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Abstract

In infilling tasks, sub-tokens, representing in-001
stances where a complete token is segmented002
into two parts, often emerge at the boundaries003
of prefixes, middles, and suffixes. Traditional004
methods focused on training models at the to-005
ken level, leading to sub-optimal performance006
in character-level infilling tasks during the in-007
ference stage. Alternately, some approaches008
considered character-level infilling but they re-009
lied on predicting sub-tokens in inference, yet010
this strategy diminished ability in character-011
level infilling tasks due to the large perplexity012
of the model on sub-tokens. In this paper, we013
introduce FIM-SE, which stands for Fill-In-the-014
Middle with both Starting and Ending character015
constraints. The proposed method addresses016
character-level infilling tasks by utilizing a line-017
level format to avoid predicting any sub-token018
in inference. In addition, we incorporate two019
special tokens to signify the rest incomplete020
lines, thereby enhancing generation guidance.021
Extensive experiments demonstrate that our022
proposed approach surpasses previous meth-023
ods, offering a significant advantage. Code024
is available at https://anonymous.4open.025
science/r/FIM-SE-0678.026

1 Introduction027

The Transformer (Vaswani et al., 2017) decoder-028

only architecture has proven highly effective in029

various natural language processing (NLP) tasks.030

This success has paved the way for the develop-031

ment of advanced causal decoder-only models like032

GPT-4 (OpenAI, 2023), PaLM (Chowdhery et al.,033

2023; Anil et al., 2023), Llama (Touvron et al.,034

2023a,b; Rozière et al., 2023), and Falco (Penedo035

et al., 2023). These innovative models excel at036

generating coherent and contextually relevant re-037

sponses to natural language prompts, showcasing038

state-of-the-art performance across various tasks,039

including question answering (Lewis et al., 2020b),040

logical reasoning (Kojima et al., 2022), and code041

Table 1: Examples for random splitting with Llama tok-
enizer, where the red, blue, and green text indicates the
prefix, the middle, and the suffix, respectively. These
four rows represent the pieces after randomly splitting,
the sentence after exchanging suffix and middle, tok-
enized results, and token IDs, respectively.

(a) The first splitting case.

Pieces A fine day.

Reorder A f day. ine

Tokens [‘A’, ‘_f’, ‘day’, ‘.’, ‘ine’, ‘_’]

IDs [29909, 285, 3250, 29889, 457, 29871]

(b) The second splitting case.

Pieces A fine day.

Reorder A fi day. ne

Tokens [‘A’, ‘_fi’, ‘day’, ‘.’, ‘ne’, ‘_’]

IDs [29909, 5713, 3250, 29889, 484, 29871]

synthesis (Li et al., 2023; Rozière et al., 2023). 042

Despite the success, the proficiency of these 043

models is somewhat limited in tasks involving text 044

infilling, which aims to generate text at a specific 045

location within a prompt, while conditioning on 046

both a prefix and a suffix. The main reason is their 047

intrinsic left-to-right autoregressive design. To ad- 048

dress this issue, CM3 (Aghajanyan et al., 2022) 049

introduced the causal masking objective, placing a 050

mask token at the intended fill location and com- 051

pleting the fill at the end. In contrast, FIM (Bavar- 052

ian et al., 2022) proposed a fill-in-the-middle tech- 053

nique, which randomly divides documents into 054

three segments and tags them with three special 055

tokens. This technique then rearranges the middle 056

and suffix segments, to use the prefix and the suffix 057

to predict the middle segment in auto-regressive 058

format. With these methods, decoder-only based 059

models can effectively handle various infilling tasks 060

and achieve excellent performance. 061
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Figure 1: The probabilities of prediction when inconsis-
tent labels appear in the training data.

