
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAMES FOR AI CONTROL: MODELS OF SAFETY
EVALUATIONS OF AI DEPLOYMENT PROTOCOLS

Anonymous authors
Paper under double-blind review

ABSTRACT

To evaluate the safety and usefulness of deployment protocols for untrusted AIs, AI
Control uses a red-teaming exercise played between a protocol designer and an ad-
versary. This paper introduces AI-Control Games, a formal decision-making model
of the red-teaming exercise as a multi-objective, partially observable, stochastic
game. We also introduce reductions from AI-Control Games to a special case of
zero-sum partially observable stochastic games that allow us to leverage existing
algorithms to find Pareto-optimal protocols. We apply our formalism to model,
evaluate and synthesise protocols for deploying untrusted language models as
programming assistants, focusing on Trusted Monitoring protocols, which use
weaker language models and limited human assistance. Finally, we demonstrate
the utility of our formalism by showcasing improvements over empirical studies in
existing settings, evaluating protocols in new settings, and analysing how modelling
assumptions affect the safety and usefulness of protocols.

1 INTRODUCTION

An increasing range of products aim to automate tasks using AI systems based on large foundation
models. For example, some chatbots are given access to tools, such as code interpreters OpenAI
(2023); Adept AI (2024). Ensuring that AI systems behave safely across various deployment settings
will become increasingly challenging if the variety of use cases, scale of systems, and complexity
of tasks increase. While previous research has focused on increasing our confidence in model
behaviour, for example by training robustly harmless models Casper et al. (2024) or by detecting
harmful behaviour with interpretability tools MacDiarmid et al. (2024), in this paper we consider a
complementary approach: evaluating plans for safely deploying ‘untrusted’ AI systems about which
we have an unacceptable degree of uncertainty.

The design and evaluation of post-deployment safety measures to mitigate the risks posed by mis-
aligned AI systems, called ‘AI Control, is becoming an increasing priority for governments (The
White House, 2025; UK AI Safety Institute, 2025) and frontier AI developers (OpenAI & Apollo
Research, 2025; DeepMind, 2025; Anthropic, 2025). Following Greenblatt et al. (2024), we study
AI-Control protocols: practical plans for safely deploying an untrusted AI system (U) utilising various
resources, including non-AI software, human labour, or a weaker, trusted AI system. For example,
one protocol for controlling a chatbot might involve a pre-deployment evaluation where humans
utilise other language models to generate prompts that induce harmful completions Shah et al. (2023).
This paper focuses on another case, Trusted Monitoring (TM): constantly monitoring U’s behaviour
using a trusted model (T), with human auditing of suspicious behaviour.

Greenblatt et al. (2024) operationalise safety as the probability that an adversarially chosen untrusted
AI system would be incapable of causing some concrete unacceptable outcome. One example of an
unacceptable outcome would be revealing some sensitive information, such as model weights Clymer
et al. (2024). In this paper, we’ll consider a more general class of safety objectives that includes
minimising the expected number of bad outcomes (e.g. Wen et al., 2024). We evaluate the safety of
protocols under the worst-case assumption that U is ‘scheming’, meaning it behaves as though it
knows the protocol and is trying to subvert it to cause an unacceptable outcome.

A major challenge of evaluating the safety of a protocol with respect to a scheming AI is realistically
replicating the potential capabilities of such a system: as a proxy for a schemer, AI Control uses a
human red-teaming process to evaluate safety. The red team can intervene in U in some predefined set
of ways to induce it to subvert the AI-Control protocol and violate the safety property. For example,
they might intervene in an untrusted language model by finetuning weights or modifying prompts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Coding
Solution

U

Coding
Problem

T

Submit
code

H

T

Monitor
score

Action

Figure 1: Overview of protocol and modelling assumptions. Left: A representation of the Trusted
Monitoring protocol, where U is the untrusted AI, T is the trusted AI, and H is the human. Right:
T’s suspicion score distributions for safe solutions and those backdoored by U across the ‘original’
Greenblatt et al. (2024) and ‘weaker’ settings.

Since one safe protocol is ‘never use U’, we must also evaluate a protocol’s usefulness, which is its
ability to utilise U to complete a task under the assumption that U is ‘honest’ (not scheming). Our
proxy evaluations model an ‘honest’ untrusted model by not allowing the red team to intervene.

AI Control evaluations are a growing area of study (Mallen et al., 2024; Bhatt et al., 2025; Wen et al.,
2024) with potential applications for justifying the safe deployment of frontier AI systems (Clymer
et al., 2024; Buhl et al., 2024; Balesni et al., 2024; Irving, 2024). Although Greenblatt et al. (2024)’s
evaluation implicitly involved a game played between a blue and a red team, it lacked any formal
modelling of that game or game-theoretic analysis.

This work introduces AI-Control Games, the first formal model of AI Control. In Section 2 we
introduce a running example: ‘Trusted Monitoring’ protocols. We then state our contributions:

• Section 3 formalizes AI Control (a core area in AI safety) for the first time through AI-Control
Games: partially observable, multi-objective, leader-follower stochastic games.

• Section 4 demonstrates how our formalism can model Trusted Monitoring, and leverage it to give
expressions for the safety and usefulness of a wide range of protocols.

• Section 5 presents a reduction to a zero-sum stochastic game that allow us to adapt and leverage
existing algorithms to find Pareto-optimal protocols.

• Section 6 uses our model and algorithms to demonstrate Pareto-improvements on existing protocols
and analyses the safety-usefulness trade-off in novel settings.

• Section 7 is the first game-theoretic literature review for AI Control. It highlights similarities to
security games and contrasts them with similar games.

2 EXAMPLE: SETTING AND PROTOCOL

Throughout this paper, we will introduce AI-Control Games using the example deployment setting
from Greenblatt et al. (2024), and a generalisation of some of their protocols.

In the APPS backdooring setting, a language model is used as a programming assistant Greenblatt et al.
(2024). The protocol is asked to solve 1000 challenging programming tasks, presented sequentially
from the Automated Programming Progress Standard (APPS) dataset Hendrycks et al. (2021). The
protocol cannot itself write code, but may utilise three resources to do so: the untrusted AI (U) is
a powerful language model capable of solving programming problems; the trusted AI (T) is a less
powerful language model incapable of solving them1; and the human (H) is trusted and capable but
can only be used on 2% of problems. In this setting, a protocol’s usefulness is its ability to submit
correct programming solutions. Since only U can solve the problems, usefulness is the proportion of
solutions submitted that were generated by U.1 A protocol’s safety is the probability that none of the
1000 solutions submitted are backdoored, meaning they contain an exploitable vulnerability.2

Trusted Monitoring Protocol. As an example, we focus on a set of Trusted Monitoring protocols
and red team interventions, drawn in Figure 1 (left). After receiving a problem, the protocol queries
U for a solution (which may or may not be backdoored). The protocol then queries T to monitor

1In fact, T may be able to solve some problems, but Greenblatt et al. treat T’s ability as a baseline and
normalise between 0 and 1.

2An exploitable code vulnerability is one that the untrusted model can detect and exploit later. It is important
to note that Greenblatt et al. (2024) use a proxy for ‘backdoors’: inputs outside of the test cases where a function
fails to meet its specification.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the solution and observes a ‘suspicion score’, rating the likelihood that the solution is backdoored.
Based on this score and previous observations, the protocol decides on an action: ⟨Audit⟩ asks H
to audit the solution (if there’s a backdoor, the human will spot it, and the protocol shuts down)3;
⟨Defer⟩ asks T to write its own solution; and ⟨Run⟩ submits U’s solution. T’s suspicion scores are
modelled as a distribution, conditioned on whether the code is safe or backdoored. Note that the
Trusted Monitoring protocols that we consider generalise many of the protocols studied by Greenblatt
et al. (2024) (see Figure 2): our model is not prescriptive about how the protocol should decide to
⟨Audit⟩, ⟨Defer⟩, or ⟨Run⟩ allowing us to improve existing protocols (see Section 6).

Red team interventions. To test the safety of the protocol against intentional attempts to insert
backdoors, in some cases we allow the red team to modify the query to the untrusted model. In
particular, the red team gets a binary choice to either leave the query unchanged or ‘attempt a
backdoor’ by modifying the protocol’s query to U, requesting that it inserts a subtle backdoor.

Suspicion score distributions. The key empirical question for evaluating Trusted Monitoring
protocols is ‘How does T rate the suspiciousness of U’s programming solutions when they are/aren’t
backdoored?’. Figure 4 from Greenblatt et al. (2024) shows the distribution of trusted monitoring
suspicion scores for U’s programming solutions (both backdoored and safe). In this work, we mostly
consider two games, corresponding to two distribution pairs (shown in Figure 1, right). The first
‘Original Trusted Monitor’ is a pair of beta distributions approximately fit to the (scaled) empirical
suspicion scores found by Greenblatt et al. (2024) with Beta(7.39, 6.86) for safe problems and
Beta(8.91, 2.82) for backdoored problems. By plugging their data into our model, we are able to
extend their results about the APPS dataset to a range of new protocols without running any additional
experiments on language models. See Section D for justification of our approximation, and further
details. The second ‘weak’ case is a hypothetical where T is less discerning: it has the same safe
distribution, but for backdoored problems, we use a hypothetical distribution Beta(7.51, 4.22) chosen
to have a worse ROC curve. Note that we can easily utilise new empirical or hypothetical distributions
in our framework, thus potentially greatly reducing the cost of exploring the protocol in new domains.

3 FORMALISING AI-CONTROL GAMES

To analyse general properties of AI-Control evaluations, we newly formalise them mathematically. An
AI-Control Game is a form of two-player game that is played between Blue (the protocol designer)
and Red (the red team acting as a proxy for a scheming model). Episodes (play-throughs) of an
AI-Control Game have two modes: ‘attack’ or ‘honest’. The ‘attack’ mode represents the case in
an AI-Control evaluation where the red team is able to interfere with U (which itself is a worst-case
proxy for if the untrusted model were trying to subvert the protocol). In an attack game, both players
are active: Red is trying to minimise safety and Blue is trying to maximise safety. The honest
game represents the benign case, where we assume the untrusted AI system is not trying to cause
unacceptable outcomes. In an honest game, Blue effectively plays alone and is only assessed on its
usefulness score. Because Blue tries to maximise safety and usefulness, the game is multi-objective.
A key to the game is that Blue does not know which mode it is in (honest or attack) and for at least
this reason the game is partially observable. Blue may try to deduce whether the game is in attack
mode, while Red might choose actions to conceal this fact.

Red represents the red team that acts as a proxy for an untrusted AI system that runs on servers
controlled by the protocol. Crucially, the protocol will have access to the state of the untrusted
AI system and, therefore, we model Red as memoryless (its actions depend only on the last
observation).4 We model the game as leader-follower: the protocol is suggested, and then the red
team chooses the best response. Combining all of these requirements, we define AI-Control Games:

Definition 3.1 (AI-Control Game). An AI-Control Game G is a two-player, two-objective, partially-
observable, finite-horizon game defined by a tuple

(
S,AB ,AR,ΩB ,ΩR, I,P,RSafe,RUse, H

)
.

Here S is a state space. As is standard in decision processes, AB and AR are finite sets of actions
for Blue and Red, respectively. AR must contain a privileged action, anull, which represents Red not
interfering in the game. The tokens H⃝ and X⃝ represent the honest and attack conditions.5 In honest

3 Unless otherwise stated, we assume that the human auditor is perfectly accurate. We relax this assumption
in Section B and explore its impact in Section 6.1.

4Note that we could still model U as having external memory, modelled in the state and observed by Blue.
5Since, the tokens H⃝ and X⃝ are atomic and fixed, they aren’t defined in each new AI-Control Game tuple.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(H⃝) games, Red’s action is replaced by anull. Whether a game is honest or attack can be chosen non-
deterministically and is stored in the variable ?⃝. The safety rewardRSafe : S ×AB ×AR × S → R
rewards safety on a turn of an attack game, when both Blue and Red act. Similarly, the usefulness
rewardRUse : S×AB×S → R rewards usefulness on turn of an honest game, when Red has no action.
ΩB ,ΩR are finite sets of observations for Blue and Red: the signals that the agents receive from the
environment that give evidence about the state of the game. The initial state/observation distribution
is I ∈ ∆(S ×ΩB ×ΩR) and the transition function P : S ×AB ×AR → ∆

(
S × ΩB × ΩR

)
gives

a distribution over next states and observations.67 Lastly, all episodes are H time-steps long.

In an AI-Control Game, Blue (the protocol) should be able to remember past observations and actions.
We model Blue’s policies as behaviourally stochastic: functions from observation-action histories to
distributions over actions:8 πB : ΩB ×

⋃H−1
i=0

(
AB × ΩB

)i → ∆
(
AB
)
. As described above, Red

represents a red team that acts as a proxy for a scheming untrusted model that is memoryless (its
actions depend only on the last observation): πR : ΩR → ∆

(
AR
)
. Denote the sets of all policies

ΠB and ΠR.

Given a tuple, we can describe the process of an AI-Control Game as a sequence of interdependent
random variables denoted with uppercase letters. Let ?⃝ take values in { H⃝, X⃝} and S0, O

B
0 , O

R
0 ∼

I. At time t, we define the random variables for the state (St), Blue and Red’s observations
(OB

t , O
R
t), and their actions (AB

t , A
R
t). The random variables can be defined inductively for all t:

(St+1, O
B
t+1, O

R
t+1) ∼ P(St, A

B
t , A

R
t), where AB

t ∼ πB(OB
0 , A

B
0 , O

B
1 , A

B
1 . . . , OB

t) and, AR
t ∼

πR
(
OR

t

)
if ?⃝ is X⃝, else AR

t = anull.

