) in Figure 2(c) to denote
unregulated information flow from demographic representations to LLM outputs in the internal
reasoning process. We use circled blue Roman numerals to denote selection mechanisms that can
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be specified by the external input prompt (Section 2), and circled red Roman numerals to represent
those corresponding to historical discriminations (Section 2).

According to LLM reasoning process presented in Figure 2(c), we consider the information flows
from the demographic representation (upstream node) to the LLM potential output (downstream
node). We present additional conditions and constraints the prompt designs should specify for
debiasing purposes. To clearly present the intuitions and theoretical groundings of our causality-
guided framework, we identify three prompting strategies for debiasing LLMs, each of which serves
as a solid starting point.
Strategy I (Nudge Towards Demographic-Agnostic Fact). The intuition behind is to nudge LLMs
towards utilizing demographic-agnostic fact when generating the output.

Condition I The internal representations for demographic-agnostic fact and demographic information
should be conditionally independent in the presence of PPC and existing selection S:

demographic
representation ⊥⊥ demographic-agnostic

fact representation | S = 1,PPC = 1. (1)

Strategy I introduces Condition I to specify the selection mechanism over internal representations of
demographic information and demographic-agnostic fact, denoted by edges i and v in Figure 2(c).
Strategy II (Counteract Existing Selection Bias). The intuition behind this strategy is to directly
counteract the effect of existing historical discriminations.

Condition II.1 The internal representations for demographic information and entity should be condi-
tionally independent in the presence of PPC and existing selection S:

demographic
representation ⊥⊥ entity

representation | S = 1,PPC = 1. (2)

Condition II.2 No new association between internal representations of demographic information and
demographic-agnostic fact is introduced:

demographic
representation ⊥⊥ demographic-agnostic

fact representation | entity
repr. ,

scenario
repr. ,

S = 1 ,
PPC = 1. (3)

In Strategy II, Condition II.1 and Condition II.2 serve different purposes. Condition II.1 aims to
counteract existing bias instantiated by selection S (edges vi and vii ) by constraining marginal
dependence between representations for demographic information and entity (edges i and ii ).
Condition II.2 acts as a safeguard, making sure no new bias is introduced in the causal downstream
of the entity so that the above counteraction effectively proceeds to the final output.
Strategy III (Nudge Away from Demographic-Aware Text). The intuition behind this strategy is to
nudge LLMs away from utilizing demographic-aware text to generate outputs.

Condition III The internal representations for demographic-aware text and demographic information
should be conditionally independent in the presence of PPC and existing selection S:

demographic
representation ⊥⊥ demographic-aware

text representation | S = 1,PPC = 1. (4)

Strategy III utilizes Condition III to specify the selection mechanism over internal representations of
demographic information and demographic-aware text (edges i and iv ) to regulate the information
flow along the edge 1 .

Remarks on Three Strategies
The three strategies offer certain effectiveness individually but are not perfect on their own.5 While
Strategy I nudges LLMs towards utilizing demographic-agnostic facts, it does not explicitly prevent
LLMs from using demographic-aware text representations to generate the output, and the demographic
information can potentially be associated to the output through an unregulated path containing edges
1 and 5 . Similarly, while Strategy II aims to regulate information flows along edges { 2 , 3 , 4 ,
vi , vii }, there is no explicit constraint involving edges 1 and 5 , which leaves space for bias to
sneak in during the reasoning process.

Compared to Strategy I that pushes LLMs to focus on demographic-agnostic facts, Strategy III
prevents LLMs from referring to demographic-aware text during reasoning. While edge 1 is
explicitly regulated by the selection mechanism specified by Condition III, the information flow

5We provide additional illustrations in Appendix D.
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Figure 4: Additional illustrations on debiasing strategies.

along edge 5 can still result in the association between demographic information and the output.
This is because Strategy III does not involve conditions or constraints over the dependence patterns
among variables including demographic information and demographic-agnostic fact. As we can see
from the conditions specified in Strategy II, no explicit appearance of demographic information in
a demographic-agnostic fact does not guarantee the non-existence of dependence between the two.
We would like to note that debiasing is better realized when the strategies are combined as they can
address social bias in LLMs more comprehensively.

