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ABSTRACT

Many real-world applications of flow generative models desire a diverse set of sam-
ples covering multiple modes of the target distribution. However, the predominant
approach for obtaining diverse sets is not sample-efficient, as it involves indepen-
dently obtaining many samples from the source distribution and mapping them
through the flow until the desired mode coverage is achieved. As an alternative
to repeated sampling, we introduce DiverseFlow—a training-free, inference-time
approach to improve the diversity of flow models. Our key idea is to employ a
determinantal point process to induce a coupling between the samples and drive
sample diversity under a fixed sampling budget. We demonstrate the efficacy of
DiverseFlow for tasks where sample efficient diversity is highly desirable—text-
guided image generation with polysemous words, inverse problems like large-hole
inpainting, and class-conditional image synthesis.

Prompt: “A famous boxer” Prompt: “A letter”

(a) (b) (c) (d)

Figure 1: Examples of text-guided generation with polysemous words. Under a limited sampling
budget, regular IID sampling (a, c) may not generate images spanning the different semantic meanings
of the words in the prompt. Under the same sampling budget, DiverseFlow (b, d) enhances the
diversity of the generated samples and spans different semantic meanings.

1 INTRODUCTION

Consider the task of text-guided image generation from open-ended prompts, like “A famous boxer"
or “A letter". Here, the word “boxer" can either mean an athlete or a particular dog breed. Similarly,
the word “letter" may refer to either an alphabet symbol or written correspondence. If we obtain a
few samples from a generative ordinary differential equation (ODE) for each prompt, we observe
images depicting only the dog breed and penned correspondences in Figure 1(a) and (c) respectively.
This situation necessitates obtaining additional samples from the model, till the desired alternate
meanings are discovered. But instead of repeated sampling, can we directly observe more meanings
by finding a more diverse set?

Beyond the aforementioned examples of text-to-image generation from polysemous1 prompts, sample
diversity is a desirable objective for many other tasks that use generative models. These include
inverse problems (e.g., large hole filling) and class-conditioned image generation, to name a few.
Diversity or mode coverage is a key pillar in the generative learning trilemma (Xiao et al., 2022), in
addition to fidelity and latency. For state-of-the-art generative methods such as flow matching models
(FM) (Lipman et al., 2022; Liu et al., 2022) and diffusion models (DM) (Sohl-Dickstein et al., 2015;

1Words or phrases with several meanings.
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Ho et al., 2020), significant work has been done on improving the photorealism of samples and the
efficiency of the sampling process (Ho & Salimans, 2022; Karras et al., 2022; Lipman et al., 2022;
Zheng et al., 2023; Song et al., 2020a; Tong et al., 2023). However, relatively little attention has been
paid to explicitly enhancing the diversity of generated samples under a limited sampling budget.

The standard approach to generate a diverse set of images is to repeatedly obtain independent and
identically distributed (IID) samples from an easy-to-sample source distribution (e.g., Gaussian
distribution), map them to samples in the target distribution, and continue this process until we
observe sufficient mode coverage in the target distribution. This process, while effective, is sample
inefficient, requiring the generation of more images than necessary. Importantly, the mapping from
the source to the target density does not hold a linear relationship; even specifically selecting diverse
samples from the source distribution by design does not necessarily yield diverse samples in the
target distribution. These limitations naturally raise the following research question.

How can we generate diverse samples from the target density under a fixed sampling budget?

In this paper, we propose DiverseFlow to obtain a diverse set of samples in a desired target density
under a fixed sampling budget. We focus on deterministic ODE sampling in continuous-time
generative models, specifically FMs, an emerging generative paradigm that enables simulation-free
training of continuous normalizing flows (CNFs) and includes diffusion as a special case.

DiverseFlow measures the diversity of a set of samples through the volume they span in the target space.
A set of similar samples span a lower volume, while a diverse set naturally spans a larger volume.
We impose a volume-based gradient constraint on the flow ODE by drawing on determinantal point
processes (DPP) (Macchi, 1975; Kulesza et al., 2012), a probabilistic model arising from quantum
physics that exactly describes the Pauli exclusion principle: that no two fermions may occupy the
same quantum state. Figure 1(b,d) show the images generated by DiverseFlow for the prompts “A
famous boxer" and “A letter". Unlike the ones generated via IID sampling, those from DiverseFlow
span more diverse modes corresponding to the polysemous words in the prompts.

We empirically demonstrate the utility of DiverseFlow across several tasks where diversity is inher-
ently desirable. First, we use DiverseFlow to perform text-guided image synthesis for words and
phrases that may carry a variety of meanings. Second, we perform large-hole face inpainting with
occlusion masks covering significant regions of the face that may be important to the person’s identity.
Third, we apply DiverseFlow on class-conditioned image synthesis and demonstrate that we can
more efficiently explore the data space compared to IID sampling. Lastly, to better characterize and
explain the behavior of DiverseFlow, we perform several experiments on synthetic 2D densities.

