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Abstract Bayesian Optimization (BO) is a widely-used method for the global optimization of black-box

functions. While BO has been successfully applied to many scenarios, scaling BO algorithms

to high-dimensional domains remains a challenge. Optimizing such functions by vanilla BO

is time-consuming. Alternative strategies for high-dimensional BO that are based on the

idea of embedding the high-dimensional space to one with low dimensions are sensitive to

the choice of the embedding dimension, which needs to be pre-specified. We develop a new

computationally efficient high-dimensional BO method that leverages variable selection.

We analyze the computational complexity of our algorithm and demonstrate its efficacy on

several synthetic and real problems through empirical evaluations.

1 Introduction

We study the problem of globally maximizing a black-box function 𝑓 (x) with an input domain X ,

where the function has certain properties: (1) Computation of its first and second-order derivatives

is challenging, rendering gradient-based optimization algorithms unsuitable; (2) It is expensive to

evaluate the function, hence some classical global optimization algorithms such as evolutionary

algorithms (EA) are not applicable. These two properties are frequently encountered in real-world

optimization problems, particularly in domains such as automated machine learning (Nickson et al.,

2014) and robotics (Calandra et al., 2016).

Bayesian optimization (BO) is a popular global optimization method to solve the problem

described above. It aims to obtain the input x∗ that maximizes the function 𝑓 by iteratively selecting

queries that are likely to achieve the maximum and evaluating the function on those queries.

BO has been successfully applied in many scenarios such as hyper-parameter tuning (Snoek

et al., 2012; Klein et al., 2017), automated machine learning (Nickson et al., 2014; Yao et al., 2018),

reinforcement learning (Brochu et al., 2010; Marco et al., 2017;Wilson et al., 2014), robotics (Calandra

et al., 2016; Berkenkamp et al., 2016), and chemical design (Griffiths and Hernández-Lobato, 2020;

Negoescu et al., 2011; Griffiths et al., 2022). However, most problems described above that have

been solved by BO successfully have black-box functions with low-dimensional domains, typically

with 𝐷 ≤ 20 (Frazier, 2018). Scaling BO to high-dimensional black-box functions is challenging

because (1) due to the curse of dimensionality, the global optima is harder to find as𝐷 increases; and

(2) computationally, vanilla BO is extremely time consuming on functions with large 𝐷 . As the need

for global optimization of high-dimensional black-box functions grows in fields such as algorithm

configuration (Hutter et al., 2010), computer vision (Bergstra et al., 2013), and biology (Gonzalez

et al., 2015), developing new BO algorithms that can effectively optimize such functions is crucial

for practical applications.

A common approach for high-dimensional BO algorithms assumes that the black-box function

has an effective subspace with dimension 𝑑𝑒 ≪ 𝐷 (Djolonga et al., 2013; Wang et al., 2016; Moriconi

et al., 2020; Nayebi et al., 2019; Letham et al., 2020). To exploit this assumption, these algorithms first

embed the high-dimensional search space X into a lower-dimensional space of dimension 𝑑 , which

is chosen by the user, and then perform vanilla BO in the embedding space to suggest new queries.
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Subsequently, they project these queries back to the original space and evaluate the function 𝑓 .

These algorithms can be computationally efficient since BO is performed in a lower-dimensional

space. It has been theoretically shown by Wang et al. (2016) that if the embedding dimension 𝑑

is greater than or equal to 𝑑𝑒 , then the global optimum can be found by searching queries in the

embedding space with probability one. However, the effective subspace dimension 𝑑𝑒 is usually

unknown, and choosing a suitable 𝑑 can be difficult. Previous work, such as Eriksson and Jankowiak

(2021), shows that the performance of embedding-based algorithms can be sensitive to the choice

of 𝑑 , and there is limited research on how to select 𝑑 heuristically. Letham et al. (2020) also points

out that when projecting the optimal point from the embedding space back to the original space,

there is no guarantee that the resulting point is within X and thus the algorithm may fail to find

an optimum within the input domain, although this problem is partially addressed by mapping the

input bounds from the original space to the embedding space in their work.

We develop a new algorithm, called VS-BO (Variable Selection Bayesian Optimization). Our

method assumes that all the 𝐷 variables (elements) of the input x can be divided into two distinct

sets x = {x𝑖𝑝𝑡 , x𝑛𝑖𝑝𝑡 }, where x𝑖𝑝𝑡 denotes important variables that have a significant impact on the

output value of 𝑓 , while x𝑛𝑖𝑝𝑡 refers to unimportant variables with little or no effect on the output.

Previous work such as Hutter et al. (2014) demonstrates that the performance of many machine

learning methods is heavily influenced by only a small subset of hyperparameters, which justifies

our assumption. We propose a robust strategy for identifying x𝑖𝑝𝑡 and performing BO on the space

of x𝑖𝑝𝑡 to reduce computational time. Our method can automatically learn the dimension of x𝑖𝑝𝑡 ,
eliminating the need for pre-specifying the hyperparameter 𝑑 as in embedding-based algorithms.

Since the space of x𝑖𝑝𝑡 is axis-aligned, our method overcomes issues caused by space projection.

We analyze the computational complexity of VS-BO, showing that our method can decrease the

computational complexity of both fitting the Gaussian Process (GP) and optimizing the acquisition

function. Our empirical results show that VS-BO performs well on synthetic and real problems.

The source code of VS-BO is at https://github.com/Kingsford-Group/vsbo.

2 Related work

The basic framework of BO has two steps for each iteration: First, a GP model is used as the

surrogate to model 𝑓 based on all the previous query-output pairs

(
x1:𝑛, 𝑦1:𝑛

)
:

𝑦1
:𝑛 ∼ N

(
0, 𝐾 (x1:𝑛,Θ) + 𝜎2

0
I
)
. (1)

Here, 𝑦1:𝑛 = [𝑦1, . . . , 𝑦𝑛]⊤ is a 𝑛-dimensional vector, 𝑦𝑖 = 𝑓 (x𝑖) + 𝜖𝑖 is the output of 𝑓 with random

noise 𝜖𝑖 ∼ N (0, 𝜎2
0
), and 𝐾 (x1:𝑛,Θ) is a 𝑛 × 𝑛 covariance matrix where its entry 𝐾𝑖, 𝑗 = 𝑘 (x𝑖 , x𝑗 ,Θ)

is the value of a kernel function 𝑘 in which x𝑖 and x𝑗 are the 𝑖-th and 𝑗-th queries respectively. Θ
and 𝜎0 are hyper-parameters of GP that will be optimized each iteration, and I is the 𝑛 × 𝑛 identity

matrix. We set the mean vector of (1) as a zero vector to implicitly assume that the observations

have been standardized. A detailed description of the GP and its applications can be found in

Williams and Rasmussen (2006).

Given a new input x, we can compute the posterior distribution of 𝑓 (x) from the GP, which is

again a Gaussian distribution with mean 𝜇 (x | x1:𝑛, 𝑦1:𝑛) and variance 𝜎2(x | x1:𝑛) that have the
following forms:

𝜇 (x | x1:𝑛, 𝑦1:𝑛) = k(x, x1:𝑛) [𝐾 (x1:𝑛,Θ) + 𝜎2
0
I]−1𝑦1:𝑛, (2)

𝜎2(x | x1:𝑛) = 𝑘 (x, x,Θ) − k(x, x1:𝑛) [𝐾 (x1:𝑛,Θ) + 𝜎2
0
I]−1k(x, x1:𝑛)⊤.

Here, k(x, x1:𝑛) = [𝑘 (x, x1,Θ), . . . , 𝑘 (x, x𝑛,Θ)] is a 𝑛-dimensional vector.
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The second step of BO is to use 𝜇 and 𝜎 to construct an acquisition function 𝑎𝑐𝑞 and maximize it

to get the new query x𝑛𝑒𝑤 , on which the function 𝑓 is evaluated to obtain the new pair (x𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤):

x𝑛𝑒𝑤 = argmaxx∈X 𝑎𝑐𝑞(𝜇 (x | x1:𝑛, 𝑦1:𝑛), 𝜎 (x | x1:𝑛)) . (3)

A wide variety of methods have been proposed that are related to high-dimensional BO, and

most of them are based on some extra assumptions on intrinsic structures of the domain X or the

function 𝑓 . As mentioned in the previous section, a considerable body of algorithms is based on

the assumption that the black-box function has an effective subspace with a significantly smaller

dimension than X . Among them, REMBO (Wang et al., 2016) uses a randomly generated matrix

as the projection operator to embed X to a low-dimensional subspace. SI-BO (Djolonga et al.,

2013), DSA (Ulmasov et al., 2016) and MGPC-BO (Moriconi et al., 2020) propose different ways to

learn the projection operator from data, of which the major shortcoming is that a large number of

data points are required to make the learning process accurate. HeSBO (Nayebi et al., 2019) uses a

hashing-based method to do subspace embedding. ALEBO (Letham et al., 2020) aims to improve

the performance of REMBO with several novel refinements. There are also some methods that try

to learn the subspace via Variational Autoencoders, such as Grosnit et al. (2021), Maus et al. (2022),

and Notin et al. (2021).