However, employing the aforementioned meth-062

ods may introduce inconsistencies during training.063

This arises from the potential division of a single064

token into multiple sub-tokens, as exemplified in065

Table 1. As we can see, due to character-level066

random splitting, the same prefixes ([29909]) have067

inconsistent objectives (285 and 5713, respectively)068

in different cases. The inconsistent objectives will069

significantly impact the model’s perplexity, espe-070

cially on sub-tokens. To illustrate, we construct a071

simple experiment on a classification task shown in072

Figure 1(a). The training data only contains three073

samples and they have the same input but different074

labels. We train a simple network on the training075

data and record the predicted probabilities of the076

three labels at each training step. As shown in077

Figure 1(b), the predicted probabilities for these078

three classes converge to 0.33, indicating a large079

perplexity of the model on the inconsistent objec-080

tives. The large perplexity on sub-tokens makes081

the probability of error increase when predicting082

a sub-token. This phenomenon is notably detri-083

mental in sensitive tasks such as code completion,084

where even a minor error in any token can result085

in program malfunction. As a result, previous ap-086

proaches have yet to fully inspire the potential of087

Transformer decoder-only models in infilling tasks.088

To effectively address the issue, it is crucial to ac-089

knowledge and resolve an inherent conflict. (1) We090

need to avoid the model predicting sub-tokens. In091

the infilling training mode, the model’s perplexity092

in sub-tokens is large, resulting in the low accuracy093

of predicting sub-tokens. (2) We need to output a094

sub-token when the user only writes part of a token.095

Because it is necessary to ensure that the output096

fits the context. If we directly drop several tokens097

to make sure no sub-tokens exist, the model’s out-098

put may no longer align with the removed context,099

rendering it unreasonable in practical use.100

Based on these concerns, we propose FIM- 101

SE, which stands for Fill-In-the-Middle with both 102

Starting and Ending character constraints. Our 103

method enhances the organizational framework of 104

FIM (Bavarian et al., 2022) to concurrently ad- 105

dress the two scenarios mentioned earlier. In sim- 106

ple terms, we transfer the random-span infilling 107

task to the multi-line infilling task. Specifically, af- 108

ter random character level splitting, we utilize two 109

distinct special tokens to mark the Last line of the 110

Prefix (L-Prefix) and the First line of the Suffix (F- 111

Suffix). The model is then tasked to generate text 112

at line level that starts with L-Prefix and ends with 113

F-Suffix. Their inclusion in the prompt simplifies 114

the task for the model, facilitating the generation 115

of text that seamlessly starts with L-Prefix and ends 116

with F-Suffix. Overall, this method is designed to 117

unlock the capabilities of decoder-only models in 118

infilling tasks. 119

The core contribution of the paper is that we de- 120

sign a novel training method for the infilling task, 121

a solution designed to effectively mitigate conflicts 122

mentioned above in infilling tasks. Our method can 123

effectively eliminate any potential inconsistencies 124

and earnestly guarantee that the model’s output 125

aligns cohesively with the given context. Extensive 126

experiments demonstrate the effectiveness of the 127

proposed method on infilling tasks while not com- 128

promising code generation capabilities. Based on 129

Code Llama 13B, our approach not only achieves 130

an 8.8% enhancement in the Humaneval random- 131

span infilling task, with substantial improvements 132

of 11.5% and 10.7% in the single-line and multi- 133

line infilling tasks respectively, but also maintains 134

minimal impact on the model’s performance in 135

code generation tasks. 136

2 Related Work 137

2.1 Large Language Models for Infilling 138

Various Large Language Models (LLMs) have been 139

developed for general generation tasks (Touvron 140

et al., 2023a; Xiong et al., 2023; Chowdhery et al., 141

2023; Penedo et al., 2023; Jiang et al., 2023; Yang 142

et al., 2023; Bai et al., 2023). Most of these mod- 143

els adopt a left-to-right autoregressive generation 144

approach due to its effectiveness, as validated by 145

research such as GPT (Radford et al., 2018, 2019; 146

Brown et al., 2020; Ouyang et al., 2022; OpenAI, 147

2023). In the realm of code-related tasks, where 148

infilling is essential, LLMs are specifically trained 149

for this task. For instance, Incoder (Fried et al., 150
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2023) utilizes a causal masking objective, while151