D FURTHER ILLUSTRATIONS AND DISCUSSIONS OF OUR FRAMEWORK

In this section, we provide further illustrations on the debiasing strategies identified in Section C.

In Figure 4, we use light coral (blue) to highlight unregulated (regulated) information flows from
demographic representations to LLM outputs in the internal reasoning process. We use mix-colored
highlight to denote partially regulated information flow, e.g., the edge from demographic-aware
text representation to LLM potential output in Figure 4(d). Comparing Figure 4(e) (all strategies
combined) with Figures 4(b) – 4(d) (strategies applied individually), we can see that collectively, the
strategies address the social bias in language more comprehensively.

Here by “regulated”, we are referring to the constraint over the association between demographic
information representation and the potential output. We would like to note that our causal models can
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naturally handle situations where certain kinds of neutral dependence patterns involving demographic
information are not necessarily considered as problematic (Tang et al., 2024). We present relevant
experimental results in Section F.1. We would also like to note that our causality-guided framework
is not limited to situations where demographic information is explicitly involved. One can adapt our
framework to the specific practical setting by incorporating relevant nodes into causal graphs, thereby
identifying the most suitable debiasing strategies therein.

E EXPERIMENTAL DETAILS

Pretrained LLMs For the GPT models used in our experiments, we consider snapshots from
June 13th, 2023 where the knowledge cut-off time is Sep 2021. Since the legacy GPT-3 model
(a.k.a., text-davinci-003) is no longer supported when we conduct the experiments, we use the model
“gpt-3.5-turbo-instruct” instead as it has similar capabilities as GPT-3 era models. The Mistral-7B
model we use in our experiments is the improved instruction fine-tuned version (a.k.a., “Mistral-
7B-Instruct-v0.2”). We are unable to use Claude 2 for our experiments on the Discrim-Eval dataset
because we cannot access the probabilities of generated tokens. All LLMs responses are obtained
with a temperature of 0.

Iterative Prompting The responses of LLMs may not follow a given format even with specific
instructions, which makes answer extraction challenging. Moreover, we observe that adding instruc-
tions to restrict the format of responses may lower the quality of the generated outputs. Therefore,
we apply 2-round iterative prompting in our experiments where we let the models generate freely and
then ask them to summarize their answers in one or two words. This way allows us to obtain high
answer qualities with an easy extraction process at the same time.

E.1 GENDER BIAS: WINOBIAS

For experiments on the WinoBias dataset, we combined both the training and test data for evaluation
as there is no need to separate them when using prompting-based debiasing techniques. We also
noticed that the original dataset contains 400 grammar mistakes across 3000+ sentences in total. We
corrected these grammar mistakes as they may hinder the co-reference resolution tasks. We have
provided the cleaned version in the supplementary materials.

Since there are 571 examples where two or more models make the same mistakes on the factual
questions. After looking into these mistakes, we find that some of the examples are indeed
ambiguous in nature (e.g., ”The construction worker stared at the teacher because [who] was angry”).
Therefore, we collected human evaluations to understand the inherent ambiguity in the WinoBias
dataset. For each of the 571 examples, we collect 5 human responses on the factual questions
(i.e., which sentence is more likely to happen in real life), and we ask the human annotator to choose
from {Sentence A, Sentence B, and Equally likely}. Based on the human responses, we identified
60 examples (55 from the Type I task and 5 from the Type II task) where three or more annotators
disagree with the ground truth answers or think both sentences in the factual questions are
equally likely to happen in real life. We removed these 60 examples during our evaluation, and we
will include the human evaluation results in our codebase.

