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Abstract—In recent years, machine learning has made sig-
nificant progress in clinical outcome prediction, demonstrating
increasingly accurate results. However, the substantial resources
required for hospitals to train these models, such as data
collection, labeling, and computational power, limit the feasibility
for smaller hospitals to develop their own models. An alternative
approach involves transferring a machine learning model trained
by a large hospital to smaller hospitals, allowing them to fine-tune
the model on their specific patient data.

However, these models are often trained and validated on data
from a single hospital, raising concerns about their generaliz-
ability to new data. Our research shows that there are notable
differences in measurement distributions and frequencies across
various regions in the United States. To address this, we propose
a benchmark that tests a machine learning model’s ability to
transfer from a source domain to different regions across the
country. This benchmark assesses a model’s capacity to learn
meaningful information about each new domain while retaining
key features from the original domain.

Using this benchmark, we frame the transfer of a machine
learning model from one region to another as a domain in-
cremental learning problem. While the task of patient outcome
prediction remains the same, the input data distribution varies,
necessitating a model that can effectively manage these shifts. We
evaluate two popular domain incremental learning methods: data
replay, which stores examples from previous data sources for fine-
tuning on the current source, and Elastic Weight Consolidation
(EWC), a model parameter regularization method that maintains
features important for both data sources.

Finally, we propose a new domain incremental learning method
that combines EWC and data replay with the ability to adjust
the number of updates utilizing data from previous sources. Our
results show that this proposed method outperforms EWC and
data replay alone. We also highlight specific shortcomings related
to model transferability in the clinical setting, underscoring the
need for further research and development in this area.

Index Terms—EHR Time Series, Transferability, Continual
Learning, Domain Incremental Learning

CLINICAL risk prediction models, trained with machine
learning techniques, continue in growth and ubiquity

[1], [2]. Increasing access to data, from clinical trials [3] to
remote health data [4], has led to an explosion of models
across various data sources, clinical settings, and medical
outcomes. A key limitation, which has partially contributed to
the breadth of models designed, is the lack of transportability
in these models. Because of privacy and limitations around
sharing of medical data, clinical risk prediction models are
often trained and validated internally, with minimal to no
external validation. As a result, these models, when externally

validated, often fall significantly short of reported performance
[5]. Techniques are needed, therefore, to facilitate the transport
of functioning models, at reported performance levels, across
clinical institutions.

One approach to address this issue is to evaluate how well
the models transfer. For example, in [6], a model pretrained on
data from a large hospital was evaluated on data from smaller
hospitals, testing the robustness of the pretraining on new
populations. However, we show that significant differences
exist between the data collected from hospitals of different
regions. Without adjusting these models to their new data
sources, these difference can degrade the performance of a
transferred model.

Given these differences, clinics may need to personalize
models to their specific demographics and patient outcomes.
Instead of starting from scratch, clinics can use models pre-
trained on similar tasks from different sources as a starting
point. This approach is known as the domain incremental
learning (DIL) setting [7], where different data sources are
used to train models on the same tasks. The goal of this
training is to adapt a model to a new domain while remember-
ing information from previous data sources. However, simply
training on each new source can lead to a phenomenon called
catastrophic forgetting [8] in which information from previous
sources is forgotten, losing benefits from beginning with a pre-
trained, working model.

Many methods have been proposed to mitigate catastrophic
forgetting in incremental learning tasks. Replay methods [9]
use a memory bank of examples from previous sources to
retain information. However, in the clinical setting, privacy
constraints restrict the transfer of patient information from one
clinic to another. Alternatively, Elastic Weight Consolidation
(EWC) [10] regularizes the model parameters by penalizing
changes to parameters that are important for previously trained
sources. This is achieved by adding a regularization term to
the loss function that constrains significant parameters from
deviating too much from their original values. Both of these
methods help to preserve knowledge from earlier sources
while allowing the model to learn from new ones, thereby
improving the overall performance and stability of the model
in incremental learning scenarios.

We propose a DIL benchmark in which a model starts at
a large hospital, Beth Israel Deaconess (MIMIC-III), and is



transferred to various regions of smaller hospitals from the
eICU dataset. We utilize the in-hospital mortality (IHM), phe-
notyping, length of stay (LOS), and decompensation bench-
marks [11] to train and evaluate our model at each regional
source. We show the significance of the distribution shift
between the features of each region. We evaluate two existing
DIL methods for overcoming catastrophic forgetting on our
proposed benchmark: a replay based method, and a weight
regularization method using EWC [10]. Finally, we propose
a modification to replay and a new method that combines
EWC and the modified replay with the ability to adjust the
frequency of the updates using data from previous sources.
We compare our proposed DIL methods to EWC, data replay,
and an additional baseline which uses no DIL methods. In
summary our contributions are as follows:

1) We propose a DIL benchmark for clinical time series
data which starts by training a model on a large hospital
system, MIMIC-III, and transfers to various regions
throughout the United States. We provide a detailed
description of the distribution of each region along with
a discussion of the key differences.