Another assumption is that the black-box function has an additive structure. Kandasamy et al.

(2015) first develops a high-dimensional BO algorithm called Add-GP by adopting this assumption.

They derive a simplified acquisition function and prove that the regret bound is linearly dependent

on the dimension. Their framework was subsequently generalized by Li et al. (2016); Wang et al.

(2017) and Rolland et al. (2018).

Several approaches attempt to solve the high-dimensional BO problem by developing more

efficient methods to optimize the acquisition function instead of adding extra assumptions. For

example, Rana et al. (2017) builds a sequence of GPs and optimizes a series of acquisition functions

to make the gradient-based methods applicable even in the region where the acquisition function is

flattened, and Kirschner et al. (2019) develops a method called LineBO to optimize the acquisition

function on a one-dimensional line each time.

Our method assumes that some variables are more important than others, which is an approach

to axis-aligned subspace embedding. Several previous approaches propose different methods to

choose axis-aligned subspaces in high-dimensional BO. Li et al. (2016) uses the idea of dropout, i.e,

for each iteration of BO, a subset of variables is randomly chosen and optimized, while our work

chooses variables that are important in place of the randomness. Gupta et al. (2020) proposes to

optimize the acquisition function on a finite set of axis-aligned subspaces, while the dimension

of the subspace is still pre-specified. Eriksson and Jankowiak (2021) develops a method called

SAASBO, which uses the idea of Bayesian inference. SAASBO defines a prior distribution for each

hyper-parameter in the kernel function 𝑘 , and for each iteration the parameters are sampled from

posterior distributions and used in the step of optimizing the acquisition function. Since those

priors restrict parameters to concentrate near zero, the method is able to learn a sparse axis-aligned

subspace (SAAS) during the BO process. The main drawback of SAASBO is that it is very time

consuming. While traditionally it is assumed that the function 𝑓 is very expensive to evaluate

so that the runtime of BO itself does not need to be considered, previous work such as Ulmasov

et al. (2016) points out that in some applications the runtime of BO cannot be neglected. Spagnol

et al. (2019) proposes a high-dimensional BO framework similar to our method. Their work uses

Hilbert Schmidt Independence criterion (HSIC) to select variables and uses the chosen variables

to do BO. However, they use simple heuristics to handle unimportant variables, which affects the

performance of the method, and they do not analyze the computational complexity of their method.

Also, they do not provide a comprehensive comparison with other high-dimensional BO methods:

their method is only compared with the method in Li et al. (2016) on several synthetic functions.
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Algorithm 1 VS-BO

1: Input: black-box function 𝑓 (x) with no analytic form, X = [0, 1]𝐷 , 𝑁𝑖𝑛𝑖𝑡 , 𝑁 , 𝑁𝑣𝑠

2: Output: x𝑚𝑎𝑥

3: Initialize the set of x𝑖𝑝𝑡 to be all variables in x, x𝑖𝑝𝑡 = x, and x𝑛𝑖𝑝𝑡 = ∅
4: Uniformly sample 𝑁𝑖𝑛𝑖𝑡 points x𝑖 and evaluate 𝑦𝑖 = 𝑓 (x𝑖) + 𝜖𝑖 , let D = {(x𝑖 , 𝑦𝑖)}𝑁𝑖𝑛𝑖𝑡

𝑖=1

5: Initialize multivariate Gaussian distribution 𝑝 (x | D)
6: for 𝑡 = 𝑁𝑖𝑛𝑖𝑡 + 1, 𝑁𝑖𝑛𝑖𝑡 + 2, . . . 𝑁𝑖𝑛𝑖𝑡 + 𝑁 do
7: if mod(𝑡 − 𝑁𝑖𝑛𝑖𝑡 , 𝑁𝑣𝑠 ) = 0 then
8: Variable selection to update x𝑖𝑝𝑡 and let x𝑛𝑖𝑝𝑡 = x \ x𝑖𝑝𝑡 (Algorithm 2)

9: Update 𝑝 (x | D), then derive the conditional distribution 𝑝 (x𝑛𝑖𝑝𝑡 | x𝑖𝑝𝑡 ,D)
10: end if
11: Fit a GP to D𝑖𝑝𝑡 := {(x𝑖𝑖𝑝𝑡 , 𝑦𝑖)}𝑡−1𝑖=1

12: Maximize the acquisition function to obtain x𝑡𝑖𝑝𝑡 .
13: Sample x𝑡𝑛𝑖𝑝𝑡 from 𝑝 (x𝑛𝑖𝑝𝑡 | x𝑡𝑖𝑝𝑡 ,D)
14: Evaluate 𝑦𝑡 = 𝑓 (x𝑡 ) + 𝜖𝑡 = 𝑓 ({x𝑡𝑖𝑝𝑡 , x𝑡𝑛𝑖𝑝𝑡 }) + 𝜖𝑡 and update D = D ∪ {(x𝑡 , 𝑦𝑡 )}
15: end for
16: return x𝑚𝑎𝑥

which is equal to x𝑖 with maximal 𝑦𝑖

3 Framework of VS-BO

Given the black-box function 𝑓 (x) : X → R in the domainX , without loss of generality, we assume

X = [0, 1]𝐷 with a large dimension 𝐷 , the goal of high-dimensional BO is to find the maximizer

x∗ = argmaxx∈X 𝑓 (x) efficiently. VS-BO assumes that all variables in x can be divided into important

variables x𝑖𝑝𝑡 and unimportant variables x𝑛𝑖𝑝𝑡 . Our algorithm uses different strategies to select

new queries for variables from two different sets. For variables that are deemed important, we use

vanilla BO (or other BO frameworks such as TuRBO (Eriksson et al., 2019)) to select queries, while

for variables that are considered unimportant, we use a sampling strategy to select queries.

The framework of VS-BO is described in Algorithm 1. For every 𝑁𝑣𝑠 iterations VS-BO will

update x𝑖𝑝𝑡 and x𝑛𝑖𝑝𝑡 (line 8 in Algorithm 1), and for every BO iteration 𝑡 only variables in x𝑖𝑝𝑡 are
used to fit the GP (line 11 in Algorithm 1), and the new query of important variables x𝑡𝑖𝑝𝑡 is obtained
by maximizing the acquisition function (line 12 in Algorithm 1). VS-BO learns a multivariate

Gaussian distribution 𝑝 (x | D) from the existing query-output pairs D (line 5, 9 in Algorithm 1).

Ideally, 𝑝 (x | D) will assign a higher probability to x that has a corresponding higher 𝑦 value. Once

x𝑡𝑖𝑝𝑡 is obtained, the algorithm samples x𝑡𝑛𝑖𝑝𝑡 from the conditional distribution 𝑝 (x𝑛𝑖𝑝𝑡 | x𝑡𝑖𝑝𝑡 ,D)
(line 13 in Algorithm 1), concatenates it with x𝑡𝑖𝑝𝑡 and evaluates 𝑓 ({x𝑡𝑖𝑝𝑡 , x𝑡𝑛𝑖𝑝𝑡 }).

We have two novel contributions that distinguish our method from Spagnol et al. (2019). First,

we introduce a novel variable selection method that fully leverages the information contained

within the fitted GP model. Secondly, we enhance the BO framework by integrating an evolutionary

algorithm to enable a more precise sampling of unimportant variables. The subsequent subsections

provide detailed explanations of these two aspects.

3.1 Variable selection

The variable selection step in VS-BO (Algorithm 2) can be separated into two substeps: (1) calculate

the importance score (𝐼𝑆) of each variable (line 3 in Algorithm 2), and (2) do the stepwise-forward

variable selection (Derksen and Keselman, 1992) according to the importance scores.