Summary of Contributions
1. We present a sample-efficient method to obtain a diverse set of samples from a flow ODE

(Section 5) and demonstrate it qualitatively (Sections 6.1 to 6.3)
2. We introduce the task of image synthesis from polysemous prompts in the context of analyzing

diverse sampling, and show qualitatively and quantitatively that DiverseFlow is able to discover
more meanings in Section 6

3. We provide an empirical analysis over various flow matching formulations, showing which are
more suitable for obtaining diverse sets (Section 6.4)

2 PRELIMINARIES

2.1 FLOW MATCHING

Many generative models can be considered as a transport map from some easy-to-sample source
distribution to an empirically observed yet unknown target distribution. Recent successes in generative
modeling represent this transport map in the form of continuous-time processes, such as stochastic
differential equations (SDEs) (Song et al., 2020b; Ho et al., 2020), or ordinary differential equations
(ODEs) (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023). Although diffusion models are
formulated as SDEs, a significant body of research focuses on converting the diffusion SDE to a
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deterministic ODE at inference time for faster inference. The diffusion ODE, or probability flow ODE,
is a particular case of continuous normalizing flows (CNFs). Flow Matching (FM) (Lipman et al.,
2022; Liu et al., 2022; Albergo et al., 2023) is motivated by the idea of directly training CNFs in a
scalable and simulation-free manner, just like diffusion models. Moreover, many recent text-to-image
generative models, such as Stable Diffusion 3 (Esser et al., 2024), adopt the FM framework. As such,
we present our approach primarily in the context of FM, and our findings can be extended to diffusion
and score-based generative models in a straightforward manner.

A CNF reshapes a prior source density p0 to the empirically observed target density p1 with an ODE
of the form:

dxt = vθ(xt, t)dt, x0 ∼ p0 (1)

where vθ is a time-dependent velocity field whose parameters θ are learned; we interchangeably
use the notation vt to imply vθ(·, t). It becomes possible to obtain samples from p1 by integrating
Equation (1) over time, i.e. by starting at x0 ∼ p0 for t = 0 and solving the ODE till t = 1. As our
approach is training-free, we do not elaborate on the details of learning to regress the vector field vt;
we encourage interested readers to refer to the works of Lipman et al. (2022) and Tong et al. (2023)
for a primer on training FMs.

At any timestep t during sampling, an intermediate sample xt in the flow trajectory can be used to
obtain an approximation of the target as follows:

x̂1 = xt + vθ(xt, t)(1− t) (2)

Equation (2) is equivalent to simply taking a large Euler step at any time instance t and is naturally
more accurate as t approaches t = 1. Further, Equation (2) is also well suited for ODEs with ‘straight’
paths, where the direction of the time-varying velocity vt remains near-constant in time (such as the
work of Liu et al. (2022)). Similarly, we can estimate the source sample by simply taking a step in
the reverse direction:

x̂0 = xt − vθ(xt, t)t (3)

2.2 DETERMINANTAL POINT PROCESSES

Determinantal point processes (DPPs) (Macchi, 1975; Borodin & Olshanski, 2000; Kulesza et al.,
2012) are probabilistic models of repulsion between points. They were originally termed as fermion
processes as they describe the Pauli exclusion principle or antibunching effect in fermions. To define
a DPP, we must first consider a set of points, Y , and a point process P(Y)—a probability measure
on 2Y (the set of all possible subsets of Y). P is determinantal when the probability of choosing a
random subset Y ⊂ Y according to P is given by:

P(Y ⊂ Y) = det(LY )∑
Y⊂Y det(LY )

=
det(LY )

det(L+ I)
(4)

where L ∈ R|Y|×|Y| is a kernel matrix, and LY is the sub-kernel matrix indexed by the elements of
Y . Equation (4) has an intuitive geometric interpretation if we consider the kernel L to be constructed
from cosine similarity: the determinant of LY is the Gram-determinant, describing the squared
volume of the N -dimensional parallelotope spanned by the set of vectors Y . Thus, a DPP naturally
assigns higher probabilities to more orthogonal (and thus diverse) subsets that span larger volumes.
We leverage DPPs to define a coupled likelihood measure over a set of samples in a flow trajectory.

3 RELATED WORK

Efficiently finding diverse sets is useful in several application areas of machine learning. For
instance, Batra et al. (2012) show that the M-Best MAP (maximum a posteriori) solutions in Markov
random fields are often distant from the ground truth and highly similar. They thus propose the
Diverse M-Best problem—finding a set of M highly probable solutions satisfying some minimum
dissimilarity threshold—that partly inspires our study in Section 4. Yuan & Kitani (2019) utilize
DPPs in conjunction with variational autoencoders (VAE) for diverse trajectory forecasting; a set
of diverse future pedestrian trajectories improves safety-critical perception systems in autonomous
vehicles. Motivated by potential drug discovery and material design applications, Jain et al. (2023)

3
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propose finding diverse Pareto-optimal candidates in a multi-objective setting with generative flow
networks.

The work by Corso et al. (2023) which explores diverse non-IID sampling for diffusion models is most
similar in spirit to DiverseFlow. However, DiverseFlow is notably different in multiple aspects: 1) Our
diversity objective is derived from determinantal point processes, a diversity-promoting probability
measure of the joint occurrence of a set of samples. Corso et al. (2023) is instead inspired by stein
variational gradient descent (SVGD) (Liu & Wang, 2016). 2) The diversity metric in DiverseFlow
(volume, or determinant of similarity kernel) assigns a likelihood score of 0 if any duplicate elements
are present; presence of duplicates is tolerated in the Particle Guidance metric (row-wise sum of
similarity kernel) 3) DiverseFlow is motivated by imparting diversity to deterministic flows, which
lack the inherent stochasticity afforded by SDE formulations of diffusion models that Corso et al.
(2023) focuses on.

