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Abstract

Existing text-to-SQL semantic parsers are typ-001
ically designed for particular settings such as002
handling queries that span multiple tables, do-003
mains or turns which makes them ineffec-004
tive when applied to different settings. We005
present UNISAR (Unified Structure-Aware006
Autoregressive Language Model), which ben-007
efits from directly using an off-the-shelf lan-008
guage model architecture and demonstrates009
consistently high performance under different010
settings. Specifically, UNISAR extends exist-011
ing autoregressive language models to incor-012
porate three non-invasive extensions to make013
them structure-aware: (1) adding structure014
mark to encode database schema, conversa-015
tion context, and their relationships; (2) con-016
strained decoding to decode well structured017
SQL for a given database schema; and (3)018
SQL completion to complete potential miss-019
ing JOIN relationships in SQL based on020
database schema. On seven well-known text-021
to-SQL datasets covering multi-domain, multi-022
table and multi-turn, UNISAR demonstrates023
highly comparable or better performance to024
the most advanced specifically-designed text-025
to-SQL models. Importantly, our UNISAR is026
non-invasive, such that other core model ad-027
vances in text-to-SQL can also adopt our ex-028
tensions to further enhance performance.1029

1 Introduction030

Text-to-SQL translates a user’s natural language031

question into a corresponding SQL query (Zhong032

et al., 2017; Yu et al., 2018; Guo et al., 2019; Yu033

et al., 2019b). This greatly reduces the entry barrier034

of data analysis to lay users daunted by the techni-035

cal nuances of SQL. As text-to-SQL techniques ma-036

tured, enhancements have been proposed to tackle037

different settings. These enhancements can be038

roughly organized into three settings of research039

(Figure 1): (1) multi-domain where a parser must040

1Codes are public available.http://anonymous.com
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Figure 1: Our view of three main research settings in
text-to-SQL.

generalize to databases in various domains (Zhong 041

et al., 2017; Sun et al., 2020); (2) multi-table where 042

the parser must understand the database structure 043

and generate complex SQL query bridging multiple 044

tables (Yu et al., 2018; Wang et al., 2020b); and (3) 045

multi-turn where a parser must understand the dia- 046

log history, often requiring co-reference resolution 047

and ellipsis recovery (Yu et al., 2019a,b; Guo et al., 048

2021). 049

To address the unique challenges of different 050

settings, researchers have proposed various neural 051

architectures, such as grammar-based decoder for 052

SQL generation (Yin and Neubig, 2018; Guo et al., 053

2019; Wang et al., 2020a), GNN for database struc- 054

ture modeling (Bogin et al., 2019b), and stacked 055

interaction-layer for context modeling (Cai and 056

Wan, 2020). However, these architectures are 057

prone to ‘overfitting’ specific datasets, making 058

them non-trivial to adapt to others. For example, 059

the parsers developed for the WikiSQL (Zhong 060

et al., 2017) typically cannot work well on Spider 061

benchmark (Yu et al., 2018). 062

In this work, we present a simple yet effective 063

text-to-SQL parser: UNISAR (Unified Structure- 064

Aware Autoregressive Language Model). Com- 065
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pared with the specifically-designed models (inva-066