For step one, we extended a gradient-based 𝐼𝑆 calculation method, called Grad-IS, based on

Paananen et al. (2019). Intuitively, if the partial derivative of the function 𝑓 with respect to one

variable is large on average, then the variable ought to be important. Since the derivative of 𝑓 is
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Algorithm 2 Variable Selection (line 8 in Algorithm 1)

1: Input: D = {(x𝑖 , 𝑦𝑖)}𝑡𝑖=1, 𝑟𝑠𝑡𝑜𝑝
2: Output: Set of important variables x𝑖𝑝𝑡
3: Fit a GP to D and calculate importance scores 𝐼𝑆 , where 𝐼𝑆 [ 𝑗] is the score of the 𝑗-th variable

4: Sort variables according to their importance scores from the most important to the least,

[x𝑠 (1) , . . . , x𝑠 (𝐷 ) ]
5: for𝑚 = 1, 2, . . . , 𝐷 do
6: Fit a GP to D𝑚 := {(x𝑖

𝑠 (1) :𝑠 (𝑚) , 𝑦
𝑖)}𝑡−1𝑖=1 where x𝑖

𝑠 (1) :𝑠 (𝑚) is the 𝑖-th input with only the first

𝑚 important variables. Let 𝐿𝑚 to be the value of final negative marginal log likelihood

7: if 𝑚 ≥ 3 and 𝐿𝑚−1 − 𝐿𝑚 ≤ max{0, (𝐿𝑚−2 − 𝐿𝑚−1)/𝑟𝑠𝑡𝑜𝑝 } then
8: break
9: end if
10: end for
11: return x𝑖𝑝𝑡 = {x𝑠 (1) , . . . , x𝑠 (𝑚−1) }

unknown, VS-BO instead estimates the expectation of the gradient of the posterior mean from a

fitted GP model, normalized by the posterior standard deviation:

𝐼𝑆 = Ex∼𝑈𝑛𝑖 𝑓 (X )


∇xE𝑝 (𝑓 (x) |x,D)

[
𝑓 (x)

]√︃
𝑉𝑎𝑟𝑝 (𝑓 (x) |x,D)

[
𝑓 (x)

]  = Ex∼𝑈𝑛𝑖𝑓 (X )

[
∇x𝜇 (x | D)
𝜎 (x | D)

]
(4)

≈ 1

𝑁𝑖𝑠

𝑁𝑖𝑠∑︁
𝑘=1

∇x𝜇 (x(𝑘 ) | D)
𝜎 (x(𝑘 ) | D)

x(𝑘 ) 𝑖 .𝑖 .𝑑∼ 𝑈𝑛𝑖 𝑓 (X ) . (5)

Here 𝑁𝑖𝑠 represents the number of Monte Carlo samples for estimating 𝐼𝑆 , and both ∇x𝜇 (· | D)
and 𝜎 (· | D) have explicit forms. Both the Grad-IS and Kullback-Leibler Divergence (KLD)-based

methods in Paananen et al. (2019) are estimations of Ex∼𝑈𝑛𝑖𝑓 (X )

[
∇xE𝑝 (𝑓 (x) |x,D) [𝑓 (x)]√
𝑉𝑎𝑟𝑝 (𝑓 (x) |x,D) [𝑓 (x)]

]
. Since the

KLD method only calculates approximate derivatives around the chosen points inD that are always

unevenly distributed, it is a biased estimator, while our importance score estimation is unbiased.

Each time the algorithmfits the GP to the existing query-output pairs, themarginal log likelihood

(MLL) of GP is maximized by updating parameters Θ and 𝜎0. VS-BO takes negative MLL as the

loss and uses its value as the stopping criteria of the stepwise-forward selection. More specifically,

VS-BO sequentially selects variables according to the importance score, and when a new variable is

added, the algorithm will fit the GP again by only using those chosen variables and records a new

loss (line 6 in Algorithm 2). If the loss converges, then the selection step stops (line 7 in Algorithm 2)

and all those already chosen variables are important variables. Stepwise-forward selection can

adaptively determine the number of variables to include in the model. On the one hand, it tends to

select a small number of variables from x when only a few of them are truly important; On the

other hand, in the worst-case scenario where every variable is equally important, stepwise-forward

selection may end up selecting almost all the variables, effectively reducing VS-BO to vanilla BO.

In our experiments, we implement a modified version called VS-momentum to achieve a more

robust variable selection process. The basic idea is to leverage the queries obtained after each

variable selection step to gain additional insights into the accuracy of the selected variables. We say

that the variable selection at iteration 𝑡 + 𝑁𝑣𝑠 is in an accurate case when max𝑘∈{𝑡+1,...,𝑡+𝑁𝑣𝑠 } 𝑦
𝑘 >

max𝑘∈{1,...,𝑡 } 𝑦
𝑘
, otherwise it is in an inaccurate case. In the accurate case, VS-BO first uses a

recursive feature elimination (RFE) algorithm to remove redundant variables in x𝑖𝑝𝑡 that are

selected at 𝑡 , then it adds new variables into the remaining only if the loss decreases evidently
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(Figure 3a in the appendix). In the inaccurate case, variables selected at 𝑡 will not be considered

at 𝑡 + 𝑁𝑣𝑠 unless they still obtain very high importance scores at 𝑡 + 𝑁𝑣𝑠 (marked by the blue box

in Figure 3b). New variables are added via the stepwise-forward algorithm. Algorithm 3 in the

appendix provides the pseudo-code of VS-momentum.

3.2 Sampling for unimportant variables

To obtain the new value of unimportant variables for each iteration, we propose a method based

on the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). CMA-ES is an evolutionary

algorithm for numerically optimizing a function. For each generation 𝑘 , the algorithm samples new

offsprings from a multivariate Gaussian distributionN
(
𝑚 (𝑘−1) , (𝜎 (𝑘−1) )2

)
and updates𝑚 (𝑘−1)

and

(𝜎 (𝑘−1) )2 based on these new samples and their corresponding function values. Details of this

algorithm can be seen in Hansen (2016).

Using the same approach as CMA-ES, VS-BO uses the initialized data {(x𝑖 , 𝑦𝑖)}𝑁𝑖𝑛𝑖𝑡

𝑖=1
to initialize

the multivariate Gaussian distribution 𝑝 (x | D) (line 5 in Algorithm 1), and for every 𝑁𝑣𝑠 iterations,

it updates the distribution based on new query-output pairs (line 9 in Algorithm 1). Because of the

properties of Gaussian distributions, the conditional distribution 𝑝 (x𝑛𝑖𝑝𝑡 | x𝑖𝑝𝑡 ,D) is easily derived

and is also a multivariate Gaussian distribution. Therefore, x𝑡𝑛𝑖𝑝𝑡 can be sampled from the Gaussian

distribution 𝑝 (x𝑛𝑖𝑝𝑡 | x𝑡𝑖𝑝𝑡 ,D) (line 13 in Algorithm 1) when x𝑡𝑖𝑝𝑡 is obtained.
Compared to BO, it is much faster to update the evolutionary algorithm and obtain new queries,

although these queries are less precise than those from BO. VS-BO takes advantage of the strength

of these two methods by using them on different variables. Important variables are crucial to

the function value, therefore VS-BO uses the framework of BO on them to obtain precise queries.

Unimportant variables do not affect the function value too much so there is no need to spend a

large time budget to search for extremely precise values. Hence, they are determined by CMA-ES

to reduce runtime. In the case when the variable selection step is imprecise, VS-BO resembles the

CMA-ES algorithm rather than random sampling. Hence, incorporating this sampling strategy can

enhance the overall algorithm’s robustness.

4 Computational complexity analysis
From the theoretical perspective, we prove that running BO by only using those important variables

is able to decrease the runtime of both the step of fitting the GP and maximizing the acquisition

function. Specifically, we have the following proposition:

Proposition 4.1. Suppose the dimension of x𝑖𝑝𝑡 is 𝑝 and the Quasi-Newton method (QN) is used for
both fitting the GP and maximizing the acquisition function. Assume we choose the squared exponential
kernel or the Matérn kernel as the kernel function, and upper confidence bound (UCB) or expected
improvement (EI) as the acquisition function. If only variables in x𝑖𝑝𝑡 are used for fitting the GP and
maximizing the acquisition function, then the complexity of each step of QN is O(𝑝2 + 𝑝𝑛2 + 𝑛3) for
fitting the GP and O(𝑝2 + 𝑝𝑛 + 𝑛2) for maximizing the acquisition function, where 𝑛 is the number of
queries that are already obtained.

The proof is in section B of the appendix. Note that the method for fitting the GP andmaximizing

the acquisition function under the framework of BoTorch (Balandat et al., 2020), a python library

for BO, is limited-memory BFGS, which is indeed a QN method.

For vanilla BO, the computational complexity of each step of QN isO(𝐷2 +𝐷𝑛2 +𝑛3) for fitting
the GP and O(𝐷2 + 𝐷𝑛 + 𝑛2) for maximizing the acquisition function. However, in the case of

VS-BO, the large dimension value 𝐷 is replaced with 𝑝 by selecting a smaller subset of variables.

This reduction in dimensionality can significantly decrease the runtime of BO. Empirical evidence

in Figure 4 of the appendix shows that compared to vanilla BO, VS-BO can significantly reduce the

runtime required for both fitting the GP and optimizing the acquisition function.
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We also derive the computational complexity of the variable selection step, resulting in the

following proposition:

Proposition 4.2. Suppose the dimension of x is 𝐷 , the dimension of x𝑖𝑝𝑡 is 𝑝 and the Quasi-
Newton method (QN) is used for fitting the GP. Assuming the squared exponential kernel or
the Matérn kernel, the complexity of computing importance scores 𝐼𝑆 (line 3 of Algorithm 2) is
O

(
𝐷𝑛2 + 𝑛3 + 𝑁𝑖𝑠 (𝐷𝑛 + 𝑛2)

)
, and the complexity of each step of QN for fitting the GP in each itera-

tion of the stepwise forward selection (line 6 of Algorithm 2) isO(𝑝2 +𝑝𝑛2 +𝑛3), where 𝑛 is the number
of queries that are already obtained.