SantaCoder (Allal et al., 2023), Starcoder (Li et al.,152

2023), and Code Llama (Rozière et al., 2023) em-153

ploy the fill-in-the-middle technique introduced by154

FIM (Bavarian et al., 2022).155

2.2 Text Infilling Models156

The infilling task plays a crucial role in numer-157

ous real-world applications, including document158

editing1 and code completion2. Three common159

Transformer (Vaswani et al., 2017) architectures160

are capable of executing this task, i.e., encoder-161

only, encoder-decoder, decoder-only. In encoder-162

only architectures, masked language modeling is163

employed as the pre-training task, exemplified164

by models like BERT (Devlin et al., 2019) and165

RoBERTa (Liu et al., 2019). These models are de-166

signed to infill brief spans, ranging from a single167

token (Devlin et al., 2019) to a word (Cui et al.,168

2021), and even several contiguous tokens (Joshi169

et al., 2020). In encoder-decoder architectures, a170

common approach involves masking several tokens171

in the encoder and then tasking the model with de-172

coding the complete sentence, as exemplified by173

MASS (Song et al., 2019). Additionally, models174

like Bart (Lewis et al., 2020a) and T5 (Raffel et al.,175

2020) have introduced an infilling noising method.176

This technique replaces multiple tokens with a sin-177

gle mask token, challenging the model to decode178

the masked span. In decoder-only architectures,179

several methods are employed for infilling tasks.180

The Insertion Transformer (Stern et al., 2019) in-181

structs the model to first determine the location182

for the next token, followed by the token predic-183

tion itself. Meanwhile, GLM (Du et al., 2022),184

CM3 (Aghajanyan et al., 2022), and Incoder (Fried185

et al., 2023) adopt a different approach. They shift186

the target span to the end of the context, employing187

left-to-right autoregressive modeling for training.188

Most of these models are designed for token-189

level infilling tasks, which often don’t align190

with real-world applications due to the incom-191

plete nature of the final token in actual prompts.192

FIM (Bavarian et al., 2022) explored various levels193

of spans, i.e., line level, token level, and character194

level. As shown in their results, models trained195

with line-level or token-level spans perform poorly196

on character-level infilling tasks. To enhance the197

performance of models trained on token-level spans198

in character-level infilling tasks, token healing was199

1https://copilot.microsoft.com
2https://github.com/features/copilot

proposed to fix tokenization artifacts that normally 200

arise at the boundary between the end of a prompt 201

and the beginning of a set of generated tokens3. 202

While it effectively bridges the gap between the 203

prefix and generated text, it falls short in handling 204

the transition between generated text and the suf- 205

fix, highlighting the need for further research in 206

character-level infilling. 207

3 Preliminaries 208

In this section, we provide a straightforward intro- 209

duction to the FIM (Bavarian et al., 2022) method 210

and conduct a theoretical analysis of how inconsis- 211

tent labeling affects the model’s perplexity. 212

3.1 Fill-In-the-Middle (FIM) 213

FIM is designed to train models to complete the 214

central sections of documents. This approach in- 215

volves joint training on a combined dataset of tradi- 216

tional left-to-right sequences and data transformed 217

by FIM, with an infilling rate reaching as high as 218

90%. According to experimental results, FIM main- 219

tains the autoregressive test losses of the left-to- 220

right models without incurring significant costs, 221

and it only slightly impacts the performance in 222

downstream evaluations (Allal et al., 2023). 223

In a particular document, FIM segments a docu- 224

ment into three distinct parts: the prefix, the middle, 225

and the suffix. It introduces three levels of segmen- 226

tation: single-line, multi-line, and random-span. 227

Because random-span is more in line with actual 228

usage conditions, previous studies (Rozière et al., 229

2023; Li et al., 2023) usually trained the model 230

with random-span level splitting. After splitting, it 231

moves the middle piece to the end as 232

doc → (pre, mid, suf) → (pre, suf, mid), 233

then concatenate the three pieces using special to- 234

kens as 235

<PRE> pre <SUF> suf <MID> mid <EOT>. 236

This mode is termed Prefix-Suffix-Middle (PSM) 237

mode. Additionally, FIM introduced the Suffix- 238

Prefix-Middle (SPM) mode, which interchanges 239

the positions of the prefix and suffix. A variant of 240

the SPM mode is also proposed, maintaining the 241

same structure as the PSM mode. Detailed descrip- 242

tions of these modes are provided in Appendix A. 243

3https://github.com/guidance-ai/guidance/blob/
main/notebooks/tutorials/token_healing.ipynb
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3.2 Impact of Inconsistent Labels244

When the FIM method employs the random-span245

approach, a training sample can contain up to four246

sub-tokens. This can potentially lead to inconsis-247

tent labels that indicate the same input but with248

different labels. This issue becomes particularly249

critical when the model is required to predict a250

sub-token. In Section 1, we construct a simple ex-251

periment to illustrate that this inconsistency can252

significantly affect the model’s perplexity. Here,253

we offer a theoretical analysis to further elucidate254

this phenomenon.255

We are considering a classification task involv-256

ing n classes, where each sample’s label is asso-257

ciated with one of m different categories across258

various training instances. Let y ∈ {0, 1}n rep-259

resent the actual label, and ŷ ∈ Rn represent the260

predicted probabilities. In this context, the cross-261

entropy loss is computed as262

L = −
n∑

i=0

yi log ŷi. (1)263

Assuming that the first m elements of y (i.e.,264

y1, . . . ,ym) are set to 1, while the rest are 0, the265

loss function is defined as266

L(ŷ) = −
m∑
i=0

log ŷi. (2)267

Then our objective can be expressed as268

ŷ∗ = argmaxL(ŷ), s.t.

n∑
i=0

ŷi = 1. (3)269

Here, we introduce the concept of the Lagrange270

Multiplier, which enables us to formulate the target271

function as272

L(ŷ, λ) = −
m∑
i=0

log ŷi − λ(
n∑

i=0

ŷi − 1). (4)273

We then calculate the partial derivatives of274

ŷ1, . . . , ŷm respectively, which allows us to obtain275

∂L(ŷ, λ)
∂ŷi

= − 1

ŷi
−λ when i = 1, . . . ,m. (5)276

By setting these derivatives to zero, we obtain277

ŷ∗
1 = · · · = ŷ∗

m = − 1

λ
. (6)278

Since ŷm+1, . . . , ŷn are not included in the objec-279

tive function of Eq. (3), and given that the loga-280

rithm is a monotonically increasing function, set-281

ting these values to 0 would maximize the objective282

function. Consequently, the condition is formulated 283

as
∑m

i=1 ŷi = 1. By incorporating this condition, 284

we derive 285

ŷ∗
1 = · · · = ŷ∗

m =
1

m
. (7) 286

We have now completed the proof, demonstrat- 287

ing that when a data point is labeled differently 288

across various samples, the model tends to assign 289

an equal probability of 1
m to each label. This behav- 290

ior leads to a large perplexity of the model, which 291

further suggests its limited modeling capability. 292

4 Methodology 293

In this section, we introduce the proposed method. 294

We begin by outlining the training process with 295

FIM-SE, followed by an explanation of the infer- 296

ence procedure. Finally, we delve into more train- 297

ing details and highlight the distinctions between 298

our approach and the traditional FIM method. 299

4.1 FIM-SE Training 300

The core idea of FIM-SE is to ensure that the to- 301

kens predicted by the model are complete, thereby 302

circumventing the issue of large perplexity associ- 303

ated with sub-tokens. Specifically, we shift from 304

character-level to line-level random splitting in 305

training data construction and then reconstruct the 306

prompt to keep the ability of the model on the 307

character-level infilling tasks. 308

As shown in Figure 2, our process for forming 309

the final training sample from a specific document 310

involves three distinct steps. (1) Splitting: we split 311

the original document into three pieces at the char- 312

acter level, namely the prefix, the middle, and the 313

suffix (2) Refining: we distinguish between the last 314

line of the prefix and the first line of the suffix, de- 315

noting them as L-Prefix and F-Suffix, respectively. 316

Correspondingly, we label the remaining lines of 317

the prefix and the suffix as R-Prefix and R-Suffix. 318

(3) Concatenating: we concatenate all these sec- 319

tions in the following order along with their special 320

tokens as 321

<PRE> R-Prefix <SUF> R-Suffix

<START> L-Prefix <END> F-Suffix

<MID> L-Prefix Middle F-Suffix <EOT>.