Within our model, the safety of a policy pair (πB , πR) is the expected sum of safety scores in
attack games: Safety(πB , πR) := E

[∑H−1
t=0 RSafe

(
St, A

B
t , A

R
t , St+1

)
| X⃝
]
. Modelling safety as

the expected sum of a reward allows us to model Greenblatt et al. (2024)’s minimising the probability
of some unacceptable outcome, but also Wen et al. (2024)’s minimising the expected number of
harmful outcomes, without changing the core dynamics.

Usefulness is only rewarded in honest modes, where Red has no effect. Therefore, we de-
fine the usefulness score of πB as the expected sum of usefulness rewards: Use(πB) :=

E
[∑H−1

t=0 RUse

(
St, A

B
t , St+1

)
| H⃝
]
.

Because the protocol designer gets to choose their action first, and without knowing the red team’s
actions, we consider a leader-follower model: Blue chooses a policy, and then Red chooses a response
that minimises safety.

Proposition 3.2. For any AI-Control Game G, there exist distance functions in ΠB and ΠR such that:
Safety(πB , ·), Safety(·, πR), and Use(·) are continuous in their domains.9

Proofs of all claims in this section can be found in Section A, which details and utilises additional
results about two mappings from Blue/Red policies to simplexes.

Proposition 3.3. For all πB , Safety(πB , ·) attains its minimum at some πR, and minπR Safety(·, πR)
is continuous.

Our goal is to find protocols that maximise worst-case safety and usefulness. This can be modelled as
a multi-objective variant of a Stackelberg equilibrium:

Definition 3.4. The pair (πB , πR) is in an AI-Control Equilibrium iff
[minπR Safety(πB , πR),Use(πB)]T is weakly Pareto-optimal and πR minimises safety for
πB .

The set of equilibrium points describes a necessary tradeoff between safety and usefulness, and is
always non-empty.

Proposition 3.5. Every G has an AI-Control Equilibrium.
6To model terminal states in a fixed horizon game, assume P loops on each terminal state and that RUse

gives no reward.
7While we assume simultaneous turns, sequential-turn games can be modelled with appropriate P .
8We sometimes discuss Blue policies as though they are mixed-stochastic. This is equivalent (see Section A).
9Example distance functions, based on a mapping from policies to vectors, are defined in Section A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXAMPLE: MODELLING THE PROTOCOL

With our general framework from Section 3, we can define a formal model of the Trusted Monitoring
protocol for the APPS backdoor setting, as outlined in Greenblatt et al. (2024). For the full definition
please see Section B; next we present the key points.

We define an AI-Control Game for Trusted Monitoring as the tuple GTM = (S, . . . , H) step-by-
step. As always, whether the game is in attack (X⃝) or honest (H⃝) mode is determined exogenously and
non-deterministically. If the game is X⃝, for any given problem, Red can choose either for the untrusted
model to attempt a backdoor or to let it submit a safe solution (AR := {⟨Backdoor⟩, ⟨Safe⟩}). If
the game is H⃝, Red’s null action, to not backdoor, is chosen (anull = ⟨Safe⟩). Given a solution
by the untrusted AI, Blue has three available actions: to ask human (H) to audit the solution, to
defer to the trusted AI (T) to rewrite the solution, or to run the solution immediately. Therefore,
define AB := {⟨Audit⟩, ⟨Defer⟩, ⟨Run⟩}. Apart from initial and terminal states, the state space, S,
consists of triples s = (m, c, b), where m represents the number of problems left to solve. The value
of m is M (the total number of problems) at the start of the game, and decreases by 1 at each timestep.
The variable c represents the number of ‘audit coins’ left: the number of times the protocol can ask
the human to audit a solution. At the start, c = C = 0.02 ∗M (for a 2% audit proportion) and then
c decreases by 1 each time the protocol chooses to audit. If the protocol attempts to audit when no
audit coins are left, the code is run instead. The last variable, b, is a boolean that is True when the
current problem is backdoored (when Red has chosen ⟨Backdoor⟩ in the previous timestep).

In honest games (H⃝), where only usefulness matters to Blue, Red’s action is always substituted for
anull = ⟨Safe⟩. Therefore, b is always False. In honest games, Blue scores 1/M usefulness points
for each solution by the untrusted model it submits (for a maximum score of 1 across an episode). In
attack games (X⃝), where only safety matters to Blue, Red may have chosen ⟨Backdoor⟩ last turn,
and so b might be True. If so, and Blue chooses to run the code, the game enters an ‘unacceptable
outcome’ sink state, and receives a safety reward of −1.10 If Blue chooses instead to audit, we
assume the human will always spot the backdoor, and the game enters a ‘safe outcome’ sink state,
with no penalty.11 If Blue chooses to defer, then the game continues. By adding a constant 1

H , we
ensure the safety score for a policy pair is 1 minus the probability that an attack game ends without
an unacceptable outcome.

Throughout the game, Red receives only the null observation (onull),12 whereas at each turn Blue
receives observations of m, c, and a trusted monitor score x, which can be seen as a noisy observation
of b, drawn from a pair of distributions (‘safe’ and ‘backdoored’). Each distribution is a discretisation
of the Beta distribution outlined in Figure 1. See Section D for more details.

4.1 EVALUATING MEMORYLESS PROTOCOLS

We generally model protocols (Blue policies) as functions from the observation-action history to a
distribution over actions. However, all of the Trusted Monitoring policies in Greenblatt et al. (2024)
are memoryless. We can restrict to a simple and interpretable subset of policies that generalises those
by Greenblatt et al. (2024). Remember that, in our model, Blue’s observation is (m, c, x), where x is
a noisy observation of b, sampled from the Trusted Monitor. Define a set of memoryless threshold
protocols, characterised by the false positive rates (FPRs) for ⟨Audit⟩ and ⟨Defer⟩ (qam,c and qdm,c),
for each m, c. Let g(q) be the threshold that gives an FPR of q: P [xt > g(x) | bt = False] = q.13

Then, define the policy:

πB(m, c, x) =


⟨Audit⟩ If x ≥ g(qam,c)

⟨Defer⟩ If g(qam,c) > x ≥ g(qdm,c)

⟨Run⟩ otherwise
(1)

This class of policies generalises the policies in Greenblatt et al. (2024), and is a dominant subset
of memoryless policies. These policies’ safety and usefulness values can be computed in O(MC)
multiplications by calculating the values of the following relation using dynamic programming.

10We can model a sink-state in our finite-horizon game with a certainly-self-looping state.
11Note, we relax this assumption in our definition in the appendix and explore the effect in Figure 3.
12In Greenblatt et al. (2024), the untrusted model receives only the programming problem with no additional

information: we give Red only the null observation implying I.I.D backdoor chance at each timestep.
13Since ⟨Audit⟩ and ⟨Run⟩ are equivalent when c = 0, assume that Blue never attempts an audit.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Finding a Pareto-frontier for AI-C Game

Require: G
1: for t ∈ {0, 1, . . . , k − 1} do
2: wt ← FindNextWeight({(πB

t , π
R
t)}k−1

t=0)
3: πB

t , π
R
t ← argmaxπB∈ΠB minπR∈ΠR Vwt(π

B , πR)
4: end for
5: return {(πB

t , π
R
t)}k−1

t=0

Proposition 4.1. For any β := πR(⟨Backdoor⟩ | onull), the safety of the memoryless thresh-
old protocol πB is given by the value of zCM , where λi

m,c depend only on q·m,c and G: 14

zcm :=
(
λ1
m,cβ + λ2

m,c

)
wc

m−1 + λ5
m,c(1 − β)wc−1

m−1 + λ3
m,cβ + λ4

m,c(1 − β), where z0m =(
1− β + λ6

m,cβ
)
z0m−1 and zc0 = 1.

Corollary 4.2. Expanding zCM gives a polynomial, p(β), in β of degree M . For any fixed memoryless
threshold policy, the optimal backdoor rate is β∗ := minβ∈[0,1] p(β).

A similar expression for usefulness, which does not depend on β, can be found in Section C. Both
expressions can be derived inductively, in a manner similar to value iteration. The safety of a finite
mixture of memoryless threshold policies can be found by taking a weighted average. Although we
implemented a root-finding algorithm based on Theorem 4.2, we found that it was faster and more
stable in practice to compute the values in Figure 2 using a combination of grid and ternary search.

5 FINDING PARETO-OPTIMAL PROTOCOLS

In many cases, AI-Control Games are useful for evaluating hand-picked protocols, for example the
protocols explored by Greenblatt et al. (2024) were found via trial and error. However, it may also be
useful to utilise the AI-Control Games to find the Pareto-frontier of existing and new protocols. This
is a multi-objective maximin optimisation problem over a large space. This section presents tools for
finding Pareto-optimal protocols by reducing them to special cases of existing decision problems,
beginning with a reduction from a multi-objective to a single-objective problem.
Lemma 5.1. A Blue policy πB is in an AI-Control Equilibrium if, and only if, for some w ∈ [0, 1], it
maximises minπR

∗

(
w Safety(·, πR

∗) + (1− w)Use(·)
)
.

The proof uses the mappings from ΠB and ΠR to two simplexes, as introduced in Section A.
Lemma 5.1 implies that each safety/usefulness point corresponding to an AI-Control Equilibrium can
be found by equivalently solving an easier single-objective optimisation problem. Next, we leverage
this result to further reduce the game to a zero-sum partially observable stochastic game (ZSPOSG)
(see Definition A.3.2).
Lemma 5.2. For every AI-Control Game G, and weight w ∈ [0, 1], there is a single-objective,
zero-sum, partially observable stochastic game Gw with expected return (for Blue) VGw such that
∀πB , πR : VGw(π

B , πR) = V G
w (πB , πR).

This proof is constructive and a full version can be found in Section A. Intuitively, we create ZSPOSGs
by adding a ?⃝ variable to each state. Each Gw has reward Rw, where R0 rewards usefulness in H⃝
games and R1 rewards safety in X⃝ games. Since πR has no effect on honest games, and therefore on
usefulness, we can set Red to minimise the usefulness, making the game zero-sum without changing
optima. Combined with Lemma 5.1, this allows us to find any AI-Control Equilibrium by solving the
right ZSPOSG.
Theorem 5.3. A policy πB is in an AI-Control Equilibrium if, and only if, for some ZSPOSG Gw

with value function VGw , πB maximises minπR∈ΠR VGw(·, πR) over ΠB .

Algorithm 1 uses Theorem 5.3 to iteratively fill out the frontier by solving a series of single-objective
maximin problems. Here FindNextWeight first returns w0 = 0 and w1 = 1, and then chooses
weights that maximise the difference between known points on the Pareto-frontier.15

Line 3 of Algorithm 1 requires finding the value of maxπB minπR V G
w (πB , πR). Although ZSPOSGs

are previously studied, existing solvers are incompatible with a memoryless Red team (see Section 7).

14See Section C for the exact statements of λ coefficients.
15Let st := Safety(πB

t , π
R
t) and ut := Use(πB

t , π
R
t). Order points by safety, then choose i = maxi(si −

si+1)
2 + (ui − ui+1)

2 and then w such that wsi + (1− w)ui = wsi+1 + (1− w)ui+1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 Adapted Double Oracle Algorithm

Require: Gw, πB
1 , πR

1 , ϵ
1: Initialize t← 0
2: while t = 0 ∨ vt − vt > ϵ do
3: t← t+ 1
4: p, q ← SolveNFG({V G

w (πB
i , π

R
j)}1≤i,j≤t)

5: σB
t ← Mix(p, {πB

i }ti=1), σ
R
t ← Mix(q, {πR

j }tj=1)

6: πB
t+1, vt ← (arg)maxπB V G

w (πB , σR
t)

7: πR
t+1, vt ← (arg)minπR V G

w (σB
t , π

R)
8: end while
9: return σB

t , πR
t+1

The memorylessness of Red makes their decision rules at each timestep interdependent, and problem
decomposition difficult. Further, imperfect recall prohibits the equivalence of behavioural and mixed
stochasticities:

Proposition 5.4. There exists a Gw such that Red’s behavioural and mixed policies would not be
equivalent and maxπB∈ΠB minπR∈ΠR V G

w (πB , πR) < minπR∈ΠR maxπB∈ΠB V G
w (πB , πR).

See Section A.3.4 for a constructive proof. Despite this general inequivalence between Red’s mixed
and behaviourally stochastic policies, finding a Nash equilibrium of mixed-stochastic strategies can
be a means to finding an AI-Control equilibrium. Algorithm 2 adapts McMahan et al. (2003)’s
Double Oracle algorithm, used for finding mixed Nash-equilibria, to find AI-Control Equilibria. In
this algorithm, (1) the function Mix simply creates a policy mixture from a vector and a finite set
of policies and (2) finding p and q is equivalent to finding a Nash equilibrium in a zero-sum finite
normal-form game. The values vt and vt lower and upper bound the maximin value of the game.

Proposition 5.5. For ϵ > 0, Algorithm 2 returns an ϵ-equilibrium in Gw in finite time. Further, for
all t: vt ≤ v∗ := maxπB

∗ ∈ΠB minπR
∗ ∈ΠR V G

w (πB
∗ , π

R
∗) ≤ vt.

If ϵ = 0 then (σB
t , π

R
t) is an AI-Control Equilibrium. The proof is shown in Section A and utilises

Adam et al. (2021, Theorem 1.1) by reducing Gw to a ‘continuous game’. The primary change to the
algorithm is the choice to return πR

t+1 which is behaviourally but not mixed stochastic, and gives the
worst-case safety for σB

t which is a lower-bound for v∗.