The proof is also in section B of the appendix. The final component of the importance score

computation complexity, 𝑁𝑖𝑠 (𝐷𝑛 + 𝑛2), arises from the Monte Carlo sampling process (Eq. 5).

However, this can be accelerated through parallelism, resulting in a rapid computation of 𝐼𝑆 in

practice. When 𝑝 is small, the stepwise forward selection method is also not time-consuming since

it typically requires only about 𝑝 iterations within each variable selection step. Moreover, we

perform variable selection only once every 𝑁𝑣𝑠 BO iterations (𝑁𝑣𝑠 = 20 in our experiments).

5 Experiments

We compare VS-BO with a wide range of existing methods: vanilla BO, REMBO and its variant

REMBO Interleave, HeSBO and ALEBO, LineBO and SAASBO. The details of implementations

of these methods as well as hyperparameter settings are described in section C of the appendix.

However, it should be noted that LineBO requires multiple evaluations of the black box function

with multiple queries to determine the direction of the one-dimensional line at each iteration,

making the comparison with other BO methods unfair. In our experiments, we evaluated the black

box function with 10 different queries for each iteration of LineBO.

5.1 Synthetic problems

We use the Hartmann6 (𝑑𝑒 = 6), Styblinski-Tang4 (𝑑𝑒 = 4) and Branin (𝑑𝑒 = 2) functions as test

functions. Previous high-dimensional BO studies extended these functions to high dimensions

by adding unrelated variables. However, in our work, we presented a more challenging test

setting by including both unrelated and unimportant (but not completely unrelated) variables. For

example, with the standard Hartmann6 function 𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6(x[1:6]) we first construct a new function

𝐹ℎ𝑚6(x) by adding variables with importance weights [1, 0.1, 0.01], 𝐹ℎ𝑚6(x) = 𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6(x[1:6]) +
0.1𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6(x[7:12]) + 0.01𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6(x[13:18]), and we further extend it to 𝐷 = 50 by adding

unrelated variables. For full details, please refer to section C. The dimension of the effective

subspace of 𝐹ℎ𝑚6 is 18, while the dimension of important variables is only 6. For each existing

embedding-based method, we evaluate both 𝑑 = 4 and 𝑑 = 6.

Figure 1 shows the performance of VS-BO and other BO methods on the three synthetic

functions. In the fixed iteration budget scenario (Figure 1a), the value on average found by VS-BO

after 200 iterations is the best or comparable to the best in all three cases. When the wall clock

time or CPU time budget is fixed (Figures 1b,c), VS-BO can achieve a high function value with high

computational efficiency.

Vanilla BO under the framework of BoTorch can also achieve good performance for the fixed

iteration budget, but it is computationally inefficient. For embedding-based methods, the results

reflect some of their limitations. Firstly, the performance of these methods is more variable than

that of VS-BO; for example, HeSBO with 𝑑 = 6 performs very well in the Styblinski-Tang4 case but

not in the others; Secondly, embedding-based methods are sensitive to the choice of the embedding

dimension 𝑑 : they perform especially poorly when 𝑑 is smaller than the dimension of important

variables (see results of the Hartmann6 case) and may still perform poorly even when 𝑑 is larger

(such as ALEBO with 𝑑 = 6 in the Styblinski-Tang4 case), whereas VS-BO can automatically
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Figure 1: (a,b,c) Performance of BO methods on the Branin (first row), Hartmann6 (second row) and

Styblinski-Tang4 (third row) test functions. For each test function, we perform 20 independent

runs for each method except SAASBO which is very time-consuming, we perform 10 runs

instead. We plot the mean and standard error of the regret (the maximal possible value -

the current maximal value found) versus (a) iterations, (b) wall clock time or (c) CPU time.

(d) The total frequency of being chosen as important for each variable. For Branin, the first

two variables are the most important, for Hartmann6, the first six variables are the most

important, while for Styblinski-Tang4, the first four variables are the most important.

learn the dimension. One advantage of embedding-based methods is that they may have a better

performance than VS-BO within a very limited iteration budget (for example 50 iterations), which

is expected since several data points are required for VS-BO to make accurate variable selection.

Under the fixed iteration budget, SAASBO performs very well except in Styblinski-Tang4 case.

However, SAASBO requires a significantly higher time budget for each iteration than other methods.

For example, SAASBO requires approximately 9 hours to complete 200 iterations on the Branin

case, whereas VS-BO can accomplish 500 iterations on this case in around 20 minutes. Section D

shows results on VS-BO with larger numbers of iterations. Although LineBO evaluates the function

10 times for each iteration, it is still significantly worse than any other methods (Figure 5) except in

the Hartmann6 case.

Figures 1d shows the frequency of being chosen as important for each variable in steps of

variable selection of VS-BO. Since 20 runs of VS-BO are performed on each test function, each

run has 200 iterations, and important variables are re-selected every 20 iterations, the maximum

frequency that each variable can be chosen as important is 200. VS-BO can accurately identify

important variables and simultaneously control false-positive selections. Figure 6 shows the number

of variables chosen as important, i.e. the size of x𝑖𝑝𝑡 , at each variable selection step during the

iterations on each test function. It is evident that only a small number of variables are deemed

important in each step, and this number is close to the number of important variables in reality.

In contrast to the Branin case, the Harmann6 and Styblinski-Tang4 cases exhibit a different

pattern, where the total frequency of selection for secondary important variables (variables 7-12 in
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the Harmann6 case and variables 5-8 in the Styblinski-Tang4 case) is not significantly higher than

that of unrelated variables. We speculate that this may be due to the small importance weights

of these secondary important variables, which have a negligible impact on the function value. To

test this hypothesis, we modify the importance weights of the test functions from [1, 0.1, 0.01] to
[1, 0.5, 0.1] and [1, 0.9, 0.8], and evaluate VS-BO on these new test functions. Figure 7 shows that

when the importance weights are increased to [1, 0.5, 0.1], VS-BO successfully selects both the

most important variables and the secondary important variables, and Figure 8 shows that when the

importance weights are increased to [1, 0.9, 0.8], VS-BO successfully selects all the related variables.

These results provide further evidence of the robustness of the variable selection module in VS-BO.

We conduct a study to assess the robustness of two hyper-parameters in VS-BO: 𝑟𝑠𝑡𝑜𝑝 and 𝑁𝑖𝑠 .

The former controls the point at which variable selection stops (line 7 in Algorithm 2), while the

latter represents the number of Monte Carlo samples used to estimate the importance score 𝐼𝑆

(Equation (5)). We test different values of 𝑟𝑠𝑡𝑜𝑝 (5, 10, 50, and 100) and 𝑁𝑖𝑠 (1,000, 10,000, 50,000,

and 100,000) on both the Branin and Hartmann6 cases, and the results in Figure 10 indicate that

both hyper-parameters are highly robust across different values.

Spagnol et al. (2019) proposed several simple heuristics for sampling unimportant variables,

and we compare our sampling strategy, which involves sampling from the CMA-ES posterior, with

their heuristics by creating a variant of VS-BO called VS-BO-mix. All components of VS-BO-mix

remained the same as those in VS-BO, except for the sampling strategy, which was replaced with

the best heuristic from Spagnol et al. (2019), called the mix strategy. This mix strategy involves

sampling values of unimportant variables from a uniform distribution with probability 0.5 and

using the previous query’s values that have the highest function value with probability 0.5. We

compare the performance of VS-BO and VS-BO-mix on three synthetic functions, and the results,

depicted in Figure 11, demonstrate that our sampling strategy outperforms the mix strategy.

To investigate the impact of the momentum mechanism on the performance of VS-BO, we

compare it with a version of VS-BO without momentum, denoted as VS-BO-nomom. As shown

in Figure 12, although the regret curves of VS-BO-nomom are highly similar to those of VS-BO

(Figure 12a), VS-BO-nomom appears to be less effective in selecting secondary important variables,

particularly in the Branin case (Figure 12b). We also replace the sampling strategy of VS-BO-

nomom with the mix strategy (denoted as VS-BO-nomom-mix) and compare it with both VS-BO

and VS-BO-nomom. The performance of VS-BO-nomom-mix is inferior to that of both VS-BO and

VS-BO-nomom, which further indicates that our sampling strategy outperforms the mix strategy.

