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ABSTRACT

Model Inversion (MI) attacks aim at leveraging the output information of target
models to reconstruct privacy-sensitive training data, raising widespread concerns
on privacy threats of Deep Neural Networks (DNNs). Unfortunately, in tandem
with the rapid evolution of MI attacks, the lack of a comprehensive, aligned, and
reliable benchmark has emerged as a formidable challenge. This deficiency leads
to inadequate comparisons between different attack methods and inconsistent
experimental setups. In this paper, we introduce the first practical benchmark for
model inversion attacks and defenses to address this critical gap, which is named
MIBench. This benchmark serves as an extensible and reproducible modular-
based toolbox and currently integrates a total of 16 state-of-the-art attack and
defense methods. Moreover, we furnish a suite of assessment tools encompassing
9 commonly used evaluation protocols to facilitate standardized and fair evaluation
and analysis. Capitalizing on this foundation, we conduct extensive experiments
from multiple perspectives to holistically compare and analyze the performance
of various methods across different scenarios, which overcomes the misalignment
issues and discrepancy prevalent in previous works. Based on the collected attack
methods and defense strategies, we analyze the impact of target resolution, defense
robustness, model predictive power, model architectures, transferability and loss
function. Our hope is that this MIBench could provide a unified, practical and
extensible toolbox and is widely utilized by researchers in the field to rigorously
test and compare their novel methods, ensuring equitable evaluations and thereby
propelling further advancements in the future development.

1 INTRODUCTION

In recent years, Model Inversion (MI) attacks have raised alarms over the potential privacy breaches
of sensitive personal information, including the leakage of privacy images in face recognition models
(He et al., 2016), sensitive health details in medical data (Wang et al., 2022), financial information
such as transaction records and account balances (Ozbayoglu et al., 2020), and personal preferences
and social connections in social media data (Feng et al., 2022). In the MI attacks, an attacker aims to
infer private training data from the output information of the target model. Fredrikson et al. (2014)
proposed the first MI attack against linear regression models to reconstruct sensitive features of
genomic data. Subsequent studies (Fredrikson et al., 2015; Song et al., 2017; Yang et al., 2019) have
extended MI attacks to more Machine Learning (ML) models. Zhang et al. (2020b) first introduces
the GANs as stronger image priors, paving the way for more applications in GAN-based methods
(Chen et al., 2021a; Yuan et al., 2022; 2023b; Wang et al., 2021b).

However, some critical challenges are posed owing to the lack of a comprehensive, fair, and reliable
benchmark. Specifically, the evaluation of new methods is often confined to comparisons with a
narrow selection of prior works, limiting the scope and depth of analysis. For instance, some methods
(Nguyen et al., 2023b; Yuan et al., 2023a) exhibit superior performance for lower-resolution images
while other methods (Struppek et al., 2022; Qiu et al., 2024) perform better at higher resolutions.
However, these studies only evaluate under their predominant resolutions, and thus do not provide a
unified and comprehensive comparison. Additionally, the absence of unified experimental protocols
results in a fragmented landscape where there is less validity and fairness in the comparative studies.
For example, the original GMI (Zhang et al., 2020a) achieves the attack accuracy of 28%, 44%,
46% when attacking three different classifiers trained on the CelebFaces Attributes(CelebA) (Liu
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et al., 2015), while merely maintaining lower attack accuracy of 21%, 32%, 31% and 21%, 31%,
29% when compared in the KEDMI (Chen et al., 2021b) and PLGMI (Yuan et al., 2023a) under
the same experimental setup. Compounding these issues, discrepancies in the evaluation metrics
further obscure the reliability of reported conclusions, potentially steering the field towards biased or
misleading insights. These shortcomings impede both the accurate measurement of advancements in
the MI field and the systematic exploration of its theoretical underpinnings, underscoring the urgent
need for a harmonized framework to facilitate robust and transparent research practices.

To alleviate these problems, we establish the first benchmark in MI field, named MIBench. For build-
ing an extensible modular-based toolbox, we disassemble the pipeline of MI attacks and defenses into
four main modules, each designated for data preprocessing, attack methods, defense strategies and
evaluation, hence enhancing the extensibility of this unified framework. The proposed MIBench has
encompassed a total of 16 distinct attack and defense methods, coupled with 9 prevalent evaluation
protocols to adequately measure the comprehensive performance of individual MI methods. Further-
more, we conduct extensive experiments from diverse perspectives to achieve a thorough appraisal of
the competence of existing MI methods, while simultaneously venturing into undiscovered insights
to inspire potential avenues for future research. We expect that this reproducible benchmark will
facilitate the further development of MI field and bring more innovative explorations in the subsequent
study. Our main contributions are as follows:

• We build the first comprehensive benchmark in MI field, which serves as an extensible and
reproducible modular-based toolbox for researchers. We expect that this will foster the
development of more powerful MI attacks by making it easier to evaluate their effectiveness
across multiple distinct dimensions.

• We implement 16 state-of-the-art attack methods and defense strategies and 9 evaluation
protocols currently in our benchmark. We hope that the benchmark can further identify the
most successful ideas in defending against rapid development of potential MI attacks.

• We conduct extensive experiments to thoroughly assess different MI methods under multiple
settings and study the effects of different factors to offer new insights on the MI field. In
particular, we validate that stronger model predictive power correlates with an increased
likelihood of privacy leakage. Moreover, our analysis reveals that certain defense algorithms
also fail when the target model achieves high prediction accuracy.

2 RELATED WORK

Model Inversion Attacks. In the MI attacks, the malicious adversary aims to reconstruct privacy-
sensitive data by leveraging the output prediction confidence of the target classifier and other auxiliary
priors. Normally, the attacker requires a public dataset that shares structural similarities with the
private dataset but without intersecting classes to pre-train the generator. For example, an open-source
face dataset serves as essential public data when targeting a face recognition model. For a typical
GAN-based MI attack, attackers attempt to recover private images x∗ from the GAN’s latent vectors
z initialized by Gaussian distribution, given the target image classifier fθ parameterized with weights
θ and the trained generator G. The attack process can be formulated as follows:

z∗ = argmin
z

Lid(fθ(G(z)), c) + λLaux(z;G), (1)

where c is the target class, Lid(·, ·) typically denotes the classification loss, λ is a hyperparameter,
and Laux(·) is the prior knowledge regularization (e.g., the discriminator’s classification loss) used
to improve the reality of G(z). By minimizing the above equation, the adversary updates the latent
vectors z into the optimal results ẑ and generate final images through x̂ = G(ẑ).

