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Abstract

Existing text-to-SQL semantic parsers are typ-
ically designed for particular settings such as
handling queries that span multiple tables, do-
mains or turns which makes them ineffec-
tive when applied to different settings. We
present UNISAR (Unified Structure-Aware
Autoregressive Language Model), which ben-
efits from directly using an off-the-shelf lan-
guage model architecture and demonstrates
consistently high performance under different
settings. Specifically, UNISAR extends exist-
ing autoregressive language models to incor-
porate three non-invasive extensions to make
them structure-aware: (1) adding structure
mark to encode database schema, conversa-
tion context, and their relationships; (2) con-
strained decoding to decode well structured
SQL for a given database schema; and (3)
SQOL completion to complete potential miss-
ing JOIN relationships in SQL based on
database schema. On seven well-known text-
to-SQL datasets covering multi-domain, multi-
table and multi-turn, UNISAR demonstrates
highly comparable or better performance to
the most advanced specifically-designed text-
to-SQL models. Importantly, our UNISAR is
non-invasive, such that other core model ad-
vances in text-to-SQL can also adopt our ex-
tensions to further enhance performance.!

1 Introduction

Text-to-SQL translates a user’s natural language
question into a corresponding SQL query (Zhong
et al., 2017; Yu et al., 2018; Guo et al., 2019; Yu
etal., 2019b). This greatly reduces the entry barrier
of data analysis to lay users daunted by the techni-
cal nuances of SQL. As text-to-SQL techniques ma-
tured, enhancements have been proposed to tackle
different settings. These enhancements can be
roughly organized into three settings of research
(Figure 1): (1) multi-domain where a parser must

!Codes are public available.ht tp: //anonymous . com

Multi-Domain
Goal: Generalize to
Various Domains

UniSAR
Unified
Simple

Effective Multi-Table

Goal: Model the

Database Structure

Multi-Turn
Goal: Co-reference
Resolution And
Ellipsis Recovery

Figure 1: Our view of three main research settings in
text-to-SQL.

generalize to databases in various domains (Zhong
et al., 2017; Sun et al., 2020); (2) multi-table where
the parser must understand the database structure
and generate complex SQL query bridging multiple
tables (Yu et al., 2018; Wang et al., 2020b); and (3)
multi-turn where a parser must understand the dia-
log history, often requiring co-reference resolution
and ellipsis recovery (Yu et al., 2019a,b; Guo et al.,
2021).

To address the unique challenges of different
settings, researchers have proposed various neural
architectures, such as grammar-based decoder for
SQL generation (Yin and Neubig, 2018; Guo et al.,
2019; Wang et al., 2020a), GNN for database struc-
ture modeling (Bogin et al., 2019b), and stacked
interaction-layer for context modeling (Cai and
Wan, 2020). However, these architectures are
prone to ‘overfitting’ specific datasets, making
them non-trivial to adapt to others. For example,
the parsers developed for the WikiSQL (Zhong
et al., 2017) typically cannot work well on Spider
benchmark (Yu et al., 2018).

In this work, we present a simple yet effective
text-to-SQL parser: UNISAR (Unified Structure-
Aware Autoregressive Language Model). Com-
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pared with the specifically-designed models (inva-
sive), UNISAR is simple as it does not need any
specifically designed DNN modules other than a
pre-trained language model (non-invasive). Such a
simple architecture gives UNISAR the opportunity
to be easily adapted to different datasets, and thus
UNISAR enjoys high generalizability. Besides,
benefiting from our proposed non-invasive exten-
sions, UNISAR achieves consistently high perfor-
mance across different settings, which is very ef-
Sective. Concretely, we propose three non-invasive
extensions to make an off-the-shelf autoregressive
language model structure-aware. First, we encode
structural information (e.g. database schema, con-
versation context and their relationships) by insert-
ing some special tokens named structure marks into
the serialized schema and question as inputs. Sec-
ond, we adopt constrained decoding to avoid the
decoder generating invalid tokens (e.g., synonyms
of schema) during SQL generation. Finally, we pro-
pose SOL completion to make the SQL complete
through inferring potential missing JOIN compo-
nents based on the database schema.