4 DIVERSE SOURCE SAMPLES DO NOT YIELD DIVERSE TARGET SAMPLES

Problem Setting: We start with a synthetic example to illustrate our problem of interest. Consider
that we have empirical observations from a target distribution π1 ∈ R2, which is a random mixture
of Gaussians, such as the example shown in Figure 2a. We design π1 =

∑N
i=1 wiN (µi, σ

2
i I) to

contain N = 10 randomly selected modes N (µi, σ
2
i I), each with a random mixture weight wi; we

observe that in our example, there are 6 high probability modes and 4 low probability ones. Suppose
we have a sampling budget of K samples. This leads to three possible scenarios: (i) K < N , (ii)
K = N , and (iii) K > N . Among the aforementioned, case (i) (fewer samples than modes) is the
most likely characteristic of any real-world dataset.

(a) Target Gaussian
mixture model den-
sity with N = 10
modes.

(b) Conditional Flow
Matching (Lipman
et al., 2022)

(c) Mini-batch Opti-
mal Transport (Tong
et al., 2023)

(d) DiverseFlow on
CFM

(e) DiverseFlow on
Mini-batch OT CFM

Figure 2: We want to find K = 5 diverse samples from the target distribution (a) with N = 10
modes. Even if samples in the source distribution are diverse, they will not necessarily lead to diverse
samples in the target distribution. Even with 5 samples, only three modes are found by IID sampling
(b, c). We can find additional modes with the same sampling budget by applying DiverseFlow (d, e).

Let us have a prior distribution π0 and some generative model Ψ, such that, in the limit of infinite
samples, Ψ(x0 ∼ π0) ∼ π1. Then, the objective of sample-efficient diverse sampling is to obtain
samples from min(K,N) modes from π1, given a fixed set of K samples in π0.

If diverse samples are desired from the target density of the flow, one may make the elementary
assumption that if the particles are distant at the source distribution, after being transported by the
flow, they remain distant in the target distribution. This assumption is not necessarily true, as we show
in Figure 2. By design, we choose a uniform mixture of eight Gaussians as the source π0 to obtain
diverse source samples. In Figure 2b, we can observe that source points from distinct modes can still
converge to the same target mode with IID sampling. Thus, an alternative procedure is necessary to
obtain a diverse set from a flow in a sample-efficient manner. We further explore this toy problem in
Section 6.4.

4
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5 DIVERSE SAMPLING FROM FLOWS

From Figure 2, we observe that independently (or heuristically) chosen source samples may not
map to a diverse set of target samples. In this case, we can select a new set of source samples and
repeat the sampling process till eventually covering at least K modes. However, this approach does
not satisfy our fixed sampling budget constraint. An alternative solution to repeated independent
sampling is defining and leveraging a diversity measure of the target samples to drive sample diver-
sity. For the set of source samples {x(1)

0 ,x
(2)
0 , . . . ,x

(k)
0 }, we could optimize a set of perturbations

{δ(1), δ(2), . . . , δ(k)} such that the new set {x(1)
0 + δ(1),x

(2)
0 + δ(2), . . . ,x

(k)
0 + δ(k)} maps to a

diverse set of target particles. However, this approach would require multiple simulations of the whole
ODE and backpropagating over all the timesteps, which increases the computational complexity of
the sampling process over the standard IID sampling.

This leads us to our proposed approach: we avoid multiple simulations and instead optimize the
flow trajectory for diversity while solving the ODE. For any sample in the flow trajectory xt,
suppose we have an estimate of the target sample x̂1 through Equation (2). Given a differentiable
objective L({x̂(1)

1 , x̂
(2)
1 , . . . , x̂

(k)
1 }) that assigns a probability to the diversity of the joint outcome

{x̂(1)
1 , x̂

(2)
1 , . . . , x̂

(k)
1 }, it can be leveraged to drive diversity among the target samples by modifying

the flow velocity of the i-th particle as,

ṽ
(i)
t = v

(i)
t − γ(t)∇

x
(i)
t
L({x̂(1)

1 , x̂
(2)
1 , . . . , x̂

(k)
1 }) (5)

where γ(t) ∈ [0,∞) is a time-varying scale that controls the strength of the diversity gradient.
Setting γ(t) = 0 reduces to the standard IID sampling scenario, while γ(t) > 0 will encourage
diversity between the generated samples. In practice, γ(t) follows the schedule of the probability
path normalized by the norm of the DPP gradient.

5.1 DETERMINANTAL GRADIENT CONSTRAINTS

We desire objective L in Equation (5) to be higher if the items in the set are diverse and lower if they
are similar to each other. We interpret diversity in terms of the volume spanned by the set. Consider
that we have k samples in Rd (assume k < d). An objective that prefers diversity can be defined as
the volume of the k-dimensional parallelotope in Rd spanned by the sample vectors; this volume
becomes diminished when there are similar samples (and even zero, for identical samples). The
determinant describes volumes well; a diverse set must span a large volume in the sample space and
have a corresponding large determinant.