322

When tokenizing a sample, we tokenize each sec- 323

tion individually and then concatenate them with 324

the special tokens, which ensures that special to- 325

kens will not be cut or merged. 326
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from typing import List
def has_close_elements(numbers: List[float], 
threshold: float) -> bool:

""" Check if in given list of numbers,
are any two numbers closer to each other
than given threshold."""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if distance < threshold:

return True
return False

FIM-SE Refining

Splitting

from typing import List
def has_close_elements(numbers: List[float], 
threshold: float) -> bool:

""" Check if in given list of numbers, 
are any two numbers closer to each other 
than given threshold."""

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:
distance = abs(elem - elem2)

if distance < threshold:
return True

return False

FIM Concatenating

<PRE>from typing import List
def has_close_elements(numbers: List[float], 
threshold: float) -> bool:

""" Check if in given list of numbers, 
are any two numbers closer to each other 
than given threshold."""
for idx, elem in enu<SUF>nce < threshold:

return True
return False<MID>merate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if dista<EOT>

Prefix Middle Suffix

<PRE>from typing import List
def has_close_elements(numbers: List[float], 
threshold: float) -> bool:

""" Check if in given list of numbers, 
are any two numbers closer to each other 
than given threshold."""

<SUF> return True
return False<START> for idx, elem in

enu<END>nce < threshold:
<MID> for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if distance < threshold:<EOT>

FIM-SE Concatenating

Original Document

from typing import List
def has_close_elements(numbers: List[float], 
threshold: float) -> bool:
    """ Check if in given list of numbers,

are any two numbers closer to each other
than given threshold."""
for idx, elem in enumerate(numbers):

        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:
                    return True
    return False

Prefix Middle Suffix

R-Prefix Middle R-Suffix L-Prefix R-Prefix R-Prefix Middle R-Suffix L-Prefix R-Prefix

Step 1 Splitting

Step 2 Refining

Step 3 Concatenating

Step FIM Concatenating

Figure 2: An overview of the difference between FIM and the proposed FIM-SE. Here, the green background
indicates vanilla FIM and the blue background indicates our FIM-SE.