To prove the effectiveness and generalizabil-
ity of our UNISAR, we conduct experiments on
seven popular text-to-SQL datasets covering multi-
domain, multi-table and multi-turn. With a simple
and unified architecture, our model achieves com-
parable or even better performance against task spe-
cific models. Importantly, the simple architecture
enables different tasks to share the sample training
protocol. UNISAR could be easily improved by
multi-task training.

To summarize, our contributions are three-fold:

* To the best of our knowledge, we are the first
to propose a unified parsing framework for
various text-to-SQL settings including multi-
domain, multi-table and multi-turn, without
reliance on specific architecture designs.

* We make autoregressive language models
structure-aware via simply incorporating three
non-invasive extensions: structure mark, con-
strained decoding and SQL completion.

* We conduct extensive experiments on seven
text-to-SQL datasets to demonstrate the better
effectiveness of our unified parser UNISAR
compared with specifically-designed base-
lines. UNISAR also shows excellent general-
izability in joint training and achieves overall
improvements.

2 Related Work

Overall, the recent state-of-the-art models for text-
to-SQL use various specific architectures for ques-
tion/schema encoding and SQL query decoding.
Take some popular models for example. To joint
encode the question and schema, Xu et al. (2017)
proposed column attention strategy to gather infor-
mation from columns for each question word. Edit-
SQL (Zhang et al., 2019) considered co-attention
between question words and database schema
nodes. Bogin et al. (2019a) dealed with the
graph structure of database schema via GNN. RAT-
SQL (Wang et al., 2020a), utilized a complete re-
lational graph attention neural network to handle
various pre-defined relations. To ensure the syn-
tactic and semantic correctness of the generated
SQL query, existing works (Guo et al., 2019; Wang
et al., 2020a) usually adopted grammar-based de-
coder. In contrast, our UNISAR provides a unified
way to encode structural information and decode
valid SQL. It is very simple as it does not need
specific designed modules (non-invasive) and also
incredibly effective like these invasive approaches.

We use the same task formulation as (Dong and
Lapata, 2016; Zhong et al., 2017; Lin et al., 2018;
Raffel et al., 2020) that treated text-to-SQL as a
translation problem. However, they only solve it
by applying seq2seq models on sequence of tokens.
Thus they can’t productively encode the input struc-
ture. We extend their work with three non-invasive
extensions to effectively encode the input struc-
ture. To the best of our knowledge, this is the first
time that seq2seq parsers are on par with specially-
designed parsers in various text-to-SQL settings.

Recently, Scholak et al. (2021) published PI-
CARD, a different approach to utilizing language
models for text-to-SQL, which constrains auto-
regressive decoders of language models through
incremental parsing. This differs from UNISAR
in two important ways: (1) they only considered
the structure in the decoding phrase but ignored
the input structure, which limits the upper bound
of performance; (2) they basically relied on T5-
3B to achieve good results. To contrast, UNISAR
introduces the structure knowledge of input to
make language model as effective in modeling as
task-specific models. Moreover, UNISAR is built
on moderately-sized language model BART-Large
(400M). Benefiting from three simple extensions,
UNIS AR achieves a comparable or better perfor-
mance to their model.
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Figure 2: Three non-invasive extensions to make PLMs become structure-aware: (/) add structure mark to encode
database schema, conversation context and their relationships; (2) constrained decoding to decode well-structured
SQL; (3) SQL completion through inferring the potential missing JOIN components based on the database schema.

3 Methodology

Overall, we employ pretrained autoregressive lan-
guage models as the backbone of UNISAR since
they exhibit excellent adaptability and generaliz-
ability in many NLP tasks. Furthermore, as shown
in Figure 2, we propose three non-invasive exten-
sions to make PLMs become structure-aware: (1)
we encode structural information (e.g. database
schema, conversation context and their linking rela-
tionships) by inserting some special tokens named
structure marks into the serialized schema and
question as inputs; (2) we adopt constrained de-
coding to decode well-structured SQL via simply
filtering invalid tokens (e.g., synonyms of schema)
during beam search. (3) we propose SQL comple-
tion to infer the underlying JOIN relationships in
the SQL statement based on the predicted incom-
plete SQL and the database schema.