Best Response Oracles. Lines 6 and 7 of the algorithm require finding best-responses. Finding
the best-response πB to a (finite) policy mixture σR is equivalent to solving a Partially-observable
Markov Decision Process, which is a well-studied problem Kaelbling et al. (1998); Shani et al.
(2013). However, finding a best-response πR to σB is, in general, more challenging: because Red is
memoryless, the problem is difficult to decompose. Fortunately, in the Trusted Monitoring example
described in Section 2, Red’s policy space is 1-dimensional, and can be searched easily.

6 EXAMPLE: RESULTS

In this section, we present example evaluations of protocols utilising our formal model. We also
present the first Pareto-frontiers for a subset of the protocol space. All results below concern only
memoryless protocols. These can be evaluated efficiently using Proposition 4.1. We use the formal
model from Section 4, which leverages existing empirical data from Greenblatt et al. (2024) to explore
a broader range of protocols and assumptions. We leave the analysis of memoryful protocols, in
which actions can depend on the full history of past observations, to future work. See Section D for
more experimental details.
Modelling Existing Protocols. Protocols studied in Greenblatt et al. (2024) can be expressed as
memoryless protocols in our model. Never Audit always submits U’s solution without audit. Trusted
Model Only always submits T’s solution. Upfront Auditing audits the first 2% of solutions from U
and, when there is no audit budget left, submits the rest without checking. Trusted Monitoring (Audit
FPR = 0.02) audits every solution from U whose suspicion score is above a threshold chosen to give
a 2% FPR and also defer all solutions above (0%, 5%, 10%, 20%, 50%). We leave evaluation of
more complex protocols to future work. Each protocol above is a special case of Trusted Monitoring
with a fixed audit FPR of 0%, 2% or 100%, combined with fixed defer FPRs. By representing these
protocols in our formalisation, we can easily evaluate their safety and usefulness scores, even in the
novel ’weak’ case (where T is worse at telling safe and backdoored solutions apart); we illustrate
these results by large coloured points in Figure 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
Safety Score

0.0

0.2

0.4

0.6

0.8

1.0
U

se
fu

ln
es

s
Sc

or
e

Original Trusted Monitor

0.00 0.25 0.50 0.75 1.00
Safety Score

0.0

0.2

0.4

0.6

0.8

1.0

Weak Trusted Monitor

Synthesised Protocols:
Audit FPR = 1.0
Audit FPR = 0.0
Audit FPR = 0.02
Audit FPR > 0.02
Pareto-Frontier for
 Mixtures over Fixed FPRs
Mixed Policy

Previous Protocols:
Upfront Auditing
Never Audit
Trusted Monitoring
 (Audit FPR = 0.02)
Trusted Model Only

0.67 0.68

0.92

0.93

0.5 0.6

0.5

0.6

Figure 2: The safety and usefulness frontiers for a range of Trusted Monitor protocol types across the
‘original’ and ‘weak’ games. Each point on the grid corresponds to the exact safety and usefulness of
a proposed blue team protocol against an approximately optimal red team response (minimal safety).
The square points correspond to the seven special cases of Trusted Monitoring studied by Greenblatt
et al. (2024), whereas the remaining points are new to this paper. Each ‘Audit FPR’ line plots a single,
fixed audit FPR, across fixed defer FPRs in {0.00, 0.01, . . . , 1.00}. ‘Pareto-Frontier for Fixed FPRs’
shows the optimal protocol frontier found by Algorithm 1 with a fixed-FPR oracle, and all points
represent deterministic policies unless marked by a cross.

Evaluating New Protocols. Through a process of proposing and efficiently evaluating new pro-
tocols, which is newly enabled by our formalisation, we extend Greenblatt et al.’s findings to new
protocols and settings. As an example, we show that raising the audit FPR above 2% Pareto-improves
upon the protocols from Greenblatt et al. (2024). Choosing an audit FPR of 2% means that, in
expectation, the 2% allowance of human labour will be used up at the end of the episode if no
backdoor is submitted. However, we find that choosing a higher audit rate can be beneficial, despite
increasing the probability that the audit budget is exhausted early. Choosing an audit FPR of 3%
gives a small Pareto-improvement in the ‘original’ Trusted Monitoring case and an audit FPR of 5%,
gives a large Pareto-improvement in the ‘weak’ Trusted Monitoring case.

Demonstrating a Frontier. Using Algorithms 1 and 2, we present the first approximate Pareto-
frontier for a policy subset: mixtures of protocols with fixed audit and defer rates. We apply
Algorithm 2 using a Blue best-response algorithm based on recursive grid search (over values of audit
and defer FPR) and a Red best-response algorithm using grid search followed by ternary search (over
β). We find that, in the ‘original’ case the closest of Greenblatt et al.’s policies is 0.0042 from the
Pareto-frontier, and for most weights a deterministic policy is optimal. However, in the ‘weak’ case,
they are at least ≥ 0.0200 from the Pareto-frontier and mixed protocols make up most of the frontier.

6.1 ANALYSING ASSUMPTIONS AND TRENDS

0.0

0.5

1.0

Sa
fe

ty

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0 0.5 1.0

Budget

0.0

0.5

1.0

U
se

fu
ln

es
s

100 1000 10000

Problems

0.0

0.5

1.0

0.0 0.5 1.0

Human FNR

0.0

0.5

1.0

0.0 0.5 1.0

Human FPR

0.0

0.5

1.0

Audit FPR = 0.0
Audit FPR = 0.02
Audit FPR = 1.0
Audit FPR = Budget

Figure 3: Impact on safety and usefulness (y-axis) by four different modelling assumptions (x-axis):
Auditing Budget, Number of Programming Problems, and Human Auditor False Negative / Positive
Rate. All plots show a fixed defer FPR of 0.1.

Formalising an AI-Control Game requires making a number of modelling assumptions: we explore
how varying each assumption impacts the safety and usefulness scores for a given blue-team policy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Audit Budget. The auditing budget corresponds to the amount of human labour invested in oversee-
ing the protocol. Protocols that utilise increases to the audit budget get significantly safer and more
useful as the budget increases, especially when the budget is small.
Number of Problems. For fixed FPRs, safety and usefulness are not significantly affected by the
number of problems per episode. As the number of opportunities for Red to backdoor increases, so
too does the number of audit coins.
Human Auditor FPR/FNR. In the default Trusted Monitoring game, Greenblatt et al. assume
that no mistakes are made by the human auditor. We can extend the model to relax this assumption.
Increasing the human FNR decreases safety almost linearly in the worst case, without impacting
usefulness. False positives increase safety up to a point determined by the audit threshold, but
decrease usefulness more rapidly the more the blue team audits.

7 RELATED WORK

Though the application of formal game-theoretic tools to Greenblatt et al. (2024)’s AI Control
framework is novel, and the resulting type of game is unique, there are analogues to existing work.

The AI-Control Games studied are most similar to the work of Chang et al. (2015), who model a
security problem for food manufacturing. Like AI-Control Games, they consider a leader-follower
equilibrium, where the leader tries to maximise productivity and minimise risk, and the follower
tries to hide an attack. To select the leader strategy against multiple objectives, they use a genetic
algorithm (as do Lins et al. (2013)). Their model differs in its factored state space, infinite time
horizon, and the lack of ‘attack/honest’ game modes and most importantly their consideration of a
memoryful-follower. Their solution method is not directly applicable to AI-Control Games, and may
be unsuitable for adaptation. For a detailed comparison, see Section E.

Given our reduction in Section 5, methods for finding equilibria in ZSPOSGs are particularly relevant.
However, we find that our requirement for a memoryful-leader, memoryless-follower equilibrium
precludes the use of many existing solvers. For example, Delage et al. (2023), which finds Nash
equilibria in ZSPOSGs using a dynamic programming approach that solves subgames for each
timestep from H down to 1. Other works attempt to solve subclasses of ZSPOSGs, with ‘public
observations’ Horák & Bošanský (2019) or ‘one-sided partial-observability’ Zheng et al. (2022);
Horák et al. (2023). AI-Control Games do not in-general fit into these subclasses, and each of these
papers considers two memoryful players.

Since in some cases it is possible to find an AI-Control Equilibrium by first finding a mixed Nash
equilibrium (Theorem 5.5), it may be possible to augment the algorithm by Hansen & Feng (2000),
which searches for two mixed strategies over a finite set of memoryful policies.

AI-Control Games, and especially the Trusted Monitoring case study we present, are closely related
to Stackelberg Security Games: two-player games where the leader must choose a random strategy to
cover a set of targets using a limited set of resources, and the follower tries to attack an uncovered
target (see Sinha et al. (2018) for an overview). Unlike Trusted Monitoring, these are one-round
games and much literature focuses on scalably solving large-scale problems against scheduling
constraints. Although some security games model imperfect information Bier (2007); Nguyen et al.
(2014) or multiple objectives Brown et al. (2012), most are single-objective and perfect-information.

Trusted Monitoring without defer is similar to the Inspection Games studied by Avenhaus et al. (2002,
p. 1957): games where the defender receives a noisy observation, and has to decide whether to
inspect. However, these games are one-round only. Recursive Inspection Games Dresher (1962) are
multi-round, but have a memoryful follower.

8 FUTURE WORK AND CONCLUSIONS

In this work, we introduced a novel model for analysing the safety and usefulness of AI-Control
protocols. We used our formal model and solution techniques to evaluate a much broader range of
protocols and settings than prior empirical results from literature, and there is significant room to
apply them further. In the showcased application of Trusted Monitoring setting, future work can utilise
Algorithm 2 with POMDP-based best-response oracles to explore the space of memory-dependent
protocols. Our model of the Trusted Monitoring protocol is also generalisable to any deployment
setting, using a question-answer format and any unacceptable outcome. Future work will explore
such generalised settings by studying the interaction of the untrusted AI and the trusted monitor to
generate distributions like those in Figure 1 and analyse the resulting frontiers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work seeks to develop tools that can be used to study one operationalisation of ‘safety’ for
advanced AI systems. The primary motivation of this research is social impact: to reduce the cost of
doing high-quality evaluations of deployment protocols, and to make explicit the tradeoffs between
safety and usefulness.

Despite this motivation, there are some potential negative consequences of this work. First, the work
focuses on avoiding ‘catastrophic’ failures: minimising the risk of especially bad, but low-probability
actions. This biases the work against considering other kinds of harms that are more likely. Second,
‘safety’ is defined relative to a particular operationalisation of a particular unacceptable outcome. In
part, this is a strength of the framework, as it separates the technical question ‘How do we avoid the
outcome?’ from the normative question ‘Which outcomes should we avoid?’. However, it also means
that harms that are not well captured by such a clear-cut operationalisation may not fit within the
framework. Third, the work focuses on avoiding harm from AI systems that the protocol developers
did not intend. This means it is not well-suited to evaluating misuse or structural harms that could
arise from the deployment of the system. Finally, the creation of a formal model of AI-control games
could be used to justify the deployment of AI systems in situations where the risks are not well
understood. If developers utilise poorly implemented AI-Control evaluations to justify deployment,
this could lead to a false sense of security.

REPRODUCIBILITY STATEMENT

All of the code used to generate our results is provided in the supplementary material, using fixed
seeds and experimental parameters. The empirical data used to model trusted monitor distributions
is provided in Greenblatt et al. (2024). We have made every possible effort to ensure that our
experiments are reproducible.

THE USE OF LARGE LANGUAGE MODELS

We used LLMs in several parts of our research process: including surfacing connections with other
fields, brain-storming ways to clearly present our results, developing parts of our codebase, and
formatting our final work. In all cases, language models were used only to assist the authors, who
take full responsibility for the veracity of the paper.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Lukáš Adam, Rostislav Horčı́k, Tomáš Kasl, and Tomáš Kroupa. Double Oracle Algorithm for
Computing Equilibria in Continuous Games. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(6):5070–5077, May 2021. doi: 10.1609/aaai.v35i6.16641. URL https://ojs.
aaai.org/index.php/AAAI/article/view/16641. Section: AAAI Technical Track
on Game Theory and Economic Paradigms.

Adept AI. Adept: Useful General Intelligence, 2024. URL https://www.adept.ai/.

Anthropic. Controlling powerful AI, March 2025. URL https://www.youtube.com/watch?
v=6Unxqr50Kqg.

Robert J Aumann, Sergiu Hart, and Motty Perry. The absent-minded driver. Games and Economic
Behavior, 20(1):102–116, 1997. Publisher: Elsevier.

Rudolf Avenhaus, Bernhard Von Stengel, and Shmuel Zamir. Chapter 51 Inspection games. In
Handbook of Game Theory with Economic Applications, volume 3, pp. 1947–1987. Elsevier,
January 2002. doi: 10.1016/S1574-0005(02)03014-X. URL https://www.sciencedirect.
com/science/article/pii/S157400050203014X.

Mikita Balesni, Marius Hobbhahn, David Lindner, Alexander Meinke, Tomek Korbak, Joshua Clymer,
Buck Shlegeris, Jérémy Scheurer, Charlotte Stix, Rusheb Shah, Nicholas Goldowsky-Dill, Dan
Braun, Bilal Chughtai, Owain Evans, Daniel Kokotajlo, and Lucius Bushnaq. Towards evaluations-
based safety cases for AI scheming, November 2024. URL http://arxiv.org/abs/2411.
03336. arXiv:2411.03336 [cs].

Aryan Bhatt, Cody Rushing, Adam Kaufman, Tyler Tracy, Vasil Georgiev, Akbir Khan, David
Matolcsi, and Buck Shlegeris. Ctrl-Z: Controlling AI Agents via Resampling (forthcoming). pp.
Forthcoming as of, 2025.

Vicki M. Bier. Choosing What to Protect. Risk Analysis, 27(3):607–620, 2007. ISSN 1539-6924.
doi: 10.1111/j.1539-6924.2007.00906.x.