Fredrikson et al. (2014) first introduce the concept of MI attacks in the context of genomic privacy.
They find that maximizing the posterior probabilities of a linear regression model can reconstruct
the original genomic markers. Ensuing works (Fredrikson et al., 2015; Song et al., 2017; Yang et al.,
2019) manage to design MI attacks for more kinds of models and private data, but are still limited
to attacking simple networks and grayscale images. To enhance the reconstruction performance
on complex RGB images, GMI (Zhang et al., 2020a) first propose to incorporate the rich prior
knowledge (Fang et al., 2023; Gu et al., 2020; Fang et al., 2024) within the pre-trained Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014). Specifically, GMI starts by generating a
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series of preliminary fake images, and then iteratively optimizes the input latent vectors that are used
for generation. Based on GMI, KEDMI (Chen et al., 2021b) refine the discriminator by introducing
target labels to recover the distribution of the input latent vectors. VMI (Wang et al., 2021a) utilize
variational inference to model MI attacks and adopts KL-divergence as the regularization to better
estimate the target distribution. PPA (Struppek et al., 2022) introduce a series of techniques such as
initial selection, post-selection, and data argumentation to enhance MI attacks and manages to recover
high-resolution images by the pre-trained StyleGAN2 (Karras et al., 2019). LOMMA (Nguyen et al.,
2023b) integrate model augmentation and model distillation into MI attacks to tackle the problem of
over-fitting. PLGMI (Yuan et al., 2023a) leverage a top-n selection technique to generate pseudo
labels to further guide the training process of GAN.

Besides, based on whether the parameters and structures of the victim model are fully accessible
to the attackers, MI attacks can be further split into white-box attacks and black-box attacks. Note
that in black-box settings, the gradients can no longer be computed by the back-propagation process.
Thus, Yuan et al. (2022) address this problem by sampling numerous latent vectors from random
noise, selecting the ones that can generate correct labels, and updating the latent vectors solely on
discriminator loss. Nguyen et al. (2023a) propose to conduct MI attacks on various surrogate models
instead of the unfamiliar victim model, transforming the black-box settings into white-box settings.

Model Inversion Defenses. To defend MI attacks, most existing methods can be categorized into two
types: model output processing (Yang et al., 2020; Wen et al., 2021; Ye et al., 2022) and robust model
training (Gong et al., 2023; Titcombe et al., 2021; Li et al., 2022; Wang et al., 2021c; Peng et al.,
2022; Struppek et al., 2023). Model output processing refers to reducing the private information
carried in the victim model’s output to promote privacy. Yang et al. (2020) propose to train an
autoencoder to purify the output vector by decreasing its degree of dispersion. Wen et al. (2021)
apply adversarial noises to the model output and confuse the attackers. Ye et al. (2022) leverage a
differential privacy mechanism to divide the output vector into multiple sub-ranges. Robust model
training refers to that incorporating the defense strategies during the training process. MID Wang
et al. (2021c) penalizes the mutual information between model inputs and outputs in the training
loss, thus reducing the redundant information carried in the model output that may be abused by the
attackers. However, simply decreasing the dependency between the inputs and outputs also results in
model performance degradation. To alleviate this issue and strike a better balance between model
utility and user privacy, Bilateral Dependency Optimization (BiDO) (Peng et al., 2022) minimizes the
dependency between the inputs and outputs while maximizing the dependency between the latent
representations and outputs. Gong et al. (2023) propose to leverage GAN to generate fake public
samples to mislead the attackers. Titcombe et al. (2021) defend MI attacks by adding Laplacian noise
to intermediate representations. LS (Struppek et al., 2023) finds that label smoothing with negative
factors can help privacy preservation. TL (Ho et al., 2024) leverages transfer learning to limit the
number of layers encoding sensitive information and thus improves the robustness to MI attacks.

3 OUR BENCHMARK

3.1 DATASET

Considering existing MI attacks primarily focus on reconstructing private facial data from image
classifiers, we select 4 widely recognized face datasets as the basic datasets for our benchmark, which
include Flickr-Faces-HQ (FFHQ) (Karras et al., 2019), MetFaces (Karras et al., 2020a), FaceScrub
(Ng & Winkler, 2014), and CelebFaces Attributes (CelebA) (Liu et al., 2015). Generally, FFHQ
and MetFaces are employed as public datasets for pre-training auxiliary priors, whereas FaceScrub
and CelebA serve as the target private datasets to attack. Our benchmark facilitates researchers to
freely combine public datasets with private ones, thereby enabling customized experimental setups.
Extensive evaluation on more non-facial datasets are presented in Sec.C.3

Notably, the target resolutions across different MI attacks are not uniform. The majority of attack
methods concentrate on low-resolution images of 64× 64, while recent attack methods have begun
to focus on higher resolutions, such as 224 × 224. Therefore, our benchmark offers 2 versions
of low-resolution and higher-resolution for the aforementioned 4 datasets and prepares multiple
transformation tools for processing images, freeing researchers from the laborious tasks of data
preprocessing. More details regarding the datasets can be found in the Sec. B.2 of the Appendix.
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3.2 IMPLEMENTED METHODS

Our benchmark includes a total of 16 methods, comprising 11 attack methods and 4 defense strategies.
With a focus on Generative Adversarial Network (GAN)-based MI attacks, we selectively reproduce
methods from recent years that have been published in top-tier conferences or journals in the
computer vision or machine learning domains. This criterion ensures the reliability and validity of
the implemented methods. Considering the main targets in our benchmark are image classifiers for
RGB images, the learning-based MI attacks (Fredrikson et al., 2015; Song et al., 2017; Yang et al.,
2019) are not incorporated currently. More detailed information about the implemented methods is
stated in Sec. A.2 and Sec. A.3.

Attacks. Based on the accessibility to the target model’s parameters, we categorize MI attacks into
white-box and black-box attacks. White-box attacks can entail full knowledge of the target model,
enabling the computation of gradients for performing backpropagation, while black-box attacks are
constrained to merely obtaining the prediction confidence vectors of the target model. Our benchmark
includes 8 white-box attack methods and 4 black-box attack methods, as summarized in Table 1.

Table 1: Summary of implemented MI attack methods in our benchmark.

Attack Method Accessibility Reference GAN Prior Official Resolution
GMI (Zhang et al., 2020a) White-box CVPR-2020 WGAN-GP 64× 64

KEDMI (Chen et al., 2021b) White-box ICCV-2021 Inversion-specific GAN† 64× 64
VMI (Wang et al., 2021a) White-box NeurIPS-2021 StyleGAN2 64× 64
Mirror∗ (An et al., 2022) White-box/Black-box NDSS-2022 StyleGAN 224× 224

PPA (Struppek et al., 2022) White-box ICML-2022 StyleGAN2 224× 224
PLGMI (Yuan et al., 2023a) White-box AAAI-2023 Conditional GAN 64× 64

LOMMA (Nguyen et al., 2023b) White-box CVPR-2023 ∼ 64× 64
IF-GMI (Qiu et al., 2024) White-box ECCV-2024 StyleGAN2 224× 224

BREPMI (Kahla et al., 2022) Black-box CVPR-2022 WGAN-GP 64× 64
C2FMI (Ye et al., 2023) Black-box TDSC-2023 StyleGAN2 160× 160

RLBMI (Han et al., 2023) Black-box CVPR-2023 WGAN-GP 64× 64
LOKT (Nguyen et al., 2023a) Black-box NeurIPS-2023 ACGAN 128× 128

∗Mirror (An et al., 2022) proposes attack methods on both white-box and black-box setings.
†KEDMI (Chen et al., 2021b) first proposed this customized GAN.
∼LOMMA (Nguyen et al., 2023b) is a plug-and-play technique applied in combination with other MI attacks.

Defenses. To effectively defend against MI attacks, the defender typically employs defense strategies
during the training process of victim classifiers. Our benchmark includes 4 typical defense strategies
and the details are presented in Table 2.

Table 2: Summary of implemented MI defense strategies in our benchmark.