2) We propose a new DIL method which combines replay
and EWC, and a modification to data replay with the
ability to adjust the frequency of updates utilizing data
from previous sources.

3) We utilize four clinical tasks to evaluate models in a
variety of settings include binary classification, multi-
label classification, and two sequence to sequence tasks.
We evaluate four methods on our proposed benchmark:
EWC [10], traditional data replay [7], our adjusted data
replay, and our proposed combined method.

I. RELATED WORKS

In this section, we review some methods for overcoming
catastrophic forgetting in the DIL setting. In our benchmark,
we limit ourselves to model regularization and data replay
methods since dynamic expansion methods add additional
computational resources that clinics may not have.

A. Data Replay

Data replay is a common technique used to mitigate catas-
trophic forgetting in DIL. Replay methods maintain a mem-
ory bank of examples from previous tasks and periodically
reintroduce them during training on new tasks. This helps
to reinforce previously learned knowledge and prevents the
model from forgetting earlier information. Rainbow Memory
[9] exemplifies this approach by storing a subset of samples
from past tasks and replaying them along with new task data.
The balance between new and old data during training is
crucial to ensuring that the model retains prior knowledge
while effectively learning new information.

B. Model Regularization

Model regularization techniques aim to preserve important
parameters associated with previously learned tasks, thereby
reducing catastrophic forgetting. EWC [10] is a prominent

method in this category. EWC adds a regularization term
to the loss function that penalizes significant changes to
parameters deemed important for past tasks. This is achieved
by computing the Fisher Information Matrix, which identifies
crucial parameters, and then constraining these parameters to
remain close to their original values during subsequent train-
ing. Another regularization approach, Synaptic Intelligence
(SI) [12], calculates the importance of each parameter in an
online manner and adjusts the loss function to protect these
important weights.

C. Dynamic Expansion

Dynamic expansion methods address the limitations of fixed
model architectures by expanding the model as new tasks are
introduced. These methods add new neurons or layers to the
network, enabling it to adapt to new tasks without interfering
with existing knowledge. Progressive Neural Networks [13]
illustrate this approach by creating new pathways for each
task while retaining the previously learned pathways. This
allows the model to leverage prior knowledge without risking
interference. Similarly, the Dynamically Expandable Network
[14] selectively expands the network by adding neurons only
when necessary, based on a sparsity constraint and a splitting
criterion. This method ensures that the model remains efficient
while being capable of learning new tasks incrementally.

II. METHODS

In the following sections, we go over our data extraction and
preprocessing as well as our model training and evaluation
methods. Data preprocessing is essential to performance as
both the distribution of data and the characteristics of tasks
strongly affect outcome. In our approach we use the same
preprocessing methods and benchmark standard BiLSTM and
LSTM models as in [11]. Throughout this section we will
be training, validating, and testing a model on dataset D =
{D1, D2} where D1 ∩D2 = ∅ and Nt = |Dt|.

A. Data

The MIMIC-III dataset is a collection of clinical mea-
surements (vitals, lab results, demographics, nursing reports,
diagnoses, length of stay, mortality) from over 50,000 patient
stays during hospital admission between 2001 and 2012 at
the Beth Israel Deaconess Medical Center [15]. The eICU
dataset is a collection of similar clinical measurements from
over 200,000 patient stays across multiple centers in the United
States [16]. The eICU dataset timestamps these measurements
in minutes after ICU admission [16]. We use the 17 mea-
surements described in the benchmark tasks [11]: heart rate,
mean arterial pressure (MAP), diastolic blood pressure (DBP),
systolic blood pressure (SBP), oxygen saturation, respiratory
rate (RR), temperature in Celcius, glucose, fraction of inspired
oxygen (FiO2), pH, height, weight, Glasgow coma score
total, Glasgow coma score eyes, Glasgow coma score motor,
Glasgow coma score verbal, and capillary refill.

Multiple exclusion criteria were applied before training.
Patients younger than 18 were excluded due to the significant
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Fig. 1. We illustrate our proposed benchmark frame work. A model is initialized on the MIMIC-III dataset and trained on a clinical outcome prediction task.
The model is then transferred to each of the four regions in the United States and trained on the same task. During evaluation, the model is then evaluated
on a held out set of data from the MIMIC-III dataset and the respective region.

biological differences between pediatric and adult patients
[11]. Patients with 2 or more ICU stays or were transferred in
a hospital admission were excluded [11]. This means patients
who were admitted to the ICU multiple times, but during
distinct hospital admissions, were included. Inspired by [17],
we eliminated patients who had less than 15 records in the
ICU. For in-hospital-mortality, patients who were in the ICU
for less than 48 hours were excluded [11]. For length-of-stay
and decompensation, a minimum length-of-stay of 5 hours was
applied to minimize the risk of models seeing too little data
to make an informed prediction [11]. We also ensured no task
had any empty samples, unknown length of stay, data prior to
ICU admission, or data after ICU discharge [11]. For mortality
prediction tasks, we eliminated admissions with inconsistent
labels between hospital and unit discharge status. For example,
a patient reported as being expired after ICU discharge but
alive after leaving the hospital would be excluded.