3.1 Pretrained Language Model

In our experiments, we implement UNISAR on
top of BART (Lewis et al., 2020), a widely used
pre-trained encoder-decoder model. BART follows
a standard sequence-to-sequence Transformer ar-
chitecture (Vaswani et al., 2017). It is pre-trained
via corrupting sentences (e.g., randomly sampling
spans and masking each one ) and then optimizing

a reconstruction loss. We employ the BART-Large
for English and the mBART-Large for Chinese.”

3.2 Formulate Text-to-SQL as Seq2Seq

The input for UNISAR contains a series of NL
questions and their corresponding database. An
concrete example of multi-turn is listed in Figure 2.
Encoding the NL sentence is relatively straight-
forward, while encoding the table is non-trivial
since it exhibits underlying structures. In practise,
we linearize the table into a flatten sequence so
that it can be fed directly into the model. By in-
serting several special tokens to indicate the table
boundaries, a linearized table can be represented
asT = [TABLE],t1, -, tN, [COLUMN],C], ", CN.
3 Here [TaBLE] and [COLUMN] are special tokens
indicating the region of table headers and column
names respectively. Notably, we also separate head-
ers or cells in different columns using a vertical bar
‘I’. Finally, we concatenate the linearized database
T with the NL sentence x and feed them to the
encoder. For multi-turn settings, we append the
previous history question in reverse chronological
order and put them ahead of the current question.

%For brevity, we use BART in the following tables.

3If the model requires to predict the value, we attach the
values of ¢; behind ¢; and separate each value with symbol
‘&



3.3 Structure Mark

Structure information plays an important role in
text-to-SQL. Structure includes database schema,
conversation context and their relationships. Re-
cently, in the research line of prompt tuning, Agha-
janyan et al. (2021); Chen et al. (2021) make a step
by making prompts with additional marks (some
special tokens) to encode various structure informa-
tion. Inspired by their works, we explore the idea of
encoding structure information by designing struc-
ture mark and inserting them into the input to make
model structure-aware for text-to-SQL.

In fact, we could simply extract structure in-
formation from the input and leverage all these
structure information to improve the model. Con-
cretely, the structure information can be roughly
organized into three types: (1) schema property to
expand the semantic information of schema; (2)
database structure to aggregate the information
from schema neighbors; (3) discourse structure to
supply the conversation context in history question.
We give a valid example in Figure 2, which shows
how to serialize the database schema and insert
structure mark into the input.

3.3.1 Schema Property

In a vanilla formulation, the semantic representa-
tion of schema only relies on the surface name
that easily leads to disambiguation. For exam-
ple, we could not tell the tiny difference between
COUNTRY.CONTINENT and COUNTRY.REGION.
However, there exists some obvious and available
schema property to enrich the semantic informa-
tion of schema, which will improve the correctness
of alignment between question and database and
finally boost the text-to-SQL performance. The
information includes (1) the internal schema infor-
mation from the database schema, such as primary
key or column type (INT, STRING or DATE); (2) the
name-based linking information between question
and schema that serve as the prior of schema link-
ing; (3) the value-based linking information that
augment the column representation via leveraging
the database content information.

Overall, it is relatively simple to obtain the
schema property. Specifically, for the internal
schema information, we could derive them from
the database definition. For the name-based linking
information, we enumerate the n-gram of question
and schema then examine if they are aligned. To
fine-grained model the alignment, we also add a

prefix (exact or partial) before the ‘match’. For
example, as shown in INPUT of Figure 2, column
PLAYER_ID has partially overlapped with the to-
ken ‘Player’, thus we attach PARTIAL_MATCH be-
fore the column PLAYER_ID. In order to com-
pute this alignment, we simply derive the schema-
linking results using fuzzy string-match follow-
ing (Sun et al., 2018; Guo et al., 2019; Wang
et al., 2020a). For the value-based linking in-
formation, we first normalize their data forma-
tion (e.g. uniform the representation of date) then
match them with the token in question. After ob-
taining these three types of schema property in-
formation, we insert them as prefixes ahead of
the schema. Let’s take an example for expla-
nation: ‘Partial-Match & Primary-Key & Integer
Ranking.Player_id’. In this example, Rank-
ing.Player_id is the column. The prefix with un-
derline are structure mark that express two schema
properties: (1) Partial-Match indicates that Rank-
ing.Player_id partially alignment with the ques-
tion; (2) Primary-Key and Integer are all column
properties.