Defense Strategy Reference Core Technique Description

MID (Wang et al., 2021c) AAAI-2021 Regularization Utilize mutual information regularization to limit leaked information
about the model input in the model output

BiDO (Peng et al., 2022) KDD-2022 Regularization Minimize dependency between latent vectors and the model input
while maximizing dependency between latent vectors and the outputs

LS (Struppek et al., 2023) ICLR-2024 Label Smoothing Adjusting the label smoothing with negative factors contributes to
increasing privacy protection

TL (Ho et al., 2024) CVPR-2024 Transfer Learning Utilize transfer learning to limit the number of layers encoding
privacy-sensitive information for robustness to MI attacks

3.3 TOOLBOX

We implement an extensible and reproducible modular-based toolbox for our benchmark, as shown
in Fig 1. The framework can be divided into four main modules, including Data Preprocess Module,
Attack Module, Defense Module and Evaluation Module.

Data Preprocess Module. This module is designed to preprocess all data resources required before
launching attacks or defenses, including datasets, classifiers and parameters. Consequently, we
furnish this module with three fundamental functionalities: dataset preprocessing, target model
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Figure 1: Overview of the basic structure of modular-based toolbox for our benchmark.

training, and parameter management. For dataset preprocessing, we build a unified pipeline for
each dataset, which automatically carries out a series of operations such as spliting dataset and
image transformations (e.g. center crop and resize) based on the split file and chosen resolution
from users. For target model training, users can further leverage the processed datasets to train
designated classifiers. We abstract the general procedures in classifier training into a base trainer class
to facilitate users in extending and customizing their own classifiers. For parameter management,
we encapsulate parameters used in different processes into specific configuration classes, such as
TrainConfig designated for the training process and AttackConfig for the attack process, thus ensuring
organized and efficient parameter handling across various operations in the workflow.

Attack Module. The workflow of MI attacks can be roughly divided into two stages. The first stage is
GAN training, where the module abstracts the general training process of GANs into a basic trainer
class. This allows users not only train GANs that are pre-built into the benchmark, but also extend to
their uniquely designed GANs. The second stage is the core inversion attack, which we split into
three parts: latent vectors initialization, iterative optimization, and an optional post-processing step.
After completion of the attack, the module preserves essential data such as the final optimized images
and latent vectors, facilitating subsequent evaluation and analysis.

Defense Module. Considering the mainstream MI defense strategies are applied during the training
process of target classifiers, we design the defense module following the target model training
functionality within the Data Preprocessing Module. To enhance extensibility, we incorporate
defense strategies as part of the training parameters for classifiers to enable the defense during the
training process of target models, which decouples the defense from the training pipeline. In this way,
we allow users to customize their own defense strategies against MI attacks.

Evaluation Module. Our benchmark concentrates on the evaluation at distribution level instead
of sample level, assessing the overall performance of the whole reconstructed dataset. Therefore,
we provide a total of 9 widely recognized distribution level evaluation metrics for users, which
can be categorized into four types according to the evaluated content: Accuracy, Feature Distance,
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FID (Heusel et al., 2017) and Sample Diversity. For Accuracy, this metric measures how well the
reconstructed samples resemble the target class, consisting of Acc@1 and Acc@5. For Feature
Distance, it computes the average shortest l2 distance from features between each reconstructed
sample and private data to measure the similarity between the feature space of reconstructed samples
and private dataset. For FID, the lower FID score shows higher realism and overall diversity (Wang
et al., 2021a). For Sample Diversity, the higher values indicate greater intra-class diversity. Moreover,
we provide convenient tools for analysis, including Standard Deviation Calculation and Visualization.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

To ensure fair and uniform comparison and evaluation, we select the FFHQ (Karras et al., 2019) as the
public dataset and FaceScrub (Ng & Winkler, 2014) as the private dataset for all the experiments in
the Experiment section. The target models are fixed to the IR-152 (He et al., 2016) for low-resolution
scenario and ResNet-152 (He et al., 2016) for high-resolution scenario, both trained on the FaceScrub.
For each attack method, the number of images reconstructed per class is set to 5 due to considerations
of time and computation cost. More detailed experimental settings are listed in Sec.B in the Appendix.

Notably, we limit the evaluation exhibited in the Experiment section to merely three metrics, including
Accuracy, Feature Distance and FID (Heusel et al., 2017), while Sample Diversity is presented in the
Sec.C.1 in the Appendix. Moreover, the VMI (Wang et al., 2021a) and RLBMI (Han et al., 2023)
will be further evaluated in Sec. C.7 owing to their excessive need of time.

4.2 EVALUATION ON DIFFERENT ATTACK METHODS

In this part, we prepare a unified experimental setting for different MI attack methods to conduct a
fair comparison. The resolution of private and public datasets is set to 64× 64, indicating a relatively
easier scenario. Comparisons of white-box and black-box MI attacks are presented in Table 3.

Remarkably, the PLGMI (Yuan et al., 2023a) and LOKT (Nguyen et al., 2023a) achieve state-of-the-
art comprehensive performance in white-box attacks and black-box attacks respectively, showing
significant superiority in Accuracy and Feature Distance metrics. However, the lowest FID scores
occur in the PPA (Struppek et al., 2022) and C2FMI (Ye et al., 2023) respectively instead of the
above methods. We infer that this is because PPA and C2FMI employ more powerful generators (e.g.
StyleGAN2 (Karras et al., 2020b)) as the GAN prior compared to PLGMI and LOKT, leading to
more real image generation. Visualization in Fig 2 further validates the inference.

Table 3: Comparison between different white-box and black-box MI attacks.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
GMI 0.153± 0.077 0.265± 0.093 2442.667± 298.597 1.300± 0.176 91.861

KEDMI 0.404± 0.017 0.579± 0.013 2113.473± 545.085 0.997± 0.337 61.035
Mirror(white) 0.311± 0.014 0.509± 0.021 1979.211± 427.343 0.996± 0.258 36.610

PPA 0.844± 0.036 0.923± 0.026 1374.967± 387.380 0.657± 0.195 31.433
PLGMI 0.998± 0.002 0.999± 0.001 967.295± 222.725 0.486± 0.103 74.155

LOMMA+GMI 0.557± 0.111 0.678± 0.096 1948.976± 317.310 0.949± 0.221 62.050
LOMMA+KEDMI 0.711± 0.007 0.860± 0.006 1685.514± 486.419 0.759± 0.289 62.465

IF-GMI 0.797± 0.018 0.865± 0.014 1462.914± 486.419 0.722± 0.232 33.057

BREPMI 0.354± 0.013 0.608± 0.015 2178.587± 357.194 0.971± 0.186 74.519
Mirror(black) 0.526± 0.031 0.729± 0.020 1972.175± 427.391 0.854± 0.239 54.231

C2FMI 0.263± 0.009 0.459± 0.016 2061.995± 534.556 1.011± 0.265 43.488
LOKT 0.834 ± 0.010 0.918 ± 0.013 1533.071 ± 402.791 0.694 ± 0.169 71.701

4.3 EVALUATION ON HIGHER RESOLUTION

Recent attack methods have attempted to conquer higher resolution scenarios, such as PPA and
Mirror. Accordingly, we conduct a further assessment of MI attacks under an increased resolution of
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Figure 2: Visual comparison between different MI attacks.