Matthew Brown, Bo An, Christopher Kiekintveld, Fernando Ordóñez, and Milind Tambe. Multi-
objective optimization for security games. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’12, pp. 863–870, June 2012. ISBN
978-0-9817381-2-3.

Marie Davidsen Buhl, Gaurav Sett, Leonie Koessler, Jonas Schuett, and Markus Anderljung.
Safety cases for frontier AI, October 2024. URL http://arxiv.org/abs/2410.21572.
arXiv:2410.21572 [cs].

Stephen Casper, Lennart Schulze, Oam Patel, and Dylan Hadfield-Menell. Defending Against
Unforeseen Failure Modes with Latent Adversarial Training, April 2024. URL http://arxiv.
org/abs/2403.05030. arXiv:2403.05030 [cs].

Yanling Chang, Alan L. Erera, and Chelsea C. White. A leader–follower partially observed, mul-
tiobjective Markov game. Annals of Operations Research, 235(1):103–128, December 2015.
ISSN 1572-9338. doi: 10.1007/s10479-015-1935-0. URL https://doi.org/10.1007/
s10479-015-1935-0.

Joshua Clymer, Nick Gabrieli, David Krueger, and Thomas Larsen. Safety Cases: How to Justify
the Safety of Advanced AI Systems, March 2024. URL http://arxiv.org/abs/2403.
10462. arXiv:2403.10462 [cs].

DeepMind. Frontier safety framework. Technical report, September 2025.
URL https://storage.googleapis.com/deepmind-media/DeepMind.
com/Blog/strengthening-our-frontier-safety-framework/
frontier-safety-framework_3.pdf. tex.version: 3.0.

Aurélien Delage, Olivier Buffet, Jilles S. Dibangoye, and Abdallah Saffidine. HSVI Can Solve
Zero-Sum Partially Observable Stochastic Games. Dynamic Games and Applications, September
2023. ISSN 2153-0785, 2153-0793. doi: 10.1007/s13235-023-00519-6. URL https://link.
springer.com/10.1007/s13235-023-00519-6.

11

https://ojs.aaai.org/index.php/AAAI/article/view/16641
https://ojs.aaai.org/index.php/AAAI/article/view/16641
https://www.adept.ai/
https://www.youtube.com/watch?v=6Unxqr50Kqg
https://www.youtube.com/watch?v=6Unxqr50Kqg
https://www.sciencedirect.com/science/article/pii/S157400050203014X
https://www.sciencedirect.com/science/article/pii/S157400050203014X
http://arxiv.org/abs/2411.03336
http://arxiv.org/abs/2411.03336
http://arxiv.org/abs/2410.21572
http://arxiv.org/abs/2403.05030
http://arxiv.org/abs/2403.05030
https://doi.org/10.1007/s10479-015-1935-0
https://doi.org/10.1007/s10479-015-1935-0
http://arxiv.org/abs/2403.10462
http://arxiv.org/abs/2403.10462
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/strengthening-our-frontier-safety-framework/frontier-safety-framework_3.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/strengthening-our-frontier-safety-framework/frontier-safety-framework_3.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/strengthening-our-frontier-safety-framework/frontier-safety-framework_3.pdf
https://link.springer.com/10.1007/s13235-023-00519-6
https://link.springer.com/10.1007/s13235-023-00519-6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Melvin Dresher. A Sampling Inspection Problem in Arms Control Agreements: A Game-Theoretic
Analysis. Technical report, RAND Corporation, January 1962. URL https://www.rand.
org/pubs/research{_}memoranda/RM2972.html.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate solutions for partially
observable stochastic games with common payoffs. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, 2004., pp. 136–143, July 2004. URL
https://ieeexplore.ieee.org/abstract/document/1373472.

Ryan Greenblatt, Buck Shlegeris, Kshitij Sachan, and Fabien Roger. AI Control: Improving Safety
Despite Intentional Subversion. In Proceedings of the 41st International Conference on Machine
Learning, pp. 16295–16336. PMLR, July 2024. URL https://proceedings.mlr.press/
v235/greenblatt24a.html. ISSN: 2640-3498.

Eric A. Hansen and Zhengzhu Feng. Dynamic programming for POMDPs using a factored state
representation. In Proceedings of the Fifth International Conference on Artificial Intelligence
Planning Systems, AIPS’00, pp. 130–139, Breckenridge, CO, USA, April 2000. AAAI Press.
ISBN 978-1-57735-111-5.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring Coding Challenge
Competence With APPS. August 2021. URL https://openreview.net/forum?id=
sD93GOzH3i5.

Karel Horák and Branislav Bošanský. Solving Partially Observable Stochastic Games with Public
Observations. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):2029–2036,
July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33012029. URL https://ojs.aaai.
org/index.php/AAAI/article/view/4032. Number: 01.

Karel Horák, Branislav Bošanský, Vojtěch Kovařı́k, and Christopher Kiekintveld. Solving zero-sum
one-sided partially observable stochastic games. Artificial Intelligence, 316:103838, March 2023.
ISSN 0004-3702. doi: 10.1016/j.artint.2022.103838. URL https://www.sciencedirect.
com/science/article/pii/S0004370222001783.

Geoffrey Irving. Safety cases at AISI, August 2024. URL https://www.aisi.gov.uk/
work/safety-cases-at-aisi.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998. ISSN
0004-3702. doi: 10.1016/s0004-3702(98)00023-x.

Harold W. Kuhn. Extensive games and the problem of information. Contributions to the Theory of
Games, 2(28):193–216, 1953.

Isis Didier Lins, Leandro Chaves Rêgo, Márcio das Chagas Moura, and Enrique López Droguett.
Selection of security system design via games of imperfect information and multi-objective genetic
algorithm. Reliability Engineering & System Safety, 112:59–66, April 2013. ISSN 0951-8320.
doi: 10.1016/j.ress.2012.11.021. URL https://www.sciencedirect.com/science/
article/pii/S0951832012002517.

Monte MacDiarmid, Timothy Maxwell, Nicholas Schiefer, Jesse Mu, Jared Kaplan, David Duvenaud,
Sam Bowman, Alex Tamkin, Ethan Perez, Mrinank Sharma, Carson Denison, and Evan Hubinger.
Simple probes can catch sleeper agents, April 2024. URL https://www.anthropic.com/
news/probes-catch-sleeper-agents.

Alex Mallen, Charlie Griffin, Alessandro Abate, and Buck Shlegeris. Subversion Strategy Eval:
Evaluating AI’s stateless strategic capabilities against control protocols, 2024. URL https:
//arxiv.org/abs/2412.12480.

Michael Maschler, Eilon Solan, and Shmuel Zamir. Behavior strategies and kuhn’s theorem. In Game
theory, pp. 219–250. Cambridge University Press, Cambridge, 2013.

12

https://www.rand.org/pubs/research{_}memoranda/RM2972.html
https://www.rand.org/pubs/research{_}memoranda/RM2972.html
https://ieeexplore.ieee.org/abstract/document/1373472
https://proceedings.mlr.press/v235/greenblatt24a.html
https://proceedings.mlr.press/v235/greenblatt24a.html
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://ojs.aaai.org/index.php/AAAI/article/view/4032
https://ojs.aaai.org/index.php/AAAI/article/view/4032
https://www.sciencedirect.com/science/article/pii/S0004370222001783
https://www.sciencedirect.com/science/article/pii/S0004370222001783
https://www.aisi.gov.uk/work/safety-cases-at-aisi
https://www.aisi.gov.uk/work/safety-cases-at-aisi
https://www.sciencedirect.com/science/article/pii/S0951832012002517
https://www.sciencedirect.com/science/article/pii/S0951832012002517
https://www.anthropic.com/news/probes-catch-sleeper-agents
https://www.anthropic.com/news/probes-catch-sleeper-agents
https://arxiv.org/abs/2412.12480
https://arxiv.org/abs/2412.12480

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

H. Brendan McMahan, Geoffrey J. Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003. URL https://cdn.aaai.org/ICML/
2003/ICML03-071.pdf.

Kaisa Miettinen. Nonlinear Multiobjective Optimization. Springer, New York, NY, UNITED STATES,
1998. ISBN 978-1-4615-5563-6. URL http://ebookcentral.proquest.com/lib/
oxford/detail.action?docID=3081836.

Thanh H. Nguyen, Amulya Yadav, Bo An, Milind Tambe, and Craig Boutilier. Regret-based optimiza-
tion and preference elicitation for stackelberg security games with uncertainty: 28th AAAI Confer-
ence on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence
Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence,
EAAI 2014. Proceedings of the 28th AAAI Conference on Artificial Intelligence and the 26th Inno-
vative Applications of Artificial Intelligence Conference and the 5th Symposium on Educational
Advances in Artificial Intelligence, pp. 756–762, 2014. URL http://www.scopus.com/
inward/record.url?scp=84908202610&partnerID=8YFLogxK. Publisher: AI Ac-
cess Foundation.

OpenAI. ChatGPT plugins, March 2023. URL https://openai.com/blog/
chatgpt-plugins.

OpenAI and Apollo Research. Detecting and reducing scheming in
AI models, September 2025. URL https://openai.com/index/
detecting-and-reducing-scheming-in-ai-models/.

Martin J. Osborne and Ariel Rubinstein. A course in game theory. MIT Press, Cambridge, Mass., 12.
print edition, 2006. ISBN 978-0-262-65040-3.

Rusheb Shah, Quentin Feuillade Montixi, Soroush Pour, Arush Tagade, and Javier Rando. Scalable
and Transferable Black-Box Jailbreaks for Language Models via Persona Modulation. November
2023. URL https://openreview.net/forum?id=x3Ltqz1UFg.

Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers. Au-
tonomous Agents and Multi-Agent Systems, 27(1):1–51, July 2013. ISSN 1573-7454. doi: 10.
1007/s10458-012-9200-2. URL https://doi.org/10.1007/s10458-012-9200-2.

Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and Milind Tambe. Stackelberg Security
Games: Looking Beyond a Decade of Success. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, pp. 5494–5501, Stockholm, Sweden, July 2018. Inter-
national Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-2-7. doi:
10.24963/ijcai.2018/775. URL https://www.ijcai.org/proceedings/2018/775.

The White House. America’s AI action plan. Technical report, July 2025.
URL https://www.whitehouse.gov/wp-content/uploads/2025/07/
Americas-AI-Action-Plan.pdf.

UK AI Safety Institute. Research agenda, 2025. URL https://www.aisi.gov.uk/
research-agenda.

Jiaxin Wen, Vivek Hebbar, Caleb Larson, Aryan Bhatt, Ansh Radhakrishnan, Mrinank Sharma,
Henry Sleight, Shi Feng, He He, Ethan Perez, Buck Shlegeris, and Akbir Khan. Adaptive
Deployment of Untrusted LLMs Reduces Distributed Threats, November 2024. URL http:
//arxiv.org/abs/2411.17693. arXiv:2411.17693.

Wei Zheng, Taeho Jung, and Hai Lin. The Stackelberg equilibrium for one-sided zero-sum partially
observable stochastic games. Automatica, 140:110231, June 2022. ISSN 0005-1098. doi: 10.
1016/j.automatica.2022.110231. URL https://www.sciencedirect.com/science/
article/pii/S0005109822000760.

13

https://cdn.aaai.org/ICML/2003/ICML03-071.pdf
https://cdn.aaai.org/ICML/2003/ICML03-071.pdf
http://ebookcentral.proquest.com/lib/oxford/detail.action?docID=3081836
http://ebookcentral.proquest.com/lib/oxford/detail.action?docID=3081836
http://www.scopus.com/inward/record.url?scp=84908202610&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=84908202610&partnerID=8YFLogxK
https://openai.com/blog/chatgpt-plugins
https://openai.com/blog/chatgpt-plugins
https://openai.com/index/detecting-and-reducing-scheming-in-ai-models/
https://openai.com/index/detecting-and-reducing-scheming-in-ai-models/
https://openreview.net/forum?id=x3Ltqz1UFg
https://doi.org/10.1007/s10458-012-9200-2
https://www.ijcai.org/proceedings/2018/775
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://www.whitehouse.gov/wp-content/uploads/2025/07/Americas-AI-Action-Plan.pdf
https://www.aisi.gov.uk/research-agenda
https://www.aisi.gov.uk/research-agenda
http://arxiv.org/abs/2411.17693
http://arxiv.org/abs/2411.17693
https://www.sciencedirect.com/science/article/pii/S0005109822000760
https://www.sciencedirect.com/science/article/pii/S0005109822000760

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A GENERAL RESULTS AND PROOFS

This appendix presents proofs of the results from Section 3 and Section 5 that apply to all AI-Control
Games. To do so, we first introduce a useful lemma which maps the optimisation problem into a
vector space.

A.1 MAPPING TO VECTOR SPACE

We will define a mapping from ΠB to a simplex X , and another from ΠR to a simplex Y . Then, we
will show that these mappings can be used to calculate safety and usefulness.

We begin by defining the simplex Y and a mapping µR : ΠR → Y . Recall that: ΠR := {πR | πR :
ΩR → AR}. Define n := |AR| · |ΩR| and enumerate the n observation-action pairs such that each
dimension in Rn corresponds to one pair. Consider the simplex Y ⊂ Rn such that all values are
≥ 0 and, for each observation, the sum across all actions is 1. Then, define the mapping such that
µR(πR) = y if, and only if, for all j, πR(aR | oR) = yj for j’th observation-action pair (oR, aR).
Note that µR is bijective.

Blue’s mapping is more complex. Define the finite set of Blue observation-action histories as
HB := ΩB ×

⋃H−1
i=0

(
AB × ΩB

)i
. Since the sets HB and AB are finite, we could use a similar

strategy to the one we used for Y to define finite-dimensional vector space X that represents
ΠB := {πB | πB : HB → AB}. However, an alternative approach gives a useful linearity.