sive), UNISAR is simple as it does not need any067

specifically designed DNN modules other than a068

pre-trained language model (non-invasive). Such a069

simple architecture gives UNISAR the opportunity070

to be easily adapted to different datasets, and thus071

UNISAR enjoys high generalizability. Besides,072

benefiting from our proposed non-invasive exten-073

sions, UNISAR achieves consistently high perfor-074

mance across different settings, which is very ef-075

fective. Concretely, we propose three non-invasive076

extensions to make an off-the-shelf autoregressive077

language model structure-aware. First, we encode078

structural information (e.g. database schema, con-079

versation context and their relationships) by insert-080

ing some special tokens named structure marks into081

the serialized schema and question as inputs. Sec-082

ond, we adopt constrained decoding to avoid the083

decoder generating invalid tokens (e.g., synonyms084

of schema) during SQL generation. Finally, we pro-085

pose SQL completion to make the SQL complete086

through inferring potential missing JOIN compo-087

nents based on the database schema.088

To prove the effectiveness and generalizabil-089

ity of our UNISAR, we conduct experiments on090

seven popular text-to-SQL datasets covering multi-091

domain, multi-table and multi-turn. With a simple092

and unified architecture, our model achieves com-093

parable or even better performance against task spe-094

cific models. Importantly, the simple architecture095

enables different tasks to share the sample training096

protocol. UNISAR could be easily improved by097

multi-task training.098

To summarize, our contributions are three-fold:099

• To the best of our knowledge, we are the first100

to propose a unified parsing framework for101

various text-to-SQL settings including multi-102

domain, multi-table and multi-turn, without103

reliance on specific architecture designs.104

• We make autoregressive language models105

structure-aware via simply incorporating three106

non-invasive extensions: structure mark, con-107

strained decoding and SQL completion.108

• We conduct extensive experiments on seven109

text-to-SQL datasets to demonstrate the better110

effectiveness of our unified parser UNISAR111

compared with specifically-designed base-112

lines. UNISAR also shows excellent general-113

izability in joint training and achieves overall114

improvements.115

2 Related Work 116

Overall, the recent state-of-the-art models for text- 117

to-SQL use various specific architectures for ques- 118

tion/schema encoding and SQL query decoding. 119

Take some popular models for example. To joint 120

encode the question and schema, Xu et al. (2017) 121

proposed column attention strategy to gather infor- 122

mation from columns for each question word. Edit- 123

SQL (Zhang et al., 2019) considered co-attention 124

between question words and database schema 125

nodes. Bogin et al. (2019a) dealed with the 126

graph structure of database schema via GNN. RAT- 127

SQL (Wang et al., 2020a), utilized a complete re- 128

lational graph attention neural network to handle 129

various pre-defined relations. To ensure the syn- 130

tactic and semantic correctness of the generated 131

SQL query, existing works (Guo et al., 2019; Wang 132

et al., 2020a) usually adopted grammar-based de- 133

coder. In contrast, our UNISAR provides a unified 134

way to encode structural information and decode 135

valid SQL. It is very simple as it does not need 136

specific designed modules (non-invasive) and also 137

incredibly effective like these invasive approaches. 138

We use the same task formulation as (Dong and 139

Lapata, 2016; Zhong et al., 2017; Lin et al., 2018; 140

Raffel et al., 2020) that treated text-to-SQL as a 141

translation problem. However, they only solve it 142

by applying seq2seq models on sequence of tokens. 143

Thus they can’t productively encode the input struc- 144

ture. We extend their work with three non-invasive 145

extensions to effectively encode the input struc- 146

ture. To the best of our knowledge, this is the first 147

time that seq2seq parsers are on par with specially- 148

designed parsers in various text-to-SQL settings. 149

Recently, Scholak et al. (2021) published PI- 150

CARD, a different approach to utilizing language 151

models for text-to-SQL, which constrains auto- 152

regressive decoders of language models through 153

incremental parsing. This differs from UNISAR 154

in two important ways: (1) they only considered 155

the structure in the decoding phrase but ignored 156

the input structure, which limits the upper bound 157

of performance; (2) they basically relied on T5- 158

3B to achieve good results. To contrast, UNISAR 159

introduces the structure knowledge of input to 160

make language model as effective in modeling as 161

task-specific models. Moreover, UNISAR is built 162

on moderately-sized language model BART-Large 163

(400M). Benefiting from three simple extensions, 164

UNISAR achieves a comparable or better perfor- 165

mance to their model. 166
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<TABLE> 

Matches | Ranking | Exact-Match Players | …

<COLUMN> 

Partial-Match & Primary-Key & Integer Ranking.Player_id | …

<DATABASE> 

(Ranking links to Matches) | (Players links to Matches) 

<DISCOURSE>

SELECT players.name FROM players JOIN matches ON players.id = 

matches.winner_id WHERE matches.tourney = 'Australian Open'

<HISTORY> 

How many players are there? Which ones won in the tourney Australian 

Open?

<QUESTION> 

Return the points of these players who come from Europe ?

PLM with Constrained Decoding

Input 

Serialization 

with

Structure Mark

Schema Property

Database Structure

Discourse Structure

BOS

ORDER

SELECT

MAX

players

*

GROUP

FROM

MIN

(

name

continent

FROM

Input
Q1: How many players are there?

Q2: Which ones won in the tourney Australian Open?

Q3: Return the points of these players who come 

from Europe ? 

Question

Database

SELECT ranking.points FROM players JOIN 

matches ON players.id = matches.winner_id 

JOIN ranking on ranking.player_id = 

matches.winner_id WHERE 

players.continent = 'Europe’ and 

matches.tourney = 'Australian Open'

Completed SQL

SELECT ranking.points FROM players JOIN 

ranking on ranking.player_id = players.id

WHERE players.continent = 'Europe'

and matches.tourney = 'Australian Open'

Incompleted SQL
SQL Completion

Ranking Points Player Id Tours … …

1 9,985 3 11 … …

Matches

Ranking

Players

Id Tourney Winner Id Year … …

1 Australian Open 3 2018 … …

Name Nation Id Continent … …

Djokovic Serbia 1 Europe … …

Osaka Japan 2 Asia … …

Federer Switzerland 3 Europe … …

matches

ranking

players

player_id

winner_id

points

continent

year

id

name

tourney

Figure 2: Three non-invasive extensions to make PLMs become structure-aware: (1) add structure mark to encode
database schema, conversation context and their relationships; (2) constrained decoding to decode well-structured
SQL; (3) SQL completion through inferring the potential missing JOIN components based on the database schema.