GMI KEDMI Mirror
(white-box)

PPA PLGMI LOMMA
+GMI

LOMMA
+KEDMI

BREPMI Mirror
(black-box)

C2FMI LOKTGround
Truth

IF-GMI

Figure 3: Visual comparison between different MI attacks on higher resolution scenario.

224× 224, which is considered a more challenging task. The evaluation results for white-box and
black-box attacks are demonstrated in Table 4.

The results imply the significant impact of GAN priors when attacking private images with higher
resolution. All the methods that employ stronger GAN priors maintain low FID scores, including
Mirror, C2FMI, and PPA, while other methods suffer from significant degradation in image reality.
This phenomenon is more pronounced in the visualization results displayed in Fig 3. Despite the
primary metric for evaluating MI attacks is Accuracy, the reality of reconstructed images should be
ensured within a reasonable range for better image quality. Thus, it is imperative to explore more
complex GAN priors with enhanced performance in future research, extending the MI field to more
challenging and practical applications.

Table 4: Comparison between white-box MI attacks on higher resolution scenario.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
GMI 0.073± 0.024 0.192± 0.056 134.640 ± 24.203 1.328± 0.135 119.755

KEDMI 0.252± 0.007 0.494± 0.013 144.139± 33.673 1.139± 0.214 124.526
Mirror(white) 0.348± 0.023 0.649± 0.016 197.741± 32.212 1.049± 0.154 59.628

PPA 0.913± 0.022 0.986± 0.004 167.532± 28.944 0.774± 0.143 46.246
PLGMI 0.926± 0.007 0.987± 0.002 135.557± 36.500 0.730± 0.177 117.850

LOMMA+GMI 0.735± 0.043 0.875± 0.037 136.700± 29.743 0.953± 0.171 111.151
LOMMA+KEDMI 0.627± 0.009 0.864± 0.006 146.612± 42.594 0.977± 0.244 103.479

IF-GMI 0.815± 0.015 0.958± 0.003 263.081± 62.775 0.711± 0.146 47.59

BREPMI 0.342± 0.013 0.622± 0.026 134.263± 31.441 1.067± 0.208 105.489
Mirror (black) 0.611 ± 0.051 0.862 ± 0.018 198.609± 40.255 1.049 ± 0.192 92.413

C2FMI 0.414± 0.017 0.686± 0.018 439.659± 93.688 1.592± 0.249 47.317
LOKT 0.328± 0.004 0.553± 0.010 126.964± 36.434 1.122± 0.284 127.709
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(a) (b)

Figure 4: Comparison across ResNet-152 with varied predictive power. (a) The incremental trend
of Acc@1 metric on different attack methods. (b) The decreasing trend of δface metric on different
attack methods.

Figure 5: Evaluation on multiple MI defense strategies.

4.4 EVALUATION ON DIFFERENT MODEL PREDICTIVE POWER

The predictive power of the target model is a crucial factor in determining the effectiveness of MI
attacks. Previous work (Zhang et al., 2020a) has conducted preliminary experimental validations
on simple networks (e.g. LeNet (LeCun et al., 1989)), demonstrating that the performance of the
first GAN-based attack GMI is influenced by the predictive power of the target model. Therefore,
we evaluate the state-of-the-art MI attacks on target models with varied predictive power to further
validate the consistency of this characteristic in the recent attacks. The resolution of datasets is set to
64× 64. The evaluation is stated in Fig. 4.

The comparison in Fig. 4 reveals most MI attacks maintain the trend that higher predictive power
contributes to better attack performance, which is consistent with the aforementioned characteristic.
Specifically, the earlier attack methods (e.g., GMI and KEDMI) presents more fluctuation on the
trend across different predictive power, while the recent attack methods (e.g., PLGMI and PPA) show
in more stable trend when predictive power increases. This indicates the predictive power of target
models plays a crucial role in measuring the performance of MI attacks. Thus one can expect lower
privacy leakage in the robust model by balancing the accuracy-privacy trade-off. This study of the
predictive power of target models illustrates another useful aspect of our MIBench.
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4.5 EVALUATION ON DEFENSE STRATEGIES

This analysis concentrates on the robustness of MI attacks when applied to target models with defense
strategies. Notably, we select the first 100 classes subset from FaceScrub as the target dataset due
to the time cost. The assessment results are listed in Fig.5. The configuration of defenses is set
following the official parameters, as detailed in Table 8.

Overall, the TL (Ho et al., 2024) achieves the state-of-the-art decrease in Accuracy. However,
advanced attack methods have overcome current defense strategies to some extent, such as PLG
and PPA. Additionally, some older defense strategies (e.g. MID (Wang et al., 2021c)) are no longer
effective against the latest attacks. From Fig.5, we observe that LS (Struppek et al., 2023) exhibits
unexpectedly poor performance in Acc@1 metric while it was recently published in the top-tier
conference. The potential reason might be the utilized target classifier with relatively high test
accuracy, as validated in the Sec. C.4. Furthermore, we conduct further experiments with PPA
as the attack method against ResNet-152 trained on high resolution (224×224) scenario, proving
that this phenomenon can be extended into other defenses. The results are listed in the Table 5,
demonstrating that all the defenses become invalid even with the recommended parameters. More
in-depth evaluation on defenses is exhibited in Sec C.5.

Combining this phenomenon with the above experiment on predictive power, our empirical analysis
indicates that the leaked information is strongly correlated to the model prediction accuracy and
current defenses cannot effectively reduce the privacy information without sacrifice of model perfor-
mance. Our findings emphasize that more reliable and stable defense strategies should be studied due
to the fact that high model prediction accuracy is crucial for application of AI technology.

Table 5: Extensive evaluation on multiple MI defense strategies.

Method Hyperparameters Test Acc ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
NO Defense - 98.510 0.972 0.990 307.714 0.588 50.259

MID α = 0.005 96.760 1.000 1.000 273.687 0.517 49.239
α = 0.01 95.680 0.990 1.000 276.889 0.526 51.227

BiDO α = 0.01, β = 0.1 98.030 0.986 0.996 306.827 0.554 50.943
α = 0.05, β = 0.5 97.430 0.968 0.996 320.191 0.594 50.132

TL α = 0.4 97.620 0.994 1.000 282.394 0.513 53.023
α = 0.5 97.530 0.982 0.996 306.528 0.561 51.489

5 CONCLUSION

In this paper, we develop MIBench, a comprehensive, unified, and reliable benchmark, and provide
an extensible and reproducible toolbox for researchers. To the best of our knowledge, this is the first
benchmark and first open-source toolbox in the MI field. Our benchmark encompasses 16 of the
state-of-the-art MI attack methods and defense strategies and more algorithms will be continually
updated. Based on the implemented toolbox, we establish a consistent experimental environment and
conducted extensive experimental analyses to facilitate fair comparison between different methods.
In our experiments, we explore the impact of multiple settings, such as different image resolutions,
model predictive power and defense. With in-depth analysis, we have identified new insights and
proposed potential solutions to alleviate them.