3.3.2 Database Structure

The database structure could improve the represen-
tation of the schema via aggregating information
from neighboring nodes. As shown in figure 2,
the database structure includes (1) the affiliation
relations between columns and tables (e.g., ID of
MATCHES); (2) the foreign key relations between
columns (e.g., WINNERID links to PLAYERID);
(3) the tables relations (e.g., MATCHES links to
RANKING).

For affiliation relations, we attach the columns
with their affiliated table such as MATCHES.ID. For
the other two relations, we suppose the tables re-
lations already includes the information of foreign
key relations. Thus, we only consider the tables
relations here. We adopt the template ‘schemal
links to schema2’ and fill in table names. Then
concatenate these pairs together and put them into
input. In preliminary experiments, we find that af-
filiation relations and the tables relations could im-
prove the model further. As for affiliation relations,
they regulate the generation of column with cor-
rect table (e.g. RANKING.YEAR but YEAR comes
from MATCHES). As for tables relations, it would
directly affect the prediction of tables in FROM
clause.



3.3.3 Discourse Structure

The SQL of previous turn provides the mentioned
schema and potential intent in current turn (Zhang
et al., 2019; Cai and Wan, 2020), which mitigates
the burden in entity co-reference resolution and in-
tent ellipsis recovery. Based on this observation,
we insert previous SQL in the input to improve
the modeling of discourse in terms of entity and in-
tent. We also explore that only inserting the schema
from the last turn, and find the model has also been
improved to a certain extent.

3.4 Constrained Decoding

Decoding well-structured SQL means that gener-
ated SQL not only obeys the SQL grammar but also
is faithful to the database schema. We notice that
BART is already skilled at learning SQL grammar.
However, it sometimes struggles in schema predic-
tion. For example, BART might outputs NATION
instead of CITIZENSHIP , which is the synonym
of NATION. To alleviate the problem of schema
prediction, we first construct the prefix-trie based
on the database schema and then filter out the ille-
gal token during the beam search as shown in Fig-
ure 2. Note that the difference between UNISAR
and grammar-based parser is that we do not need
to specify the concrete grammar. As a comparison,
UNISAR learns grammar through training, which
shows better generalization to various SQL.

3.5 SQL Completion

In our study, we found that the generated SQL state-
ments often miss some JOIN components, since
they are often not explicitly mentioned in natural
language questions. To make the SQL complete,
we need to find back the potential missing JOIN
components based on the database schema. Con-
cretely, we first construct a schema graph, where
the nodes are tables or columns, and edges are
schema relationships. Then we try to find the ta-
bles and columns that are located in the shortest
path of the existing tables and columns in an incom-
pleted SQL. Take the case in Figure 2 for example.
It’s an incompleted SQL that does not mention ta-
ble MATCHES and column WINNER_ID in FROM
clause. We infer these two schemas based on their
neighbors: PLAYERS and RANKING. MATCHES
is located on the path of these two tables. And
WINNER_ID is the primary key of MATCHES.
4UNISAR learns this complex SQL template efficiently:

SELECT A (SQL) OP SELECT B (SQL) (Wang et al.,
2020b). But it’s bothersome to design the grammar.

4 Experimental Setup

4.1 Datasets and Evaluation Metrics

We compare UNISAR with previous task-specific
parsers using seven popular text-to-SQL bench-
mark datasets. The dataset statistics are shown in
Table 8 (Appendix A). To systemically compare
our unified parser with previous task-specific mod-
els, we divided the dataset into three group to study
the effectiveness of UNISAR: (1) Multi-Domain:
WikiSQL (Zhong et al., 2017) and TableQA (Sun
et al., 2020); (2) Multi-Table: Spider (Yu et al.,
2018) and DuSQL (Wang et al., 2020b); (3) Multi-
Turn: CoSQL (Yu et al., 2019a), SParC (Yu et al.,
2019b) and Chase (Guo et al., 2021). >

For WikiSQL and TableQA, we utilize logic
form accuracy (LX) and execution accuracy (EX)
as evaluation metrics following Zhong et al. (2017).
For Spider and DuSQL, we report exact set match
accuracy (EM) following Yu et al. (2018). For
SParC, CoSQL and Chase, we report question
match accuracy (QM) and interaction match ac-
curacy (IM) following Yu et al. (2019b).