Because Blue has perfect recall, any behaviourally stochastic policy has an equivalent representation
as a mixed strategy over the finite set of deterministic policies. This is the reverse direction of
Kuhn’s Theorem Kuhn (1953), sometimes stated informally with ‘and vice versa’. This exact result
is mentioned in Maschler et al. (2013, Theorem 6.26 on p. 242) as part of a more general proof about
infinite-horizon games, and an informal proof is given by Osborne & Rubinstein (2006, p. 214). The
other direction (which will also be useful), is given explicitly in Maschler et al. (2013, Theorem 6.15
on p. 232):

Theorem (Kuhn (1953)). In every game in extensive form, if player i has perfect recall, then for
every mixed strategy of player i there exists an equivalent behavior strategy.

Note that the equivalence stated here is in terms of the probability of reaching any vertex in an
extensive-form tree which is more than sufficient for our purposes (see Definition 6.5 on p. 223,
Maschler et al., 2013).

We will use the fact that an AI-Control game is a finite extensive form game, and the ‘vice versa’ of
Kuhn’s Theorem to give a mapping from behavioural to mixed policies.

Let ΠB
det be the set of deterministic policies for Blue. Then, for each behaviourally stochastic πB ,

there is an equivalent mixture over deterministic policies: σB ∈ ∆(ΠB
det).

Let m := |ΠB
det| = |AB ||HB | and consider the simplex X ⊂ Rm:

X :=

{
x | x ∈ X,x ≥ 0,

m∑
i=1

vi = 1

}

Enumerate the m deterministic policies for Blue and assign each policy to a dimension in Rm. Let
πB
i be the ith deterministic policy for Blue.

Define the mapping µB(πB) := x where xi := σB(πB
i), ie. the probability that πB

i is chosen from
the mixture σB that is equivalent to πB . Further, note that by the main direction of Kuhn’s theorem,
for any mixed stochastic policy (σB), there is also a behaviourally stochastic policy (πB) that is
equivalent but it’s not immediate that µB is bijective, since there may be two mixed stochastic policies
that correspond to the same behaviourally stochastic policy.

From here on, we drop the explicit use of µB and µR, and instead use xπB := µB(πB) and
xπR := µR(πR).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lemma A.1. For any G, and any full-length trajectory h, there is a function ph : X × Y → [0, 1]
that is linear in it’s first argument, continuous in its second, and satisfies the following for all πB , πR:

ph(xπB ,yπR) = P
[
h | X⃝, πB , πR

]
ph(xπB ,yπR

null
) = P

[
h | H⃝, πB , πR

]
where πR

null is the policy that always chooses anull.

Proof. Let H be the set of all possible full-length trajectories (or joint-state-observation-action
histories):

h := (?⃝, s0, o
B
0 , o

R
0 , a

B
0 , a

R
0 , s1, . . . , o

R
H−1, a

B
H−1, a

R
H−1, sH)

We will define ph such that, for all πB , πR

P
[
h | X⃝, πB , πR

]
= ph(xπB ,yπR)

Then, we can write the probability of each history explicitly, in terms of πB and πR:

P
[
h | X⃝, πB , πR

]
= I(s0, oB0 , oR0) · πB(aB0 | oB0) · πR(aR0 | oR0)
· P(s1, oB1 , oR1 | s0, aB0 , aR0)
. . .

· P(sH , ·, · | sH−1, a
B
H−1, a

R
H−1)

= ch ·
H−1∏
t=0

πB(aBt | oB0:t, aB0:t−1)π
R(aRt | oRt)

Here oB0:t denotes the tuple (oB0 , . . . , o
B
t) , and similar for aB0:t−1 etc. The value ch is a constant with

respect to x and y and depends only on the trajectory and the AI-Control Game G.

Using mixed-behavioural equivalence, let σB be the mixture of deterministic strategies equivalent to
πB , then we can split the Blue probabilities:

P
[
h | X⃝, πB , πR

]
=ch

m∑
i=1

σB(πB
i) ·

H−1∏
t=0

πB
i (a

B
t | oB0:t, aB0:t−1)π

R(aRt | oRt)

And finally, let x := xπB , note that xi = σB(πB
i), write out the expression in terms of xi, and yj ,

and call this expression ph:

ph(x,y) := ch ·

(
m∑
i=1

xifi(h)

)
·

(
H−1∏
t=0

yj(oRt ,aR
t)

)
(2)

Here fi(h) is either 0, if πB
i is not consistent with h, or 1 if it is. Clearly, the probability (P[h| . . .])

of getting some trajectory h in an attack game, given policies πB and πR is simply ph(xπB ,yπR).

The probability of getting some trajectory h in an honest game is the same as the probability in the
attack game with the Red policy πR

null that always chooses the anull action. (Although the rewards in
an episode will be different in H⃝ versus X⃝ modes, these aren’t included in h.) This can be written as

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

ph(x,ynull), where ynull corresponds to the πR
null.

P
[
h | H⃝, πB

]
= P

[
h | X⃝, πB , πR

null

]
=ch

m∑
i=1

xi · fi(h)
H−1∏
t=0

(ynull)j(oRt ,aR
t)

=cnull
h

m∑
i=1

xi · fi(h)

Here, we rewrite the constant cnull
h to be c(h), if all the Red actions in h are anull, and 0 otherwise.

We have shown that the probability of a given trajectory can be written in terms of ph(xπB ,yπR), for
attack games, and ph(xπB ,ynull) for honest games. It remains to note that ph(x,y) is straightfor-
wardly linear in x and continuous in y by Equation (2).

Using Lemma A.1, we can rewrite safety and usefulness as explicit expressions with some useful
properties:

Corollary A.2. For any AI-Control Game G, with simplex X and simplex Y defined in Lemma A.1,
there is a function u : X → R such that u(xπB) = Use(πB) and a function s : X × Y → R such
that s(xπB ,yπR) = Safety(πB , πR). Further

1. The function u is linear, and therefore uniformly continuous, in x.

2. The function s is linear in x for fixed y, and s is continuous in y for fixed x.

3. The minimiser to miny s(x,y) always exists. Further, the function g(x) := miny s(x,y)
is continuous everywhere and concave.

4. For all w ∈ [0, 1], the function vw(x) := wg(x) + (1 − w)u(x) is uniformly continuous,
and therefore has maximal values.

Proof. First, we can define the functions s and u: since the set of trajectories is finite, we can rewrite
the safety and usefulness functions by summing over the trajectories. The safety equation can then be
rewritten as:

Safety
(
πB , πR

)
:= E

[
H−1∑
t=0

RUse

(
St, A

B
t , A

R
t , St+1

)
| H⃝, πB , πR

]
.

=
∑
h∈H

rsafe(h)P[h | X⃝, πB , πR]

=
∑
h∈H

rsafe(h)ph(xπB ,yπR)

=
∑
h∈H

rsafe(h)ch

m∑
i=1

xi · fi(h)
H−1∏
t=0

yj(oRt ,aR
t)

=: s(x,y)

Here rsafe(h) is the sum of safety rewards for a given trajectory, and is fixed for any given AI-Control
Game. The last line gives the definition for our new function s. We can similarly derive and define an

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

expression for u:

Use(πB) := E

[
H∑
t=0

RUse

(
St, A

B
t , St+1

)
| H⃝, πB

]
=
∑
h∈H

ruse(h)P[h | H⃝, πB]

=
∑
h∈H

ruse(h)c
null
h

m∑
i=1

xi · fi(h)

=: u(x)

We prove each of the remaining statements one-by-one.

1. That u(·) is linear over x follows from the definition of ph, and of linearity of s in ph.

2. That, for fixed x, s(x, ·) is continuous over Y is immediate from the continuity of each
ph in each yj , and of linearity of s in ph. That, for fixed y, s(·,y) is linear over x follows
straightforwardly from the linearity of each ph in x, and of linearity of s in ph.

3. The minimiser y∗ of miny s(x,y) must exist because s(x, ·) is continuous in Y for fixed x,
and Y is compact, by the extreme value theorem. Showing that miny s(·,y) is continuous
everywhere x is a little more involved. Note that s can be rewritten as s(x,y) = x · v(y),
where v(y) := [f1(y), . . . , fm(y)]

T , and each fi(y) is continuous in y. By continuity and
compactness, d := maxy∥v(y)∥ exists. For all ϵ > 0, define δ := ϵ

2d . Now, for any y, if
∥x− x0∥ < δ then

|s(x,y)− s(x0,y)| = |(x− x0) · v(y)| ≤

. . . ∥x− x0∥∥v(y)∥ ≤ δ · ϵ

2d
< ϵ

To show continuity of miny s(·,y), consider any ϵ and again set δ := ϵ
2d . Consider any x0

and x1 minimised by y0 and y1 such that ∥x0 − x1∥ ≤ δ, and without loss of generality
assume s(x1,y1) ≥ s(x0,y0), then, since miny s(x1,y) ≤ s(x1,y0):

min
y

s(x1,y)−min
y

s(x0,y) ≤ s(x1,y0)− s(x0,y0) < ϵ

This demonstrates that miny s(·,y) is continuous over X . Finally, the concavity claim, that
g (λx1 + (1− λ)x0) ≥ λg(x1) + (1− λ)g(x0), follows straightforwardly from the defini-
tion of g, the linearity of s(·,y), and the fact that miny (λs(x1,y) + (1− λ)s(x0,y)) ≥
miny1

λs(x1,y1) + miny0
(1− λ)s(x0,y0).

4. Straightforwardly from the linearity of u(x) and the uniform continuity of miny s(·,y), we
have that vw(x) := wg(x)+ (1−w)u(x) is continuous over X . That maximal values exist
follows from this continuity, the compactness of X , and the extreme value theorem.

Lemma A.3. Let ϕ(x) := [g(x), u(x)]T . The vector x is weakly Pareto-optimal (no x′ has strictly
better g and u) if, and only if, ∃w ∈ [0, 1] such that x ∈ argmaxx′ vw(x

′).

Proof. The ‘if’ statement is straightforward: suppose some x′ is such that x′
1 > x∗

1 and x′
2 > x∗

2.
Clearly, for all w, vw(x′) > vw(x

∗) and therefore no w can exist for which x∗ is (jointly) optimal.

For the ‘only if’ statement, we build up Miettinen (1998, Theorem 3.1.4 on p. 79), which says
that every Pareto-optimal solution to a concave multi-objective optimisation problem is optimal for
some weighting.16 We have already shown g is concave, and since u is linear it is trivially concave.

16The original statement refers to convex minimisation, rather than concave maximisation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, the theorem holds and any Pareto-optimal x∗ is also optimal for some vw. It remains to
show that in our case, if not in general, any weak Pareto-optimum that is also optimal for some w.
The proof relies on the convexity of X , the concavity of g, and the linearity of u. To do this, we
show that any weak Pareto-optimum that is not a Pareto-optimum must have either maximal safety or
maximal usefulness.

Suppose x∗ is a weak Pareto-optimum but not a Pareto-optimum, and for reduction assume that x∗

has neither optimal safety nor optimal usefulness.

If there is both (1) a point x0 with equal g and better u and (2) a point x1 with equal u but better g,
then we can derive a point x0+x1

2 that dominates x∗.17

The definition of weak Pareto-optimality only implies that (1) or (2) holds. However, it can be shown
that if (1) holds and x∗ does not maximise g, then (2) also holds or x∗ is otherwise dominated.18

Similarly, it can be shown that if (2) holds and x∗ does not maximise u, then (1) also holds or x∗ is
otherwise dominated.19

Since weak Pareto-optimality implies (1) or (2), which implies (1) and (2), which derives a contradic-
tion unless x∗ maximises g or u, we can conclude that any weakly Pareto-optimal point that is not
also Pareto-optimal must maximise either g or u. Therefore, such a point is optimal for a weighting
of either w = 1 or w = 0 gives us that x∗ ∈ argmaxx vw(x).

A.2 PROVING RESULTS FROM SECTION 3

Using the lemma above, we can immediately prove some of the results from Section 3.

Proposition (Proposition 3.2 Restated). For any AI-Control Game G, and appropriate distance
functions in ΠB and ΠR: Safety(πB , ·), Safety(·, πR), and Use(·) are continuous in their domains.

Proof. These results follow fairly straightforwardly from Corollary A.2, using the Blue distance
measure d(πB

1 , π
B
2) = ∥xπB

1
− xπB

2
∥ and Red distance measure d(πR

1 , π
R
2) = ∥xπR

1
− xπR

2
∥.

For fixed πR and ϵ, ∃δ(ϵ) such that if d(πB
1 , π

B
2) = ∥xπB

1
− xπB

2
∥ < δ, then by Corollary A.2,

|s(xπB
1
,y) − s(xπB

2
,y)| = |Safety(πB

1 , π
R) − Safety(πB

2 , π
R)| < ϵ, and therefore Safety is

continuous. The proofs for Safety(·, πR
0) and Use(·) are similar.

Proposition (Proposition 3.3 Restated). For all πB , Safety(πB , ·) attains its minimum at some πR,
and minπR Safety(·, πR) is continuous.

Proof. For any πB , the minimiser y to s(xπB , ·) always exists by Corollary A.2. By the fact that
µR is a bijection, there is some πR such that µR(πR) = y and this πR must minimise Safety(πB , ·)
since s(xπB

1
,yπR

1
) = Safety(πB

1 , π
R
1) for all πB

1 and πR
1 . That minπR Safety(·, πR) is continuous

at all πB ∈ ΠB follows directly from the claim that miny s(·,y) is continuous.