5.2 Real-world problems

We compare VS-BO with other methods on two real-world problems. First, VS-BO is tested on

the rover trajectory optimization problem presented in Wang et al. (2017), a problem with a 60-

dimensional input domain. Second, it is tested on the vehicle design problem MOPTA08 (Jones,

2008), a problem with 124 dimensions. On these two problems, we evaluate both 𝑑 = 6 and 𝑑 = 10

for each embedding-based method, except we omit ALEBO with 𝑑 = 10 since it is very time

consuming. The detailed settings of these two problems are described in section C of the appendix.

Figures 2a,b show the performance of VS-BO and other methods on these two problems. When

the iteration budget is fixed (Figure 2a), SAASBO has the best performance, while Figure 2b shows

that VS-BO is more computationally efficient than the other methods. Figure 2c shows the frequency

of being chosen as important for each variable by VS-BO. As there is no ground truth of important

variables in these real-world cases, we conduct a sampling experiment to test whether those more

frequently-chosen variables are more important. Specifically, we generate a set of input points,

for each point, we randomly sample the values of the first 5 variables from the input domain that

have been chosen most frequently by our variable selection module and keep the values of other

variables fixed with the values in the best query, the query that has the highest function value. We

then calculate the function values for these inputs. We repeat this process for the first five variables
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Figure 2: (a,b) Performance of BO methods on the rover trajectory (first row) and MOPTA08 (second

row) problem. For each test function, we do 15 independent runs for each method except

SAASBO which is very time consuming, we do 10 runs instead. We plot the mean and

standard error of the best maximum value found by (a) iterations and (b) wall clock time. (c)

The total frequency of being chosen as important for each variable. (d) The distribution of

function values when sampling the first 5 variables that have been chosen most frequently

(important) or the first 5 variables that have been chosen least frequently (unimportant) with

all the other variables fixed.

that have been chosen least frequently, and evaluate the functions accordingly. Figure 2d shows

that the variance of function values from the first set of input points is significantly higher than

that from the second set, particularly on the MOPTA08 problem. Moreover, the mean of function

values from the second set is significantly higher than that from the first set, which is attributed to

the fact that the input points in the second set have their more frequently chosen variables fixed to

the values obtained from the best query, which are approximately optimal values. These findings

suggest that frequently selected variables have a more significant effect on the function value.

6 Conclusion

We present a novel approach, named VS-BO, for high-dimensional BO. Our method is based on the

assumption that input variables can be partitioned into two categories: important and unimportant.

We design different strategies to assign values to the identified important and unimportant variables,

which is a crucial step toward enhancing the computational efficiency of VS-BO. Our experiments

show the good performance of VS-BO, making it a valuable tool for optimizing high-dimensional

black-box functions.

We also find some limitations of our method. First, when the dimension of the input increases, it

becomes harder to do variable selection accurately. Therefore, embedding-based methods might still

be the first choice when the input of a function has thousands of dimensions. It might be interesting

to develop new algorithms that can do variable selection robustly even when the dimension is

extremely large
1
. Further, Grad-IS might be invalid when variables are discrete or categorical,

therefore new methods for calculating the importance score of these kinds of variables are needed.

These are several directions for future improvements of VS-BO.

1
After the preprint of our work (Shen and Kingsford, 2021) was released, Song et al. (2022) published a follow-up

work for high-dimensional BO via variable selection; they use Monto Carlo tree search to select variables. Papenmeier

et al. (2022) also published a high-dimensional BO that is related. We do some comparisons in section F.
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7 Broader Impact Statement
We present a novel optimization approach that can be applied to black-box functions in a variety of

fields, such as machine learning, computational chemistry, and bioinformatics. By speeding up the

optimization process, our approach has the potential to accelerate scientific research, which will

provide positive benefits to society.
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A Variable selection with momentum mechanism

This section presents the VS-momentum mechanism in Figure 3, and the pseudo-code for this

mechanism is provided in Algorithm 3.

Figure 3: Momentum mechanism in VS-BO. (a) Accurate case, RFE is first used to remove redundant

variables, and then new variables are added. (b) Inaccurate case, most variables are removed

except those that are considered very important in both variable selection steps (blue box).

New variables are then added.

Algorithm 3 Variable Selection (VS) with Momentum

1: Input: Iteration index 𝑡 ,D = {(x𝑖 , 𝑦𝑖)}𝑡𝑖=1, 𝑁𝑖𝑛𝑖𝑡 , 𝑁𝑣𝑠 , x̂𝑖𝑝𝑡 which is the set of important variables

chosen at iteration 𝑡 − 𝑁𝑣𝑠

2: Output: x𝑖𝑝𝑡 which is the set of important variables chosen at this iteration

3: if 𝑡 = 𝑁𝑖𝑛𝑖𝑡 + 𝑁𝑣𝑠 or x̂𝑖𝑝𝑡 = x then
4: return Algorithm 2

5: else if max𝑘∈{𝑡−𝑁𝑣𝑠+1,𝑡−𝑁𝑣𝑠+2,...,𝑡 } 𝑦
𝑘 ≤ max𝑘∈{1,...,𝑡−𝑁𝑣𝑠 } 𝑦

𝑘 then ⊲ Inaccurate case

6: return Algorithm 4

7: else ⊲ Accurate case

8: return Algorithm 5

9: end if
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Algorithm 4Momentum in the inaccurate case

1: Input: D = {(x𝑖 , 𝑦𝑖)}𝑡𝑖=1, 𝑁𝑣𝑠 , x̂𝑖𝑝𝑡 which is the set of important variables chosen at iteration

𝑡 − 𝑁𝑣𝑠 , 𝑟𝑠𝑡𝑜𝑝
2: Output: x𝑖𝑝𝑡 which is the set of important variables chosen at this iteration

3: Fit a GP to D and calculate important scores of variables 𝐼𝑆 where 𝐼𝑆 [ 𝑗] is the important score

of the j-th variable

4: Sort variables according to their important scores from the most important to the least,

[x𝑠 (1) , . . . , x𝑠 (𝐷 ) ]
5: for 𝑛 = 1, . . . , 𝐷 do
6: if x𝑠 (𝑛) ∉ x̂𝑖𝑝𝑡 then
7: break
8: end if
9: end for
10: for𝑚 = 𝑛, 𝑛 + 1, . . . , 𝐷 do
11: Fit a GP to D𝑚 := {(x𝑖

𝑠 (1) :𝑠 (𝑚) , 𝑦
𝑖)}𝑡−1𝑖=1 where x𝑖

𝑠 (1) :𝑠 (𝑚) is the 𝑖-th input with only the first

𝑚 important variables. Let 𝐿𝑚 to be the value of final negative marginal log likelihood

12: if 𝑚 − 𝑛 ≥ 2 and 𝐿𝑚−1 − 𝐿𝑚 ≤ max{0, (𝐿𝑚−2 − 𝐿𝑚−1)/𝑟𝑠𝑡𝑜𝑝 } then
13: break
14: end if
15: end for
16: return x𝑖𝑝𝑡 = {x𝑠 (1) , . . . , x𝑠 (𝑚−1) }
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Algorithm 5Momentum in accurate case

1: Input: D = {(x𝑖 , 𝑦𝑖)}𝑡𝑖=1, 𝑁𝑣𝑠 , x̂𝑖𝑝𝑡 which is the set of important variables chosen at iteration

𝑡 − 𝑁𝑣𝑠 . Let the cardinality of x̂𝑖𝑝𝑡 be𝑤 ,𝑤 =
��x̂𝑖𝑝𝑡 ��, 𝑟𝑠𝑡𝑜𝑝

2: Output: x𝑖𝑝𝑡 which is the set of important variables chosen at this iteration

3: Fit a GP to D and calculate important scores of variables 𝐼𝑆 where 𝐼𝑆 [ 𝑗] is the important score

of the j-th variable

4: Sort variables according to 𝐼𝑆 , [x𝑠 (1) , . . . , x𝑠 (𝐷 ) ], from the most important to the least

5: Fit a GP by using variables in x̂𝑖𝑝𝑡 , i.e. fit a GP to {(x̂𝑖𝑖𝑝𝑡 , 𝑦𝑖)}𝑡𝑖=1, and calculate important scores

of these variables 𝐼𝑆 . Let 𝐿̂𝑤 be the value of final negative marginal log likelihood

6: Sort variables in x̂𝑖𝑝𝑡 according to 𝐼𝑆 , [x𝑠′ (1) , . . . , x𝑠′ (𝑤 ) ], from the most important to the least.