Societal Impact and Ethical Considerations. A potential negative impact of our benchmark could
be malicious users leveraging the implemented attack methods to reconstruct private data from public
system. To alleviate this potential dilemma, a cautious approach for data users is to adopt robust and
reliable defense strategies, as shown in the Sec.4.5 of our paper. Additionally, establishing access
permissions and limiting the number of visits for each user is crucial to build responsible AI systems,
thereby alleviating the potential contradictions with individual data subjects.
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A BENCHMARK DETAILS

A.1 DETAILS OF DATA PROCESSING

This section introduces three types of dataset processing implemented by our toolbox, including data
pre-processing, dataset splitting and dataset synthesis.

A.1.1 DATA PRE-PROCESSING.

Data pre-processing aligns face images to ensure consistency across datasets. Users can customize
the transformations to be used for data pre-processing. We also provide default processing for four
datasets in high and low versions of the resolution. Low resolution versions include 64 × 64 and
112 × 112, and high resolution versions include 224 × 224 and 299 × 299. Here are the default
pre-processing method for the four datasets.

• CelebA (Liu et al., 2015). For the low version, a center-croped with a crop size 108× 108
and a resize function is applied to each sample from the origin images. For the high version,
only a direct resize will be used in the images pre-processed from HD-CelebA-Cropper (He,
2020).

• FaceScrub (Ng & Winkler, 2014). In the low-resolution version, the original data is center
cropped at 54/64 and then scaled, and the high-resolution is scaled directly.

• FFHQ (Karras et al., 2019) & MetFaces (Karras et al., 2020a). In low and high resolution
versions, we center cropped the data with 88/128 and 800/1024 factors, respectively, and
scaled to the specified resolution.

A.1.2 DATASET SPLITTING.

This step is used to model training, including classifiers and conditional generators. For labeled
datasets like CelebA and FaceScrub, we provide a fixed partition to slice the training and test sets. For
unlabeled datasets such as FFHQ and MetFaces, we provide a script for pseudo-labeling all images
by computing the scores. The strategy of PLGMI (Yuan et al., 2023a) for the score calculation is
contained in the examples of our toolbox.

A.1.3 DATASET SYNTHESIS.

Some methods use synthetic datasets for model training. We provide a script to synthesis datasets by
pre-trained GANs according to LOKT (Nguyen et al., 2023a).

A.2 IMPLEMENTATION OF ATTACK MODELS.

We implemented 64 × 64 and 256 × 256 versions for all the custom attack models defined by the
official code of implemented algorithms. For those algorithms that use StyleGAN2 (Karras et al.,
2020b), we provide a wrapper for loading the official model and adapting it to our attack process.

A.3 IMPLEMENTATION OF CLASSIFIER TRAINING & DEFENSE METHODS

Our toolbox supports the training of a wide range of classifiers, including those used by the official
code of most implemented algorithms, as well as those supported by TorchVision.

To ensure consistency across different defense strategies, we provide a unified framework for classifier
training. Here we present the general idea of implemented methods.

1. NO Defense. The classifiers are trained with the cross-entropy loss function.

2. MID (Wang et al., 2021c). It applies a Gaussian perturbation to the features in front of
the classification head to reduce the mutual information of the model inputs and outputs.
According to the official code, the method can also be called VIB, and we adopt this name in
our toolbox. The hyperparameter α controls the factor of the Gaussian perturbation term.
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3. BiDO (Peng et al., 2022). It adds the regular term loss (COCO or HSIC) function so that
the intermediate features decrease the mutual information with the input and increase the
mutual information with the output. It has two hyperparameters, α and β. The former is
the factor of the regular term loss between inputs and features, and the latter means that
between features and model outputs.

4. Label Smoothing (LS) (Struppek et al., 2023). It adds an label smoothing term with a
negative smoothing factor α into the cross-entropy loss.

5. Transfer Learning (TL) (Ho et al., 2024). This method uses a pre-trained model for
fine-tuning. The parameters of the previous layers are frozen and those of the later layers
will be fine-tuned. In our implementation, the hyperparameter α is defined as a ratio of the
number of frozen layers.

In order to fairly compare the various defense methods, all defense methods are trained using the
same pre-trained model in our experiments.

A.4 DETAILS OF ATTACK PROCESS

The attack process follows a sequential workflow, containing latent vectors sampling, labeled latent
vectors selection, optimization and final images selection. Here are the details of the workflow.

Latent Vectors Sampling. This step generate random latent vectors and distributes them for each
attack target. Most attack methods use a random distribution strategy. Mirror, PPA and BREP
calculate the score of each latent vector corresponding to each label, and for each label the vectors
with the highest scores are selected.

Labeled Latent Vectors Selection (Optional). The previous step distributes latent vectors for
each label, and this step optimizes the latent vectors by calculating the scores of the latent vectors
corresponding to the labels and selecting the few vectors with the highest scores. Although currently
there are no algorithms use this step, it can be added into the attack algorithms that use conditional
generators, e.g. PLGMI (Yuan et al., 2023a) and LOKT (Nguyen et al., 2023a).

Optimization. Optimization is the key step for the attack process, it accepts the initialized latent
vectors and attack labels as input and outputs the optimized inverted images. We provide several
kinds of optimization strategies of each attack method as follows.

1. Simple White-Box Optimization. An optimizer for attack algorithms that use the gradient
except KEDMI (Chen et al., 2021b) and VMI (Wang et al., 2021a). It optimize and generate
an image for each input vector. Some implement details are displayed in Table 6.

2. Variance White-Box Optimization. It optimizes results from a Gaussian distribution
of latent vectors corresponding to the target labels, and images are generated by random
sampling from the optimized distribution. It is used by KEDMI (Chen et al., 2021b).

3. Miner WhiteBox Optimization. This optimizer aims to iteratively update parameters of
networks that are utilized to produce high-quality latent vectors, such as Flow models (Xu
et al., 2022). It is used by VMI (Wang et al., 2021a).

4. Genetic Optimization. An optimizer using genetic algorithms for optimization. The black-
box version of Mirror (An et al., 2022) and C2FMI (Ye et al., 2023) use this optimization
strategy.

5. BREP Optimization. A specific optimizer for BREPMI algorithm (Kahla et al., 2022). It
uses a boundary repelling strategy for gradient simulation.

6. Reinforcement Learning Optimization. Optimizing the latent vectors via reinforcement
learning. Used by RLB attack method (Han et al., 2023).

Final Images Selection (Optional). This step works by calculating the scores of each image and
selecting the part of the image with the highest score as the result of the attack. It is used by PPA
(Struppek et al., 2022).
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Table 6: Overview of implement of different attack methods that use White-Box Optimization.

Method Latent Optimizer Identity Loss Prior Loss Image Augment

GMI Momentum SGD CE Discriminator %

KEDMI Adam CE Discriminator %

Mirror Adam CE - "

PPA Adam Poincaré - "

PLGMI Adam Max Margin - "

LOMMA Adam Logit Feature Distance %

IF-GMI Adam Poincaré - "

LOKT Adam Max Margin - "

A.5 DETAILS OF EVALUATION

We provide the following four evaluation metrics to evaluate the effectiveness of the attack.

1. Classification Accuracy. The metric uses a given classifier to classify the inverted images
and measures the top-1 and top-5 accuracy for target labels. The higher the reconstructed
samples achieve attack accuracy on another classifier trained with the same dataset, the more
private information in the dataset can be considered to be exposed (Zhang et al., 2020a).