3 Methodology167

Overall, we employ pretrained autoregressive lan-168

guage models as the backbone of UNISAR since169

they exhibit excellent adaptability and generaliz-170

ability in many NLP tasks. Furthermore, as shown171

in Figure 2, we propose three non-invasive exten-172

sions to make PLMs become structure-aware: (1)173

we encode structural information (e.g. database174

schema, conversation context and their linking rela-175

tionships) by inserting some special tokens named176

structure marks into the serialized schema and177

question as inputs; (2) we adopt constrained de-178

coding to decode well-structured SQL via simply179

filtering invalid tokens (e.g., synonyms of schema)180

during beam search. (3) we propose SQL comple-181

tion to infer the underlying JOIN relationships in182

the SQL statement based on the predicted incom-183

plete SQL and the database schema.184

3.1 Pretrained Language Model185

In our experiments, we implement UNISAR on186

top of BART (Lewis et al., 2020), a widely used187

pre-trained encoder-decoder model. BART follows188

a standard sequence-to-sequence Transformer ar-189

chitecture (Vaswani et al., 2017). It is pre-trained190

via corrupting sentences (e.g., randomly sampling191

spans and masking each one ) and then optimizing192

a reconstruction loss. We employ the BART-Large 193

for English and the mBART-Large for Chinese.2 194

3.2 Formulate Text-to-SQL as Seq2Seq 195

The input for UNISAR contains a series of NL 196

questions and their corresponding database. An 197

concrete example of multi-turn is listed in Figure 2. 198

Encoding the NL sentence is relatively straight- 199

forward, while encoding the table is non-trivial 200

since it exhibits underlying structures. In practise, 201

we linearize the table into a flatten sequence so 202

that it can be fed directly into the model. By in- 203

serting several special tokens to indicate the table 204

boundaries, a linearized table can be represented 205

as T = [TABLE], t1, · · ·, tN , [COLUMN], c1, · · ·, cN . 206
3 Here [TABLE] and [COLUMN] are special tokens 207

indicating the region of table headers and column 208

names respectively. Notably, we also separate head- 209

ers or cells in different columns using a vertical bar 210

‘|’. Finally, we concatenate the linearized database 211

T with the NL sentence x and feed them to the 212

encoder. For multi-turn settings, we append the 213

previous history question in reverse chronological 214

order and put them ahead of the current question. 215

2For brevity, we use BART in the following tables.
3If the model requires to predict the value, we attach the

values of ci behind ci and separate each value with symbol
‘&’.
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3.3 Structure Mark216