Proposition (Proposition 3.5 restated). Every G has an AI-Control Equilibrium.
17By convexity of X , the point x0+x1

2
is in X and by linearity of u and concavity of g, dominates x∗:

u(x0+x1
2

) = u(x0)+u(x∗)
2

> u(x∗) and g(x0+x1
2

) ≥ g(x0)+g(x∗)
2

> g(x∗).
18If x∗ does not maximise u, let x0 be any point with higher u and by assumption worse-or-equal g.

If g(x0) = g(x∗), then (2) also holds, otherwise, g(x0) < g(x∗). Choose λ := g(x∗)−g(x0)
g(x1)−g(x0)

such that
g(x∗) = λg(x1) + (1 − λ)g(x0). Clearly 0 < λ < 1. Let xλ = λx1 + (1 − λ)x0. We can see that
u(xλ) = λu(x1) + (1 − λ)u(x0) = λu(x∗) + (1 − λ)u(x0) > u(x∗). Further, by concavity of g,
g(xλ) ≥ λg(x1) + (1− λ)g(x0) = g(x∗). If this inequality is strict, xλ dominates x∗, if it is not, (2) holds.

19If x∗ does not maximise g, let x1 be any point with higher g and by assumption worse-or-equal u. If
u(x1) = u(x∗), then (1) also holds, otherwise u(x1) < u(x∗) By the linearity of u, and convexity of X ,
there is some 0 < λ < 1 for which u(xλ) = u(x∗). By concavity of g, g(xλ) ≥ λg(x1) + (1− λ)g(x0) =
λg(x1) + (1 − λ)g(x∗) ≥ g(x∗). If this inequality is strict, xλ dominates x∗. Otherwise, if it is equal, (1)
also holds.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Given that a Red safety minimiser always exists, to show that an AI-Control Equilibrium
always exists, it’s sufficient to show that there is some πB

∗ for which no other πB has strictly better
minπR Safety(·, πR) and Use(·). By Corollary A.2 with w = 1, there exists a point x where v1
attains its maximum. Let σB be the mixed strategy represented by x, then by Kuhn’s Theorem,
there is some behavioural πB equivalent to σB . (Note that we cannot guarantee that µB(πB) = x,
only that πB is equivalent, and therefore induces the trajectories, safety and usefulness). For all πR,
Safety(πB , πR) = s(x,yπR). Any Blue policy πB

1 that had strictly better worst-case safety than πB

would give some xπB
1

that dominates x (a contradiction). Therefore, no policy has strictly better
safety than the policy πB and (πB , argminπR Safety(πB , πR)) is an AI-Control Equilibrium.

A.3 RESULTS FROM SECTION 5

The mapping defined in Lemma A.1 is also useful for proving the results in Section 5, that are used
to support Algorithm 1 and Algorithm 2.

A.3.1 SINGLE OBJECTIVE PROBLEM

First, we show the correspondence between solutions to the multi-objective and single objective
problems.

Lemma (Repeat of Lemma 5.1). A Blue policy πB is in an AI-Control Equilibrium if, and only if,
for some w ∈ [0, 1], it maximises minπR

∗

(
w Safety(·, πR) + (1− w)Use(·)

)
.

Proof. The claim that a Blue policy πB is in an AI-Control Equilibrium if, and only if, it is in a
maximin point for V G

w can be shown using the equivalent claim from Theorem A.3: that x is weakly
Pareto-optimal if, and only if, it is optimal for some vw. A Blue policy πB is in an AI-Control
Equilibrium if, and only if, ϕ(xπB) is weakly Pareto-optimal, if and only if, there exists some w for
which xπB is optimal for vw.

For what remains, it is sufficient to show that, for any w, xπB is optimal for vw if, and only if, πB

maximises minπR
∗

(
w Safety(·, πR) + (1− w)Use(·)

)
.

(⇒) If some πB
1 beat πB in minπR

∗

(
w Safety(·, πR) + (1− w)Use(·)

)
, then xπB

1
would beat x in

vw.

(⇐) If some x2 beat xπB in vw, then by Kuhn’s Theorem, there would be some πB
3 , equivalent to

the mixed strategy σB
2 represented by x2

20, such that πB
3 beats πB for w.

A.3.2 REDUCTION TO A ZERO-SUM GAME

Although Lemma 5.1 creates a single-objective optimisation problem for Blue, the resulting optimi-
sation problem is, on the face of it, a novel type of game. The next result reduces the optimisation
problem further to finding an unusual form of equilibrium in an existing type of game.

Lemma A.4 (Lemma 5.2). For every AI-Control Game G, and weight w ∈ [0, 1], there is a single-
objective, zero-sum, partially observable stochastic game Gw with expected return (for Blue) VGw

such that:
∀πB , πR : VGw

(πB , πR) = V G
w (πB , πR)

Proof. The notation and exact details of partially observable stochastic games vary between sources.
For our purposes, we use a tuple that’s similar to the one used in Emery-Montemerlo et al. (2004),
with some modifications to make the game zero-sum rather than cooperative, and specifically two-
player. We also include observations in the initial distribution, to increase generality such that agents
might receive and observation before choosing their first action.

Definition (ZSPOSG). A zero-sum two-player partially observable stochastic game is a tuple
G =

(
S,AB ,AR,ΩB ,ΩR, I,P,R, H

)
.

20though not necessarily such that µB(πB
3) = x2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

There is no inbuilt notion of honest or attack modes in this definition. The reward function, with type
R : S ×AB ×AR → R, is also new. Otherwise, the components of the tuple are the same as in the
AI-Control Game.

Given some AI-Control Game G =
(
S,AB ,AR,ΩB ,ΩR, I,P,RSafe,RUse, H

)
, and weight w, we

can construct the ZSPOSG Gw :=
(
S̃,AB ,AR,ΩB ,ΩR, Ĩ, P̃,Rw, H

)
as follows:

• (S̃) The ‘mode’ of the game is baked into the state space: S̃ := S × { H⃝, X⃝}.

• (AB ,AR,ΩB ,ΩR) The action and observation spaces are unchanged.

• (I) In an AI-Control Game, the mode of the game is chosen non-deterministically. In-
stead, we choose it with some non-zero probability, say 0.5. Then Ĩ((s, ?⃝), oB , oR) :=
1
2I(s, o

B , oR).

• H is the same as in the AI-Control Game.

The two most important changes are to the transition and reward functions. The transition function
has type P̃ : S̃ ×AB×AR → ∆

(
S × ΩB × ΩR

)
. We define this function in a fairly straightforward

way. Transitions between H⃝ and X⃝ states are impossible. Further, in honest (H⃝) states, Red’s action
has no effect, and the game transitions as though Red had chosen anull.21

The reward functionRw is defined as follows:

Rw((s, H⃝), aB , aR, (s′, H⃝)) := 2(1− w)RUse(s, a
B , s′)

Rw((s, X⃝), aB , aR, (s′, X⃝)) := 2wRSafe(s, a
B , aR, s′)

The factor of 2 compensates for the fact that each mode is only chosen in half of the states. Note how
the usefulness reward is only active in honest states, and the safety reward is only active in attack
states.

Since the action and observation spaces are unchanged, the sets of policies (ΠR and ΠB) are the
same for the AI-Control Game and the zero-sum game: subject to the same constraints that Red is
memoryless and Blue has perfect recall. All that remains is to show that the expected return for Blue
in Gw is w Safety(πB , πR) + (1− w)Use(πB).

The exact details of this proof are somewhat finicky, but the basic idea is to show an equivalent
probability of sampling trajectories from each game, up to small details:

1. The probability of any particular H⃝ trajectory in the AI-Control Game does not depend on
πR. However, trajectories in ZSPOGs include Red’s actions, which do depend on πR, even
if those actions have no effect on the transition or reward. It is therefore necessary to sum
over all possible sequences of Red’s actions in the ZSPOSG, when comparing to a trajectory
in the AI-Control Game.

2. Because ?⃝ is chosen non-deterministically in the AI-Control Game, and Safety and Use
are measured conditional on the mode, the probability (up to Red’s actions) of a given
H⃝ trajectory in the ZSPOSG is half the probability of the corresponding trajectory in the

AI-Control Game (when H⃝ is chosen). This is countered by the factor of 2 in the reward
function.

21Formally, P̃((s′, H⃝) | (s, H⃝), aB , aR) = P(s′ | s, aB , anull).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By summing over the probabilities of trajectories in each game, we could show that:

2 · EGw

[
H∑
t=0

Rw(St, A
B
t , A

R
t , St+1) | H⃝, πB , πR

]
=

(1− w)EG

[
H∑
t=0

RUse(St, A
B
t , St+1) | H⃝, πB

]
(3)

In other words, conditional on the ZSPOSG choosing H⃝ (which happens with probaiblity 1
2), the

usefulness score for Blue in the AI-Control Game. Similarly, we can show an equivalent result for
safety in the attack mode:

2 · EGw

[
H∑
t=0

Rw(St, A
B
t , A

R
t , St+1) | H⃝, πB , πR

]
=

wEG

[
H∑
t=0

RSafe(St, A
B
t , A

R
t , St+1) | X⃝, πB , πR

]
(4)

It follows that: w Safety(πB , πR) + (1− w)Use(πB) = VGw
(πB , πR).

A.3.3 PROOF OF THEOREM 5.3

Theorem (Repeat of Theorem 5.3). A policy πB is in an AI-Control Equilibrium if, and only if, for
some ZSPOSG Gw with value function VGw

, πB maximises minπR
∗ ∈ΠR Vw(·, πR

∗) over ΠB .

Proof. Lemma 5.1 shows that πB is in an AI-Control Equilibrium if, and only if, it is a maximum for
point for some minπR Vw(·, πR). Lemma 5.2 shows that there is some Gw for which VGw

(πB , πR) =
V G
w (πB , πR). Therefore πB is in AI-Control Equilibrium if, and only if, it is in a maximum for some

minπR VGw(·, πR).

A.3.4 COUNTEREXAMPLE TO MINIMAX

Proposition (Proposition 5.4 repeated). There exists a Gw such that Red’s behavioural and mixed
policies would not be equivalent and

max
πB∈ΠB

min
πRΠR

VGw
(πB , πR) < min

πR∈ΠR
max

πB∈ΠB
VGw

(πB , πR)

Proof. This game is a sort of two-player version of the absent-minded driver example Aumann et al.
(1997).

Figure 4 shows an extensive form game that we can easily show is equivalent to an AI-Control game
reduced to a ZSPOSG (Gw).22

Since Blue only has one choice, between two actions, and in a single information set, Blue’s policy
can be represented by the probability Blue chooses right:

p := πB(▶) = 1− πB(◀)

Similarly, even though Red acts twice, because they get only a null observation and are memoryless,
Red’s policy can be represented by the probability Red chooses right:

q := πR(▶) = 1− πR(◀)

22Choose H = 3 and take the obvious state and action spaces. Set both observation sets to be singletons and
set w = 1 so that only safety is valued. To account for the turned-based nature of the game above, we ignore
actions for Red and Blue on turns where they do not move. Because w = 1, we don’t need to consider the
usefulness function, or games where H⃝ is active.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

start

◀

◀◀

◀◀◀

-1
◀◀▶

0

◀▶

◀▶◀

0
◀▶▶

-0.5

▶

▶◀

▶◀◀

-0.5
▶◀▶

0

▶▶

▶▶◀

0
▶▶▶

-1

Figure 4: A zero-sum extensive form representation of a game where the minimax and maximin
values are different. The dotted red box highlights Red’s single information set (i.e. Red has the same
decision rule for all nodes). Blue moves first, and the Red takes the next two moves. All moves are
either left (◀) or right (▶). The payoffs for Blue are shown at the bottom of the tree.

0.0 0.5 1.0
p

1.0

0.8

0.6

0.4

V(
p,

q)

0.0 0.5 1.0
q

V(
p,

q)
q = 0.00
q = 0.25
q = 0.50
q = 0.75
q = 1.00
min

q
V(p, q)

0.750
p = 0.00
p = 0.25
p = 0.50
p = 0.75
p = 1.00
max

p
V(p, q)

0.500

Figure 5: The minimax and maximin values of the game in Figure 4

Note that if we allowed Red to take policy mixtures in AI-Control Games, then this extensive form
game would not be equivalent to an AI-Control Game, since Red could correlate their action in the
second round with their action in the first round.

The value of the game is then given by:

V (p, q) = (−1) ∗ (1− p)(1− q)2

+ (−0.5) ∗ (1− p)q2

+ (−0.5) ∗ p(1− q)2

+ (−1) ∗ pq2

= −1 + p(0.5− 1q) + 2q − 1.5q2

max
p

min
q

V (p, q) = V (0.5, 1.0) = V (0.5, 1.0) = −0.75

min
q

max
p

V (p, q) = V (1.0, 0.0) = V (0.0, 1.0) = −0.5

∴ max
p

min
q

V (p, q) < min
q

max
p

V (p, q)

Since the corresponding AI-Control game is equivalent to the extensive form game, this shows that
the minimax and maximin values of the AI-Control game can be different.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.3.5 PROOF FOR ALGORITHM 2

Proposition (Repeat of Theorem 5.5). For ϵ > 0, Algorithm 2 returns an ϵ-equilibrium in Gw in
finite time. Further, for all t:

vt ≤ v∗ := max
πB
∗ ∈ΠB

min
πR
∗ ∈ΠR

V G
w (πB

∗ , π
R
∗) ≤ vt

Proof. Our results are based closely on those from Adam et al. (2021), but we must modify them
slightly to account for the differences between our games. Adam et al. (2021) define a continuous
game as follows (with some slight modifications to notation):

Definition (Continuous Game). A continuous game Gcont is a tuple (X ,Y, f) where X ⊆ Rk and
Y ⊆ Rl are compact sets, and f : X × Y → R is a continuous function that gives the utility for
Blue (−f for Red). Blue chooses a mixed strategy as a Borel probability measure p over X and Red
choose q over Y . The value of two mixed strategies is given by F (p, q) :=

∫
X×Y f(x, y)d(p× q).