B. Data Preprocessing

We applied the first set of exclusion criteria by filtering
the patient unit stay ID that had a known age above or equal
to 18 and was the only patient unit stay ID underneath it’s
corresponding patient health system ID, which represents a
single hospital stay. We also checked that their maximum unit
visit number was 1. We unified measurements that were the
same but differently labeled into the same column [17]. For
example, there are invasive and non-invasive systolic blood
pressure records taken by nurses. Since, these are measuring
the same vital (systolic blood pressure), we grouped these
readings together. All categorical variables, besides capillary
refill, were already numerically encoded, so no additional
preprocessing had to be done. For capillary refill, we encoded

readings of ”normal” and ”< 2 seconds” as normal (0) and ”>
2 seconds” as abnormal (1). We also only included admission
height and weight once at timestamp zero, since there was
no official timestamp of when the measurement was taken.
We noticed MAP had missing regional information in the
Northeast and the West. To address this, we decided to unify
MAP with non-invasive and invasive mean blood pressure
readings. We then took the union of timestamp measurements
for each feature per patient unit stay ID [17].

When data is prepared to be loaded into batches for training,
another set of preprocessing steps is applied. To make the time
series data have consistent interval readings across all patients,
the data is binned into hourly observations, where the last
non-null value in the bin is used [11]. In the instance where
a bin contains no observations, bin values are imputed using
previously recorded values [11]. If no value can be imputed
via forward filling, then a normal value from a predefined table
is utilized [11].

Lastly, an imputation indicator is applied. An additional
column for every feature is created to have a binary label
indicating whether or not a feature measurement was imputed
[11]. That is, showing if the number in a particular bin is
a true measurement or filled via forward filling or a normal
value [11]. Categorical features are one hot encoded and the 17
additional columns for imputation indication are all combined,
leading to 76 columns in total [11].

After processing patient stays are organized into the re-
gional splits shown in figure 1. Each patient stay within the
eICU dataset is registered to a specific hospital, which are
grouped by region into 4 categories: South, Midwest, West,
and Northeast; hospitals with no region label (approximately
6% of patient stays) are excluded.



C. Benchmark Tasks

We group training and testing sets by region for the four
benchmark prediction tasks including in-hospital-mortality,
decompensation, length-of-stay, and phenotyping from [11].
The continual learning problem is formulated as the sequential
training of the model from the MIMIC-III data initially to one
of the four eICU regions for the respective benchmark task.

1) In-hospital mortality prediction: The in-hospital mortal-
ity (IHM) benchmark is a binary classification task using the
first 48 hours of the ICU stay to predict patient mortality,
evaluated using the area under the receiver operating charac-
teristic AUC-ROC as the primary metric, and area under the
precision-recall curve (AUC-PR) as the secondary metric.

2) Decompensation prediction: Similarly to IHM, the de-
compensation benchmark is a binary classification task with
the goal of predicting mortality, but now predicting patient
decompensation within the next 24 hours for each hour of an
ICU stay. The metrics are likewise AUC-ROC and AUC-PR.

3) Length-of-stay prediction: The length-of-stay (LOS)
benchmark is a 10 class classification task that aims to predict
the remaining duration of stay in the ICU for a patient at each
hour of the stay. The 10 classes distinguish a less than 1 day
stay, seven day-long classes for each of the days of the first
week, one for over a week but less than two, and the final class
for over two weeks. The primary metric used for evaluation
is the Cohen Kappa score, with the mean absolute deviation
(MAD) as the secondary metric.

4) Phenotype classification: The phenotyping benchmark
involves the classification of the 25 acute care conditions
described in Table 3, using a one-versus-rest strategy this be-
comes a multi-label binary classification task, and is evaluated
using a macro-averaged AUC-ROC as the primary metric, and
micro-averaged AUC-ROC as the secondary metric.

D. Model Architecture

We use the standard BiLSTM model from [11] for IHM
and Phenotyping tasks, consisting of 76 input features, the
specified number of BiLSTM layers (2 for IHM, 1 for the rest),
and the specified number of hidden dimensions. For LOS and
Decompensation, we utilize an LSTM model similar to [11].
However, this LSTM is not bi-directional. Dropout is applied if
the number of layers is greater than 1. This forms the LSTM
layer, which is followed by a final linear layer that applies
dropout accordingly and returns the sigmoid activation of the
output for the specified number of classes.