7: for𝑚 = 𝑤 − 1,𝑤 − 2, . . . , 0 do ⊲ Recursive feature elimination

8: if 𝑚 = 0 then
9: Set x𝑖𝑝𝑡 = {x𝑠′ (1) }
10: break
11: end if
12: Fit a GP by only using the first𝑚 important variables according to 𝐼𝑆 . Let 𝐿̂𝑚 to be the

value of final negative marginal log likelihood

13: if 𝐿̂𝑚 > 𝐿̂𝑚+1 then
14: Set x𝑖𝑝𝑡 = {x𝑠′ (1) , . . . , x𝑠′ (𝑚+1) }
15: Set 𝐿0 = 𝐿̂𝑚+1
16: break
17: end if
18: end for
19: for𝑚 = 1, 2, . . . , 𝐷 do ⊲ Stepwise forward selection

20: if x𝑠 (𝑚) ∈ x𝑖𝑝𝑡 then
21: Set 𝐿𝑚 = 𝐿𝑚−1, 𝐿𝑚−1 = 𝐿𝑚−2
22: continue
23: end if
24: Fit a GP by using variables in x𝑖𝑝𝑡 ∪ {x𝑠 (𝑚) }. Let 𝐿𝑚 to be the value of final negative

marginal log likelihood

25: if 𝑚 ≥ 3 and 𝐿𝑚−1 − 𝐿𝑚 ≤ max{0, (𝐿𝑚−2 − 𝐿𝑚−1)/𝑟𝑠𝑡𝑜𝑝 } then
26: break
27: end if
28: x𝑖𝑝𝑡 = x𝑖𝑝𝑡 ∪ {x𝑠 (𝑚) }
29: end for
30: return x𝑖𝑝𝑡

18



B Proof of Propositions related to computational complexity analysis

B.1 Proof of Proposition 4.1

Proof of Proposition 4.1. Given query-output pairs D = {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1, the marginal log likelihood

(MLL) that needs to be maximized at the step of fitting a GP has the following explicit form:

log𝑝 (Θ = {𝜌2
1:𝐷 , 𝛼

2

0
}, 𝜎0 | D) = −1

2

y⊤𝑀−1y − 1

2

log|𝑀 | − 𝑛 log 2𝜋

2

,

where y = [𝑦1, . . . 𝑦𝑛]⊤ is an 𝑛-dimensional vector,𝑀 =

(
𝐾 (x1:𝑛,Θ) + 𝜎2

0
I
)
, 𝛼2

0
is the signal ampli-

tude of the kernel function, and 𝜌2
1:𝐷

are the inverse lengthscales of the kernel function. When

the quasi-Newton method is used for maximizing MLL, the gradient should be calculated for each

iteration:

▽Θ,𝜎0 log𝑝 (Θ, 𝜎0 | D) = −1
2

y⊤𝑀−1 (
▽Θ,𝜎0𝑀

)
𝑀−1y − 1

2

tr
(
𝑀−1 (

▽Θ,𝜎0𝑀
) )
.

When only variables in x𝑖𝑝𝑡 are used, we define the distance between two queries x𝑖 and x𝑗 as:

𝑑 (x𝑖 , x𝑗 ) =
√︄ ∑︁

𝑚:𝑚∈x𝑖𝑝𝑡
𝜌2𝑚 (x𝑖𝑚 − x𝑗𝑚)2,

and all the other inverse squared length scales corresponding to unimportant variables are fixed

to 0. Commonly chosen kernel functions are actually functions of the distance defined above, for

example the squared exponential (SE) kernel is as the following:

𝑘𝑆𝐸 (x𝑖 , x𝑗 ,Θ) = 𝛼20 exp
(
−1
2

𝑑2(x𝑖 , x𝑗 )
)
,

and the Matérn-5/2 kernel is as the following:

𝑘𝑀𝑡 (x𝑖 , x𝑗 ,Θ) = 𝛼20
(
1 +

√
5𝑑 (x𝑖 , x𝑗 ) + 5

3

𝑑2(x𝑖 , x𝑗 )
)
exp

(
−
√
5𝑑 (x𝑖 , x𝑗 )

)
.

Since the cardinality of x𝑖𝑝𝑡 is 𝑝 , the cardinality of parameters in the kernel function that are not

fixed to 0 is 𝑝 +1, hence the complexity of calculating the gradient of the distance isO(𝑝). Therefore
whatever using SE kernel or Matérn-5/2 kernel, the complexity of calculating ▽Θ𝑘 (x𝑖 , x𝑗 ,Θ) is
O(𝑝).

Since𝑀 is a 𝑛 × 𝑛 matrix and each entry𝑀𝑖 𝑗 equals to 𝑘 (x𝑖 , x𝑗 ,Θ) + 𝜎201(𝑖 = 𝑗), the complexity

of calculating ▽Θ,𝜎0𝑀 is O(𝑝𝑛2). The complexity of calculating the inverse matrix 𝑀−1
is O(𝑛3)

in general, and the following matrix multiplication and trace calculation need O(𝑝𝑛2), therefore
the complexity of calculating the gradient of MLL is O(𝑝𝑛2 + 𝑛3). Once the gradient is obtained,
each quasi-Newton step needs additional O(𝑝2) time, therefore the complexity of one step of

quasi-Newton method when fitting a GP is O(𝑝2 + 𝑝𝑛2 + 𝑛3).
As described in section 2, the acquisition function is a function that depends on the posterior

mean 𝜇 and the posterior standard deviation 𝜎 , hence the gradients of 𝜇 and 𝜎 should be calculated

when the gradient of the acquisition function is needed.

When only variables in x𝑖𝑝𝑡 are used, the gradient of 𝜇 with respect to x𝑖𝑝𝑡 has the following
form:

▽x𝑖𝑝𝑡 𝜇 (x𝑖𝑝𝑡 | D) =
(
▽x𝑖𝑝𝑡k(x𝑖𝑝𝑡 , x1

:𝑛
𝑖𝑝𝑡 )

) (
𝐾 (x1:𝑛𝑖𝑝𝑡 ,Θ) + 𝜎20 I

)−1
y.
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Here

(
𝐾 (x1:𝑛𝑖𝑝𝑡 ,Θ) + 𝜎20 I

)−1
y is fixed so that its value can be calculated in advance and stored as

a 𝑛-dimensional vector. k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 ) is a 𝑛-dimensional vector of which each element is a kernel

value between x𝑖𝑝𝑡 and x𝑖𝑖𝑝𝑡 , hence the complexity of calculating the gradient of each element in

k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 ) is O(𝑝). Therefore, the complexity is O(𝑝𝑛) to calculate ▽x𝑖𝑝𝑡k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 ) and O(𝑝𝑛)
for additional matrix manipulation, hence the total complexity for calculating ▽x𝑖𝑝𝑡 𝜇 (x𝑖𝑝𝑡 | D) is
O(𝑝𝑛).

The gradient of 𝜎 has the following form:

▽x𝑖𝑝𝑡𝜎 (x𝑖𝑝𝑡 | D) = ▽x𝑖𝑝𝑡

√︃
𝑘 (x𝑖𝑝𝑡 , x𝑖𝑝𝑡 ,Θ) − k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 ) [𝐾 (x1

:𝑛
𝑖𝑝𝑡
,Θ) + 𝜎2

0
I]−1k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 )⊤

= −

(
▽x𝑖𝑝𝑡k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 )

) (
𝐾 (x1:𝑛𝑖𝑝𝑡 ,Θ) + 𝜎20 I

)−1√︃
𝑘 (x𝑖𝑝𝑡 , x𝑖𝑝𝑡 ,Θ) − k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 ) [𝐾 (x1

:𝑛
𝑖𝑝𝑡
,Θ) + 𝜎2

0
I]−1k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 )⊤

.

Once ▽x𝑖𝑝𝑡k(x𝑖𝑝𝑡 , x1:𝑛𝑖𝑝𝑡 ) is calculated,O(𝑝𝑛+𝑛2) is needed for additional matrix manipulation, hence

the total complexity for calculating ▽x𝑖𝑝𝑡𝜎 (x𝑖𝑝𝑡 | D) is O(𝑝𝑛 + 𝑛2).
For commonly used acquisition functions such as upper confidence bound (UCB) (Auer, 2002):

𝑈𝐶𝐵(x𝑖𝑝𝑡 | D) = 𝜇 (x𝑖𝑝𝑡 | D) +
√︁
𝛽𝑛𝜎 (x𝑖𝑝𝑡 | D),

and expected improvement (EI) (Močkus, 1975):

𝐸𝐼 (x𝑖𝑝𝑡 | D) =
(
𝜇 (x𝑖𝑝𝑡 | D) − 𝑦∗𝑛

)
Φ

(
𝜇 (x𝑖𝑝𝑡 | D) − 𝑦∗𝑛
𝜎 (x𝑖𝑝𝑡 | D)

)
+ 𝜎 (x𝑖𝑝𝑡 | D)𝜑

(
𝜇 (x𝑖𝑝𝑡 | D) − 𝑦∗𝑛
𝜎 (x𝑖𝑝𝑡 | D)

