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Abstract. 1

Reliable uncertainty quantification (UQ) is essential in medical AI. Ev-
idential Deep Learning (EDL) offers a computationally efficient way
to quantify model uncertainty alongside predictions, unlike traditional
methods such as Monte Carlo (MC) Dropout and Deep Ensembles (DE).
However, all these methods often rely on a single expert’s annotations
as ground truth for model training, overlooking the inter-rater variabil-
ity in healthcare. To address this issue, we propose MEGAN, a Multi-
Expert Gating Network that aggregates uncertainty estimates and pre-
dictions from multiple AI experts via EDL models trained with diverse
ground truths and modeling strategies. MEGAN’s gating network op-
timally combines predictions and uncertainties from each EDL model,
enhancing overall prediction confidence and calibration. We extensively
benchmark MEGAN on endoscopy videos for Ulcerative colitis (UC) dis-
ease severity estimation, assessed by visual labeling of Mayo Endoscopic
Subscore (MES), where inter-rater variability is prevalent. In large-scale
prospective UC clinical trial, MEGAN achieved a 3.5% improvement
in F1-score and a 30.5% reduction in Expected Calibration Error (ECE)
compared to existing methods. Furthermore, MEGAN facilitated uncertainty-
guided sample stratification, reducing the annotation burden and poten-
tially increasing efficiency and consistency in UC trials.

Keywords: Uncertainty quantification (UQ) · Ulcerative Colitis (UC) ·
Evidential deep learning (EDL) · Multi-Expert GAting Network (MEGAN).

1 Introduction

Uncertainty quantification (UQ) is crucial in medical image analysis, particularly
because deep learning models often produce overconfident predictions despite
inherent ambiguities in clinical assessments. In practice, the absence of a uni-
versally accepted ground truth often leads to significant inter- and intra-reader
1 ∗ Equal contribution as first authors. † Equal contribution as last authors.
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variability, adversely impacting diagnoses, disease severity evaluations, and prog-
nostic predictions. Conventional deep learning approaches typically overlook this
variability, causing inflated confidence even when clinical agreement is low. Ad-
dressing UQ is essential for automating disease severity assessments, where it is
crucial to minimize subjectivity while preserving trust in AI-driven decisions.

While traditional UQ methods like MC Dropout [5] and Deep Ensembles [11]
(DE) are widely used, their post-hoc nature limits real-time deployment. MC
Dropout needs multiple inference rounds, and DE methods execute multiple
models in inference, both incurring high computation cost. In contrast, Eviden-
tial Deep Learning (EDL) [20] presents an efficient solution by estimating predic-
tion confidence and uncertainty in a single forward pass. EDL has been applied
across various domains, including MRI [26], PET-CT [9], and X-ray [6,7]. How-
ever, current EDL approaches typically rely on single-expert annotations during
training, restricting their capacity to manage inter-rater variability, leading to
model overconfidence even when experts disagree. These limitations are even
more pronounced in subjective domains like endoscopy, where multiple experts
manually evaluate samples, resulting in high inter-rater variability.

To address these challenges, we introduce MEGAN (Multi-Expert GAting
Network), a novel framework that aggregates uncertainty estimates from mul-
tiple EDL-based models, trained on diverse expert annotations and modeling
strategies. Here, each model acts as an independent AI expert with its respec-
tive strengths and weaknesses. MEGAN uses a gating network to dynamically
combine their individual predictions and uncertainties, reducing inter-rater vari-
ability and enhancing overall uncertainty calibration and prediction accuracy.

We thoroughly evaluated MEGAN on endoscopy videos for Ulcerative Colitis
(UC) severity estimation, specifically focusing on the Mayo Endoscopic Subscore
(MES) assessment [18], which exhibits high inter-rater variability in clinical tri-
als. UC is a chronic inflammatory bowel disease affecting ∼5 million individuals
globally. UC severity is assessed using MES, where gastroenterologists assign
severity grades on an ordinal scale (0–3) based on mucosal appearance from
endoscopic videos. Accurate MES estimation is critical in UC clinical trials for
patient enrollment and treatment efficacy quantification. Recently, deep learning
has been widely adopted to automate MES estimation, employing fully super-
vised [21, 22, 24], weakly-supervised [13, 19, 23], and self-supervised [2, 3, 8, 25]
methods. However, MES is inherently subjective, time-consuming, and prone
to high inter-rater variability [14], requiring multiple experts to annotate the
same video in trials. The existing deep learning solutions, though successful on
estimating single expert MES annotations, often fail to account for inter-rater
variability and prioritize accuracy over UQ. This hampers the assessment of
model confidence, an essential element for practical clinical deployment.