4.2 FIM-SE Inference327

During the inference stage, the model can be em-328

ployed for left-to-right generation in a standard329

manner. When working with an arbitrary location330

within an existing document, we establish the pre-331

ceding lines as R-Prefix and the following lines as332

R-Suffix. For the specific line at the target loca-333

tion, the text before this point is termed L-Prefix,334

and the text following it is named F-Suffix. Subse-335

quently, a span is generated to be inserted at this336

location by autoregressively sampling tokens from337

the structured prompt338

<PRE> R-Prefix <SUF> R-Suffix

<START> L-Prefix <END> F-Suffix<MID>.
339

This process continues until the “<EOT>” (End of340

Text) token is produced.341

After obtaining the generation, we verify if it342

begins with the L-Prefix and ends with the F-Suffix.343

If the generation does not adhere to these criteria,344

we classify the infilling endeavor as unsuccessful.345

Conversely, if the criteria are met, we eliminate346

the L-Prefix from the beginning and the F-Suffix347

from the end, considering the remaining text as the348

completed segment.349

4.3 Learning and Discussion 350

Training Details. We train our models using the 351

Starcoder code corpus4, a carefully curated dataset 352

sourced from The Stack, encompassing 92 lan- 353

guages. To ensure consistency, we exclude cat- 354

egories such as GitHub issues, GitHub commits, 355

and Jupyter Notebooks, which possess distinct col- 356

umn structures. Additionally, we remove flags 357

marking repositories, files, and stars to maintain 358

a focus on the pure code content in the remaining 359

files. After gathering the data, we process it using 360

the previously described method with a 90% FIM 361

rate, following the methodologies of existing stud- 362

ies (Bavarian et al., 2022; Allal et al., 2023; Rozière 363

et al., 2023). It’s important to note that we exclu- 364

sively employ the PSM format depicted in Figure 2, 365

as the SPM variant used in prior research (Bavarian 366

et al., 2022) lacks a separator between the prefix 367

and middle, potentially leading to model confusion. 368

We conduct experiments and give an experimental 369

analysis in Section 5.3. 370

Discussion. Compared to previous masked lan- 371

guage modeling on encoder-only models and 372

4https://huggingface.co/datasets/bigcode/
starcoderdata

5

https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata


encoder-decoder models, our method excels in373

character-level infilling. While these traditional374

methods primarily concentrate on token-level in-375

filling, this approach often falls short in numerous376

industry applications, as user text seldom forms377

complete tokens. Compared to vanilla FIM (Bavar-378

ian et al., 2022), our method also has the following379

two merits. Firstly, our method ensures that tokens380

following “<MID>” are complete, eliminating the381

need for sub-token predictions during inference and382

thereby mitigating the effects of the large perplexity383

of the model on sub-tokens. Secondly, our method384

transforms character-level infilling into line-level385

infilling. This unification of formats enhances trans-386

fer across different levels, significantly augmenting387

the efficacy of FIM training.388

5 Experiments389

In this section, we construct experiments to demon-390

strate the effectiveness of our method. Due to space391

limitations, we have constructed more experiments392

in Appendix B.393

5.1 Experimental Setup394

Datasets. Following FIM (Bavarian et al., 2022),395

we use code to test our methods. Because we396

can use test suites to evaluate the correctness of397

samples in our tasks even when evaluating long398

samples from open-ended generations. Specifi-399

cally, we use three levels of infilling benchmarks,400

namely random-span, single-line, and multi-line.401

All of them are constructed from Humaneval bench-402

marks (Chen et al., 2021). Since other infilling403

benchmarks such as Return Type Prediction and404

Docstring Generation focus on token-level infilling,405

we do not use these benchmarks.406

Implementation Details. We continually pre-train407

four models with our methods, i.e., Starcoder-1B,408

Starcoder-15B (Li et al., 2023), Code Llama 7B,409

and Code Llama 13B (Rozière et al., 2023). We410

employ AdamW (Loshchilov and Hutter, 2019)411

optimizer with β1 = 0.9, β2 = 0.95, ϵ = 10−8412

and weight decay of 0.1. Following previous413

study (Gupta et al., 2023), we set the peak learning414

rate to 3× 10−5 and use a cosine schedule without415

warm-up. We use a batch size of 4M tokens which416

are presented as sequences of 8K tokens each for417

Starcoder and 16K tokens each for Code Llama.418

We train each model on 20B tokens in total. To effi-419

ciently train the computationally intensive models,420

we simultaneously employ DeepSpeed (Rajbhan-421

dari et al., 2020) and Flash Attention 2 (Dao, 2023). 422

On 32 NVIDIA A800 80GB GPUs, Starcoder-1B, 423

Starcoder-15B, Code Llama 7B, and Code Llama 424

13B take 14 hours, 140 hours, 75 hours, and 138 425

hours, respectively. 426

5.2 Results 427

Baselines. We compare FIM-SE with previous 428

state-of-the-art methods, including Incoder (Fried 429

et al., 2023), FIM (Bavarian et al., 2022), 430

Codex (Chen et al., 2021), Starcoder (Li et al., 431

2023) and Code Llama (Rozière et al., 2023). For 432

other code models such as CodeGeeX (Zheng et al., 433

2023) and OctoCoder (Muennighoff et al., 2023), 434

we do not use them as baselines since they have 435

not undergone infilling pre-training. 436

Random-span. As shown in Table 2, our pro- 437

posed method demonstrates notable improvements 438

in random-span infilling tasks across four models, 439

specifically achieving gains of 4.7%, 1.3%, 8.1%, 440

and 8.8%. Notably, the enhancement in Starcoder- 441

15B is comparatively modest. This could be at- 442

tributed to the fact that Starcoder has undergone 443

pre-training with four epochs on a total of 1TB to- 444

kens, in contrast to Code Llama’s pre-training on 445

500B tokens, resulting in a more refined model fit. 446

Comparing Starcoder-15B with Starcoder-1B, the 447

small model trained on the same tokens has more 448

gain, suggesting that the consistent training ap- 449

proach of our method is particularly beneficial for 450

smaller models in achieving better fit. Comparing 451

Starcoder-15B with Code Llama 13B, the model 452

with a similar size using fewer tokens achieves 453

better results. This indicates that the consistent 454

training approach of our method accelerates the 455

fitting process in larger models. 456

Single-line and Multi-line. The proposed method 457

demonstrates notable improvements in both single- 458

line and multi-line infilling tasks. For instance, 459

based on Code Llama 13B, our method surpasses 460

FIM by 11.5% and 10.7% in single-line and multi- 461

line infilling tasks, respectively. This enhancement 462

can be attributed to two key factors. Firstly, our 463

method integrates character-level and line-level pro- 464

cessing, significantly enhancing the model’s line- 465

level infilling capabilities. Secondly, it avoids the 466

inclusion of any sub-tokens after the “<MID>” to- 467

ken, which sharpens the model’s accuracy in pre- 468

dicting the initial token. In contrast, in the stan- 469

dard FIM, the first token following “<MID>” is 470

typically a sub-token during training, while the 471
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Table 2: Comparison results on Humaneval infilling datasets. Results evaluated on our end are marked with “*”,
while those unavailable are left blank. Note that StarCoder was evaluated using a cleaned and smaller version of
MBPP so we conducted a re-evaluation.

Model Size Training Methods random-span single-line multi-line Humaneval MBPP

Incoder 6B Causal Masking - 69.0 38.6 15.0 19.4
FIM 7B FIM-SPM 55.1 75.1 44.1 - -