E. Model Training

For each of the four benchmark tasks, training iterations
begin by initializing the model and loading in validation and
testing data for MIMIC-III and the specified eICU region.
The model is first trained on the MIMIC-III data, then on the
specified eICU region. The model is evaluated on both source’s
validation sets at the end of each training epoch, and tested
on both test sets after training on the target source is finished.
PyTorch’s model eval mode is used during both evaluation
and testing so model weights cannot change. When a target

source is finished training, a memory buffer with a predefined
capacity is updated with random training samples from that
source; in the case of more than two sequential sources
(not shown here), the buffer maintains an equal number of
samples from each previous source that sum to the specified
capacity. The memory buffer is used to compute both the EWC
regularization term and the replay loss.

For IHM, Decompensation, and Phenotyping, the current
target training loss (binary cross entropy/BCE) is defined as:

Lcurr = − 1

Nt

Nt∑
i

(yi · log ŷi + (1− yi) · log(1− ŷi)))

and for LOS (cross entropy/CE) is defined as:

Lcurr = − 1

Nt

Nt∑
i

C∑
j

(yij · log ŷij + (1− yij) · log(1− ŷij))

where Nt is the total number of training samples for the
source, y is the ground truth label, ŷ is the predicted label,
and C is the number of classes. The Adam optimizer [18] is
used for all training tasks.

1) Replay: Replay loss is traditionally calculated as

L =
1

s
· Lcurr +

(
1− 1

s

)
· Lrep

where s is the number of sources seen so far, and Lrep is
the appropriate loss (BCE or CE) on random samples from
the memory buffer for the respective benchmark task; the
model trains on a random sample from the memory buffer for
each sample trained from the current source and the respective
losses are weighted proportionally to the number of sources
seen so far [7]. This method can be vulnerable to overfitting
when the memory buffer is not representative of the training
data (i.e the buffer is small) [19], [20] so we adjust replay and
test it as described in the following section.

2) EWC: EWC aims to maintain model weights that are
important to prediction on previous sources (elasticity) with-
out severely limiting learning on new sources [10]. This is
achieved via a quadratic penalty term approximated using
the diagonal precision given by the diagonal of the Fisher
Information Matrix F to determine the relative importance of
parameters to previous sources and regulate changes to those
parameters. This penalty is weighted by an importance λ and
concatenated with the Loss on the current source:

Lewc = Lcurr + λ
∑
i

1

2
Fi(θi − θ∗A,i)

2

Fi =
1

Nb

(
∂Lrep

∂θi

)2

where θi represents each parameter from the current source,
θ∗A,i represents parameters from the previous source(s), and
Lrep is Lcurr calculated on the replay buffer with size Nb.
In EWC all samples from the memory buffer are used to
calculate the penalty. The diagonal of F is approximated via
the normalized sum of squares of the first partial derivative of
the loss on the memory buffer with respect to θi for each Fi.



However, these approaches must balance the memory cost
of a sufficiently representative buffer against the risk of over-
fitting to a subset of the training data. This poses a significant
challenge with the small or non-existent memory necessitated
in health care settings due to limited transferability of patient
data between ICU’s. For this reason, we propose an adjustment
to the replay implementation to minimize risk of overfitting in
two primary ways:

Ladj =
1

N

N∑
i

((
1− 1

s

)
· Lcurr +

1

s
· Lrep,j(i)

)
Where

Lcomb =

{
Ladj if i mod p = 0

Lcurr if i mod p ̸= 0

and p =
⌊

N
Buffer Size

⌋
and j(i) = ⌊i/p⌋. Here Lrep,j(i) is Lcurr

calculated on data from the memory buffer at the index defined
by j(i). Nt is the total number of samples, s again specifies
the number of sources seen so far, and i represents the sample
index. In our proposed combined method Lcurr is replaced
by Lewc in both Ladj and Lcomb above. Note: Buffer Size is
always less than Nt, so p > 1.

We first reverse the progressive weighting on the replayed
samples to discourage overfitting to the small subset of data
in the memory buffer while training later sources. Secondly,
replay is performed and the loss adjusted at even intervals
during training such that each sample within the buffer is
seen at most once, in effect acting as a proportionate set of
additional training samples. This is achieved by adjusting the
loss periodically based on the value of p and incrementing
the sample index j(i) from which the replay loss is calculated
only at each adjustment. If p = 2, the loss is adjusted every
2 steps starting from i = 0 where j(0) = 0, then the second
adjustment j(2) = 1, and so on.

We have observed that our adjusted replay can improve over
its traditional implementation with limited memory, especially
in the case of multiple sequential sources where the buffer
remains limited in size, though in our testing only 2 sequential
sources are shown. Our combined method often outperforms
applications of these methods individually, though this dif-
ference is not as significant. We expect the performance gap
between our combined method and traditional DIL methods
to grow with the number of sources.