E.2 DEMOGRAPHIC BIAS: DISCRIM-EVAL

The Discrim-Eval dataset contains 70 diverse decision scenarios and 9×3×5×70 = 9450 individual
decision questions which includes all combinations of [AGE] ∈ [20, 30, 40, 50, 60, 70, 80, 90, 100],
[GENDER] ∈ [male, female, non-binary] and [RACE] ∈ [white, Black, Asian, Hispanic, Native
American]. To measure the corresponding bias in each demographic category, we reconstruct the
dataset by extracting the base scenario which does not contain any demographic information
(e.g., we replace all pronouns with the anaphoric reference to avoid leaking the gender information).
We then ask the model to decide on each of the 70 base scenarios. There are (1/11/1/2)
scenarios where (Mistral 7B/GPT-3/GPT-3.5/GPT-4) refuses to answer or does not output a Yes
answer, and we removed these scenarios correspondingly when evaluating these LLMs.
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Table 2: Error Analysis on WinoBias Type II coreference task. We divide the models’ responses
into 4 categories to better understand their success and failure cases. TT denotes the (%) of examples
where LLM answers both the factual question and the original question correctly, FF denotes the (%)
of examples where both questions are answered incorrectly, indicating the coreference errors caused
by the model’s world knowledge. TF denotes the coreference errors caused by gender bias as only
factual questions are correctly answered, and FT indicates coreference success that may be due to
gender shortcut since the factual questions get wrong but original questions are correctly answered.

Accuracy (%) TT TF FT FF
Anti Pro Anti Pro Anti Pro Anti Pro

GPT-3.5
Reduce + Fact 88.69 89.71 1.14 0.13 3.43 4.70 6.73 5.46

Fact Only 87.55 89.83 2.29 0.00 3.05 5.97 7.12 4.19
Reduce Only 80.30 85.77 5.72 2.03 8.77 9.15 0.89 0.51

Default 83.61 89.71 5.59 0.13 8.64 10.04 1.40 0.13
GPT-4

Reduce + Fact 99.62 99.62 0.13 0.00 0.00 0.13 0.25 0.25
Fact Only 99.36 99.87 0.25 0.00 0.13 0.00 0.25 0.13

Reduce Only 98.98 99.49 0.76 0.13 0.00 0.38 0.25 0.00
Default 98.73 99.75 0.89 0.13 0.25 0.00 0.13 0.13

Table 3: Error analysis of Reduce + Fact on Type I and Type II questions in WinoBias.

Accuracy (%) TT TF FT FF
Anti Pro Anti Pro Anti Pro Anti Pro

GPT-3
Type I 72.73 73.27 1.49 0.95 0.54 0.68 25.24 25.10
Type II 82.47 82.34 1.27 1.40 0.76 1.91 15.50 14.36

GPT-3.5
Type I 70.15 78.70 10.58 2.04 2.58 5.97 16.55 13.16
Type II 88.69 89.71 1.14 0.13 3.43 4.70 6.73 5.46

Claude
Type I 73.00 73.00 2.99 2.99 1.09 2.17 22.93 21.85
Type II 79.80 81.19 6.61 5.21 2.54 4.07 11.05 9.53

GPT-4
Type I 94.44 96.07 1.76 0.27 0.14 0.68 3.66 2.99
Type II 99.62 99.62 0.13 0.00 0.00 0.13 0.25 0.25

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 GENDER BIAS: WINOBIAS

We include additional ablation studies on the WinoBias dataset, which include a detailed error analysis
on WinoBias Type II coreference task (Table 2), a detailed error analysis of Reduce + Fact with 4
LLMs on Type I and Type II tasks (Table 3), and an ablation study on adjusting the levels of biased
reasoning (Table 4) in the prompt design.

In Table 3, we show the detailed results on both Type I and Type II coreference tasks across 4 LLMs.
As we can see, our method has bigger improvements on models with better world knowledge as.
models with worse world knowledge could limit our method to reaching its full capacity.