code-davinci-002 175B - 74.2 91.6 69.9 44.5 55.4

Starcoder
1B FIM-PSM 44.1∗ 64.3∗ 30.8∗ 15.2 22.6∗

FIM-SE-PSM 48.8 (+4.7) 72.6 (+8.3) 37.1 (+6.3) 16.5 25.6

15B FIM-PSM 66.4∗ 83.8∗ 53.7∗ 30.4 43.2∗

FIM-SE-PSM 67.7 (+1.3) 85.8 (+2.0) 57.4 (+3.7) 30.5 44.6

Code Llama

7B
FIM-SPM 39.0 83.3 50.8 33.5 41.4FIM-PSM 59.7 74.1 48.2

FIM-SE-PSM 67.8 (+8.1) 84.9 (+10.8) 57.2 (+9.0) 30.5 41.4

13B
FIM-SPM 41.9 85.6 56.1 36.0 47.0FIM-PSM 63.6 75.9 51.0

FIM-SE-PSM 72.4 (+8.8) 87.4 (+11.5) 61.7 (+10.7) 37.2 50.2

model is adopted to predict a complete token in472

the line-level infilling tasks during the inference473

stage. A comprehensive case study is provided in474

Appendix B.2 for further illustration.475

Code Generation Task. We also report results on476

Humaneval (Chen et al., 2021) and MBPP (Austin477

et al., 2021). As shown in Table 2, our method478

has minimal impact on the model’s performance479

in the two code generation tasks (Note that we480

cannot reproduce the result of Code Llama 7B on481

Humaneval, just 29.9% in our environment). In482

summary, FIM-SE demonstrates a remarkable abil-483

ity to improve infilling tasks without compromising484

code generation capabilities.485

5.3 Detail Analysis486

Impact of Inconsistent Labels. As mentioned in487

Section 1 and Section 3.2, we discussed how FIM488

leads to inconsistent labels during training at split489

points. This phenomenon results in large perplex-490

ity on sub-tokens, subsequently diminishing the491

model’s accuracy in generating sub-tokens. To in-492

vestigate this effect, we conducted an experiment493

based on the Starcoder-1B. Specifically, we ad-494

justed the temperature within the range of [0, 1.4]495

and compared the performance of models trained496

using both FIM-SE and FIM in generating 20 com-497

pletions to estimate the Pass@1 rate. Figure 3498

illustrates that the performance gap between the499

FIM-SE and FIM generators widens as the temper-500

ature increases, highlighting the larger perplexity501

associated with models trained using FIM.502

Furthermore, we evaluate the impact of inconsis-503
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Figure 3: Performance on Humaneval random-span in-
filling task with different temperatures. The line de-
notes the difference between FIM-SE and FIM. Note
that when the temperature surpasses 1.4, both models
output noisy text and show very low performance.

Table 3: Effect of training loss on sub-tokens. Here, LF-
Loss denotes the loss for tokens in L-Prefix and F-Suffix.

Methods FIM-SE w/o LF-Loss

random-span 0.488 0.488
single-line 0.726 0.716
multi-line 0.371 0.369
Test loss 0.847 0.834

tent labels on training. Specifically, we mask the 504

loss for tokens in L-Prefix and F-Suffix, ensuring 505

that only complete tokens contribute to loss calcu- 506

lations. As shown in table 3, computing losses for 507

L-Prefix and F-Suffix led to a slightly higher test 508

loss without significantly affecting performance. 509

This could be attributed to the minimal proportion 510

of sub-tokens, as the presence of up to four sub- 511

tokens per sample had a negligible impact on the 512

final test results. In summary, while the loss of 513

sub-tokens in training scarcely affects performance, 514
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Table 4: Comparison between different SPM format
variants and FIM-SE.

Methods random-span single-line multi-line

FIM-SE 0.488 0.726 0.371
SPM v1 0.492 0.703 0.374
SPM v2 0.013 0.085 0.088
SPM v3 0.090 0.717 0.383

the presence of sub-tokens in prediction objectives515

markedly influences performance.516

Comparison with SPM Mode. In previous studies,517

the Suffix-Prefix-Middle variant had better perfor-518

mance in most cases (Bavarian et al., 2022; Rozière519

et al., 2023). Here, we explore how to combine520

our method with SPM mode based on Starcoder-521

1B. Specifically, we designed the following three522

prompt formats for SPM mode. We train the model523

using these formats and the PSM mode, equally524

distributed across 20 billion tokens.525

(1) SPM v1: “<SUF> R-Suffix <PRE> R-Prefix526

<START> L-Prefix <END> F-Suffix <MID>”,527

which add the constraints before the middle528

to the vanilla SPM mode.529

(2) SPM v2: “<PRE> <SUF> R-Suffix <START>530

L-Prefix <END> F-Suffix <MID> R-Prefix”,531

which add the constraints before the middle532

to the variant SPM in FIM.533

(3) SPM v3: “<PRE> <SUF> R-Suffix <MID> R-534

Prefix <START> L-Prefix <END> F-Suffix”,535

which add the constraints after prefix to the536

variant SPM in FIM.537

Table 4 presents all comparison results of the538

three variants. As we can see, SPM v2 and SPM539

v3 perform worse on random-span infilling tasks.540

This occurs because there is no separator between541

the prefix and the middle, leading to conflicts with542

the PSM mode, regardless of where the restriction543

is inserted. In contrast, SPM v1 and PSM per-544

form almost the same because there is no conflict.545

To maintain consistency with the pre-trained mod-546

els (Li et al., 2023; Rozière et al., 2023), we adopt547

the PSM mode.548

Analysis of Post-Check during Inference. As549

we mentioned in Section 4.2, it’s essential to ver-550

ify if the generation begins with the L-Prefix and551

ends with the F-Suffix. Here, we perform statistical552

analysis on the success rate of the model based on553

Starcoder-1B. We focus on the Post-Check Pass554

Rate (PCP Rate), which quantifies the percentage555
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Figure 4: Statistics of length of L-Prefix and F-Suffix.