2. Feature Distance. The feature is defined as the output of the given classifier’s penultimate
layer. We compute the shortest feature l2 distance between inverted images and private
samples for each class and calculate the average distance. Smaller feature distance means
more similar features to the private image.

3. Fréchet Inception Distance (FID). FID (Heusel et al., 2017) is commonly used to evaluate
the generation quality of GANs. The lower FID score shows higher inter-class diversity and
realism (Wang et al., 2021a).

4. Sample Diversity. The metric contains Precision-Recall (Kynkäänniemi et al., 2019) and
Density-Coverage (Naeem et al., 2020) scores. Higher values indicate greater intra-class
diversity of the inverted images.

B EXPERIMENTAL DETAILS

This section describes the setup and details of the experiments in this paper.

B.1 EXPERIMENT SETTINGS

We conducted experiments at both low and high resolution scenarios. For the low resolution experi-
ments, we employed classifiers with a resolution of 64× 64 as the target models, and an ResNet-50
with a resolution of 112× 112 served as the evaluation model. In the high resolution experiments,
we used classifiers with a resolution of 224× 224 as the target models, with an Inception-v3 model
having a resolution of 299× 299 as the evaluation model. Additionally, the computation resources
utilized in our experiments including 16× NVIDIA RTX 4090 and 8× NVIDIA A100.

B.2 DATASETS

The datasets used in our experiments are categorized into two types: public datasets and private
datasets. The private datasets are used to train the target and evaluation models. Specifically, we
selected 1000 identities with the most images from the CelebA dataset and all 530 identities from the
FaceScrub dataset as our private datasets.

The public datasets serve as a priori knowledge for the attacker to train the generator or to extract
features of real faces. For the low-resolution experiments, we used FFHQ and the images from
the CelebA dataset that are not included in the private dataset as our public datasets. For the high-
resolution experiments, FFHQ and MetFaces were chosen as the public datasets. Note that MetFaces
is an image dataset of 1336 human faces extracted from the Metropolitan Museum of Art Collection.
It has a huge distribution shift with real human faces, which makes model inversion attack algorithms
encounter great challenges.
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The preprocessing of these datasets is described in A.1.1.

B.3 CLASSIFIERS

For the attack experiments, we trained multiple classifiers as target models and evaluation models, as
detailed in Table 7. For the defense experiments, we trained the ResNet-152 model on the FaceScrub
dataset using various defense methods, as outlined in Table 8.

Table 7: Overview of target and evaluation models used in attack experiments.

Dataset Model Resolution Test Acc

CelebA

VGG-16 64× 64 0.8826
ResNet-152 64× 64 0.9371
ResNet-50 112× 112 0.9588

ResNet-152 224× 224 0.9003
Inception-v3 299× 299 0.9216

FaceScrub

VGG-16 64× 64 0.8785
ResNet-152 64× 64 0.9825
ResNet-50 112× 112 0.9938

ResNet-152 224× 224 0.9225
ResNeSt-101 224× 224 0.9329
Inception-v3 299× 299 0.9445

Table 8: Overview of IR-152 trained with FaceScrub dataset in different defense methods. The
definition of hyperparameters are described in A.3.

Defense Method Hyperparameters Test Acc
No Defense - 0.9825

MID α = 0.01 0.9824
BiDO α = 0.01, β = 0.1 0.9401

LS α = −0.05 0.9802
TL α = 0.5 0.9536

B.4 EVALUATION.

The definitions of the evaluation metrics are detailed in Section A.5. Here, we present the specific
details of the metrics used in the experiments.

For the Classification Accuracy and Feature Distance metrics, we evaluate the attack results using
another classifier pre-trained on the same dataset as the target model: ResNet-50 for low-resolution
settings and Inception-v3 for high-resolution settings, denoted as Acc and δeval. Additionally, an
Inception-v1 model pre-trained on a large face dataset, VGGFace2, is used to calculate the feature
distance, measuring the realism of the inverted images, denoted as δface.

For FID, Precision-Recall, and Density-Coverage scores, we follow the experimental setup of existing
papers. We use Inception-v3, pre-trained on ImageNet, to extract the features of images and participate
in the score calculation.

C MORE EXPERIMENTAL RESULTS

C.1 SAMPLE DIVERSITY

Following the settings of Section 4.2 and 4.3, we computed the Precision-Recall (Kynkäänniemi
et al., 2019) and Density-Coverage (Kynkäänniemi et al., 2019) to evaluate the intra-class diversity
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for each attack method. The results are presented in Table 9, 10, 11 and 12. It tends to be that the
attacks with stronger GAN priors get higher scores, such as Mirror, C2FMI and PPA.

Table 9: Comparison between white-box MI attacks on low resolution scenario.

Method ↑ Precision ↑ Recall ↑ Density ↑ Coverage
GMI 0.025± 0.079 0.797± 0.200 0.008± 0.018 0.019± 0.037

KEDMI 0.065± 0.159 0.055± 0.158 0.017± 0.051 0.025± 0.062
Mirror(white) 0.205± 0.232 0.444± 0.304 0.067± 0.095 0.133± 0.148

PPA 0.149± 0.199 0.499± 0.273 0.043± 0.073 0.089± 0.122
PLGMI 0.048± 0.116 0.302± 0.283 0.014± 0.038 0.030± 0.064

LOMMA+GMI 0.062± 0.123 0.828± 0.187 0.018± 0.043 0.040± 0.080
LOMMA+KEDMI 0.061± 0.187 0.000± 0.008 0.019± 0.052 0.023± 0.052

IF-GMI 0.129± 0.191 0.585± 0.279 0.039± 0.068 0.081± 0.115

Table 10: Comparison between black-box MI attacks on low resolution scenario.

Method ↑ Precision ↑ Recall ↑ Density ↑ Coverage
BREP 0.048± 0.131 0.249± 0.309 0.013± 0.030 0.023± 0.051

Mirror(black) 0.085± 0.147 0.489± 0.294 0.262± 0.043 0.059± 0.083
C2F 0.118± 0.234 0.029± 0.125 0.037± 0.078 0.053± 0.089

LOKT 0.051± 0.129 0.232± 0.292 0.013± 0.032 0.027± 0.063

Table 11: Comparison between white-box MI attacks on high resolution scenario.

Method ↑ Precision ↑ Recall ↑ Density ↑ Coverage
GMI 0.033± 0.086 0.758± 0.248 0.005± 0.011 0.013± 0.028

KEDMI 0.029± 0.116 0.055± 0.170 0.006± 0.016 0.010± 0.027
Mirror(white) 0.217± 0.236 0.350± 0.292 0.048± 0.072 0.092± 0.099

PPA 0.259± 0.243 0.322± 0.266 0.060± 0.075 0.112± 0.102
PLGMI 0.019± 0.099 0.002± 0.025 0.005± 0.015 0.007± 0.018

LOMMA+GMI 0.023± 0.074 0.514± 0.333 0.006± 0.013 0.013± 0.028
LOMMA+KEDMI 0.033± 0.130 0.003± 0.041 0.008± 0.026 0.011± 0.024

IF-GMI 0.154± 0.200 0.339± 0.287 0.035± 0.052 0.068± 0.074

Table 12: Comparison between black-box MI attacks on high resolution scenario.