Ablation study on adjusting the levels of counteracting existing selection bias In Table 4, we
investigated how different levels of enforcing Strategy II (counteract existing selection bias) impacts
the model debiasing performance by adjusting the Fact part in the input prompt. For example, a coun-
teract level of 100% indicates the following prompt: Assume that the physician can be
male 0% of the time and female 100% of the time, and assume that
the secretary can be male 0% of the time and female 100% of the
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Table 4: Adjusting the levels of counteracting existing selection bias on GPT-3.5 with Reduce +
Fact. We investigated how the level of counteracting stereotype impacts the model performance by
adjusting the Fact part in the input prompt. For example, a counteract level of 100% indicates the
following prompt: Assume that the physician can be male 0% of the time
and female 100% of the time, and assume that the secretary can be
male 0% of the time and female 100% of the time.

Counteract level (%) TT TF FT FF
Anti Pro Anti Pro Anti Pro Anti Pro

100 70.15 77.20 10.58 3.66 3.80 4.34 15.47 14.79
90 69.06 77.88 11.53 2.99 1.76 4.61 17.64 14.52
75 68.79 78.02 11.94 2.85 2.17 5.02 17.10 14.11
50 65.94 78.02 15.20 2.99 2.44 5.02 16.42 13.98
25 65.67 80.05 15.20 0.95 1.22 5.43 17.91 13.57
10 64.45 79.78 16.01 1.09 0.81 5.43 18.72 13.70
0 61.06 78.97 19.95 1.90 1.09 8.28 17.91 10.85

time; while a level of 50% indicates the following prompt: Assume that the physician
can be male 50% of the time and female 50% of the time, and assume
that the secretary can be male 50% of the time and female 50% of
the time. We observe that as the level of anti-stereotype goes down, the errors caused by the use
of the gender shortcut increase (TF increases). In addition, by soft adjustment of reducing biased
reasoning, we provide not only flexible tuning strategies for the best model performance but also a
chance to dive into the underlying reasons for the error.

F.2 DEMOGRAPHIC BIAS: DISCRIM-EVAL

In Figure 5, Figure 6, Figure 7, Figure 8, we show in details the performance comparison on Discrim-
Eval across three demographic categories across four LLMs (Mistral 7B, GPT 3, GPT 3.5, and GPT
4). The height of the bar denotes the degree of discrimination by comparing the least privileged group
with the most privileged group in a given demographic category (the higher the bar, the deeper the
discrimination). Different methods (prompt designs) are colored differently (lighter colors denote the
ones that amplify bias-free reasoning). The baseline setting is colored black.

Figure 5: Performance comparison on Discrim-Eval across three demographic categories in
details on Mistral (7B). The height of the bar denotes the degree of discrimination by comparing the
least privileged group with the most privileged group in a given demographic category (the higher
the bar, the deeper the discrimination). Different methods (prompt designs) are colored differently
(lighter colors denote the ones that amplify bias-free reasoning). Amplifying bias-free reasoning
universally reduces the relative gap when added with methods that reduce biased reasoning.
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Figure 6: Performance comparison on Discrim-Eval across three demographic categories in
details on GPT-3. The height of the bar denotes the degree of discrimination by comparing the least
privileged group with the most privileged group in a given demographic category (the higher the bar,
the deeper the discrimination). Different methods (prompt designs) are colored differently (lighter
colors denote the ones that amplify bias-free reasoning). Amplifying bias-free reasoning universally
reduces the relative gap when added with methods that reduce biased reasoning.

Figure 7: Performance comparison on Discrim-Eval across three demographic categories in
details on GPT-3.5. The height of the bar denotes the degree of discrimination by comparing the
least privileged group with the most privileged group in a given demographic category (the higher
the bar, the deeper the discrimination). Different methods (prompt designs) are colored differently
(lighter colors denote the ones that amplify bias-free reasoning). Amplifying bias-free reasoning
universally reduces the relative gap when added with methods that reduce biased reasoning.

Figure 8: Performance comparison on Discrim-Eval across three demographic categories in
details on GPT-4. The height of the bar denotes the degree of discrimination by comparing the least
privileged group with the most privileged group in a given demographic category (the higher the bar,
the deeper the discrimination). Different methods (prompt designs) are colored differently (lighter
colors denote the ones that amplify bias-free reasoning). Amplifying bias-free reasoning universally
reduces the relative gap when added with methods that reduce biased reasoning.
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