4.2 Baselines

For each setting, we select representative invasive
models and non-invasive models as our baselines.

Multi-Domain (1) SQLNet (Xu et al., 2017)
is a sketch-based method. (2) SQLova (Hwang
et al., 2019) is a sketch-based method which
integrates the pre-trained language model; (3)
Coarse2Fine (Dong and Lapata, 2018) first gen-
erates the SQL template then fills the value. (4)
X-SQL (He et al., 2019) enhances the structural
schema representation with the contextual embed-
ding. (5) F-SQL (Zhang et al., 2020) improves the
representation of schema with table content. (6)
HydraNet (Lyu et al., 2020) uses column-wise rank-
ing and decoding. (7) BRIDGE (Lin et al., 2020)
further leverages the database content to augment
the column representation. (8) SeaD (Xuan et al.,
2021) trains a seq2seq model with schema-aware
denoising objectives.

Multi-Table (1) RYANSQL (Choi et al., 2020)
recursively predicts nested queries with sketch-
based slot filling algorithm; (2) IRNet (Guo et al.,

SUNISAR still shows a powerful performance in an in-
ternal single-domain dataset. Note that for Spider, CoSQL,
SparC and DuSQL, we conduct experiments on dev set since
the test set is not publicly available.



WikiSQL TableQA
Model Dev Test Dev Test
LX EX LX EX LX EX LX EX
Invasive Approaches

SQLNet (Xu et al., 2017) - 69.8 - 68.0 - - 614 672
Coarse2Fine (Dong and Lapata, 2018) 72.5 79.0 71.7 785 - - 72.6 76.7
SQLova (Hwang et al., 2019) 81.6 872 80.7 86.2 - - 81.7 858
X-SQL (He et al., 2019) 83.8 89.5 833 887 - - 833 87.6
F-SQL (Zhang et al., 2020) - - 856 914 - - 904 932

HydraNet (Lyu et al., 2020) 83.6 89.1 838 89.2 - - - -

BRIDGE (Lin et al., 2020) 862 91.7 857 91.1 - - - -

Non-invasive Approaches

BART-Large (Lewis et al., 2020) 837 894 828 888 887 91.8 90.7 944

SeaD (Xuan et al., 2021) 849 902 847 90.1 - - - -
UNISAR 86.7 91.7 858 914 899 921 918 951

Table 1: Logical Form Accuracy (LX) and Execution Accuracy (EX) of the multi-domain setting. Note that we
report the models without using Execution-Guided Decoding.

Model Spider DuSQL
Invasive Approaches
RYANSQL (Choi et al., 2020) 66.6 -
IRNet (Guo et al., 2019) 63.9 38.4
IRNetExt (Wang et al., 2020b) - 59.8
RAT-SQL (Wang et al., 2020a) 69.7 -
BRIDGE (Lin et al., 2020) 70.0 -
Non-invasive Approaches
T5-Base (Shaw et al., 2021) 57.1 -
T5-Large (Scholak et al., 2021) 65.3 -
T5-Large! (Scholak et al., 2021)  69.1 -
BART-Large (Lewis et al., 2020) 64.5 82.2
UNISAR 70.1 84.3

Table 2: Exact-set-match accuracy (EM) of the multi-
table setting. The PLM with 1 indicates the usage of
constrained decoding (Scholak et al., 2021).

2019) utilizes SemQL as an abstraction represen-
tation of SQL queries; (3) RAT-SQL (Wang et al.,
2020a) utilizes a complete relational graph atten-
tion neural network to handle various pre-defined
relations; (4) IRNetExt (Wang et al., 2020b) ex-
tends IRNet to parse calculation questions and pre-
dict values.