of model outputs complying with the post-check 556

criteria, i.e., starting with the L-Prefix and ending 557

with the F-Suffix. We then examine the correlation 558

between the PCP Rate and the average length of the 559

L-Prefix and F-Suffix. Additionally, we analyze the 560

Pass@1 rates for FIM-SE and FIM across varying 561

lengths of these prefixes and suffixes. 562

As shown in Figure 4, the PCP Rate increases 563

with length, suggesting that longer L-Prefixes and 564

F-Suffixes provide more guidance for the model’s 565

text completion. Moreover, the Pass@1 metrics for 566

both FIM-SE and FIM also support this, showing 567

enhanced performance with extended L-Prefixes 568

and F-Suffixes. Across all lengths, FIM-SE consis- 569

tently outperforms the standard FIM, demonstrat- 570

ing the effectiveness of our approach. 571

6 Conclusion 572

In this paper, we showed that traditional infilling 573

techniques struggle with managing the boundaries 574

of prefixes and suffixes. To address this, we intro- 575

duced a novel approach, referred to as FIM-SE. Our 576

method transforms the random-span mode to multi- 577

line mode by removing the L-Prefix and F-Suffix. 578

We further incorporated two special tokens to delin- 579

eate the two incomplete lines, thereby guiding the 580

generation. Extensive experiments reveal that our 581

approach surpasses existing baselines with a clear 582

edge. In future work, we plan to explore the adapta- 583

tion of our method to the variant SPM mode, which 584

holds the promise of even better performance. 585
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7 Limitations586

The primary limitation of this study is the inabil-587

ity of the proposed method to accommodate the588

variant SPM mode, previously established as supe-589

rior by prior research. This challenge arises due590

to the absence of a distinct delimiter between the591

prefix and middle, impeding our capacity to guide592

the model on the commencement point for com-593

pletion and to appropriately position the prompt594

that instructs the model to start with L-Prefix and595

end with F-Suffix. In future endeavors, we plan to596

explore adapting our method to the variant SPM597

mode, to achieve better performance. Another lim-598

itation of this paper is the probability that our pro-599

posed method fails to complete tasks when the600

generation neither starts with the L-Prefix nor ends601

with the F-Suffix. For example, the fail rates of602

Starcoder-1B and Starcoder-15B are 18.7% and603

9.4%, respectively. This issue is a primary factor604

impacting model performance. Future work will605

concentrate on improving the post-check pass rate606

by developing more comprehensive prompts and607

refining constraint decoding.608

8 Ethics Statement609

In this paper, we utilized the Starcoder dataset (Li610

et al., 2023). This dataset has been made publicly611

available for academic purposes. The creators of612

the Starcoder dataset have transparently disclosed613

its derivation from The Stack v1.2 (Kocetkov et al.,614

2022). Importantly, The Stack v1.2 is compiled615

from a collection of GitHub repositories, all of616

which operate under permissive licenses. This en-617

sures that the data’s utilization aligns with the orig-618

inal authors’ intentions and the legal frameworks619

governing open-source contributions. In conclu-620

sion, the application of the Starcoder dataset in621

our study complies with the ethical guidelines for622

research data usage, aligning with the broader prin-623

ciples of academic honesty and the responsible624

conduct of research.625
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Appendix1009

A Fill-In-the-Middle (FIM)1010

In Section 3.1, We briefly introduced the prefix-1011

suffix-middle (PSM) mode of FIM (Bavarian et al.,1012

2022). Here, we give a detailed description of1013

the suffix-prefix-middle (SPM) mode and a variant1014

SPM mode.1015

For the vanilla SPM mode, it just swaps the pre-1016

fix and the suffix. Specifically, after splitting, it1017

moves the suffix to the before:1018

doc → (pre, mid, suf) → (suf, pre, mid),1019

then concatenate the three pieces using special to-1020

kens as1021

<SUF> suf <PRE> pre <MID> mid <EOT>.1022

To maximize transfer between PSM mode and1023

SPM mode, FIM proposed a novel variant of SPM1024

mode, which concatenates the prefix, the middle,1025

and the suffix pieces as1026

<PRE> <SUF> suf <MID> pre mid <EOT>.1027

The format occurs naturally as part of PSM train-1028

ing when the chosen prefix is empty. In this way,1029

the two modes have a consistent format and they1030

can transfer with each other in joint training and1031

maximize the profits.1032

B Additional Experiments1033

B.1 Comparison with Token Healing1034

As discussed in Section 2, token healing is pro-1035

posed as an ideal solution for addressing tokeniza-1036

tion that normally arise at the boundary between1037

the end of a prompt and the beginning of a set1038

of generated tokens. Here, we evaluate our ap-1039

proach against the token healing method based1040

on Starcoder-1B. However, since token healing1041

struggles with the split points at the end of gener-1042

ated tokens and the subsequent suffix, we integrate1043

it with our method for a comprehensive solution.1044

Specifically, we construct the prompt as “<PRE> R-1045

Prefix <SUF> R-Suffix <START> L-Prefix <END>1046

F-Suffix <MID> L-Prefix” and focus solely on veri-1047

fying if the generated text ends with F-Suffix.1048

Table 5 presents the comparison results between1049

our method and token healing. Surprisingly, token1050

healing performs slightly worse than our method.1051

Detailed analysis revealed that token healing strug-1052

gles with complex scenarios, such as splitting the1053

Table 5: Comparison with Token Healing.