To define a measure over a set of samples, we draw on the idea of determinantal point processes
(DPP). We first define a kernel L({x̂(1)

1 , x̂
(2)
1 , . . . , x̂

(k)
1 }) as follows:

L(ij) = exp

(
−h∥x̂

(i)
1 − x̂

(j)
1 ∥22

med(U(D))

)
(6)

where D denotes a distance matrix with Dij = ∥x(i) − x(j)∥22, U(D) denotes the upper triangle
entries of D, h denotes a kernel spread parameter, and med(U(D)) denotes the median of those
entries. Given L, we may define a DPP-based likelihood as:

L({x̂(1)
1 , x̂

(2)
1 , . . . , x̂

(k)
1 }) =

det(L)

det(L+ I)
=

k∏
a=1

λ(L)a
1 + λ(L)a

(7)

where λ(L)a is the ath eigenvalue of the kernel L. The log-likelihood is then,

LL = log det(L)− log det(L+ I) (8)

Note that the Euclidean distance ∥x̂(i)
1 − x̂

(j)
1 ∥22 is not very meaningful in the high-dimensional raw

image space (Aggarwal et al., 2001). Therefore, in practice, the distance should be computed in a
robust feature space, i.e., ∥F (x̂

(i)
1 )− F (x̂

(j)
1 )∥22, where F is some domain-specific feature extractor,

such as the vision transformer (ViT) (Dosovitskiy et al., 2020) for images.

5
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Quality Constraint: The DPP defined in Equation (7) acts as a repulsion-seeking force on the
flow ODE. A quality term can be incorporated into the DPP kernel to regularize the trajectory
diversification. Although flows can be defined between any arbitrary two distributions, let us consider
the special case when the source is a Gaussian, i.e., p0 ∼ N (0, I). Suppose we have a quality vector
qt = {q(1)(t), q(2)(t), . . . , q(k)(t)}, where any q(i)(t) ∈ [0, 1]. We can then define a new kernel
Lq = L ⊙ qtq

T
t , where each q(i)(t) penalizes a sample x

(i)
t if it deviates too much from the flow.

To define this, we obtain an estimate of the source sample x̂
(i)
0 (t) for any given sample x

(i)
t via

Equation (3), and check if it lies within a desired percentile-radius ρ of the Gaussian p0. Specifically,
we define the time-dependent sample quality as

q(i)(t) =

1 if ∥x̂(i)
0 (t)∥22 ≤ ρ2

max

(
ϵ, e

−
(
∥x̂(i)

0 (t)∥2
2−ρ2

))
otherwise

(9)

where ϵ is a ‘minimum quality’ we assign to prevent a zero determinant.

Soft DPP Objective: Note that the exact log-likelihood can still be undefined on the rare occasion
when we have very similar elements in the set. Instead of maximizing

∑
a log(λa/(1 + λa)) we can

maximize the expectation of the cardinality of the DPP (or the approximate rank of L):

E
[
| {x̂(1)

1 , x̂
(2)
1 , . . . , x̂

(k)
1 } |

]
=

k∑
a=1

λ(L)a
λ(L)a + 1

= Tr(I− (L+ I)−1) (10)

For cases where the DPP volume is not well defined (such as when n > d, like on the 2D plane), we
adopt Equation (10). In other scenarios (such as high dimensional examples in Section 6.1) we use
the exact log-likelihood LL defined in Equation (8).

5.2 COUPLED ORDINARY DIFFERENTIAL EQUATIONS

At any timestep t, the measure of diversity in Equation (8) or Equation (10) can be adopted to modify
the flow of the i-th particle. We compute the gradient of the samples with respect to the diversity
measure and use it to modify the ODE as follows:

dx
(i)
t =

[
vθ(x

(i)
t , t)− γ(t)∇

x
(i)
t

logL({x̂(1)
1 , x̂

(2)
1 , . . . , x̂

(k)
1 })

]
dt (11)

Where γ(t) is a time-varying scaling factor. Unlike the IID sampling scenario where we have K
independent ODEs, Equation (11) corresponds to a system of coupled non-linear ordinary differential
ordinary equations. To see this, first note that the estimate x̂(i)

1 depends on the current sample x(i)
t i.e.,

x̂
(i)
1 = x

(i)
t + vθ(x

(i)
t , t)(1− t). Second, the DPP log-likelihood LL({x̂(1)

1 , x̂
(2)
1 , . . . , x̂

(k)
1 }) induces

a time-dependent coupling between the K trajectories of x(i)
t , i = 1, . . . ,K and seeks to diversify

the target samples. Although higher-order ODE solvers (Karras et al., 2022) can be employed to
solve the coupled ODEs, we use the standard Euler method.

6 EXPERIMENTS

We demonstrate the utility of DiverseFlow in flow matching models; we consider three applications
where sample diversity is naturally desirable: text-guided image generation with polysemous words
and large-hole inpainting and class-conditional image generation. We also analyze the effect of
DiverseFlow on different flow matching formulations w.r.t. its ability to span diverse modes through
a synthetically constructed 2D density example.

6
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(a) “A buck” (b) “A famous boxer”

(c) “Van Gogh painting” (d) “A crane”

Figure 3: We show a set of four prompts that may have multiple meanings. For each prompt, the left
image (red box) denotes regular sampling with CFG=8, while the right image (blue box) shows the
result after incorporating DiverseFlow. We demonstrate that for the same fixed source, DiverseFlow
is often able to find more diverse sets and additional meanings.