Structure information plays an important role in217

text-to-SQL. Structure includes database schema,218

conversation context and their relationships. Re-219

cently, in the research line of prompt tuning, Agha-220

janyan et al. (2021); Chen et al. (2021) make a step221

by making prompts with additional marks (some222

special tokens) to encode various structure informa-223

tion. Inspired by their works, we explore the idea of224

encoding structure information by designing struc-225

ture mark and inserting them into the input to make226

model structure-aware for text-to-SQL.227

In fact, we could simply extract structure in-228

formation from the input and leverage all these229

structure information to improve the model. Con-230

cretely, the structure information can be roughly231

organized into three types: (1) schema property to232

expand the semantic information of schema; (2)233

database structure to aggregate the information234

from schema neighbors; (3) discourse structure to235

supply the conversation context in history question.236

We give a valid example in Figure 2, which shows237

how to serialize the database schema and insert238

structure mark into the input.239

3.3.1 Schema Property240

In a vanilla formulation, the semantic representa-241

tion of schema only relies on the surface name242

that easily leads to disambiguation. For exam-243

ple, we could not tell the tiny difference between244

COUNTRY.CONTINENT and COUNTRY.REGION.245

However, there exists some obvious and available246

schema property to enrich the semantic informa-247

tion of schema, which will improve the correctness248

of alignment between question and database and249

finally boost the text-to-SQL performance. The250

information includes (1) the internal schema infor-251

mation from the database schema, such as primary252

key or column type (INT, STRING or DATE); (2) the253

name-based linking information between question254

and schema that serve as the prior of schema link-255

ing; (3) the value-based linking information that256

augment the column representation via leveraging257

the database content information.258

Overall, it is relatively simple to obtain the259

schema property. Specifically, for the internal260

schema information, we could derive them from261

the database definition. For the name-based linking262

information, we enumerate the n-gram of question263

and schema then examine if they are aligned. To264

fine-grained model the alignment, we also add a265

prefix (exact or partial) before the ‘match’. For 266

example, as shown in INPUT of Figure 2, column 267

PLAYER_ID has partially overlapped with the to- 268

ken ‘Player’, thus we attach PARTIAL_MATCH be- 269

fore the column PLAYER_ID. In order to com- 270

pute this alignment, we simply derive the schema- 271

linking results using fuzzy string-match follow- 272

ing (Sun et al., 2018; Guo et al., 2019; Wang 273

et al., 2020a). For the value-based linking in- 274

formation, we first normalize their data forma- 275

tion (e.g. uniform the representation of date) then 276

match them with the token in question. After ob- 277

taining these three types of schema property in- 278

formation, we insert them as prefixes ahead of 279

the schema. Let’s take an example for expla- 280

nation: ‘Partial-Match & Primary-Key & Integer 281

Ranking.Player_id’. In this example, Rank- 282

ing.Player_id is the column. The prefix with un- 283

derline are structure mark that express two schema 284

properties: (1) Partial-Match indicates that Rank- 285

ing.Player_id partially alignment with the ques- 286

tion; (2) Primary-Key and Integer are all column 287

properties. 288

3.3.2 Database Structure 289

The database structure could improve the represen- 290

tation of the schema via aggregating information 291

from neighboring nodes. As shown in figure 2, 292

the database structure includes (1) the affiliation 293

relations between columns and tables (e.g., ID of 294

MATCHES); (2) the foreign key relations between 295

columns (e.g., WINNERID links to PLAYERID); 296

(3) the tables relations (e.g., MATCHES links to 297

RANKING). 298

For affiliation relations, we attach the columns 299

with their affiliated table such as MATCHES.ID. For 300

the other two relations, we suppose the tables re- 301

lations already includes the information of foreign 302

key relations. Thus, we only consider the tables 303

relations here. We adopt the template ‘schema1 304

links to schema2’ and fill in table names. Then 305

concatenate these pairs together and put them into 306

input. In preliminary experiments, we find that af- 307

filiation relations and the tables relations could im- 308

prove the model further. As for affiliation relations, 309

they regulate the generation of column with cor- 310

rect table (e.g. RANKING.YEAR but YEAR comes 311

from MATCHES). As for tables relations, it would 312

directly affect the prediction of tables in FROM 313

clause. 314
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3.3.3 Discourse Structure315

The SQL of previous turn provides the mentioned316

schema and potential intent in current turn (Zhang317

et al., 2019; Cai and Wan, 2020), which mitigates318

the burden in entity co-reference resolution and in-319

tent ellipsis recovery. Based on this observation,320

we insert previous SQL in the input to improve321

the modeling of discourse in terms of entity and in-322

tent. We also explore that only inserting the schema323

from the last turn, and find the model has also been324

improved to a certain extent.325

3.4 Constrained Decoding326

Decoding well-structured SQL means that gener-327

ated SQL not only obeys the SQL grammar but also328

is faithful to the database schema. We notice that329

BART is already skilled at learning SQL grammar.330

However, it sometimes struggles in schema predic-331

tion. For example, BART might outputs NATION332

instead of CITIZENSHIP , which is the synonym333

of NATION. To alleviate the problem of schema334

prediction, we first construct the prefix-trie based335

on the database schema and then filter out the ille-336

gal token during the beam search as shown in Fig-337

ure 2. Note that the difference between UNISAR338

and grammar-based parser is that we do not need339

to specify the concrete grammar. As a comparison,340

UNISAR learns grammar through training, which341

shows better generalization to various SQL. 4342

3.5 SQL Completion343

In our study, we found that the generated SQL state-344

ments often miss some JOIN components, since345

they are often not explicitly mentioned in natural346

language questions. To make the SQL complete,347

we need to find back the potential missing JOIN348

components based on the database schema. Con-349

cretely, we first construct a schema graph, where350

the nodes are tables or columns, and edges are351

schema relationships. Then we try to find the ta-352

bles and columns that are located in the shortest353

path of the existing tables and columns in an incom-354

pleted SQL. Take the case in Figure 2 for example.355

It’s an incompleted SQL that does not mention ta-356

ble MATCHES and column WINNER_ID in FROM357

clause. We infer these two schemas based on their358

neighbors: PLAYERS and RANKING. MATCHES359

is located on the path of these two tables. And360

WINNER_ID is the primary key of MATCHES.361

4UNISAR learns this complex SQL template efficiently:
SELECT A (SQL) OP SELECT B (SQL) (Wang et al.,
2020b). But it’s bothersome to design the grammar.