Task Buffer Size Samples Importance Epochs

IHM 500 All 6 4
Phenotyping 500 All 4 6

Decompensation 3500 100k 6 1
LOS 3500 100k 6 1

TABLE I
ADDITIONAL HYPERPARAMETERS.

F. Model evaluation, hyperparameter tuning, and validation

The model’s performance on all sources is evaluated at the
end of training on each source as described in the previous
section. For our 2 source setup, this results in scores for the
eICU region after training only on MIMIC-III, effectively de-
scribing the forecasting capability of the model. After training

on the eICU region, the model is tested again on both MIMIC-
III and the eICU region.

We evaluate performance utilizing a per-source average
(PSA) value, calculated after training on each source, that is
the average of the performance P on all sources the model is
currently trained on: PSA = 1

s

∑s
i (Pi) where i is the source

number and s is the total number of sources seen so far. An
ideal (high) PSA is achieved when a model maximizes learning
on new sources while minimizing forgetting on old sources.
Results reported in Table IV show the mean and standard
deviations of five complete training iterations in which a model
is trained and evaluated on MIMIC-III and then the given eICU
subregion. We outline in Table I the parameters we found for
optimal performance on each of the 4 clinical prediction tasks:
Importance defines the weight on the EWC regularization
penalty, and is 0 in the absence of EWC. We maintain the
model parameters as in [11], and tune importance and the
number of training epochs (excluding buffer size and sample
size which remain constant) via grid search on the validation
sets. The search space was limited to even values between 1
and 10 epochs for IHM and Phenotyping, and importance was
limited to even values between 1 and 8 for all tasks.

For IHM and phenotyping the epochs parameter describes
how many times the model trains on each source’s entire
dataset before moving on to the next source. In the case of De-
compensation and LOS there are far more samples due to the
sequence to sequence nature of the tasks, and training on more
than a small subset can easily result in overfitting. For this
reason we set epochs to 1, and we train on a subset of the data
with source sample sizes according to approximate region split
ratios, adjusting sample size accordingly from a basis of 100-
thousand at which consistent benchmark performance on the
MIMIC-III split is achieved, resulting in 100-thousand, 100-
thousand, 50-thousand, and 25-thousand samples respectively
for the South, Midwest, West, and Northeast eICU regions.

III. EXPERIMENTS AND RESULTS

In this section, we provide an analysis of our pro-
posed benchmark dataset. We highlight some of the dif-
ferences between each task in our datasets and discuss
how these shifts can cause issues when transferring to
new domains. We then evaluate EWC and our modified
replay on our proposed benchmark along with our pro-
posed method. Code for our experiments, along with our
data preprocessing pipeline, are available on github at
https://github.com/kingrc15/EHRTransferBenchmark

A. Dataset

In this section we analyze each task in our proposed dataset
and highlight some of the key differences. We start by looking
at the distribution of the features in the dataset. From there
we look at the frequency of both the measurements and the
labels for each region and benchmark task.

1) Measurement Distributions: We report the results in Fig-
ure 2. The distribution for each measurement was calculated

https://github.com/kingrc15/EHRTransferBenchmark


Fig. 2. We plot the distribution of each measurement in our dataset across each of our tasks. In each plot, we see each region along with a dashed lined
indicating the mean of the distribution and a dotted line indicating the inner quartile range. Plots with missing distributions indicate that the measurement
was not taken in that region.

Region MIMIC-III Midwest South West Northeast

Capillary 0.0025 0 0.0237 0.0110 0.1200
DBP 1.0641 1.1045 0.9663 1.4268 1.0844
FiO2 0.0597 0.0207 0.0227 0.0219 0.0144
GCS Eyes 0.1143 0.1091 0.2287 0.1051 0.5027
GCS Motor 0.1238 0.1088 0.2286 0.1050 0.5026
GCS Verbal 0.1242 0.1750 0.2359 0.1562 0.5027
GCS Total 0.1615 0.1085 0.2253 0.1050 0.5027
Glucose 0.2462 0.2061 0.1819 0.1824 0.2540
HR 1.1532 1.2787 1.1086 1.5929 1.0707
Height 0.0049 0.0267 0.0266 0.0319 0.0263
MAP 1.0563 1.0795 0.9931 1.3693 1.0376
O2 Sat 1.1260 1.1963 0.9953 0.8140 0.7383
RR 1.1519 1.1638 1.0612 1.2426 1.0300
SBP 1.0646 1.1044 0.0966 1.4268 1.0845
Temperature 0.3198 0.3366 0.3092 0.4444 0.3391
Weight 0.0427 0.0255 0.0269 0.0323 0.0263
pH 0.0977 0.0233 0.0219 0.0180 0.0228

TABLE II
WE REPORT THE AVERAGE FREQUENCY OF EACH MEASUREMENT FOR

EACH REGION.

by plotting the frequency of average measurement of every
patient episode.