Multi-Turn (1) EditSQL (Zhang et al., 2019)
adopts an editing-based encoder-decoder model;
(2) IGSQL (Cai and Wan, 2020) proposes schema
interaction graph encoder to utilize historicalal in-
formation of database schema items; (3) RAT-SQL-
con (Wang et al., 2020a) is the extension of RAT-
SQL for multi-turn settings.

4.3 Implementation Details

We conduct the experiments using the Fairseq (Ott
et al., 2019) to do data pre-processing, training
and inference. Our training can be done within 10

Model SParC CoSQL Chase

oM IM QM IM QM IM
Invasive
EditSQL 472 295 399 123 377 174
IGSQL 50.7 325 441 158 414 200
RAT-SQL 60.1 38.6 50.8 20.1 351 146
Non-invasive

BART 550 365 47.1 188 37.6 195
UNISAR 604 408 518 21.3 422 223

Table 3: Question Match (QM) and Interaction Match
(IM) of multi-turn setting.

hours using four V100-16G GPUs or day and a half
using one V100-16G GPU.® The hyper-parameters
could be found in Appendix B. Implementation
of constrained decoding is based on Cao et al.
(2021a,b).

5 Results and Analysis

5.1 Main Results

The results of multi-domain, multi-table and multi-
turn are listed in Table 1, 2 and 3 respectively. We
run each UNISAR experiment three times with dif-
ferent random seeds and report the mean. Most
results of previous models are reported by cited pa-
pers respectively.” As we can see from the results,
UNISAR achieves the most consistently strong per-
formance under all settings, which demonstrates
the effectiveness of our unified architecture.

®As a comparison, training RAT-SQL (Wang et al., 2020a)
takes 7 days with one V100-16G GPU.

"For WikiSQL, we re-implement RAT-SQL with BERT-
Large. For multi-turn settings, the results of invasice model
are reported by Guo et al. (2021).



Model #Params Spider CoSQL SParC
T5-Base 220M 57.1 - -
T5-Base! 220M 65.8 - -
T5-Large 770M 65.3 - -

T5-Large! 770M 69.1 - -

T5-3B 3B 69.9 53.8 -

BART-Large 400M 64.5 471 55.0
UNISAR 400M 70.1 51.8 60.4

Table 4: Logical Form Accuracy (LX) of using differ-
ent sizes of PLM for text-to-SQL tasks. The PLM with
T indicates the usage of constrained decoding (Scholak
etal., 2021).

Model Spider CoSQL SParC
UNISAR 70.1 51.8 60.4
-SM 66.9(-3.2%) 48.7(-3.1%) 57.4(-3.0%)
-CD 67.5(-2.6%) 50.1(-1.7%) 57.8(-2.6%)
-SC 68.8(-1.3%) 50.8(-1.0%) 58.9(-1.5%)

Table 5: The ablation study results of Logical Form
Accuracy on UNISAR. SM stands for structure mark,
CD stands for constrained decoding, and SC stands for
SQL completion.

Moreover, we compare UNISAR with other ex-
isting PLMs in Table 4. It can be observed that
UNISAR outperforms most of these PLMs even
though they have much more parameters. Note
that UNISAR even slightly surpasses T5-3B (8x
larger) in Spider. It demonstrates the effectiveness
of our non-invasive approaches to make the PLM
structure-aware for text-to-SQL.

5.2 Ablation Study

To study the effect of our non-invasive approaches:
structure mark, constrained decoding and SQL
completion, we conduct ablation study on Spi-
der, CoSQL and SParC. As show in Table 5, the
structure mark significantly boosts the performance
of BART, implying that it does effectively repre-
sent the structure knowledge for autoregressvie lan-
guage models. At the same time, from the view of
decoding, the constrained generation solution also
boosts the performance by a large margin, since it
alleviates the problem of generating invalid SQL.
As a complement to the above two extensions, SQL
completion further improves the performance by
inferring underlying tables in post-processing.