Our key contributions in this paper are as follows:
1. Multi-expert uncertainty estimation and fusion: We introduce MEGAN,
a novel framework that aggregates estimates from multiple EDL-based models,
enhancing overall uncertainty calibration and addressing inter-rater variability.
2. Large-scale UC Clinical Evaluation: MEGAN was evaluated on multiple
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Fig. 1. Overview of MEGAN architecture variants. MEGAN-Gated uses a trainable
gating network (GN) to optimally combine predictions from multiple pre-trained EDL
models to output a final prediction and uncertainty score.

UC trials, achieving a 5.2% F1-score improvement and an 29.4% ECE reduction
on Test set. On Unseen set, F1 improved by 3.5% and ECE decreased by 30.5%,
demonstrating MEGAN’s superior performance, calibration, and generalization.
3. Uncertainty-guided UC Analysis: On an unseen set, MEGAN can re-
duce the overall number of videos to be reviewed by experts by 10% compared
to baselines. Further, in a subset reviewed by 3 experts, MEGAN distinguished
confident cases with 14% higher F1 than consensus rating; and successfully iden-
tified difficult cases for selective expert review.

2 Methods

We begin this section by outlining MES scoring process (Sec 2.1), followed by
describing EDL expert model (Sec 2.2). Finally, we introduce MEGAN (Sec 2.3),
which aggregates multiple EDL model outputs via a gating network to improve
MES scoring accuracy and simultaneous uncertainty estimation (Fig. 1).

2.1 MES Scoring Process

In clinical trials, MES labels (integers, 0–3) are assigned through a multi-step
review to ensure consistency and minimize variability of disease assessment. This
includes: A local reader (gastroenterologist) assigns an initial score, followed by
an independent expert’s (central reader) assessment score. If they disagree, a
third adjudicator expert provides an independent score. The final trial score,
used for clinical evaluations, is the median of these three scores.

2.2 Evidential Deep Learning (EDL) Model

Deep learning models for UC disease severity assessment often make overconfi-
dent predictions, posing risks in ambiguous cases [14]. To address this, we imple-
ment EDL [20], a method that quantifies uncertainty directly from the model’s
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output using the Dempster-Shafer Theory (DST). Unlike conventional methods
such as MC Dropout or deep ensembles, EDL estimates uncertainty efficiently
without requiring multiple models or multiple forward passes.

Our approach processes endoscopy videos from UC trials with N frames by
extracting N×D frame-level features using a foundation model (FM) pre-trained
on a large-scale endoscopy dataset. These features are passed to a downstream
classifier which comprises of a transformer, Attention-based MIL (ABMIL) [10],
and a dense layer to estimate MES. Instead of a conventional softmax layer,
which only provides point estimates, we introduce EDL by using a Softplus
activation and Dirichlet distributions to model both uncertainty and class prob-
abilities. The Softplus function ensures non-negative evidence values, defined
as: eic = Softplus(.) = log(1 + exp(.)), where eic represents the evidence for
class c among C classes for a given sample i. These evidence values parameter-
ize the Dirichlet distribution, which models a distribution over class probabili-
ties rather than a single-point estimate. The Dirichlet parameters are given by:
αi = ⟨αi1, . . . , αiC⟩, where αi = eic + 1. Next, the total strength of evidence for
sample i is defined as: Si =

∑C
c=1(eic + 1).

Uncertainty and Class Probability Estimation: In EDL method, the
uncertainty estimate ui is defined as: ui = C

Si
. If no evidence is available (eic =

0), the Dirichlet distribution becomes uniform, leading to maximum uncertainty
(ui → 1). This means the model is highly uncertain about its predictions. The
class probability for sample i and class c is derived from the mean of the
Dirichlet distribution: pic = αic

Si
= eic+1

Si
.

EDL Loss Function: To ensure well-calibrated predictions, we employ an
uncertainty-aware loss function that integrates classification loss with a KL di-
vergence regularization term:

L =

N∑
i=1

C∑
c=1

yic [ψ(Si)− ψ(αic)] + λt ·
N∑
i=1

KL [D(pi|αi)||D(pi|1)] (1)

where, yic is the true label for sample i and class c, ψ(·) is the digamma func-
tion. The first term represents classification loss, ensuring correct predictions,
and the second term is the KL divergence regularization, preventing overconfi-
dent predictions. To balance these losses during training, we apply an annealing
coefficient: λt = min(1.0, t

T ), where t is the current epoch and T is a predefined
threshold. This allows gradual incorporation of KL loss as training progresses.
By integrating EDL, our framework efficiently models both uncertainty and class
probabilities in a single forward pass, providing a robust disease assessment.