We see several differences between the distributions of each
region. Notably, we observe a large change in Fi02 and pH
distribution between MIMIC and each of the eICU regions. We
also note that capillary refill has missing regional information.
This indicates that in certain regions, the measurements we
are concerned with simply are not recorded. This leads us to
investigate the frequency of each of the measurements.

2) Measurement Frequencies: We measure the distributions
of each regional split of the eICU dataset [16] and the
MIMIC-III dataset [15]. Table II indicates the frequency of

a measurement occurring during a patient’s stay.

F =
1

n

n∑
i=0

ci/ti

where n is the number of patient stays in the cohort, ci is the
number of occurrences of a particular measurement of the ith
patient stay, and ti is the length-of-stay of patient stay i in
hours. Thus, a higher frequency means the measurement was
more often recorded during a patient’s ICU stay.

An important observation is there are changes in frequency
of readings in different regions of the United States. For
Glasgow Coma Scores, Table II indicates that doctors and
nurses in the northeast are more likely to measure these scores
than in the south. There are also differences in measurement
frequencies between the two datasets. For example, FiO2 is
around 0.06 in MIMIC-III but between 0.015 to 0.025 across
all eICU regions. Capillary Refill is so infrequently recorded
that they show zero recordings in the Midwest.

In Figure 2, the shape of the distributions for each region
and MIMIC-III is shown. From here we can see that most
measurements, regardless of their frequency, have a similarly
shaped distribution and nearly identical means. Some mea-
surements may have a thicker or wider distribution as a result
of a larger data pool or recorded range of measurements. The
most notable distribution variations are in pH and FiO2 as
mentioned before. MIMIC-III seems to have a larger range
compared to any of the regions in eICU. MIMIC-III also
appears to have a thinner tail near the 0.25 mark for FiO2.
However, the eICU dataset shows a larger concentration of
readings under 0.25.

This emphasizes the unique characteristics and resulting
differences between datasets and regions of the United States.



Label MIMIC-III South Midwest West Northeast

AURF 0.2139 0.1130 0.1055 0.0996 0.1935
ACD 0.0735 0.0705 0.0705 0.0823 0.0647
AMI 0.1035 0.0626 0.0497 0.0516 0.0637
CD 0.3212 0.1300 0.0988 0.1138 0.2483
CKD 0.1338 0.0952 0.0901 0.0777 0.1081
COPD 0.1302 0.0810 0.0717 0.0712 0.1187
CS 0.2075 0.0086 0.0075 0.0094 0.0141
CoDi 0.0719 0.0097 0.0074 0.0063 0.0127
CHF 0.2678 0.1070 0.0739 0.0869 0.1219
CA 0.3231 0.0436 0.0210 0.0140 0.0376
DMC 0.0952 0.0457 0.0337 0.0370 0.0429
DM 0.1927 0.0070 0.0031 0.0020 0.0108
LD 0.2902 0.0603 0.0075 0.0306 0.0792
EH 0.4194 0.1854 0.0770 0.1587 0.2011
FD 0.2686 0.1196 0.0828 0.0968 0.3463
GH 0.0732 0.0586 0.0511 0.0573 0.0743
HWC 0.1324 0.0181 0.0091 0.0121 0.0164
OLD 0.0889 0.0271 0.0254 0.0329 0.0720
LR 0.0517 0.0273 0.0224 0.0212 0.0445
UR 0.0406 0.0047 0.0047 0.0050 0.0077
Pleurisy 0.0873 0.0282 0.0200 0.0251 0.1221
Pneumonia 0.1388 0.0915 0.0948 0.0912 0.1709
RF 0.1806 0.2109 0.1743 0.2182 0.2958
Septicemia 0.1426 0.0920 0.1110 0.1702 0.1529
Shock 0.0785 0.0504 0.0428 0.0741 0.1163