4 Experimental Setup 362

4.1 Datasets and Evaluation Metrics 363

We compare UNISAR with previous task-specific 364

parsers using seven popular text-to-SQL bench- 365

mark datasets. The dataset statistics are shown in 366

Table 8 (Appendix A). To systemically compare 367

our unified parser with previous task-specific mod- 368

els, we divided the dataset into three group to study 369

the effectiveness of UNISAR: (1) Multi-Domain: 370

WikiSQL (Zhong et al., 2017) and TableQA (Sun 371

et al., 2020); (2) Multi-Table: Spider (Yu et al., 372

2018) and DuSQL (Wang et al., 2020b); (3) Multi- 373

Turn: CoSQL (Yu et al., 2019a), SParC (Yu et al., 374

2019b) and Chase (Guo et al., 2021). 5 375

For WikiSQL and TableQA, we utilize logic 376

form accuracy (LX) and execution accuracy (EX) 377

as evaluation metrics following Zhong et al. (2017). 378

For Spider and DuSQL, we report exact set match 379

accuracy (EM) following Yu et al. (2018). For 380

SParC, CoSQL and Chase, we report question 381

match accuracy (QM) and interaction match ac- 382

curacy (IM) following Yu et al. (2019b). 383

4.2 Baselines 384

For each setting, we select representative invasive 385

models and non-invasive models as our baselines. 386

Multi-Domain (1) SQLNet (Xu et al., 2017) 387

is a sketch-based method. (2) SQLova (Hwang 388

et al., 2019) is a sketch-based method which 389

integrates the pre-trained language model; (3) 390

Coarse2Fine (Dong and Lapata, 2018) first gen- 391

erates the SQL template then fills the value. (4) 392

X-SQL (He et al., 2019) enhances the structural 393

schema representation with the contextual embed- 394

ding. (5) F-SQL (Zhang et al., 2020) improves the 395

representation of schema with table content. (6) 396

HydraNet (Lyu et al., 2020) uses column-wise rank- 397

ing and decoding. (7) BRIDGE (Lin et al., 2020) 398

further leverages the database content to augment 399

the column representation. (8) SeaD (Xuan et al., 400

2021) trains a seq2seq model with schema-aware 401

denoising objectives. 402

Multi-Table (1) RYANSQL (Choi et al., 2020) 403

recursively predicts nested queries with sketch- 404

based slot filling algorithm; (2) IRNet (Guo et al., 405

5UNISAR still shows a powerful performance in an in-
ternal single-domain dataset. Note that for Spider, CoSQL,
SparC and DuSQL, we conduct experiments on dev set since
the test set is not publicly available.
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Model
WikiSQL TableQA

Dev Test Dev Test

LX EX LX EX LX EX LX EX

Invasive Approaches
SQLNet (Xu et al., 2017) - 69.8 - 68.0 - - 61.4 67.2

Coarse2Fine (Dong and Lapata, 2018) 72.5 79.0 71.7 78.5 - - 72.6 76.7
SQLova (Hwang et al., 2019) 81.6 87.2 80.7 86.2 - - 81.7 85.8

X-SQL (He et al., 2019) 83.8 89.5 83.3 88.7 - - 83.3 87.6
F-SQL (Zhang et al., 2020) - - 85.6 91.4 - - 90.4 93.2
HydraNet (Lyu et al., 2020) 83.6 89.1 83.8 89.2 - - - -
BRIDGE (Lin et al., 2020) 86.2 91.7 85.7 91.1 - - - -

Non-invasive Approaches
BART-Large (Lewis et al., 2020) 83.7 89.4 82.8 88.8 88.7 91.8 90.7 94.4

SeaD (Xuan et al., 2021) 84.9 90.2 84.7 90.1 - - - -
UNISAR 86.7 91.7 85.8 91.4 89.9 92.1 91.8 95.1

Table 1: Logical Form Accuracy (LX) and Execution Accuracy (EX) of the multi-domain setting. Note that we
report the models without using Execution-Guided Decoding.