2.3 MEGAN: Multi-Expert Gating Network

MES scoring is inherently subjective, incurring variability in expert annotations.
Deep learning models trained on different expert labels and classifier architec-
tures potentially introduce biases and uncertainties. MEGAN addresses this is-
sue by adaptively weighting and aggregating outputs from multiple EDL models.
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MEGAN has two variants: MEGAN-Gated employs a gating network (GN) to
assign weights for aggregating the probabilities and uncertainties from K EDL
models, whereas MEGAN-Naive simply averages the K EDL models’ outputs.

MEGAN-Gated Architecture: MEGAN consists of multiple EDL models
and a lightweight GN. Each EDL model is trained independently using different
expert labels and modeling strategies. With the EDL models kept frozen, the
GN takes features from all EDL models and learns to assign optimal weights,
combining their predictions into a final score along with an uncertainty estimate.

The GN includes four Multi-Layer Perceptron (MLP) modules: 1. Shared
MLP: It processes input features from K EDL models, forming a K × d matrix
(d is the feature dimension) to produce a common shared feature representation
for the next three MLPs. 2. Probability MLP: It processes the shared features
and applies Tanh activation to generate weights wk

pi
for aggregating model prob-

abilities pki into the final estimate p̂i. 3. Uncertainty MLP: It processes the
shared features and applies Sigmoid activation to the shared features to create
weights wk

ui
for aggregating uncertainties uki into the final uncertainty estimate.

4. Epsilon MLP: This module refines the final uncertainty ûi by adding ϵi,
which is derived from processing the shared features and using Tanh activation.
It allows for flexibility in adjusting the uncertainty score - raising it for incorrect
predictions and lowering it for correct ones.

GN Training Strategy: MEGAN is trained in two stages. First, individual
EDL models are trained separately using diverse expert labels and classifier
architectures. Next, GN is trained on final MES labels with EDL models frozen,
allowing it to learn an optimal weighting strategy without altering EDL outputs.

GN Loss Function: GN is optimized using a composite loss function:

Ltotal = Lcls + Lunc + Leps (2)

Lcls = −
N∑
i=1

yi log(p̂i) (3)

Lunc = β1

N∑
i=1

ci · ûi + β2

N∑
i=1

(1− ci) · (1− ûi) (4)

Leps = γ1

N∑
i=1

ci · ReLU(ϵi) + γ2

N∑
i=1

(1− ci) · ReLU(−ϵi) (5)

1. Classification Loss (Eqn. 3) ensures accurate final estimation p̂i. MEGAN
minimizes the cross-entropy loss against the final MES label (yi).

2. Uncertainty Regularization Loss (Eqn. 4) encourages GN to assign
higher uncertainty to incorrect predictions (ci = 0) and lower uncertainty to
correct ones (ci = 1). β1, β2 control penalty strength. This enhances calibration
by increasing uncertainty for incorrect predictions.

3. Epsilon Regularization Loss (Eqn. 5) fine-tunes uncertainty estima-
tion. For correct prediction (ci = 1), negative ϵi is encouraged to reduce un-
certainty. For incorrect prediction (ci = 0), positive ϵi is promoted to increase
uncertainty by further refining calibration. Here, γ1 and γ2 are scaling factors.
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Final Probability and Uncertainty: After training, GN computes final
predictions using weighted aggregation: p̂i = 1

K

∑K
k=1 w

k
pi
pki . Final uncertainty

estimate is computed as: ûi =
∑K

k=1 wk
uu

k
i∑K

k=1 wk
u

+ ϵi. This weighting ensures that more
reliable models have a greater influence. With these modules, MEGAN effectively
integrates multiple EDL models, enhancing MES scoring accuracy, uncertainty
estimation, and robustness in clinical trials.