6.1 IMAGE GENERATION FROM POLYSEMOUS PROMPTS

In text-to-image generation, the conditional data distribution corresponding to a text prompt may
contain many variations, and it is a desirable objective to generate images that span those variations
in a sample-efficient manner. We pose a scenario where diverse sets are easily observable: when
an open-ended text prompt is polysemous and carries multiple meanings, such as the examples we
show in Figure 1 and Figure 3. In Figure 3(a), the prompt “A buck” may commonly refer to a male
deer. However, it may also informally refer to a United States dollar. Using the same four source
points, which are deterministically mapped to four deer images by IID sampling, DiverseFlow finds
a different set of samples—one that includes a dollar-like coin, albeit embossed with a deer head.
We also observe minor differences between the two sets of images, such as changes in pose and
background in the top-right and bottom-right deers.

Figure 3(d) finds a crane (a large machine used in construction) from an original set comprised of four
birds. In (b), although the standard IID samples depict multiple meanings (dog breed and athlete),
three images depict athletes, while only one shows a dog. By improving the diversity of the set,
DiverseFlow finds dogs in two images and generates a rare example of a dog-headed man engaging
in boxing (top-right). For Figure 3(c), while ‘Van Gogh painting’ is not quite a polysemous word, it
can still have two meanings: a painting painted by Van Gogh, or a painting of Van Gogh. The regular
samples contain minimal diversity, as they include two sets of repeated paintings of Van Gogh. With
DiverseFlow, not only can we get a set of four distinct paintings, but we also have a portrait of Van
Gogh, which is one of the additional meanings of the prompt. However, DiverseFlow is limited by
the generative mapping learned by the flow; it is not always possible to discover diverse meanings.
We show some additional examples in the appendix, in Figure 10 and Figure 11 respectively.

6.2 DIVERSE INPAINTING ON FACES

Another inverse problem where diverse solutions are desirable is face inpainting, where we seek
to inpaint the missing parts of the face with diverse plausible facial textures and structures. To
demonstrate inpainting with FM models, we first incorporate Manifold Constrained Gradient (MCG)
(Chung et al., 2022) in an off-the-shelf unconditional Rectified-Flow model. In addition to the
manifold constraints, we employ determinantal gradient constraints to enhance diversity. The
complete flow-based inpainting method is described in Algorithm 1. In Figure 4 (b), we observe
that the inpainted faces of the four women have similar expressions (largely neutral). DiverseFlow

7
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improves the diversity of the set by yielding a highly different expression in the top-right image. In
(d) and (e), we also observe changes in facial hair and expressions due to diversification.

(a) (b) (c) (d) (e) (f)

Figure 4: Inpainting on CelebAHQ-256 × 256; (a, f) dashed boxes show masked input (top) and
ground truth (bottom) respectively. (b, d) RectifiedFlow (Liu et al., 2022) + MCG (Chung et al.,
2022) (c, e) DiverseFlow applied on RectifiedFlow + MCG

(a) (b) (c) (d) (e) (f)

Figure 5: Class-conditional ImageNet samples from LFM (Dao et al., 2023). We show samples for
two classes, (a, b, c) ‘Mushroom’ (class 947) and (d, e, f) ‘Macaw’ (class 88). (a, d) No CFG. (b, e)
LFM with CFG. (d, f) LFM with CFG and DiverseFlow.

6.3 DIVERSE CLASS-CONDITIONAL IMAGE SYNTHESIS

Suppose we can access a class-conditioned flow matching (FM) model trained on an unknown image
dataset. To explore the unobservable true dataset, we may use a set of class-conditional samples
from the FM model. We adopt a latent flow matching (LFM) model (Dao et al., 2023), trained to
generate 256 × 256 resolution images from the ImageNet (Deng et al., 2009) dataset. Much like
latent diffusion, LFM employs classifier-free guidance to create high-quality samples. However, this
naturally poses a cost to diversity, as we show in Figure 5.

By incorporating DiverseFlow, we can maintain the high quality of the samples and simultaneously
explore more modes in the dataset. In Figure 5, we demonstrate two ImageNet classes that may have
diversity: ‘Mushroom’ and ‘Macaw.’ For mushrooms, we observe that LFM primarily generates two
species of mushrooms. However, by applying DiverseFlow, we successfully find a new species within
our limited set: an Amanita muscaria, also known as the fly agaric—easily distinguishable by the
white spots on its red cap. In another example, we see that while LFM generates four scarlet macaws,
using the same source samples, DiverseFlow helps us find a different blue and yellow macaw. In all
samples shown in Figure 5, we use 100 Euler steps. For classifier-free guidance, we use a guidance
strength of 8. Additional details are provided in the Appendix.

6.4 DIVERSEFLOW ACROSS VARIOUS FM FORMULATIONS

In Figure 6, we study the utility of DiverseFlow across four different flow matching (FM) formulations
and observe two common properties: (i) DiverseFlow does not have a large effect on target samples
that are already diverse (ii) FM models tend to map near-identical source samples to highly similar
target samples. This phenomenon can be overcome with DiverseFlow. Additionally, we observe
that the trajectories of the non-diversified samples remain largely unchanged in OT-CFM (b) and
SB-CFM (c). In contrast, we observe additional curving in CFM (a) and SI (d). We hypothesize
that this is because estimates of x̂1 in CFM and SI have inaccuracies, leading to the flow direction
changing significantly with time. We also perform a numerical experiment to quantify the average
number of modes discovered by each FM variant on the toy density we define in Figure 2a as the
sampling budget K increases. Figure 7 reports the results. For a maximum sampling budget of
10, OT-CFM discovers only 5.64 modes on average, which is expected since the dataset contains
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six high-probability modes. By incorporating DiverseFlow, we can find 7.11 modes on average.
We observe that OT-CFM and SB-CFM benefit most from DiverseFlow, which conforms with our
previous hypothesis that straight paths are beneficial for accurately estimating the diversity gradient.