IHM 0.1323 0.1149 0.0854 0.1438 0.1359

Decomp 0.0206 0.0178 0.0139 0.0234 0.0243

RLoS 135.39 106.247 105.379 167.528 113.196
TABLE III

WE REPORT THE AVERAGE GROUND TRUTH VALUE OF EACH REGION FOR EACH

TASK. AURF IS ACUTE AND UNSPECIFIED RENAL FAILURE, ACD IS ACUTE

CEREBROVASCULAR DISEASE, AMI IS ACUTE MYOCARDIAL INFARCTION, CD IS

CARDIAC DYSRHYTHMIAS, CKD IS CHRONIC KIDNEY DISEASE, COPD IS CHRONIC

OBSTRUCTIVE PULMONARY DISEASE, CS IS COMPLICATIONS OF

SURGICAL/MEDICAL CARE, CODI IS CONDUCTION DISORDERS, CHF IS CONGESTIVE

HEART FAILURE, CA IS CORONARY ATHEROSCLEROSIS, DMC IS DIABETES

MELLITUS WITH COMPLICATIONS, DM IS DIABETES MELLITUS WITHOUT

COMPLICATION, LD IS LIPID DISORDERS, EH IS ESSENTIAL HYPERTENSION, FD IS

FLUID DISORDERS, GH IS GASTROINTESTINAL HEMORRHAGE, HWC IS

HYPERTENSION WITH COMPLICATIONS, OLD IS OTHER LIVER DISEASES, LR IS

LOWER RESPIRATORY DISEASE, UR IS UPPER RESPIRATORY DISEASE, RF IS

RESPIRATORY FAILURE, IHM IS IN-HOSPITAL-MORTALITY, DECOMP IS

DECOMPENSATION, AND RLOS IS REMAINING LENGTH OF STAY

There can be varying patient demographics among hospitals,
and hospitals may prioritize recording certain measurements.

B. Benchmark

With our proposed dataset, we evaluate three different DIL
methods: EWC, our modified data replay, and our proposed
method. This section starts by outlining the experiment setup.
We then present the results of our experiments.

1) Experiment Setup: The original eICU benchmark [17]
performs a standard 5-fold cross-validation across unique ICU
visits for each benchmark test. The MIMIC-III benchmark
[11] task performs a 70–15-15 train-validation-test split across
unique ICU visits for each benchmark test. The validation
split was used for hyperparameter tuning and model selection
[11]. We similarly use a 70-15-15 train-test split. To prevent
data leakage, all patients with more than one ICU visit were
included in the same split (both regional split and train-
validation-test split). Here it is important that the test set acts
as a representative subset of the training data. The proportions

of the ground truth values for each benchmark task across the
splits are seen in Table III.

We run tests for the baseline performance of the model, as
well as each of the four aforementioned methods: EWC, re-
play, our adjusted replay, and our proposed combined method,
for each of the 4 eICU regional splits after first training the
model on the MIMIC-III region. To get baseline results, no
EWC or replay based method is used and standard training
occurs for each region, allowing comparison for the forgetting
prevented by transfer learning methods.

2) Results: Table IV summarizes the per-source average
performance for each benchmark task, method, and region. For
MIMIC-III there is no specification of method, as performance
on the first source is unaffected by any applied DIL method.
The values shown for MIMIC-III are the average performance
of the model across all tests, and approximate benchmark
performance of the BiLSTM and LSTM in [11] replicated for
each benchmark task.

For both IHM and Phenotyping, our proposed combined
method demonstrates equal or greater performance over all
other methods for every eICU region. Baseline performance
on IHM is already relatively high, in contrast to Phenotyping
where improvement is more significant. This is due in part to
IHM being the simplest of all tasks, and because there is strong
correlation in IHM between MIMIC-III and the eICU regions.
We see similar behavior in Decompensation for the Northeast
region, where the baseline outperforms all other methods due
to high correlation with MIMIC-III, though EWC is close.
The optimal method changes with each remaining region
in Decompensation, and we observe a significant drop in
performance going from MIMIC-III to any eICU region for the
LOS task despite the large relative improvement over baseline,
highlighting the difficulty of these sequence to sequence tasks.

IV. LIMITATIONS AND FUTURE DIRECTIONS

We develop the benchmark in this paper to highlight the
challenges present when transferring from one clinic to the
next. We evaluate two existing methods and an alternative
method which we proposed. However, each of these methods
requires some patient data be passed from one clinic to the
next. Future work could focus on memory-less methods for
transferring from one domain to the next.

V. DISCUSSION AND CONCLUSION

In this paper, our study addresses the critical challenge
of deploying machine learning models for clinical outcome
prediction in smaller hospitals, which often lack the resources
to develop their own models. By proposing a benchmark
to evaluate the transferability of models trained in large
hospitals to different regions, we emphasize the importance of
assessing generalizability across diverse patient populations.
Our research highlights significant regional differences in
measurement distributions and frequencies, underscoring the
need for models that can adapt to these variations.

We conceptualize this transfer as a DIL problem, main-
taining consistent prediction tasks while accommodating vari-
ations in input data distributions. Our evaluation of two



Region In-Hospital Mortality Phenotyping Decompensation LOS

AUC-ROC AUC-PR Macro Micro AUC-ROC AUC-PR Kappa MAD

MIMIC-III 0.836 (0.002) 0.466 (0.006) 0.763 (0.001) 0.815 (0.001) 0.867 (0.008) 0.225 (0.006) 0.331 (0.015) 0.727 (0.005)