)
,

where 𝑦∗𝑛 = max𝑖≤𝑛 𝑦𝑖 , Φ(·) is the cumulative distribution function of the standard normal distribu-

tion, and 𝜑 (·) is the probability density function, once the gradients of 𝜇 and 𝜎 are derived, only

additional O(𝑝) time is needed for vector calculation. Hence the total complexity of calculating

the gradient of the acquisition function is O(𝑝𝑛 + 𝑛2). Again, once the gradient is obtained, each
quasi-Newton step needs additional O(𝑝2), therefore the complexity of one step of quasi-Newton

method for maximising the acquisition function is O(𝑝2 + 𝑝𝑛 + 𝑛2).
□

B.2 Proof of Proposition 4.2

Proof of Proposition 4.2. We first prove the complexity of computing the importance scores 𝐼𝑆 . Since

we use the following form to compute 𝐼𝑆 :

𝐼𝑆 ≈ 1

𝑁𝑖𝑠

𝑁𝑖𝑠∑︁
𝑘=1

∇x𝜇 (x(𝑘 ) | D)
𝜎 (x(𝑘 ) | D)

x(𝑘 ) 𝑖 .𝑖 .𝑑∼ 𝑈𝑛𝑖 𝑓 (X ),

for each sampled point x(𝑘 )
, we need to compute ∇x𝜇 (x(𝑘 ) | D) and 𝜎 (x(𝑘 ) | D). The proof is

similar to the proof of Proposition 4.1, except that now we need to use all 𝐷 dimensions of x rather

than the dimensions of x𝑖𝑝𝑡 . ∇x𝜇 (x(𝑘 ) | D) has the following form:

▽x𝜇 (x(𝑘 ) | D) =
(
▽x(𝑘 )k(x(𝑘 ) , x1:𝑛)

) (
𝐾 (x1:𝑛,Θ) + 𝜎2

0
I
)−1

y.

Here

(
𝐾 (x1:𝑛,Θ) + 𝜎2

0
I
)−1

y is a constant for different samples x(𝑘 ) , we can therefore useO(𝐷𝑛2+𝑛3)
to compute it in advance (O(𝐷𝑛2) for computing𝐾 (x1:𝑛,Θ)+𝜎2

0
I andO(𝑛3) for thematrix inversion).
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The complexity of calculating the gradient of each element in k(x(𝑘 ) , x1:𝑛) is O(𝐷), hence the

complexity is O(𝐷𝑛) to calculate ▽x(𝑘 )k(x(𝑘 ) , x1:𝑛) and the additional O(𝐷𝑛) is needed for the

matrix manipulation to compute ▽x𝜇 (x(𝑘 ) | D). Therefore, once
(
𝐾 (x1:𝑛,Θ) + 𝜎2

0
I
)−1

y has been

computed, the total complexity for computing ▽x𝜇 (x(𝑘 ) | D) for each x(𝑘 ) is O(𝐷𝑛).
𝜎 (x(𝑘 ) | D) has the following form:

𝜎 (x(𝑘 ) | D) = 𝑘 (x(𝑘 ) , x(𝑘 ) ,Θ) − k(x(𝑘 ) , x1:𝑛) [𝐾 (x1:𝑛,Θ) + 𝜎2
0
I]−1k(x(𝑘 ) , x1:𝑛)⊤.

Since [𝐾 (x1:𝑛,Θ) + 𝜎2
0
I]−1 is already computed, O(𝐷𝑛 + 𝑛2) is needed for additional matrix manip-

ulation, hence the total complexity for calculating 𝜎 (x(𝑘 ) | D) for each x(𝑘 ) is O(𝐷𝑛 + 𝑛2).
Since 𝑁𝑖𝑠 points will be sampled, the total complexity for computing 𝐼𝑆 isO(𝐷𝑛2+𝑛3+𝑁𝑖𝑠 (𝐷𝑛+

𝑛2)).
As we proved in Proposition 4.1, if only𝑚 sub-dimensions of x are used for fitting the GP (line

6 of Algorithm 2), the complexity of each step of the Quasi-Newton method is O(𝑚2 +𝑚𝑛2 + 𝑛3).
Since we assume the dimension of x𝑖𝑝𝑡 is 𝑝 , we have𝑚 = O(𝑝) in each iteration of the stepwise

forward selection. Therefore, the complexity of each step of QN for fitting the GP in each iteration

of the stepwise forward selection is O(𝑝2 + 𝑝𝑛2 + 𝑛3), and we will only do around 𝑝 iterations of

the stepwise forward selection within one variable selection step.

□
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Figure 4: The wall clock time or CPU time comparison between VS-BO and vanilla BO for each

iteration. The Branin test function with 𝑑𝑒 = [2, 2, 2] and 𝐷 = 50 is run here. (a) Wall clock

time comparison at the GP fitting step. (b) CPU time comparison at the GP fitting step. (c)

Wall clock time comparison at the acquisition function optimization step. (d) CPU time

comparison at the acquisition function optimization step.

C Detailed experimental settings and extended discussion of experimental results

We use the framework of BoTorch to implement VS-BO.We compare VS-BO to the following existing

BO methods: vanilla BO, which is implemented by the standard BoTorch framework
2
; REMBO

and its variant REMBO Interleave (Wang et al., 2016), of which the implementations are based

on Metzen (2016)
3
; HeSBO (Nayebi et al., 2019) which has already been implemented in Adaptive

Experimentation Platform (Ax)
4
; ALEBO

5
(Letham et al., 2020); DescentLineBO

6
(Kirschner et al.,

2019); and SAASBO
7
(Eriksson and Jankowiak, 2021). At the time when we write this manuscript,

the source codes of the approach in Spagnol et al. (2019) have not been released, so we cannot

compare VS-BO with it. Both VS-BO and vanilla BO use Matérn 5/2 as the kernel function and

expected improvement as the acquisition function, and use limited-memory BFGS (L-BFGS) (Liu

and Nocedal, 1989) to fit GP and optimize the acquisition function. The number of initialized

samples 𝑁𝑖𝑛𝑖𝑡 is set to 5 for all methods, and 𝑁𝑣𝑠 in VS-BO is set to 20, 𝑟𝑠𝑡𝑜𝑝 is set to 10, and 𝑁𝑖𝑠 is

set to 10000 for all experiments. The number of the interleaved cycle for REMBO Interleave is set

to 4. Since our algorithm aims to maximize the black-box function, all the test functions that have

minimum points are converted to the corresponding negative forms. As described in section 5, in

order to decide the direction of the one-dimensional line, for each iteration DescentLineBO needs to

2
https://botorch.org

3
https://github.com/jmetzen/bayesian_optimization

4
https://github.com/facebook/Ax/tree/master/ax/modelbridge/strategies

5
https://github.com/facebookresearch/alebo

6
https://github.com/kirschnj/LineBO

7
https://github.com/martinjankowiak/saasbo
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evaluate the black box function multiple times with multiple queries (Algorithm 4 in Kirschner et al.

(2019)), making the comparison between this method and other BO methods unfair. Because of this

property, LineBO is actually not suitable for optimizing a function that is expensive to evaluate. In

our experiments, DescentLineBO will evaluate the black box function with 10 different queries for

each iteration while all the other methods evaluate once.

In synthetic experiments, as described in section 5.1, for each test function we add some

unimportant variables as well as unrelated variables to make it high-dimensional. The standard

Branin function 𝑓𝐵𝑟𝑎𝑛𝑖𝑛 has two dimensions with the input domain X𝐵𝑟𝑎𝑛𝑖𝑛 = [−5, 10] × [0, 10], and
we construct a new Branin function 𝐹𝑏𝑟𝑎𝑛𝑖𝑛 as the following:

𝐹𝑏𝑟𝑎𝑛𝑖𝑛 (x) = 𝑓𝐵𝑟𝑎𝑛𝑖𝑛 (x[1:2]) + 0.1𝑓𝐵𝑟𝑎𝑛𝑖𝑛 (x[3:4]) + 0.01𝑓𝐵𝑟𝑎𝑛𝑖𝑛 (x[5:6]),

x ∈ ©­«
3⊗

𝑖=1

X𝐵𝑟𝑎𝑛𝑖𝑛
ª®¬

44⊗
𝑖=1

[0, 1]

where ⊗ represents the direct product. We use 𝑑𝑒 = [2, 2, 2] to represent the dimension of the

effective subspace of 𝐹𝑏𝑟𝑎𝑛𝑖𝑛 , the total effective dimension is 6, however, the number of important

variables is only 2.