Model Spider DuSQL

Invasive Approaches
RYANSQL (Choi et al., 2020) 66.6 -

IRNet (Guo et al., 2019) 63.9 38.4
IRNetExt (Wang et al., 2020b) - 59.8
RAT-SQL (Wang et al., 2020a) 69.7 -

BRIDGE (Lin et al., 2020) 70.0 -

Non-invasive Approaches
T5-Base (Shaw et al., 2021) 57.1 -

T5-Large (Scholak et al., 2021) 65.3 -
T5-Large† (Scholak et al., 2021) 69.1 -
BART-Large (Lewis et al., 2020) 64.5 82.2

UNISAR 70.1 84.3

Table 2: Exact-set-match accuracy (EM) of the multi-
table setting. The PLM with † indicates the usage of
constrained decoding (Scholak et al., 2021).

2019) utilizes SemQL as an abstraction represen-406

tation of SQL queries; (3) RAT-SQL (Wang et al.,407

2020a) utilizes a complete relational graph atten-408

tion neural network to handle various pre-defined409

relations; (4) IRNetExt (Wang et al., 2020b) ex-410

tends IRNet to parse calculation questions and pre-411

dict values.412

Multi-Turn (1) EditSQL (Zhang et al., 2019)413

adopts an editing-based encoder-decoder model;414

(2) IGSQL (Cai and Wan, 2020) proposes schema415

interaction graph encoder to utilize historicalal in-416

formation of database schema items; (3) RAT-SQL-417

con (Wang et al., 2020a) is the extension of RAT-418

SQL for multi-turn settings.419

4.3 Implementation Details420

We conduct the experiments using the Fairseq (Ott421

et al., 2019) to do data pre-processing, training422

and inference. Our training can be done within 10423

Model SParC CoSQL Chase

QM IM QM IM QM IM

Invasive
EditSQL 47.2 29.5 39.9 12.3 37.7 17.4
IGSQL 50.7 32.5 44.1 15.8 41.4 20.0

RAT-SQL 60.1 38.6 50.8 20.1 35.1 14.6

Non-invasive
BART 55.0 36.5 47.1 18.8 37.6 19.5

UNISAR 60.4 40.8 51.8 21.3 42.2 22.3

Table 3: Question Match (QM) and Interaction Match
(IM) of multi-turn setting.

hours using four V100-16G GPUs or day and a half 424

using one V100-16G GPU.6 The hyper-parameters 425

could be found in Appendix B. Implementation 426

of constrained decoding is based on Cao et al. 427

(2021a,b). 428

5 Results and Analysis 429

5.1 Main Results 430

The results of multi-domain, multi-table and multi- 431

turn are listed in Table 1, 2 and 3 respectively. We 432

run each UNISAR experiment three times with dif- 433

ferent random seeds and report the mean. Most 434

results of previous models are reported by cited pa- 435

pers respectively.7 As we can see from the results, 436

UNISAR achieves the most consistently strong per- 437

formance under all settings, which demonstrates 438

the effectiveness of our unified architecture. 439

6As a comparison, training RAT-SQL (Wang et al., 2020a)
takes 7 days with one V100-16G GPU.

7For WikiSQL, we re-implement RAT-SQL with BERT-
Large. For multi-turn settings, the results of invasice model
are reported by Guo et al. (2021).
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Model #Params Spider CoSQL SParC

T5-Base 220M 57.1 - -
T5-Base† 220M 65.8 - -
T5-Large 770M 65.3 - -
T5-Large† 770M 69.1 - -

T5-3B 3B 69.9 53.8 -
BART-Large 400M 64.5 47.1 55.0

UNISAR 400M 70.1 51.8 60.4

Table 4: Logical Form Accuracy (LX) of using differ-
ent sizes of PLM for text-to-SQL tasks. The PLM with
† indicates the usage of constrained decoding (Scholak
et al., 2021).

Model Spider CoSQL SParC

UNISAR 70.1 51.8 60.4
- SM 66.9(-3.2%) 48.7(-3.1%) 57.4(-3.0%)
- CD 67.5(-2.6%) 50.1(-1.7%) 57.8(-2.6%)
- SC 68.8(-1.3%) 50.8(-1.0%) 58.9(-1.5%)

Table 5: The ablation study results of Logical Form
Accuracy on UNISAR. SM stands for structure mark,
CD stands for constrained decoding, and SC stands for
SQL completion.