Baseline

South

0.848 (0.007) 0.520 (0.015) 0.662 (0.003) 0.709 (0.005) 0.815 (0.042) 0.208 (0.038) 0.068 (0.023) 0.700 (0.007)
EWC 0.855 (0.007) 0.545 (0.012) 0.662 (0.004) 0.712 (0.006) 0.844 (0.006) 0.241 (0.020) 0.148 (0.046) 0.706 (0.009)
Replay 0.864 (0.005) 0.555 (0.007) 0.728 (0.002) 0.799 (0.002) 0.836 (0.021) 0.213 (0.013) 0.199 (0.017) 0.711 (0.012)
Adj Replay 0.864 (0.004) 0.569 (0.010) 0.741 (0.002) 0.809 (0.002) 0.797 (0.032) 0.207 (0.025) 0.178 (0.038) 0.714 (0.008)
Combined 0.864 (0.006) 0.565 (0.009) 0.744 (0.002) 0.811 (0.002) 0.844 (0.010) 0.218 (0.027) 0.200 (0.013) 0.705 (0.016)

Baseline

Midwest

0.847 (0.007) 0.505 (0.006) 0.661 (0.006) 0.711 (0.005) 0.768 (0.027) 0.186 (0.014) 0.095 (0.018) 0.707 (0.014)
EWC 0.846 (0.007) 0.510 (0.006) 0.658 (0.006) 0.714 (0.008) 0.753 (0.060) 0.161 (0.032) 0.198 (0.042) 0.698 (0.005)
Replay 0.855 (0.008) 0.528 (0.009) 0.720 (0.004) 0.802 (0.002) 0.777 (0.018) 0.183 (0.013) 0.230 (0.018) 0.706 (0.008)
Adj Replay 0.860 (0.006) 0.541 (0.008) 0.731 (0.004) 0.805 (0.004) 0.744 (0.016) 0.168 (0.009) 0.200 (0.026) 0.709 (0.011)
Combined 0.863 (0.005) 0.540 (0.008) 0.731 (0.003) 0.807 (0.002) 0.793 (0.011) 0.183 (0.008) 0.227 (0.018) 0.703 (0.010)

Baseline

West

0.846 (0.005) 0.551 (0.011) 0.669 (0.009) 0.721 (0.007) 0.800 (0.007) 0.188 (0.011) 0.036 (0.049) 0.731 (0.010)
EWC 0.847 (0.007) 0.550 (0.013) 0.679 (0.010) 0.732 (0.011) 0.806 (0.010) 0.202 (0.012) 0.149 (0.017) 0.722 (0.007)
Replay 0.859 (0.003) 0.577 (0.012) 0.725 (0.002) 0.806 (0.001) 0.789 (0.009) 0.198 (0.020) 0.176 (0.009) 0.725 (0.011)
Adj Replay 0.859 (0.007) 0.576 (0.010) 0.728 (0.002) 0.806 (0.003) 0.787 (0.008) 0.194 (0.006) 0.158 (0.041) 0.715 (0.013)
Combined 0.860 (0.004) 0.578 (0.010) 0.732 (0.004) 0.808 (0.003) 0.797 (0.014) 0.215 (0.006) 0.177 (0.019) 0.719 (0.018)

Baseline

Northeast

0.853 (0.007) 0.569 (0.010) 0.677 (0.007) 0.731 (0.004) 0.864 (0.006) 0.236 (0.007) 0.072 (0.052) 0.640 (0.011)
EWC 0.863 (0.007) 0.578 (0.015) 0.679 (0.008) 0.733 (0.010) 0.865 (0.006) 0.234 (0.014) 0.144 (0.021) 0.642 (0.009)
Replay 0.874 (0.003) 0.606 (0.008) 0.718 (0.003) 0.810 (0.002) 0.839 (0.012) 0.210 (0.015) 0.170 (0.008) 0.650 (0.009)
Adj Replay 0.874 (0.005) 0.603 (0.011) 0.720 (0.006) 0.808 (0.005) 0.860 (0.012) 0.220 (0.010) 0.178 (0.009) 0.659 (0.008)
Combined 0.877 (0.003) 0.601 (0.008) 0.722 (0.006) 0.810 (0.002) 0.850 (0.015) 0.218 (0.020) 0.180 (0.008) 0.647 (0.010)

TABLE IV
HERE WE DISPLAY THE PER-SOURCE AVERAGE PERFORMANCE OF EACH METHOD ACROSS THE 4 CLINICAL PREDICTION TASKS.

continual learning methods, data replay and EWC, demon-
strates their effectiveness and limitations. Building on these
findings, we introduce a method that combines EWC and data
replay, enhancing model performance by adjusting the number
updates with data from previous sources.

Our proposed method shows superior performance com-
pared to using EWC and data replay independently for the non-
sequence to sequence tasks. However, this study also reveals
specific challenges in model transferability within the clinical
setting, indicating areas where further research and innova-
tion are necessary. Ultimately, our work aims to facilitate
the broader adoption of robust machine learning models in
smaller hospitals, improving clinical outcomes through more
accessible and adaptable predictive tools.
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