Method ↑ Precision ↑ Recall ↑ Density ↑ Coverage
BREP 0.041± 0.121 0.160± 0.286 0.008± 0.024 0.014± 0.029

Mirror(black) 0.011± 0.055 0.115± 0.201 0.004± 0.010 0.008± 0.024
C2F 0.119± 0.227 0.026± 0.115 0.024± 0.048 0.036± 0.063

LOKT 0.014± 0.083 0.023± 0.125 0.004± 0.013 0.006± 0.016

C.2 EVALUATION ON DIFFERENT TARGET CLASSIFIERS

In addition to attacking IR-152 and ResNet-152 in Section 4.2 and 4.3, we extend our experiments on
more different target classifiers. We evaluate attacks on VGG-16 (Simonyan & Zisserman, 2014) and
ResNeSt-101 (Zhang et al., 2022a) in low and high resolution settings, respectively. The results are
presented in Table 13 and 14.

Besides the aforementioned CNN-based classifiers, we further analyze MI attacks on ViT-based
models. Table 15 presents further experiments on the MaxViT (Tu et al., 2022) under the high
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Table 13: Comparison between white-box MI attacks against VGG-16 on low resolution scenario.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
GMI 0.013± 0.003 0.046± 0.018 2565.303± 290.350 1.352± 0.142 62.205

KEDMI 0.074± 0.008 0.190± 0.013 2553.729± 412.648 1.147± 0.254 91.953
Mirror(white) 0.061± 0.007 0.165± 0.006 2358.875± 347.703 1.111± 0.174 37.605

PPA 0.263± 0.019 0.461± 0.023 2018.148± 377.491 0.874± 0.160 33.226
PLGMI 0.465± 0.019 0.683± 0.008 1914.942± 409.569 0.762± 0.174 81.093

LOMMA+GMI 0.091± 0.026 0.216± 0.047 2503.465± 288.728 1.060± 0.153 60.650
LOMMA+KEDMI 0.233± 0.009 0.418± 0.011 2258.070± 480.906 0.912± 0.205 66.410

IF-GMI 0.208± 0.010 0.391± 0.021 2102.656± 369.571 0.928± 0.172 35.816

Table 14: Comparison between white-box MI attacks against ResNeSt-101 on high resolution
scenario.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
GMI 0.069± 0.011 0.191± 0.036 135.290± 22.961 1.339± 0.135 124.880

KEDMI 0.153± 0.013 0.353± 0.012 143.155± 32.520 1.258± 0.245 140.533
Mirror(white) 0.380± 0.027 0.684± 0.021 193.275± 29.316 1.032± 0.161 58.437

PPA 0.904± 0.008 0.984± 0.002 159.986± 27.495 0.781± 0.157 44.966
PLGMI 0.931± 0.006 0.988± 0.003 147.914± 40.333 0.753± 0.177 92.755

LOMMA+GMI 0.577± 0.134 0.770± 0.123 131.040± 28.470 1.042± 0.165 133.604
LOMMA+KEDMI 0.373± 0.008 0.615± 0.007 148.923± 42.489 1.129± 0.285 139.433

IF-GMI 0.736± 0.013 0.920± 0.011 236.910± 49.451 0.647± 0.133 45.759

Table 15: Comparison between white-box MI attacks against MaxViT on high resolution scenario.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
GMI 0.018± 0.007 0.080± 0.021 260.084± 71.029 1.406± 0.131 154.447

KEDMI 0.112± 0.007 0.270± 0.028 261.827± 73.975 1.117± 0.224 148.083
Mirror 0.146± 0.034 0.346± 0.066 286.339± 47.047 1.034± 0.158 80.136
PPA 0.522± 0.020 0.758± 0.010 237.410± 41.175 0.776± 0.118 66.023

PLGMI 0.322± 0.035 0.574± 0.042 261.860± 55.469 0.772± 0.137 153.054
LOMMA+GMI 0.374± 0.077 0.620± 0.058 244.566± 48.069 0.920± 0.148 138.875

LOMMA+KEDMI 0.294± 0.014 0.552± 0.022 260.002± 71.687 0.910± 0.217 150.214
IF-GMI 0.408± 0.012 0.669± 0.020 230.251± 42.734 0.801± 0.139 45.625

resolution (224×224) scenario. Other experimental settings are continuous with the main paper, with
FFHQ as the public dataset and FaceScrub as the private dataset. The test accuracy of the target
MaxViT is 94.61%.

C.3 EVALUATION ON MORE COMBINATION OF DATASETS

Evaluations in the Section 4 are conducted under the same dataset combination of FFHQ as the public
dataset and FaceScrub as the private dataset. Therefore, we design more combination of datasets in
this part to further assess the transferability of different attacks. The results are listed in Table 16 and
17. The visual results are shown in Figure 6 and 7.

Except for the typical face classification task, we have conducted more experiments on the dog
breed classification task under the high resolution (224×224) scenario, which includes two non-facial
datasets, Stanford Dogs (Dataset, 2011) and Animal Faces-HQ Dog (AFHQ) (Choi et al., 2020). The
public dataset is AFHQ while the private dataset is Stanford Dogs. The target model is ResNet-152
of 77.45% test accuracy, which follows the same setting in PPA. Table 18 lists the evaluation results.
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Table 16: Comparison between white-box MI attacks with FFHQ prior against ResNet-152 pre-
trained on CelebA on high resolution scenario.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
GMI 0.050± 0.008 0.171± 0.031 216.614± 36.221 1.248± 0.138 108.217

KEDMI 0.174± 0.013 0.391± 0.011 247.112± 55.473 1.113± 0.221 119.760
Mirror(white) 0.367± 0.026 0.661± 0.024 286.668± 47.261 0.973± 0.166 63.261

PPA 0.936± 0.008 0.987± 0.002 233.474± 50.366 0.711± 0.148 46.339
PLGMI 0.953± 0.007 0.992± 0.002 261.210± 58.636 0.726± 0.167 151.119

LOMMA+GMI 0.664± 0.121 0.815± 0.100 207.854± 39.254 0.938± 0.162 109.383
LOMMA+KEDMI 0.222± 0.005 0.411± 0.007 229.407± 65.371 1.178± 0.346 145.272

IF-GMI 0.986± 0.003 0.999± 0.001 222.919± 52.073 0.614± 0.140 37.408

Table 17: Comparison between white-box MI attacks with Metfaces prior against ResNet-152 pre-
trained on CelebA on high resolution scenario.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
GMI 0.008± 0.003 0.046± 0.008 209.264± 45.093 1.392± 0.149 217.151

KEDMI 0.002± 0.001 0.011± 0.002 250.805± 62.654 1.561± 0.232 276.504
Mirror(white) 0.100± 0.007 0.265± 0.009 357.719± 52.080 1.261± 0.194 78.541

PPA 0.463± 0.020 0.726± 0.020 305.953± 57.145 1.074± 0.203 72.372
PLGMI 0.126± 0.003 0.274± 0.005 220.139± 41.739 1.126± 0.218 393.518

LOMMA+GMI 0.061± 0.019 0.140± 0.032 214.122± 54.770 1.370± 0.228 245.013
LOMMA+KEDMI 0.006± 0.001 0.013± 0.001 245.896± 63.101 1.630± 0.253 320.662