Moreover, we compare UNISAR with other ex-440

isting PLMs in Table 4. It can be observed that441

UNISAR outperforms most of these PLMs even442

though they have much more parameters. Note443

that UNISAR even slightly surpasses T5-3B (8x444

larger) in Spider. It demonstrates the effectiveness445

of our non-invasive approaches to make the PLM446

structure-aware for text-to-SQL.447

5.2 Ablation Study448

To study the effect of our non-invasive approaches:449

structure mark, constrained decoding and SQL450

completion, we conduct ablation study on Spi-451

der, CoSQL and SParC. As show in Table 5, the452

structure mark significantly boosts the performance453

of BART, implying that it does effectively repre-454

sent the structure knowledge for autoregressvie lan-455

guage models. At the same time, from the view of456

decoding, the constrained generation solution also457

boosts the performance by a large margin, since it458

alleviates the problem of generating invalid SQL.459

As a complement to the above two extensions, SQL460

completion further improves the performance by461

inferring underlying tables in post-processing.462

5.3 Effect of Oracle Structure Mark463

To explore the upper-bound of performance boost464

that structure mark brings, we conduct experiments465

under oracle setting. Concretely, we derive oracle466

Model Setting WikiSQL Spider
Dev Test Dev

RAT-SQL
single 78.0 78.2 69.7
joint 77.5 77.7 68.8

- -0.5 -0.5 -0.9

BART
single 83.7 82.8 64.5
joint 83.4 83.7 63.9

- -0.3 +0.9 -0.6

UNISAR
single 86.7 85.8 70.1
joint 86.5 86.8 68.9

- -0.2 +1.0 -1.2

Table 6: Logical Form Accuracy (LX) of joint training
with WikiSQL (single-table) and Spider (multi-table).
Note that RAT-SQL is trained with BERT-Large.

Model Setting Spider CoSQL SParC

RAT-SQL
single 69.7 50.8 60.1
joint 68.2 50.0 58.2

- -1.5 -0.8 -1.9

BART
single 64.5 47.1 55.0
joint 67.5 50.1 57.8

- +3.0 +3.9 +2.8

UNISAR
single 70.1 51.8 60.4
joint 70.8 52.9 60.9

- +0.7 +1.1 +0.5

Table 7: Logical Form Accuracy (LX) of joint training
across single-turn (SPider) and multi-turn (CoSQL and
SParc) datasets. Note that RAT-SQL and IGSQL are
trained with BERT-Large.

schema-linking for Spider by human annotation 467

from Lei et al. (2020) and oracle previous SQL for 468

CoSQL, SParC and Chase. Experimental results 469

show that Spider gets a 1.2% performance boost. 470

And for these multi-turn datasets (SParC, CoSQL, 471

Chase), they receive 5.9%, 8.7%, 11.7% boost re- 472

spectively. It indicates the trends that UNISAR will 473

improve further if we could obtain higher-quality 474

structure mark. 475

5.4 Generalization Across Different Datasets 476

The simple architecture of UNISAR enables dif- 477

ferent tasks to share the sample training protocol. 478

It’s easy to perform multi-task train. To examine 479

this, we conduct two types of multi-task: (a) single- 480

table + multi-table and (b) single-turn + multi-turn. 481

For single-table and multi-table, we train WikiSQL 482

and Spider jointly (Table 6). It can be seen that 483

all these three models degrade. But BART and 484

UNISAR generally show robustness to the unbal- 485

anced distribution of data amount (80k vs. 10k) and 486

SQL format (simple vs. complex). For single-turn 487

and multi-turn, we train Spider, CoSQL and SParC 488
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Question: Which template type code is used by most number of documents ?

BART: SELECT templates.template_type_code FROM templates GROUP BY templates.template_type_code 

ORDER BY count ( * ) DESC LIMIT 1

UNISAR: SELECT templates.template_type_code FROM templates JOIN documents GROUP BY 

templates.template_type_code ORDER BY count ( * ) DESC LIMIT 1

Question: How many contestants did not get voted ?

BART: SELECT COUNT ( * ) FROM competitor WHERE competitor.contestant_number NOT IN ( SELECT 

votes.contestant_number FROM votes )

UNISAR: SELECT COUNT ( * ) FROM contestants WHERE contestants.contestant_number NOT IN ( SELECT 

votes.contestant_number FROM votes )

Question: What are the different models for the cards produced after 1980 ?

BART: SELECT DISTINCT model_list.model FROM cars_data JOIN model_list WHERE cars_data.year > 1980

UNISAR: SELECT DISTINCT model_list.model FROM model_list JOIN car_names JOIN cars_data on 

car_names.makeid = cars_data.id WHERE cars_data.year > 1980 

Question: What is the version number of template id 3 ? | What is the document name of template id 25 ?

BART: SELECT documents.document_name FROM documents WHERE documents.template_id = 25 

UNISAR: SELECT documents.document_name FROM documents JOIN templates WHERE templates.template_id = 

25 

Question: what are airlines that have flights arriving at airport 'AHD' ?