Likewise, for the standard Hartmann6 function 𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6 that has six dimensions with the

input domain [0, 1]6, we construct 𝐹ℎ𝑚6 as:

𝐹ℎ𝑚6(x) = 𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6(x[1:6]) + 0.1𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6(x[7:12]) + 0.01𝑓𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛6(x[13:18]) x ∈ [0, 1]50

and use 𝑑𝑒 = [6, 6, 6] to represent the dimension of the effective subspace. For the Styblinski-Tang4

function 𝑓𝑆𝑇 4 that has four dimensions with the input domain [−5, 5]4, we construct 𝐹𝑆𝑇 4 as:

𝐹𝑆𝑇 4(x) = 𝑓𝑆𝑇 4(x[1:4]) + 0.1𝑓𝑆𝑇 4(x[5:8]) + 0.01𝑓𝑆𝑇 4(x[9:12]) x ∈ [−5, 5]50

and use 𝑑𝑒 = [4, 4, 4] to represent the dimension of the effective subspace. All synthetic experiments

are run on the same Linux cluster that has 40 3.0 GHz 10-Core Intel Xeon E5-2690 v2 CPUs.

Figure 5: Performance of LineBO on the Branin (a) and Styblinski-Tang4 (b) function. We do 20

independent runs. We plot the mean and standard error of the regret versus iterations.

Compared to Figure 1, we can see that the performance of LineBO is significantly worse

than any other method on these two cases.

For real-world problems, the rover trajectory problem is a high-dimensional optimization

problem with input domain [0, 1]60. The problem setting in our experiment is the same as that in

Wang et al. (2017).
8
MOPTA08 is another high-dimensional optimization problemwith input domain

8
The source code of this problem can be found in https://github.com/zi-w/Ensemble-Bayesian-Optimization.
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Figure 6: Number of variables chosen as important, i.e. |x𝑖𝑝𝑡 |, versus iterations on the Branin (a),

Hartmann6 (b) and Styblinski-Tang4 (c) cases. We do 20 independent runs. We plot the mean

and standard error of |x𝑖𝑝𝑡 | for each variable selection step along the iterations.

Figure 7: The total frequency of being chosen as important for each variable on the Branin (a), Hart-

mann6 (b) and Styblinski-Tang4 (c) cases with importance weights [1, 0.5, 0.1].

Figure 8: The total frequency of being chosen as important for each variable on the Branin (a), Hart-

mann6 (b) and Styblinski-Tang4 (c) cases with importance weights [1, 0.9, 0.8].

[0, 1]124. It has one objective function 𝑓𝑚𝑜𝑝𝑡𝑎 (x) that needs to be minimized and 68 constraints

𝑐𝑖 (x), 𝑖 ∈ {1, 2, . . . 68}. Similar to Eriksson and Jankowiak (2021), we convert these constraints to

soft penalties and convert the minimization problem to the maximization problem by adding a

minus at the front of the objective function, i.e., we construct the following new function 𝐹𝑚𝑜𝑝𝑡𝑎
9
:

𝐹𝑚𝑜𝑝𝑡𝑎 (x) = − ©­«𝑓𝑚𝑜𝑝𝑡𝑎 (x) + 10

68∑︁
𝑖=1

max(0, 𝑐𝑖 (x))ª®¬ .
All experiments for these two real-world problems are run on the same Linux cluster that has 80

2.40 GHz 20-Core Intel Xeon 6148 CPUs.

9
The Fortran codes of MOPTA08 can be found in https://www.miguelanjos.com/jones-benchmark and we further use

codes in https://gist.github.com/denis-bz/c951e3e59fb4d70fd1a52c41c3675187 to wrap it in python.
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As described in section 5.2, we design a sampling experiment to test the accuracy of the variable

selection in real world problems. The indices of the first 5 variables that have been chosen most

frequently are {1, 2, 3, 59, 60} in the rover trajectory problem and {30, 37, 42, 79, 112} in MOPTA08,

and the indices of the first 5 variables that have been chosen least frequently are {15, 18, 29, 38, 51}
and {59, 77, 91, 105, 114} respectively (Figure 2c). The total number of input points in each set is

800000. Figure 2d shows the empirical distributions of function values from two sets of inputs. The

significant difference between the two distributions in each panel tells us that changing the values

of variables that have been chosen more frequently can alter the function value more significantly,

indicating that these variables are more important.

D VS-BO with larger numbers of iterations

Figure 9 shows the regret curves for VS-BO over an extended range of iterations, up to 1000. The

wall clock times required for 1000 iterations on the Branin, Hartmann6, and Styblinski-Tang4 test

cases are approximately 80 minutes, 90 minutes, and 180 minutes, respectively. We notice that

there’s a large variation in the wall clock time for extended iterations. For instance, the Hartmann6

test case exhibits times ranging from 50 minutes to 120 minutes.

Figure 9: Performance of VS-BO on Branin (left), Hartmann6 (middle) and Styblinski-Tang4 (right)

test cases with larger numbers of iterations. For each case, we do 5 independent runs for

each method. We plot the mean and standard error of the regret versus iterations.

E Sensitive analysis of hyper-parameters of VS-BO

We conduct a study to assess the robustness of two hyper-parameters in VS-BO: 𝑟𝑠𝑡𝑜𝑝 and 𝑁𝑖𝑠 .

The former controls the point at which variable selection stops (line 7 in Algorithm 2), while the

latter represents the number of Monte Carlo samples used to estimate the importance score 𝐼𝑆 (as

shown in Equation (5)). We run VS-BO with different 𝑟𝑠𝑡𝑜𝑝 values, 5, 10, 50, 100 on the Branin case

(Figures 10a left) and the Hartmann6 case (Figures 10a right) and compare their performance. Results

show that 𝑟𝑠𝑡𝑜𝑝 is highly robust across different values. Likewise, we run VS-BO with different 𝑁𝑖𝑠

values, 1000, 10000, 50000, 100000 on the Branin case (Figures 10b left) and the Hartmann6 case

(Figures 10b right). Results show that 𝑁𝑖𝑠 is also highly robust across different values. We choose

𝑟𝑠𝑡𝑜𝑝 equal to 10 and choose 𝑁𝑖𝑠 equal to 10000 for all the experiments.

F Comparisons of VS-BO, MCTS-VS, and BAxUS

After the preprint of our work (Shen and Kingsford, 2021) was released, Song et al. (2022) published

a follow-up work for high-dimensional BO via variable selection; they use Monto Carlo tree search

to select variables. Their method is called MCTS-VS. Papenmeier et al. (2022) also proposed a new

high-dimensional BO method called BAxUS. Though BAxUS is also an embedding-based algorithm,

it differentiates itself from prior embedding-based techniques. Specifically, BAxUS progressively

increases the embedding dimension 𝑑 throughout the BO process, eliminating the necessity to
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Figure 10: Performance of VS-BO with (a) different values of 𝑟𝑠𝑡𝑜𝑝 (5, 10, 50, 100) in both the Branin

and Hartmann6 cases (left and right plots, respectively), and (b) different values of 𝑁𝑖𝑠

(1,000, 10,000, 50,000, and 100,000) in the same two cases (left and right plots, respectively).

Figure 11: Performance of VS-BO and VS-BO-mix on Branin (left), Hartmann6 (middle) and Styblinski-

Tang4 (right) test cases. For each case, we do 20 independent runs for each method. We

plot the mean and standard error of the regret versus iterations.

predetermine the value of 𝑑 . Furthermore, to enhance performance, BAxUS is integrated with the

local search BO algorithm TuRBO (Eriksson et al., 2019).

We compare VS-BO against MCTS-VS and BAxUS in our three synthetic cases, and Figure 13

shows the results. Similar to other embedding-based methods, BAxUS outperforms both VS-BO

and MCTS-VS within a very limited iteration budget, such as the initial 50 iterations. However,

BAxUS have more variable performance, in some cases such as Hartmann6 it performs clearly better

than other methods, while in other cases such as Styblinski-Tang4 it performs significantly worse.

Compared to VS-BO, MCTS-VS seems to need more data to learn an accurate search tree. However,

we notice that the wall clock time per iteration in MCTS-VS is substantially shorter than that of VS-

BO and BAxUS. As a result, MCTS-VS is preferable for scenarios with expansive iteration budgets

(e.g., ≥ 500 iterations). For tighter iteration constraints, either VS-BO or embedding-based methods

might be better. We also notice that the incorporation of local search with new BO algorithms can
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Figure 12: (a) Performance of VS-BO, VS-BO without momentum mechanism (VS-BO-nomom) and

VS-BO-nomom with the mixed sampling strategy (VS-BO-nomom-mix) on Branin (left),

Hartmann6 (middle) and Styblinski-Tang4 (right) test cases. For each case, we do 20

independent runs for each method. We plot the mean and standard error of the regret

versus iterations. (b) The total frequency of being chosen as important for each variable by

VS-BO-nomom on Branin (left), Hartmann6 (middle) and Styblinski-Tang4 (right) test cases.

be very helpful. Thus, merging VS-BO with local search strategies like TuRBO (Eriksson et al.,

2019) presents an interesting avenue for future exploration.

Figure 13: Performance of VS-BO, MCTS-VS and BAxUS on Branin (left), Hartmann6 (middle) and

Styblinski-Tang4 (right) test cases. For each case, we do 20 independent runs for each

method. We plot the mean and standard error of the regret versus iterations.
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