(a) CFM (b) OT-CFM (c) SB-CFM (d) SI

Figure 6: In IID sampling (top row), a pair near-identical source samples result in nearly identical
target samples. DiverseFlow (bottom row) forces the similar source samples apart in the flow
trajectory, and finds distinct modes.

Figure 7: Comparing different FM formulations in terms of the number of modes spanned by IID
sampling versus with DiverseFlow. More details about the experiment are provided in the Appendix.

(a) Training Data (b) IID Sampling (c) Particle Guidance
(Corso et al., 2023)

(d) DiverseFlow

Figure 8: An example adopted from Corso et al. (2023): Particle Guidance (c) and DiverseFlow (d)
for the prompt “VAN GOGH CAFE TERASSE copy.jpg”; the original data is shown in (a).

9
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(a) In-batch similarity vs aesthetic score (b) Average modes discovered over 100 trials

Figure 9: Comparing DiverseFlow and Particle GUidance

6.5 COMPARISON TO PARTICLE GUIDANCE

Previously, Corso et al. (2023) demonstrate that their method can alleviate Stable Diffusion’s training
data regurgitation problem (Somepalli et al., 2023) to some extent. In Figure 8, we demonstrate similar
capabilities; the top left and bottom right examples are copies of the training data. Subsequently,
both methods find a new example for the top-left sample. In high dimensional data, the number
of modes, N , is significantly greater than the budget K, so finding unique modes is still highly
probable. To better highlight the differences between DiverseFlow and Particle Guidance, we adopt
another experiment proposed by Corso et al. (2023): finding modes in a uniform Mixture of Gaussian
distribution. Unlike the asymmetric distribution we utilize in Figure 6, we now have a mixture of
N = 10 modes, where each mode has an equal probability. Corso et al. (2023) provides the result
that IID sampling discovers about 6.5 modes on average, while Particle Guidance with a Euclidean
kernel discovers almost 9 out of 10 modes. We verify this result in Figure 9b, finding that Particle
Guidance discovers up to 8.8 modes (averaged over 100 trials). However, by using DiverseFlow,
it is possible to discover all 10 modes, showing that our approach has a stronger diversification
effect. We also compare the diversity versus quality of DiverseFlow against Particle Guidance over 30
polysemous prompts (repeated over 10 seeds) in Figure 9a. Quality is measured by Aesthetic Score
(higher is better) (Christophschuhmann), and diversity is measured by average pairwise similarity
of a set (lower is better) (Corso et al., 2023). We observe that though DiverseFlow obtains better
diversity at similar quality, the aesthetic score of Particle Guidance is quite low, suggesting poor
quality. In Figure 12 we highlight the fact that Particle Guidance can sometimes suffer from artefacts,
and does not find as many diverse modes as DiverseFlow.

7 CONCLUSION

In numerous generative model applications, generating diverse samples under a fixed sampling budget
is a critical requirement. Flow matching is an emerging generative modeling paradigm that alleviates
key issues in diffusion and continuous normalizing flow-based generative models. However, the
deterministic nature of flow-matching models inherently limits their ability to enhance the diversity
of the generated samples in a sample-efficient manner. In this paper, we proposed DiverseFlow to
enforce diversity among a set of generated samples by coupling them through a determinantal point
process and accounting for the quality of the samples. Across multiple generative applications that
inherently desire diverse samples, we demonstrated that DiverseFlow can efficiently enhance the
diversity and mode coverage of the samples in the target distribution.
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We include the following in the Appendix.

1. Computational details in Appendix A.
2. Additional qualitative results in Figures 10 to 12
3. Experiment details for polysemous prompts in Appendix B.1.
4. Experiment details for image inpainting in Appendix B.2.
5. Experiment details for class-conditioned image generation Appendix B.3.
6. Discussion on similarities and differences with particle guidance in Appendix C.
7. Discussion of limitations in Appendix D.

A COMPUTATIONAL DETAILS

All experiments were performed on a single NVIDIA RTX A6000 GPU with 48 GB memory. All
images generated from latent-space models were generated at FP32 precision.

B ABOUT EXPERIMENTS

B.1 POLYSEMOUS PROMPTS

For direct comparison to (Corso et al., 2023), we utilize the probability flow ODE formulation of
Stable Diffusion v1.5 (Rombach et al., 2022) with polysemous prompts. We also apply DiverseFlow
on the larger Stable Diffusion v3 model (Esser et al., 2024), which is based on rectified flows (Liu
et al., 2022). We show some results for SD-v3 in Figure 10.