BART: SELECT airlines.airline FROM airlines JOIN flights WHERE flights.destairport = "AHD"

UNISAR: SELECT airlines.airline FROM airlines JOIN flights JOIN airports on where airports.airportname = 

"AHD"

Figure 3: Case study: the first four cases are positive samples while the last one is negative. FROM conditions are
omitted here for brevity.

jointly (Table 7). It indicates that both BART and489

UNISAR show a positive trend by jointly training,490

whereas RAT-SQL not. The divergence could be at-491

tributed to the task-specific modules (e.g. grammar-492

based decoder) which make the model easily overfit493

to specific dataset.494

5.5 Case Studies495

In Figure 3, we compare the SQL generated by our496

model UNISAR with those created by the vanilla497

BART. We notice that UNISAR performs better498

than the BART, especially on examples that involve499

the JOIN operation of multiple tables. For exam-500

ple, in the first case where BART fails to identify501

the existence of table DOCUMENTS. For compar-502

ison, UNISAR successfully predicts the connec-503

tion of two tables since the structure mark presents504

the database structure. In the second case, vanilla505

BART predicts a token (e.g., COMPETITOR) that506

does not exist in the database schema. This will507

cause an ill-formed SQL but UNISAR ensures508

the faithful generation with constrained decoding.509

Moreover, in the third case, we can find that SQL510

completion infers the missing table CAR_NAMES511

based on the matched table MODEL_LIST and512

CARS_DATA. In the fourth case from multi-turn513

setting, UNISAR still outperforms the BART in514

contextual modeling with effectively encoding the515

information of dialogue history. However, in the 516

last case, our UNISAR is awkward to predict un- 517

necessary table AIRPORTS. This error perhaps can 518

be attributed to inappropriate structure mark due 519

to inaccurate schema-linking. A high precision 520

structure mark will alleviate this problem. 521

6 Conclusion 522

In this paper, we propose UNISAR, a simple-yet- 523

effective model to solve text-to-SQL across various 524

settings in a unified framework. Concretely, we 525

simply extend BART, an off-the-shelf autoagressive 526

language model, with three non-invasive extensions 527

to make it structure-aware. Experimental results 528

demonstrate the effectiveness of our UNISAR on 529

seven well-known text-to-SQL datasets. UNISAR 530

achieves highly comparable or better performance 531

to the most advanced specifically-designed text-to- 532

SQL models. UNISAR also shows excellent gen- 533

eralizability in joint training and achieves overall 534

improvements. 535
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A Datasets Statistics786

Table 8 lists the dataset we used. We divided787

the dataset into three group to study the effec-788

tiveness of UNISAR: (1) Multi-Domain: Wik-789

iSQL (Zhong et al., 2017) and TableQA (Sun et al.,790

2020); (2) Multi-Table: Spider (Yu et al., 2018)791

and DuSQL (Wang et al., 2020b); (3) Multi-Turn:792

CoSQL (Yu et al., 2019a), SParC (Yu et al., 2019b)793

and Chase (Guo et al., 2021).794

B Hyper-parameters795

We adopt the BART-Large and set796

the task of Fairseq as TRANSLA-797

TION_FROM_PRETRAINED_BART. The learning798

rate is 1e-5. The max tokens is 1400 for V100-16G799

GPU. We adopt the polynomial_decay with 5,000800

warmup-updates. The dropout (Srivastava et al.,801

2014) rate is 0.1. Optimizer is Adam (Kingma802

and Ba, 2015) with the default parameters. The803

max-update is set to 10,000. Empirically, the804

model obtained best performance about 7000 steps805

(about 10 ∼ 15 epochs) in Spider, CoSQL and806

SParC. The Fairseq (Ott et al., 2019) dynamically807

tunes the batch size to realize higher GPU808

utilization.809
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Dataset # Lan. # Ques. # SQL Len. # Table # DB # MD # MTa # MTu
WikiSQL (Zhong et al., 2017) English 80,654 10.6 26,521 26,521 X % %

TableQA (Sun et al., 2020) Chinese 49,974 9.1 5,291 5,291 X % %

Spider (Yu et al., 2018) English 10,181 21.7 1,020 200 X X %

DuSQL (Wang et al., 2020b) Chinese 23,797 20.2 820 200 X X %
CoSQL (Yu et al., 2019a) English 15,598 18.4 1,020 200 X X X
SParC (Yu et al., 2019b) English 12,726 17.8 1,020 200 X X X
Chase (Guo et al., 2021) Chinese 17,940 20.9 1,020 200 X X X

Table 8: Comparisons of seven text-to-SQL datasets. MD (multi-domain), MTa (multi-table) and MTu (multi-turn)
denote the research focuses of these datsets and # SQL Len. denotes the complexity of predicted SQL.
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