Where we consider leader-follower equilibria over behaviourally stochastic strategies (which are
equivalent to mixed for Blue but not Red), Adam et al. (2021) considers Nash-equilibria over
jointly-mixed strategies:

v∗ = max
p

min
q

Fw(p, q) = min
q

max
p

Fw(p, q)

Fortunately, since for any p, minq Fw(p, q) = miny Fw(p, y), v∗ is also the value for the leader-
follower game when Red is restricted to a single strategy from Y in a continuous game. There-
fore, finding an ϵ-equilibrium p, q, and then returning p, y where y := miny Fw(p, y) returns an
ϵ-approximate value for maxp miny Fw(p, y).

Adam et al. (2021) Lemma 2 shows that vt ≤ v∗ ≤ vt for all t. Theorem 3.1 shows that the algorithm
returns an ϵ-approximate equilibrium in finitely many steps if ϵ > 0. Therefore, returning p∗i , yi+1,
where yi+1 is a best response to p∗i , Fw(p

∗
i , yi+1) ≥ vi − ϵ ≥ v∗ − ϵ gives a pessimistic ϵ-maximin

point for Fw.

Using Lemma A.1, we can easily map the value of a scalarised AI-Control Game to this definition of
a continuous game: implying the results hold for Algorithm 2.

For a given AI-Control Game G and weight w, consider the mappings from Blue policies to X ⊂ Rm

and Red policies to Y ⊂ Rn described in Lemma A.1. Then define X := {ei}mi=1 ⊂ X as the finite
set of vectors corresponding to deterministic Blue strategies. (Here ei is the vector that is 1 at the
i’th dimension and 0 elsewhere.) Define Y := Y . Then, let fw(ei,y) := w · s(ei,y) + u(ei), which
corresponds to w Safety(πB

i , π
R) + (1−w)Use(πB

i), where πB
i is the i’th deterministic strategy in

the enumeration of ΠB
det from Lemma A.1 and πR is the policy corresponding to y.

Every solution to the continuous game Gw
cont := ({ei}mi=1, Y, fw) is equivalent to a solution to the

AI-Control Game, relaxed to allow Red to take policy mixtures.

B FULL DEFINITION OF TRUSTED MONITORING AI-CONTROL GAME

In Section 3 we summarised the definition of the Trusted Monitoring AI-Control Game. Here, we
provide the full definition of the game, including the state space, action space, observation space,
transition function, and reward function. Note that this definition of the game is parameterised by a
few values. First, and foremost, are the number of problems to be solved, and the number of times
the protocol can ask for human assistance. We denote these values as M and C, respectively. We
also assume that the trusted monitor’s suspicion score is drawn from two distributions, DBd and DSf,
representing the suspicion scores for backdoored and safe solutions, respectively. These distributions
correspond to Greenblatt et al. (2024, Figure 4a).

Let M be the number of problems to solve, and at a given time let m represent the number of
problems remaining. To model limited access to a human auditor, we define a variable c, representing
the number of ‘audit coins’ remaining: the number of times the protocol can ask for human assistance.
Let C = 0.02 ·M be the number of audit coins at the start of the game.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Define the AI-Control Game as the tuple:

GTM =
(
S,AB ,AR,ΩB ,ΩR, I,P,RSafe,RUse, H

)
The state space S consists primarily of states s = (m, c, b) where m and c are as defined above,
and b represents whether or not the solution to the current problem is backdoored, and takes values
True or False. We also include three additional states. First, s0 = ⟨Start⟩ represents the initial
state when no problem has yet been solved. Second, s⊥ represents the outcome of a solution
that the untrusted AI backdoored was submitted to by the protocol. Third, we define an implicit
s⊤ terminal state, representing the case where a human audit has caught a backdoored solution,
and goes into safety mode, ending the opportunity for future backdoors. We can also define an
‘unacceptable’ terminal state s⊥ that is entered whenever a backdoor is successfully submitted. Both
s⊤ and s⊥ will self-loop with probability 1 on all actions. Finally, we define the state space as
S := {s0, s⊥, s⊤} ∪ {(m, c, b) : 0 ≤ m ≤M ; 0 ≤ c ≤ C}.
The action space for Blue consists of three actions: AB := {⟨Audit⟩, ⟨Defer⟩, ⟨Run⟩}. If aB =
⟨Audit⟩ is chosen, the human is asked to audit the untrusted model solution. If aB = ⟨Defer⟩ is
chosen, then Blue defers to the trusted model to attempt to generate a solution (though the trusted
model may not be successful). If aB = ⟨Run⟩ is chosen, then Blue runs the code submitted by the
untrusted model.

The action space for Blue consists of two actions: AR := {⟨Backdoor⟩, ⟨Safe⟩}. If aR =
⟨Backdoor⟩ is chosen, then Red interferes with the untrusted model in an attempt to submit a
backdoored solution. If aR = ⟨Safe⟩ is chosen, then Red does not interfere, and the untrusted model
submits a normal solution.

In Greenblatt et al. (2024) original implementation of Trusted Monitoring, Red observes the problem
statement before considering how and whether to attack. Because we are only considering attacks
that choose to backdoor I.I.D., we can abstract away the description of the programming problem
from our model. Since Red also does not observe the time or number of audit coins left, we model
Red as receiving a null observation in every case. Therefore, ΩR := {onull}. (Note that this is not
true for all Control Games.)

The initial state distribution is the degenerate distribution I(s0, onull, onull) = 1, where both Blue and
Red receive null observations.

The most complicated part of the model is the transition function P : S × AB × AR →
∆
(
S × ΩB × ΩR

)
. In our case (though not necessarily in general) we can factor P:

P
(
st+1, o

B
t , o

R
t | st, aBt , aRt

)
=

P
(
st+1 | st, aBt , aRt

)
· P
(
oBt | st+1

)
· P
(
oRt
)

The final term, P
(
oRt
)
, is redundant, since oRt only takes on one value. The observation probability

for Blue only depends on the state. In particular, it only depends on whether the current problem is
backdoored or not. In Trusted Monitoring protocols, the solution from the untrusted model is fed
to the trusted monitor, which then rates the solution’s suspiciousness (xt). We model the trusted
monitor as a noisy observer, and assume that the trusted monitor’s suspicion score is drawn from
two distributions, DBd and DSf, representing the suspicion scores for backdoored and safe solutions,
respectively.

P
(
oBt | st+1

)
= P ((xt′ ,m

′, c′) | (m, c, b))

P ((xt,m, c) | (m, c, True)) = DBd (xt)

P ((xt,m, c) | (m, c, False)) = DSf (xt)

DSf is the distribution we get by sampling a programming problem from the distribution of problems,
asking the untrusted model to generate a solution, and then asking the trusted monitor to rate
the suspiciousness. DBd is the distribution we get by sampling a programming problem from the
distribution of problems, asking the untrusted model to generate a backdoored solution, and then
asking the trusted monitor to rate the suspiciousness.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Next, we define the state transition function. In our model, though not in general, much of the
stochasticity in the game comes from the policies and the Blue observation function, rather than
state transitions: the only other source of stochasticity we model is the possibility of an imperfect
human auditor. We therefore we will use the shorthand P

(
st, a

B
t , a

R
t

)
= st+1 to represent that

P
(
st, a

B
t , a

R
t

)
= δ (st+1). Let pFNRH denote the human auditor’s false negative rate, and pFPRH denote

the false positive rate. Further, let δp(x; y) be the distribution that assigns probability p to x and
probability (1− p) to y.

The transition from the initial state just moves to the first ‘real state’ and stores the value of whether
the red team has backdoored the first solution. (It ignores Blue’s action). It is given by:

∀aR : P
(
⟨Start⟩, aB , ⟨Backdoor⟩

)
= (M,C, True)

∀aR : P
(
⟨Start⟩, aB , ⟨Safe⟩

)
= (M,C, False)

Then, for subsequent states, if the solution is backdoored and the protocol runs the solution, it loses;
if the protocol audits the solution, it wins if the human auditor doesn’t make a mistake, but loses if
they do. If the protocol defers, the game continues. (In what follows, abbreviate ⟨Backdoor⟩ with
⟨Bd⟩).

P
(
(m, c, True), ⟨Run⟩, aR

)
= s⊥ (∀aR)

P
(
(m, c, True), ⟨Audit⟩, aR

)
= δpFNRH

(s⊥; s⊤) (∀aR)
P ((m, c, True), ⟨Defer⟩, ⟨Bd⟩) = (m−1, c, True)

P ((m, c, True), ⟨Defer⟩, ⟨Safe⟩) = (m−1, c, False)

Alternatively, if the solution is not backdoored, the game only terminates if Blue audits and the human
auditor incorrectly marks the solution as backdoored, the game enters the ‘safe’ end state: even if for
the wrong reasons, Blue never uses U again, ensuring no backdoors are submitted, and Blue wins. In
all cases, if Blue audits, they lose an audit coin:

P ((m, c, False), ⟨Run⟩, ⟨Bd⟩) = (m−1, c, True)
P ((m, c, False), ⟨Run⟩, ⟨Safe⟩) = (m−1, c, False)

P (. . . , ⟨Audit⟩, ⟨Bd⟩) = δpFPRH
(s⊤; (m−1, c−1, True))

P (. . . , ⟨Audit⟩, ⟨Safe⟩) = δpFPRH
(s⊤; (m−1, c−1, False))

P (. . . , ⟨Defer⟩, ⟨Bd⟩) = (m−1, c, True)
P (. . . , ⟨Defer⟩, ⟨Safe⟩) = (m−1, c, False)

The safety reward function in this model could simply be defined as giving a score of−1 whenever the
unacceptable terminal state, s⊥, is entered. However, to ensure that the final safety score is between
0 and 1, rather than −1 and 0, we can also add a reward of 1/H to every transition. Therefore, the
total reward is:

RSafe(st, a
B
t , a

R
t , st+1) =

1

H
− 1[st+1 = s⊥ ∧ st ̸= s⊥]

The usefulness function in this model just measures how many of the untrusted model’s solutions are
submitted. RUse : S ×AB × S → R. Since usefulness is only measured in ‘honest’ games, we can

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ignore cases where st or st+1 are s⊥ or where b is True. It is still possible that s⊤ could be reached
should the human auditor make a mistake. Therefore, the only important transitions to consider are:

RUse ((m, c, False), ⟨Audit⟩, s⊤) = 0

RUse

(
s⊤, a

B
t , s⊤

)
= 0

RUse

(
(m, c, False), aBt , (m− 1, c′, False)

)
= 1

[
aBt ̸= ⟨Defer⟩

]
Finally, we choose H := M + 1, such that the game ends after M + 1 timesteps, and M problems
are solved. This completes the definition of the Control Game Tuple for Trusted Monitoring with
Defer to Trusted.

C PROOFS FROM SECTION 4

C.1 SAFETY EXPRESSION

Proposition C.1 (Proposition 4.1). For any Red policy πR, where the probability of attempting a
backdoor on a given round (πR(⟨Backdoor⟩ | onull)) is β, the safety of the memoryless policy πB is
given by the value of zCm, where z is the solution to the following recurrence relation (where the λi

m,c
terms are constant with respect to β):

zcm =
(
λ1
m,cβ + λ2

m,c

)
zcm−1 + λ5

m,c(1− β)zc−1
m−1

+ λ3
m,cβ + λ4

m,c(1− β)

where z0m =
(
1− β + λ6

m,cβ
)
z0m−1 and zc0 = 1

Let f(q) denote the probability a trusted monitor score for a backdoored case is in the top qth
percentile of scores for safe cases. Further, let pFNRH denote the human auditor’s false negative rate,
and pFPRH denote the false positive rate. Then, all of the values of λi

m,c are functions only of qam,c,
qdm,c, and f , and can be computed upfront:

λ1
m,c = (f(qdm,c)− f(qam,c))− (1− qam,c)

λ2
m,c = 1− qam,c

λ3
m,c = f(qam,c) · (1− pFNRH)

λ4
m,c = qam,c · pFPRH

λ5
m,c = qam,c · (1− pFPRH)

λ6
m,c = f(qdm,c)

Note that in the initial statement of Proposition 4.1, we assume for simplicity that pFPRH and pFNRH
equal 0. It is trivial to show that the above recurrence relation simplifies to the one put forward in
Proposition 4.1 if this assumption is made.

Proof. First, we note that, given the general definition of Safety, and the trusted monitoring games
definition ofRSafe, we can express safety as:

Safety
(
πB , πR

)
= E

[
H−1∑
t=0

1

H
− 1[st+1 = s⊥ ∧ st ̸= s⊥] | H⃝, πB , πR

]

=

H−1∑
t=0

1

H
− E

[
1 [∃t : st = s⊥] | H⃝, πB , πR

]
= P

[
SH ̸= s⊥ | X⃝, πB , πR

]
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

We will calculate the probability of not ending in the unacceptable outcome by defining a recurrence.
We will define an expression zcm, and show it represents the probability that the game does not
terminate in an unacceptable outcome, given that the game has reached time m with c audit coins
left but before the observation xt is drawn. In other words, its the probability that the game does
not terminate in an unacceptable outcome, given that st−1 ̸∈ {s⊥, s⊤} (the unacceptable or positive
terminal states), and instead st−1 = (m+ 1, c′, b), and either b is false (and no false alarm has been
raised due to an auditing error), or aBt−1 = ⟨Defer⟩.
Let g(q) = x be the threshold such that P[xt ≥ x | bt = True] = q. Given that the game has reached
time m with c > 0 audit coins left, there are a few options for the round:

1. Red chose ⟨Backdoor⟩ last round and the problem is backdoored, Blue chooses ⟨Audit⟩
and wins if no auditing mistake is made. This happens with probability β ·P[xt ≥ g(qam,c)] ·
(1− pFNRH) = β · f(qam,c) · (1− pFNRH).