We adopt 30 polysemous prompts, which are given in Appendix B.1. To find such prompts, we
prompted an LLM for 50 polysemous nouns, and then we manually filtered 30 good polysemous
words with clearly distinct meanings. We use 30 Euler steps to sample from SD-v1.5, and 28 Euler
steps for SD-v3, with a classifier-free guidance strength of 8 and 7 respectively. For the feature
extractor, we experiment with both CLIP-ViT-B16 and DINO-ViT-B8, and find better results with
DINO. From Appendix B.1, it can be seen that polysemous prompts are a challenging task; for many
prompts, it is not yet possible to find the diverse meanings. For example, for “a spring”, both SD-v1.5
and SD-v3 only yield images of the season, and not the coiled object. DiverseFlow helps discover
5 and 4 additional meanings for SD-v1.5 and SD-v3 respectively. For the images in Figure 12 and
the results in Figure 9a, we use a scaling factor of 8σ(t) for Particle Guidance, same as used by the
authors in their paper. For DiverseFlow, we use 20σ(t)

∥∇ logL(xt
(1),xt

(2),...,xt
(k))∥ .

B.2 INPAINTING

To perform inpainting with an FM model, we first adopt an unconditional off-the-shelf face image
generating FM. We adopt a RectifiedFlow model pre-trained on CelebAHQ-256 × 256 (Karras
et al., 2018), from https://github.com/gnobitab/RectifiedFlow. Next, we extend
the manifold constrained gradient (MCG) algorithm (Chung et al., 2022) for diffusion to FM models,
in Algorithm 1. We use γ(t) = 10

√
1−t

∥∇ logL∥ as a time-varying scale for the DPP gradient.

The images in Figure 4 were generated with 200 Euler ODE steps; we used the seed 0 across all
images. The masks we used for inpainting were arbitrarily chosen to hide large areas of the face and
not from any particular dataset.

For the feature encoder F , we use the FaRL model (Zheng et al., 2021), which is a CLIP-like model
trained on LAIONFace Zheng et al. (2022). FaRL is trained in a mask-aware manner, and we
downsample the inpainting mask to additionally create an attention mask, to ensure that the feature
encoder F does not focus on the irrelevant areas.

B.3 CLASS-CONDITIONED IMAGE GENERATION

For the ImageNet samples, we show in Figure 5, we use pre-trained LFM models from: https://
github.com/VinAIResearch/LFM, specifically the ‘imnet_f8_ditb2’ weights. The mushroom
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polysemous word SD-v1.5 SD-v1.5+DF SD-v3 SD-v3 + DF
boxer ✓ ✓ ✗ ✓
crane ✓ ✓ ✓ ✓
bat ✗ ✗ ✗ ✗

letter ✓ ✓ ✓ ✓
buck ✓ ✓ ✗ ✗
seal ✓ ✓ ✗ ✗

mouse ✗ ✗ ✗ ✗
horn ✓ ✓ ✓ ✓
chest ✗ ✗ ✗ ✗
nail ✓ ✓ ✓ ✓
ruler ✗ ✓ ✗ ✓
ball ✗ ✗ ✗ ✗
file ✓ ✓ ✓ ✓
ring ✗ ✗ ✗ ✗
deck ✗ ✗ ✗ ✗
nut ✗ ✗ ✗ ✗
bolt ✗ ✓ ✓ ✓
bow ✗ ✗ ✗ ✗
pupil ✗ ✗ ✗ ✗
palm ✗ ✓ ✓ ✓

pitcher ✗ ✗ ✓ ✓
fan ✗ ✓ ✗ ✗
club ✓ ✓ ✓ ✓

anchor ✗ ✗ ✗ ✗
mint ✓ ✓ ✗ ✓
iron ✗ ✓ ✗ ✓
bank ✗ ✗ ✗ ✗
glass ✗ ✗ ✗ ✗
pen ✗ ✗ ✗ ✗

spring ✗ ✗ ✗ ✗
total 10 15 9 13

Table 1: List of polysemous prompts and discovered diverse meanings.
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Figure 10: Some examples on SD3 where significantly polysemous meanings are not discovered.
However, DiverseFlow still yields more diverse samples compared to IID samples.

(class 947) example was generated with seed 0, while the macaw (class 88) example was generated
with seed 6. Additionally, we used 100 Euler steps and a classifier-free guidance strength of 8 for both
samples. We primarily used DINO-ViT-B8 as the feature extractor F . The reason behind choosing
the classes 947 and 88 for our small qualitative example in Figure 4 is that these two classes are
prominently featured on the LFM project webpage: https://vinairesearch.github.io/
LFM.

B.4 MODE FINDING

We train a set of four identical models from scratch for the four FM variants used in Figure 7. Each
model is an unconditional generative model and is defined as an MLP consisting of 4 fully connected
layers, each except the first having 256 hidden units; the first layer has a hidden size of 256 + 1 to
account for the time input. We use the torchcfm library (https://github.com/atong01/
conditional-flow-matching) for the conditional path construction.
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Figure 11: Some examples on SD3 where DiverseFlow discovers alternate meanings that IID sampling
doesn’t find.

We solve the ODE with an Euler solver with 100 steps. We start with a budget of K = 2 (as for
K = 1, the ODE must always find at least 1 mode) and increase K till K = N = 10, where N = 10
is the true number of modes in the dataset. For each K, we repeat 1000 trials (by taking random
seeds 0-999). We use γ(t) = 2

√
1−t

∥∇ logL∥ . Since the data is 2D, we do not use any feature encoder F .

We find ∼ 7 modes on average with DiverseFlow, while IID sampling finds ∼ 5.6 modes. With
regular IID sampling, the least diverse seems to be the Stochastic Interpolant (Albergo et al., 2023).
Additionally, for the quantity ‘maximum modes found at any trial’ we observe that in over 1000 trials
with a budget of K = 10, IID sampling does not find a single instance of all 10 modes in any CFM
formulation.