5.3 Effect of Oracle Structure Mark

To explore the upper-bound of performance boost
that structure mark brings, we conduct experiments
under oracle setting. Concretely, we derive oracle

. WikiSQL  Spider
Model Setting Dev  Test Dev
single  78.0 78.2 69.7
RAT-SQL  joint 715 717 68.8
- -0.5  -05 -0.9
single  83.7 828 64.5
BART joint 834 837 63.9
- -0.3  +0.9 -0.6
single  86.7 85.8 70.1
UNISAR joint 86.5 86.8 68.9

- 02 +1.0 -1.2

Table 6: Logical Form Accuracy (LX) of joint training
with WikiSQL (single-table) and Spider (multi-table).
Note that RAT-SQL is trained with BERT-Large.

Model Setting Spider CoSQL SParC
single 69.7 50.8 60.1
RAT-SQL  joint 68.2 50.0 58.2
- -1.5 -0.8 -1.9
single 64.5 47.1 55.0
BART joint 67.5 50.1 57.8
- +3.0 +3.9 +2.8
single 70.1 51.8 60.4
UNISAR joint 70.8 529 60.9

- +0.7 +1.1 +0.5

Table 7: Logical Form Accuracy (LX) of joint training
across single-turn (SPider) and multi-turn (CoSQL and
SParc) datasets. Note that RAT-SQL and IGSQL are
trained with BERT-Large.

schema-linking for Spider by human annotation
from Lei et al. (2020) and oracle previous SQL for
CoSQL, SParC and Chase. Experimental results
show that Spider gets a 1.2% performance boost.
And for these multi-turn datasets (SParC, CoSQL,
Chase), they receive 5.9%, 8.7%, 11.7% boost re-
spectively. It indicates the trends that UNISAR will
improve further if we could obtain higher-quality
structure mark.

5.4 Generalization Across Different Datasets

The simple architecture of UNISAR enables dif-
ferent tasks to share the sample training protocol.
It’s easy to perform multi-task train. To examine
this, we conduct two types of multi-task: (a) single-
table + multi-table and (b) single-turn + multi-turn.
For single-table and multi-table, we train WikiSQL
and Spider jointly (Table 6). It can be seen that
all these three models degrade. But BART and
UNISAR generally show robustness to the unbal-
anced distribution of data amount (80k vs. 10k) and
SQL format (simple vs. complex). For single-turn
and multi-turn, we train Spider, CoSQL and SParC



Question: Which template type code is used by most number of documents ?
BART: SELECT templates.template_type_code FROM templates GROUP BY templates.template_type_code

ORDER BY count (*) DESC LIMIT 1

UNISAR: SELECT templates.template_type_code FROM templates JOIN documents GROUP BY
templates.template_type_code ORDER BY count ( * ) DESC LIMIT 1

Question: How many contestants did not get voted ?

BART: SELECT COUNT (*) FROM competitor WHERE competitor.contestant_number NOT IN ( SELECT

votes.contestant_number FROM votes )

UNISAR: SELECT COUNT ( * ) FROM contestants WHERE contestants.contestant_number NOT IN ( SELECT

votes.contestant_number FROM votes )

Question: What are the different models for the cards produced after 1980 ?

BART: SELECT DISTINCT model_list. model FROM cars_data JOIN model_list WHERE cars_data.year > 1980
UNISAR: SELECT DISTINCT model_list. model FROM model_list JOIN car_names JOIN cars_data on
car_names.makeid = cars_data.id WHERE cars_data.year > 1980

Question: What is the version number of template id 3 ? | What is the document name of template id 25 ?
BART: SELECT documents.document_name FROM documents WHERE documents.template_id = 25
UNISAR: SELECT documents.document_name FROM documents JOIN templates WHERE templates.template_id =

25

Question: what are airlines that have flights arriving at airport 'AHD' ?
BART: SELECT airlines.airline FROM airlines JOIN flights WHERE flights.destairport = "AHD"
UNISAR: SELECT airlines.airline FROM airlines JOIN flights JOIN airports on where airports.airportname =

“AHD"

Figure 3: Case study: the first four cases are positive samples while the last one is negative. FROM conditions are

omitted here for brevity.

jointly (Table 7). It indicates that both BART and
UNIS AR show a positive trend by jointly training,
whereas RAT-SQL not. The divergence could be at-
tributed to the task-specific modules (e.g. grammar-
based decoder) which make the model easily overfit
to specific dataset.