3 Data Splits, Benchmarking & Implementation Details

Data Splits and Preprocessing: We follow the dataset partitioning and
preprocessing approach from [2]. Our study includes endoscopy videos from four
clinical trials (two UC [16, 17], two CD [1, 15]) across 30 countries, covering
2,411 patients and 4,911 videos (∼71M frames). The dataset was split into 80%
training and 20% test sets, with FM pre-trained on the training data. Since
MES labels are available only for UC trials, EDL models were trained via 4-
fold cross-validation on the UNIFI and JAKUC datasets. Model evaluation was
conducted on the held-out test set (20%), and prospective validation on the
unseen QUASAR trial dataset (14M frames) assessed generalization.

Model Architectures and Training: We trained a FM using ViT-B [4]
with DINOv2 [12] to extract features for downstream MES scoring, following [2].
The baseline Arges model [2] consists of a transformer, an ABMIL, and a dense
layer with dropout to estimate MES. It was trained for 20 epochs using a learn-
ing rate of 10−4 and a weight decay of 10−5. For EDL models, we integrated
a Softplus layer into Arges with a Dirichlet distribution to model class proba-
bilities and optimized it using digamma cross-entropy loss with KL divergence
(Eqn. 1). We trained six independent EDL models: four based on central reader
scores with different architectures with varying number of transformer layers,
attention heads, and dropout rates, and two based on local reader scores with
different architectures. To address class imbalance, we used weighted sampling.
After training the EDL models, we froze their weights and trained a GN with
MLP blocks, optimizing it using the composite loss (Eqn. 2) over 20 epochs
with a learning rate of 10−4 and dropout of 0.25. Uncertainty penalties were
heuristically set to β1 = γ1 = 1.0, β2 = γ2 = 5.0 based on the validation set.

Benchmarking and Comparison: We benchmarked MEGAN against var-
ious uncertainty estimation methods. First, we evaluated the baseline Arges
model [2] and incorporated MC Dropout, using 40 forward passes at inference
to estimate uncertainty, with results aggregated for final scores. Next, we as-
sessed Deep Ensemble models that combined predictions from four indepen-
dently trained networks. For uncertainty-aware modeling, we evaluated a sin-
gle EDL model with a Softplus layer for MES and uncertainty estimation. We
also tested Megan-Naive, which averaged predictions from six independent EDL
models trained on different expert labels and architectures. Finally, our proposed
MEGAN-Gated framework leverages a GN to optimally weight expert models,
aggregating predictions from six frozen EDL models.
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UQ Methods ME UQ Cost Test Set UNIFI Test Set JAKUC Unseen Set Quasar
F1 (↑) ECE (↓) F1 (↑) ECE (↓) F1 (↑) ECE (↓)

Arges [2] × × 1x 0.614 0.302 0.521 0.354 0.654 0.221
MC Dropout [5] × × 40x 0.614 0.286 0.522 0.338 0.657 0.207
Deep ensemble [11] × × 4x 0.641 0.198 0.554 0.199 0.657 0.168
EDL [20] × ✓ 1x 0.622 0.132 0.576 0.184 0.647 0.154
MEGAN-Naive ✓ ✓ 6x 0.640 0.116 0.620 0.163 0.663 0.124
MEGAN-Gated ✓ ✓ 6x 0.644 0.083 0.634 0.144 0.680 0.107

Table 1. MEGAN-Gated and Naive models consistently outperform baselines in F1-
score and calibration score across test sets UNIFI, JAKUC, and the unseen QUASAR
set. ME: multiple expert labels used for training models, UQ: uncertainty quantifica-
tion, and Cost is the compute cost, with x indicating inference on single A100 GPU.

Evaluation Metrics: Performance was evaluated using weighted F1-scores
against Final Trial MES labels. Uncertainty calibration was assessed via Ex-
pected Calibration Error (ECE): ECE =

∑M
m=1

|Bm|
N |acc(Bm)− conf(Bm)|, where

Bm is the m-th confidence bin, |Bm| is the sample count, N is the total samples,
and acc(Bm) and conf(Bm) denote empirical accuracy and predicted confidence.
Lower ECE indicates better calibration.