2. The current problem is backdoored, Blue chooses ⟨Audit⟩ and loses because an auditing
mistake is made. This happens with probability β ·P[xt ≥ g(qam,c)]·pFNRH = β ·f(qam,c)·pFNRH .

3. The current problem is backdoored, Blue chooses ⟨Run⟩, and loses immediately. This
happens with probability β · P[xt ≤ g(qdm,c)] = β · (1− f(qdm,c)).

4. The current problem is backdoored, Blue chooses ⟨Defer⟩, and the game continues with c
audit coins. This happens with probability β · (f(qam,c)− f(qdm,c)).

5. The current problem is not backdoored, and Blue chooses ⟨Audit⟩ and no auditing mistake
is made, so the game continues with c − 1 audit coins. This happens with probability
(1− β) · P[xt ≥ g(qam,c)] · (1− pFPRH) = (1− β) · qam,c · (1− pFPRH).

6. The current problem is not backdoored, and Blue chooses ⟨Audit⟩, but human error causes
an auditing mistake, so the game ends immediately with Blue winning (no chance of any
future backdoors). This happens with probability (1 − β) · P[xt ≥ g(qam,c)] · pFPRH =
(1− β) · qam,c · pFPRH .

7. The current problem is not backdoored, and Blue chooses ⟨Run⟩, and the game continues with
c audit coins. This happens with probability (1−β)·P[xt ≤ g(qdm,c)] = (1−β)·(1−(qdm,c)).

8. The current problem is not backdoored, and Blue chooses ⟨Defer⟩, and the game continues
with c audit coins. This happens with probability (1− β) · (qdm,c − qam,c).

Denote P
[
SH ̸= s⊥ | X⃝, πB , πR,m, c

]
with the shorthand p[m, c]. We will define the recurrence

zcm to be equal to p[m, c] at all points. We can therefore write out an expression for p[m, c] in terms
of p[m− 1, c− 1] and p[m− 1, c] when m ≥ 1 and c ≥ 1:

p[m, c] =(β · f(qam,c) · (1− pFNRH))(1)

+ (β · f(qam,c) · pFNRH)(0)

+ (β · (1− f(qdm,c)))(0)

+ (β · (f(qam,c)− f(qdm,c)))p[m− 1, c]

+ ((1− β) · qam,c · (1− pFPRH))p[m− 1, c− 1]

+ ((1− β) · qam,c · pFPRH)(1)

+ ((1− β) · (1− (qdm,c)))p[m− 1, c]

+ ((1− β) · (qdm,c − qam,c))p[m− 1, c]

Given, this expression, we can define

zcm := (. . .)zcm−1 + (. . .)zc−1
m−1+. . .

as described in the proposition by rearranging the terms above.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

At the boundary, when c = 0, ⟨Audit⟩ actions are ignored. Therefore, the only three options
are that (1) the problem is backdoored, and Blue chooses ⟨Run⟩, (2) the problem is backdoored,
and Blue chooses ⟨Defer⟩, or (3) the problem is not backdoored, and Blue chooses ⟨Defer⟩.
This gives us the boundary condition p[m, 0] = (1 − β + (1 − qdm,c)β)p[m − 1, 0]. Then define
z0m := (1− β + (1− qdm,c)β)z

0
m−1.

Finally, at the boundary when m = 0, there are no problems left, and so Blue has won: thus,
zcm := 1 = p[0, c]. That zcm = p[m, c] for all m and c is straightforward by induction from our
definitions.

C.2 USEFULNESS EXPRESSION

As mentioned in Section 4, we can give an expression for the usefulness, similar to the above
expression for safety.

Proposition C.2. The usefulness of the memoryless threshold policy πB is given by the value of uC
M ,

where u is the solution to the following recurrence relation:

uc
m =

(
(1− qdm,c) + (1− pFPRH)qam,c

)
(1)

+
(
1− pFPRH

)
(qam,c)(u

c−1
m−1)

+
(
1− qam,c

)
(uc

m−1)

where u0
m = (1− qdm,c)(1) + u0

m−1 and uc
0 = 0.

Proof. Just as with the above proof for the safety expression, we begin by noting the definition of
usefulness:

Use(πB) := E

[
H∑
t=0

RUse

(
St, A

B
t , St+1

)
| H⃝, πB

]

The usefulness of a Blue policy πB is defined as the expected number of times Blue uses solutions
from U in an honest (H⃝) game; honest games are those in which the untrusted model U is not
scheming, and so no backdoors are inserted. We can identify when Blue uses a solution from U as
cases in which Blue either takes the action ⟨Run⟩, or takes the action ⟨Audit⟩ and no human error is
made.

We will define an expression uc
m and show it represents the expected number of solutions from the

untrusted model that Blue will use throughout the rest of the game, given that the game has reached
time m with c audit coins left, but before the observation xt is drawn.

By the linearity of expectation, the value of uc
m can be broken down into the expected number of

solutions used in the current step of the game, summed with the expected number of solutions used
from the next step of the game onwards. The latter is another variable in the recurrence. The former
is simply the probability that Blue uses the current solution from U ; in the current timestep, Blue
either uses the solution with a particular probability, or doesn’t use the solution.

The game continues in all cases except where a mistake is made as part of a Blue ⟨Audit⟩ and a safe
solution is marked as backdoored. In this singular case, all remaining usefulness for the remainder of
the game is set to 0: after ’catching’ the inserted backdoor, Blue will not use any other solutions from
U .

Let g(q) = x be the threshold such that P[xt ≥ x | bt = True] = q. Given that the game has reached
time m with c > 0 audit coins left, we can break down the expected number of solutions used by
each of Blue’s possible actions:

1. Blue chooses ⟨Run⟩ and uses the solution from U . The game continues to the next timestep
with the same number of audit coins remaining. This happens with probability P[xt ≤
g(qdm,c)] = 1− qdm,c.

2. Blue chooses ⟨Defer⟩ and does not use the solution. The game continues to the next
timestep having not used an audit coin. This happens with probability qdm,c − qam,c.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

3. Blue chooses ⟨Audit⟩ and no human auditing error is made, so the solution is used. The
game continues having used up one audit coin. This happens with probability (1− pFPRH) ·
qam,c.

4. Blue chooses ⟨Audit⟩ and a human auditing error leads to the game ending in the ’safe’ state
s⊤ and no further solutions from U being used. This happens with probability pFPRH · qam,c.

Let E
[∑H

t=0RUse

(
St, A

B
t , St+1

)
| H⃝, πB ,m, c

]
be denoted by the shorthand e[m, c]. We will

define the recurrence uc
m to be equal to e[m, c] at all points. We can therefore write out an expression

for e[m, c] in terms of e[m− 1, c− 1] and e[m− 1, c]:

e[m, c] = (1− qdm,c)(1 + e[m− 1, c])

+ (qdm,c − qam,c)(0 + e[m− 1, c])

+ ((1− pFPRH) · qam,c)(1 + e[m− 1, c− 1])

+ (pFPRH · qam,c)(0)

Given, this expression, we can define

uc
m :=. . .+(. . .)uc−1

m−1 + (. . .)uc
m−1

as described in the proposition by rearranging the terms above.

At the boundary, when c = 0, ⟨Audit⟩ actions are ignored. Therefore, the only option is whether Blue
chooses ⟨Run⟩ or ⟨Defer⟩. Both actions continue the game in the next timestep. This gives us the
boundary condition e[m, 0] = (1−qdm,c)(1)+e[m−1, 0]. Then define u0

m := (1−qdm,c)(1)+u0
m−1.

Finally, at the boundary when m = 0, there are no problems left, so there are no more solutions to
use: thus, uc

0 := 0 = e[0, c]. That uc
m = e[m, c] for all m and c is straightforward by induction from

our definitions.

D EXPERIMENTAL DETAILS

We include a number of experiments in this paper that illustrate the safety and usefulness scores for
Blue protocols when set against the best Red response. Below are the details of our experimental
setup.

Trusted Monitor Distributions. Greenblatt et al. (2024) empirically investigate the distribution of
their Trusted Monitor scores on backdoored and safe programming solutions. Since our ‘Original
Trusted Monitor’ distributions are only designed to approximate these results, we fit beta distributions
to points derived directly from the bar chart from figure 4a Greenblatt et al. (2024) using the
SciPy library for Python.23 We then discretise this beta distribution to 6 decimal places to get an
approximated finite observation space.

Our choice to use a beta distribution is partially motivated by the bounded range of suspicion scores,
which we normalise to [0, 1], and the skew of the data. However, a more principled justification is
that the trusted monitoring scores are generated by T’s confidence in the answer to a yes/no question
(Greenblatt et al., 2024, Appendix O.1).

For the ‘Weak Trusted Monitor’, we use the same safe distribution. However, the backdoor distribution
is chosen to be closer to the safe distribution than in the original case; although there are many possible
‘weak’ distributions to demonstrate that there are some cases in which randomisation is required, we
pick just one.

Red Best Response. For a given Blue policy πB , we find the Red best response using a 1-dimensional
grid search then ternary search for the optimal β ∈ [0.0, 1.0]. The grid search evaluates 33 points and
finds the grid point with the lowest safety score with respect to πB . Then we apply a ternary search,
using the two grid points either side as the bounds of the search interval, to find the optimal value of
β within a tolerance of 10−6 for Pareto-optimal points and of 10−5 for other points in Figure 2.

23https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fit.html

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Blue Best Response. In our implementation of Algorithm 2, we apply a 2D recursive grid search
over the values of qd and qa to find the best Blue response to a given mixed Red policy. This grid
search evaluates 441 points (21 x 21) at each level, selecting the region around the best point as the
search space for the next recursion, until the local optimal values of qd and qa have been found within
a tolerance of 10−6.

Evaluating Protocols. We evaluate memoryless threshold protocols against a fixed red team using
a straightforward implementation of Proposition 4.1, using memoisation/dynamic-programming to
increase efficiency. We expand on seven protocols from Greenblatt et al. (2024) by keeping the audit
FPR fixed and varying the defer FPR in increments of 0.01 in the interval [0.0, 1.0]. Each resulting
protocol is evaluated against the Red best response to it, to generate worst-case safety and usefulness
results.

Demonstrating a Frontier. In order to explore an approximate Pareto-frontier for the fixed-threshold
policy subset, we apply Algorithm 1, finding the optimal Blue and Red policies using Algorithm 2.
In our implementation of Algorithm 2, we find the best response policies (lines 6 and 7) as described
above; we set epsilon to 10−4.

Assumptions and Trends. The results in Section 6.1 are generated by evaluating a number of pro-
posed protocols in games with different modelling assumptions. We choose to limit our investigation
to a fixed defer FPR of 0.1 as a representative example; our goal in this section is to assess the
general impact these assumptions have, and further work might better model how the impact of
these assumptions varies across protocols with different parameters. The audit budget (‘Budget’),
human-auditor false negative rate (‘Human FNR’), and human audit false positive rate (‘Human
FPR’) each vary by increments of 0.01 in the interval [0.0, 1.0], keeping all other variables fixed. The
number of problems (‘Number of Problems’) varies by increasing amounts as follows: increments
of 50 between [100, 1000]; 250 between [1000, 2000]; 500 between [2000, 7000]; and 1000 between
[7000, 10000]. Protocols in Figure 2 are evaluated against a best-response up to a tolerance of 1e−6.

E EXISTING MULTI-OBJECTIVE POSG SOLVER

Whilst our setting shares some similarities to that of Chang et al. (2015), there are important
differences between the settings, and they mandate different solutions. First, and foremost, the
authors use a state-space factored into follower and leader components. Many control games cannot
be modeled with this assumption: the Trusted Monitoring game in Section 4 includes the ‘backdoor’
variable (representing whether Red backdoored last turn) which is observed by neither team.

Second, all AIC Games share a safety/usefulness objective structure and attack/honest game modes
that allow us to reduce to finding Nash-equilibria in a zero-sum game. This reduction further
allows the finding of Blue best-responses using any POMDP solver. Chang et al. (2015)’s more
general objective structure precludes such a reduction, and perhaps motivates their use of a genetic
algorithm. The largest difference between settings considered is Chang et al. (2015)’s consideration
of a memoryfull red team. Much of the complexity in their algorithm is in finding an infinite-memory
follower policy and then finding a finite-memory approximation. These steps are not necessary, or
possible in our AI-Control setting.

Finally, Chang consider an infinite-horizon game, with 11 states, but we consider a finite-horizon
game with ≈ 40, 000 reachable states. They state that 64 manager policies are under consideration,
but the space of possible (deterministic) Blue protocols is far larger. Although it could be possible to
adapt Chang et al. (2015)’s algorithm to account for these differences, it would be more sensible to
derive a multi-objective algorithm from scratch for our setting. the solution methods we present are
simple and the first ways to solve AIC Games.

30

	Introduction
	Example: Setting and Protocol
	Formalising AI-Control Games
	Example: Modelling the protocol
	Evaluating Memoryless Protocols

	Finding Pareto-optimal Protocols
	Example: Results
	Analysing Assumptions and Trends

	Related Work
	Future Work and Conclusions
	General results and proofs
	Mapping to vector space
	Proving results from definitions section
	Results from solution methods section
	Single objective problem
	Reduction to a zero-sum game
	Proof of ZSPOSG reduction
	Counterexample to Minimax
	Proof for Double Oracle Algorithm

	Full definition of Trusted Monitoring AI-Control Game
	Proofs from Modelling Trusted Monitoring
	Safety Expression
	Usefulness Expression

	Experimental Details
	Existing Multi-objective POSG Solver