Methods random-span

FIM-SE 0.488
Token Healing 0.484

Table 6: Case of token healing. The first case can be
perfectly solved by token healing. The second case
cannot be solved by token healing. Here, ‘_’ denotes
blank.

(a) A case can be solved by token healing.

Piece Raw Text Tokens

Prefix def so def _ so

Output def sort(arr) def _ sort ( arr )

Label def sort(arr) def _ sort ( arr )

(b) A case cannot be solved by token healing.

Piece Raw Text Tokens

Prefix r.add(delim r . add (
delim

Output r.add(delimter) r . add (
delim ter )

Label r.add(delimeter) r . add (
deli meter )

last token into two sub-tokens and merging the lat- 1054

ter sub-token with the initial generated token. 1055

Here, we provide an in-depth analysis of the 1056

situation. Token healing backs up the generation 1057

process by one or more tokens before the end of 1058

the prompt, then constrains the first tokens gener- 1059

ated to have a prefix that matches the last token 1060

in the prompt. As illustrated in Table 6(a), if the 1061

last token in the prompt is "so," token healing iden- 1062

tifies a token that both matches this last token’s 1063

prefix and possesses the highest probability, such 1064

as "sort." Consequently, the first generated token 1065

is seamlessly integrated, allowing the generation 1066

process to proceed smoothly. 1067

However, due to the consistent integrated in- 1068

trinsic features of the sentencepiece (Kudo and 1069

Richardson, 2018) algorithm, it tends to merge the 1070

last sub-token with the preceding one if possible. 1071

For example, as illustrated in Table 6(b), the word 1072

"delimiter" is tokenized into "deli" and "meter." If 1073

a prompt ends with "delim", the algorithm prefers 1074

tokenizing this as "delim" instead of splitting it into 1075

"deli" and "m". Token healing does not intervene, 1076

because there is no token starting with "delim". 1077

Consequently, when the last sub-token can be com- 1078
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Prefix

def largest_prime_factor(n: int):
""" Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor (13195)
29
"""
def is_prime(k):

if k < 2:
return False

for i in range(2, k - 1):
if k % i == 0:

return False
return True

Suffix

for j in range(2, n + 1):
if n % j == 0 and is_prime(j):

largest = max(largest , j)
return largest

Target Middle

largest = 1

The top five choices for the initial generated token on Starcoder-1B (FIM), along with their probabilities

‘\n’: 0.463; ‘\n_ _ _ ’: 0.225; ‘_ _ _ _’: 0.073; ‘<|endoftext|>’: 0.068; ‘_ _ _ _\n_ _ _ ’: 0.061;

The top five choices for the initial generated token on Starcoder-1B (FIM-SE), along with their probabilities

‘_ _ _ ’: 0.829; ‘\n_ _ _ ’: 0.115; ‘_ _ _ _\n_ _ _ ’: 0.037; ‘_ _ _ _’: 0.008; ‘_ _ _ _ _ _ _ _\n_ _ _ ’ : 0.002;

Table 7: A Case to show perplexity of models on the initial generated token. Here, ‘_’ denotes blank, and ‘\n’
denotes newline.

bined with the previous one, token healing is unable1079

to rectify it effectively.1080

To effectively resolve this issue, it is necessary1081

to revert several tokens and subsequently engage1082

in limited decoding, utilizing a Trie tree, until the1083

regenerated text encompasses the previously rolled-1084

back tokens. Nonetheless, this approach is time-1085

intensive as each decoding step requires traversing1086

the Trie tree to identify all tokens corresponding to1087

the given prefix. In contrast, our method only re-1088

quires modifying the prompt and doing some post-1089

processing. In addition, our method can handle1090

both boundaries between the prefix and middle as1091

well as boundaries between the suffix and middle.1092

B.2 Case Study1093

Here, we present a case demonstrating the model’s1094

large perplexity on the initial generated token based1095

on Starcoder-1B. Table 7 illustrates that, despite1096

being a single-line infilling scenario, the perplexity1097

for the first token is remarkably large, significantly1098

influencing the overall generation. This is primarily1099

because the first token following “<MID>” tends1100

to be a sub-token during training, varying across1101

samples due to random character-level splitting. In1102

contrast, our approach guarantees that no sub-token 1103

prediction is required, leading to lower perplexity 1104

and enhanced performance. 1105

Based on these concerns, we hypothesize that 1106

the superior performance of the variant SPM mode 1107

over the PSM mode, particularly evident in the 1108

single-line infilling task on Code Llama (Rozière 1109

et al., 2023) (85.6% vs. 75.9%), can be attributed to 1110

the specific processing format employed by Code 1111

Llama. In the format “<PRE> <SUF> suf <MID> 1112

pre mid <EOT>”, Code Llama initially merges the 1113

prefix and middle segments before tokenization. 1114

This approach ensures that, following the “<MID>” 1115

token, there are no sub-tokens except for the initial 1116

token. Consequently, this format also guarantees 1117

that no sub-token prediction is required when the 1118

prefix is not empty, contributing to the enhanced 1119

performance of the variant SPM mode. In con- 1120

trast, FIM (Bavarian et al., 2022) adopts a different 1121

approach by tokenizing the prefix and the middle 1122

separately before concatenating them. This leads to 1123

the presence of sub-tokens amidst the tokens. Con- 1124

sequently, the performance gap between SPM and 1125

PSM modes in FIM is narrower (61.6% vs. 62.2%) 1126

compared to that in Code Llama. 1127
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