5.5 Case Studies

In Figure 3, we compare the SQL generated by our
model UNISAR with those created by the vanilla
BART. We notice that UNISAR performs better
than the BART, especially on examples that involve
the JOIN operation of multiple tables. For exam-
ple, in the first case where BART fails to identify
the existence of table DOCUMENTS. For compar-
ison, UNISAR successfully predicts the connec-
tion of two tables since the structure mark presents
the database structure. In the second case, vanilla
BART predicts a token (e.g., COMPETITOR) that
does not exist in the database schema. This will
cause an ill-formed SQL but UNISAR ensures
the faithful generation with constrained decoding.
Moreover, in the third case, we can find that SQL
completion infers the missing table CAR_NAMES
based on the matched table MODEL_LIST and
CARS_DATA. In the fourth case from multi-turn
setting, UNISAR still outperforms the BART in
contextual modeling with effectively encoding the

information of dialogue history. However, in the
last case, our UNISAR is awkward to predict un-
necessary table AIRPORTS. This error perhaps can
be attributed to inappropriate structure mark due
to inaccurate schema-linking. A high precision
structure mark will alleviate this problem.

6 Conclusion

In this paper, we propose UNISAR, a simple-yet-
effective model to solve text-to-SQL across various
settings in a unified framework. Concretely, we
simply extend BART, an off-the-shelf autoagressive
language model, with three non-invasive extensions
to make it structure-aware. Experimental results
demonstrate the effectiveness of our UNISAR on
seven well-known text-to-SQL datasets. UNISAR
achieves highly comparable or better performance
to the most advanced specifically-designed text-to-
SQL models. UNISAR also shows excellent gen-
eralizability in joint training and achieves overall
improvements.
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A Datasets Statistics

Table 8 lists the dataset we used. We divided
the dataset into three group to study the effec-
tiveness of UNISAR: (1) Multi-Domain: Wik-
iSQL (Zhong et al., 2017) and TableQA (Sun et al.,
2020); (2) Multi-Table: Spider (Yu et al., 2018)
and DuSQL (Wang et al., 2020b); (3) Multi-Turn:
CoSQL (Yu et al., 2019a), SParC (Yu et al., 2019b)
and Chase (Guo et al., 2021).

B Hyper-parameters

We adopt the BART-Large and set
the task of Fairseq as  TRANSLA-
TION_FROM_PRETRAINED_BART. The learning
rate is 1le-5. The max tokens is 1400 for V100-16G
GPU. We adopt the polynomial_decay with 5,000
warmup-updates. The dropout (Srivastava et al.,
2014) rate is 0.1. Optimizer is Adam (Kingma
and Ba, 2015) with the default parameters. The
max-update is set to 10,000. Empirically, the
model obtained best performance about 7000 steps
(about 10 ~ 15 epochs) in Spider, CoSQL and
SParC. The Fairseq (Ott et al., 2019) dynamically
tunes the batch size to realize higher GPU
utilization.
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Dataset #Lan. #Ques. #SQLLen. #Table #DB #MD #MTa #MTu

WikiSQL (Zhong et al., 2017) | English 80,654 10.6 26,521 26,521 v X X
TableQA (Sun et al., 2020) Chinese 49,974 9.1 5,291 5,291 v X X
Spider (Yu et al., 2018) English 10,181 21.7 1,020 200 v v X
DuSQL (Wang et al., 2020b) | Chinese 23,797 20.2 820 200 v v X
CoSQL (Yu et al., 2019a) English 15,598 18.4 1,020 200 v v v
SParC (Yu et al., 2019b) English 12,726 17.8 1,020 200 v v v
Chase (Guo et al., 2021) Chinese 17,940 20.9 1,020 200 v v v

Table 8: Comparisons of seven text-to-SQL datasets. MD (multi-domain), MTa (multi-table) and MTu (multi-turn)
denote the research focuses of these datsets and # SQL Len. denotes the complexity of predicted SQL.
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