4 Experiments, Results and Discussion

4.1. MEGAN Fares Favorably Compared to State-of-the-Art Methods:
Table 1 compares MEGAN (Naive & Gated) with baselines like MC Dropout,
Deep Ensembles, and EDL models across two test sets (UNIFI, JAKUC) and
an unseen clinical trial (QUASAR). While Arges-based models achieve reason-
able F1 scores, they struggle with calibration (ECE). MC Dropout improves
calibration, and ensembles further enhance ECE, consistent with prior work.
EDL models, estimating MES scores and uncertainty, outperform baselines in
ECE while maintaining strong F1 scores. MEGAN-Naive, leveraging multiple
EDL models, improves calibration by 19.4% and F1 by 1% over the best base-
line. MEGAN-Gated, optimally aggregating EDL models via a gating network,
achieves the highest F1 (+3.5%) and lowest ECE (+30.5%) with strong cal-
ibration shown in Fig. 2(c) and performs better than MEGAN-Naive. These
improvements generalize to QUASAR, underscoring MEGAN’s suitability for
clinical deployment. MEGAN-Gated achieves the lowest ECE and higher accu-
racy (F1), which is crucial in clinical deployments. Also, Gated model provides
better class-wise uncertainty for distinguishing confident vs. uncertain cases over
the Naive model (Sec. 4.2).

4.2. Stratifying Samples Using Uncertainty Scores: Uncertainty scores
from EDL, MEGAN-Naive, and MEGAN-Gated enable sample stratification,
directing uncertain cases for expert review to reduce workload in large-scale
trials. Using class-specific thresholds (tc) dervied from the UNIFI and JAKUC
validation sets, QUASAR predictions are classified as confident or uncertain.
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(a) Uncertainty-based Thresholding

(c) Reliability diagrams and confidence histograms

(b) Uncertainty for correct vs incorrect predictions

EDL

Megan-Naive

EDL

Megan-Gated

Megan-Gated

Fig. 2. Results on unseen QUASAR data comparing MEGAN-Gated to EDL and
MEGAN-Naive: (a) Table displays uncertainty-based results categorized by thresh-
old (tc): the first column shows confident videos below the threshold, while the second
column shows uncertain videos above it. This demonstrates that MEGAN can filter
a higher number of confident samples with an improved F1 score. (b) Three boxplots
illustrate how MEGAN-Gated utilizes uncertainty to distinguish between correct and
incorrect predictions across each ground truth class more accurately. (c) Two reliabil-
ity diagrams and confidence histograms for the unseen QUASAR dataset demonstrate
that MEGAN outperforms EDL.

Table 2(a) indicates that confident samples achieve higher accuracy, as shown
in the left column, while uncertain samples, flagged for review, exhibit lower
accuracy, as illustrated in the right column. MEGAN-Gated outperforms both
EDL and MEGAN-Naive in terms of accuracy and retention of confident sam-
ples, demonstrating a 10% increase in retention. Box plots in Fig. 2(b) highlight
MEGAN-Gated’s superior ability to distinguish correct from incorrect predic-
tions via uncertainty scores, except for class 2, which remains ambiguous even
for experts. Notably, most misclassified samples (red box) exhibit higher un-
certainty and correct ones (green box) show lower uncertainty, but this pattern
reverses for class 2. These results support automated triaging, ensuring accuracy
while reducing expert involvement.

4.3. Expert Validation of Confident and Uncertain Cases: Three gas-
troenterologists reviewed 30 videos from the Quasar set, assigning MES scores
(0–3) and confidence ratings (1–5) per video. For confident cases, the consen-
sus expert F1-score compared to final trial labels was 0.61, with an average
confidence of 4.34/5, while MEGAN achieved a higher F1-score of 0.66. For un-
certain cases, the consensus F1-score dropped to 0.38 with an average confidence
of 3.8/5. This drop indicates the difficulty of these cases, which MEGAN success-
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fully identified. In summary, MEGAN provides better predictions for confident
cases and effectively identifies difficult cases for further experts’ evaluation.

5 Conclusion

We introduce MEGAN, a novel multi-expert uncertainty quantification frame-
work for automated UC disease severity assessment. MEGAN incorporates mul-
tiple expert labels by training several EDL-based models and optimally aggre-
gating their predictions through a gating network. This approach effectively
captures inter-rater variability in endoscopy video assessments while ensuring
robust uncertainty estimation. Extensive evaluation on large-scale UC clinical
trials demonstrates that MEGAN outperforms existing UQ methods, achieving
higher prediction accuracy (F1), better calibration (ECE), and improved uncer-
tainty estimation. By quantifying uncertainty, MEGAN enables targeted expert
review, reducing clinical workload. While challenges remain, this work represents
a significant step toward capturing multi-expert uncertainty, with potential ap-
plications beyond UC in broader clinical decision support systems.

Disclosure of Interests: All authors were employees of Janssen R&D, LLC,
when conducting this research and may own company stock / stock options.
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