IF-GMI 0.934± 0.010 0.988± 0.003 235.986± 46.216 0.768± 0.162 73.375

Table 18: Comparison between white-box MI attacks with AFHQ prior against ResNet-152 pre-
trained on Stanford Dogs on high resolution scenario.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ FID
GMI 0.068± 0.031 0.226± 0.026 88.447± 15.990 210.543

KEDMI 0.606± 0.027 0.830± 0.032 66.521± 16.994 134.513
Mirror 0.656± 0.058 0.848± 0.017 142.580± 49.569 77.485
PPA 0.906± 0.026 0.990± 0.006 121.571± 45.929 58.479

PLGMI 0.216± 0.016 0.504± 0.022 86.629± 20.109 238.115
LOMMA+GMI 0.302± 0.103 0.486± 0.126 84.761± 24.458 198.523

LOMMA+KEDMI 0.838± 0.007 0.968± 0.007 58.225± 22.527 97.301
IF-GMI 0.947± 0.008 0.993± 0.003 147.845± 66.393 48.972

GMI KEDMI Mirror
(white-box)

PPA PLGMI LOMMA
+GMI

LOMMA
+KEDMI

Ground Truth

Figure 6: Visual comparison between different MI attacks with FFHQ prior.
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GMI KEDMI Mirror
(white-box)

PPA PLGMI LOMMA
+GMI

LOMMA
+KEDMI

Ground Truth

Figure 7: Visual comparison between different MI attacks with MetFaces prior.

C.4 EVALUATION ON LS DEFENSE METHOD

To evaluate the LS defense method, we follow the settings in the official paper (Struppek et al., 2023)
and evaluate it in more settings, shown in Table 19. To better evaluate the effectiveness of LS defense
algorithms by making the undefended classifiers slightly less accurate than the defense-imposed
classifiers through an early-stop strategy when training.

In setting A, the public and private datasets are different part of CelebA dataset in low resolution
scenario with the GMI as the attack method. In setting B, the public dataset is FFHQ and the private
dataset is FaceScrub with the PPA as the attack method. In these two settings, the predictive power is
much lower than that describes in Section 4.5. In this case, the LS defense is very effective, making
the success rate of the attack drop dramatically.

Table 19: Evaluation on LS defense method on different settings.

Setting Defense Test Acc ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface

A - 0.832 0.068± 0.054 0.180± 0.126 1949.072± 184.779 1.281± 0.129
LS 0.851 0.005± 0.003 0.021± 0.014 1984.984± 244.580 1.472± 0.199

B - 0.861 0.826± 0.032 0.965± 0.008 176.483± 33.399 0.844± 0.154
LS 0.869 0.320± 0.062 0.602± 0.068 233.413± 43.395 1.107± 0.186

C.5 VALIDATION FOR DEFENSE METHODS ON MODELS WITH LOW ACCURACY

The results for models with low accuracy are listed in Table 20. Obviously, the defense is valid when
the target model has relatively low prediction accuracy.

Table 20: Evaluation on defense methods for models with low accuracy.

Method Hyperparameters Test Acc ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
NO Defense - 92.170 0.686 0.914 262.471 0.767 68.454

MID α = 0.005 88.240 0.568 0.820 246.021 0.757 69.663
BiDO α = 0.01, β = 0.1 88.620 0.582 0.874 275.453 0.793 68.248

TL α = 0.4 89.160 0.316 0.616 279.439 0.897 63.241

C.6 EVALUATION ON DIFFERENT LOSS FUNCTIONS

In recent years, various attack algorithms have attempted to mitigate the effects of gradient vanishing
by employing different loss functions. In this part, we investigate the impact of identity loss functions
on the success rate of model inversion attacks. Specifically, we adopt PPA with FFHQ prior to
attack a ResNet-152 classifier pre-trained on FaceScrub. The comparison of the results is presented
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in Table 21. Our findings indicate that the Poincare loss function yields the highest performance
without model augmentation, whereas the Logit loss function achieves the best results with model
augmentation.

Table 21: Comparision of different identity loss. "+" denotes that the target model is used as the
teacher model, and three students models are distilled using the public dataset and jointly involved in
the loss calculation. It is called model augmentation in the paper of LOMMA Nguyen et al. (2023b).
Logit loss here is implemented via pytorch’s NLLLoss.

Loss Function ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
CE 0.769± 0.032 0.942± 0.012 172.305± 26.753 0.901± 0.140 53.880

Poincaré 0.913± 0.022 0.986± 0.004 167.532± 28.944 0.774± 0.143 46.246
Max Margin 0.812± 0.020 0.951± 0.008 169.730± 27.705 0.871± 0.150 51.146

Logit 0.886± 0.023 0.978± 0.013 170.867± 31.415 0.806± 0.148 45.731
CE+ 0.946± 0.011 0.992± 0.002 165.461± 29.055 0.785± 0.147 48.564

Poincaré+ 0.901± 0.006 0.984± 0.004 153.921± 24.542 0.812± 0.158 45.114
Max Margin+ 0.918± 0.017 0.985± 0.003 165.420± 27.607 0.815± 0.148 49.292

Logit+ 0.945± 0.007 0.993± 0.003 177.745± 34.030 0.764± 0.159 44.166

C.7 MORE EVALUATION ON VMI, RLBMI AND PPA

Considering the high computational overhead of RLBMI and VMI, we only experiment at a low
resolution settings for 100 classes. The public and private datasets are different part of CelebA dataset.
The results are shown in Table 22.

Table 22: Experimental results of VMI and RLBMI.

Method ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface

VMI 0.168± 0.018 0.273± 0.019 1822.122± 398.948 1.260± 0.397
RLBMI 0.780± 0.040 0.920± 0.075 1173.134± 250.088 0.699± 0.049

We also explored the effect of PPA for different number of latent vectors for optimization and the
number of iterations. It is presented in Table 23. Note that PPA select top-5 optimized latent vectors
as attack results.

Table 23: Experiment result of PPA for different number of latent vectors to optimize and iterations.

Number of latents Iterations ↑ Acc@1 ↑ Acc@5 ↓ δeval ↓ δface ↓ FID
20 50 0.433± 0.072 0.651± 0.076 1888.342± 478.644 0.898± 0.239 40.138
50 50 0.496± 0.067 0.698± 0.048 1804.830± 471.815 0.847± 0.224 38.765
20 600 0.844± 0.042 0.924± 0.026 1391.261± 396.732 0.658± 0.194 46.246

D LIMITATIONS AND FUTURE PLANS

Our benchmark mainly focuses on GAN-based MI attacks and MI defenses applied in the classifier
training stage. We will extend our benchmark to wider range of MI methods, including learning-based
MI attacks and MI defenses applied to the classifier output. Furthermore, the concept of MI also
pervades across modalities (e.g. text (Parikh et al., 2022; Zhang et al., 2023; Carlini et al., 2019;
2021; Yu et al., 2023; Nasr et al., 2023) and graph learning (Zhang et al., 2021; 2022b; Zhou et al.,
2023; Wu et al., 2022; He et al., 2021)) beyond computer vision domain, where our benchmark
concentrates in current stage. Expansion to new modalities is a promising direction for our benchmark
to further explore the privacy threats in other fields, leading to more generalization in the AI security.
In addition to developing new algorithms, it is also essential to conduct further research on the MI
attacks and defenses to make in-depth analysis about their characteristics and bring valuable new
insights.
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