B.5 MODE-FINDING WITH IDEAL SCORE

In Figure 9b, no model is trained, and we have access to a true score function of a mixture of uniform
Gaussian distribution, as shown in Figure 13. We scale the DPP gradient by γ(t) = W σ(t)

∥∇ logL∥ ,
where σ(t) is the variance schedule path, and W is a variable temperature parameter (Y-axis in
Figure 9b).

C CONNECTIONS TO PARTICLE GUIDANCE

It is possible to formulate Particle Guidance in DiverseFlow’s framework. Consider the DPP kernel
L that we define in Equation (6). Particle Guidance defines a time-varying ‘log potential’ that takes
the form:
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Figure 12: We find that Particle Guidance (middle row) can occasionally suffer from strange artefacts.
We hypothesize this may be because of the lack of any regularization in the approach of (Corso
et al., 2023), and the problem is particularly highlighted for open-ended prompts. In addition to
retaining quality, note that DiverseFlow (bottom row) finds more meanings: for example, for “a
mint” (right-most column), DiverseFlow discovered three meanings (the plant, the candy, coinage
production) with four samples.

Figure 13: Finding modes on uniform mixture of Gaussian with true score

log Φ
(i)
t (x(1),x(2), . . . ,x(k)) =

∑
j

L(ij) (12)

That is, the log potential for each particle is its pairwise similarity with every other particle. However,
it is not readily apparent why the log potential is this pairwise sum (Equation 4 in particle guidance
paper). In our work, the DPP is a probability measure that yields an approximate likelihood of the
joint distribution p(x(1),x(2), . . . ,x(k)). Therefore, the log potential is simply the log-likelihood of
the DPP. One geometric way to interpret the two approaches may be observed in Figure 14.

Thus, the log potential for each particle in particle guidance is distinct. However in our work, the
potential is the same for any particle, as it is defined over the determinant. The kernel-sum utilized in
Particle Guidance can also be interpreted as an approximate joint likelihood function, except, unlike
the DPP, it assigns a non-zero likelihood to the occurrence of duplicate elements. It is thus a softer
form of diversification, which can be observed in Figure 9b. Finally, particle guidance does not
consider a quality factor on the kernel, unlike DPP-based methods.
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Algorithm 1 MCG Flow Inpainting with Euler Method

Require: Inpainting input Y ∈ RH×W×3, inpainting mask M ∈ ZH×W×3
2 , number of sampling

steps N , time-varying velocity field vθ
X0 ∼ N (0, I) ▷ Sample a particle from source distribution Z0

for i=0 . . . N − 1 do
ti, ti+1 ← i

N , i+1
N ▷ Uniform timesteps, t ∈ 0 . . . 1

∆t ← ti+1 − ti
Vi ← vθ(Xi, t) ▷ Predicted velocity at timestep t

X̂N ← Xi +Vi(1− t) ▷ Estimated target particle X̂N ∼ Z1

Vi ← Vi + γ(t) ∗ ∇Xi
LL(X̂N ) ▷ DiverseFlow step

∇MCG ← ∂
∂Xi
∥Y ⊙M− X̂N ⊙M∥22 ▷ Manifold Constrained Gradient

Xi+1 ← Xi +Vi∆t ▷ Euler step
X′

i+1 ← Xi+1 − αti∇MCG ▷ Apply MCG correction; αti =
√
1− ti

Yi+1 ← X0(1− t′) +Yt′ ▷ Linearly interpolate between X0 and Y at ti+1

X′′
i+1 ← X′

i+1 ⊙ (1−M) +Yi+1 ⊙M ▷ Replace known region with Yi+1

end for
return XN

(a) Computing the sum of pair-
wise distances from current parti-
cle (green) to every other particle
(black)

(b) Computing the determinant
needs to consider the distance of
every point from every other point

Figure 14: A geometric look at Particle Guidance and DiverseFlow

D LIMITATIONS

From a modeling perspective, while DiverseFlow seeks to enhance the sample diversity of flow-
matching models under a fixed sampling budget, it is still limited by the distribution modes the
underlying FM models have learned. For instance, the word “mouse" may refer to: (i) a mammal
(rodent), (ii) a computer peripheral. DiverseFlow could not generate any samples of the computer
mouse with just the prompt “a mouse”; we hypothesize that the learned likelihood of the animal
significantly dominates the latter meaning. Again, with SD-v3, we could not find any examples of
coins for “a mint” which we could find for SD-v1.5. Thus, the discovery of diverse modes is still
clearly dependent on the model being used.

From a computational perspective, for high-resolution generative modeling, estimating the diversity
gradient ∇xt

LL can be memory intensive. With either Stable Diffusion or LFM, it is necessary to
backpropagate over (i) the KL-regularized AutoEncoder, (ii) the feature encoding ViT, F , and (iii)
the high-resolution sample x̂1—thus practically limiting us to a batch of 4 samples at a time. We
note that Particle Guidance faces a similar challenge. However, this can be overcome by computing a
progressively growing kernel: we can sample a set of 4 images, and then sample another 4, where the
kernel is 8× 8, and another 4, where the kernel is 12× 12, and so on, till some maximum allowed
context or kernel size.
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