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Abstract

Self-Supervised Learning (SSL) is an important paradigm for learning representations from
unlabelled data, and SSL with neural networks has been highly successful in practice. How-
ever current theoretical analysis of SSL is mostly restricted to generalisation error bounds.
In contrast, learning dynamics often provide a precise characterisation of the behaviour
of neural networks based models but, so far, are mainly known in supervised settings.
In this paper, we study the learning dynamics of SSL models, specifically representations
obtained by minimising contrastive and non-contrastive losses. We show that a näive ex-
tension of the dymanics of multivariate regression to SSL leads to learning trivial scalar
representations that demonstrates dimension collapse in SSL. Consequently, we formulate
SSL objectives with orthogonality constraints on the weights, and derive the exact (network
width independent) learning dynamics of the SSL models trained using gradient descent on
the Grassmannian manifold. We also argue that the infinite width approximation of SSL
models significantly deviate from the neural tangent kernel approximations of supervised
models. We numerically illustrate the validity of our theoretical findings, and discuss how
the presented results provide a framework for further theoretical analysis of contrastive and
non-contrastive SSL.

1 Introduction

A common way to distinguish between learning approaches is to categorize them into unsupervised learning,
which relies on a input data consisting of a feature vector (x), and supervised learning which relies on feature
vectors and corresponding labels (x, y). However, in recent years, Self-Supervised Learning (SSL) has been
established as an important paradigm between supervised and unsupervised learning as it does not require
explicit labels but relies on implicit knowledge of what makes some samples semantically close to others.
Therefore SSL builds on inputs and inter-sample relations (x, x+), where x+ is often constructed through
data-augmentations of x known to preserve input semantics such as additive noise or horizontal flip for an
image Kanazawa et al. (2016); Novotny et al. (2018); Gidaris et al. (2018). While the idea of SSL is not new
Bromley et al. (1993), recent deep SSL models have been highly successful in computer vision Chen et al.
(2020); Caron et al. (2021); Jing & Tian (2019), natural language processing Misra & Maaten (2020); Devlin
et al. (2019), speech recognition Steffen et al. (2019); Mohamed et al. (2022). Since the early works Bromley
et al. (1993), methods for SSL have predominantly relied on neural networks however with a strong focus on
model design with only little theoretical backing.

*P. M. Esser and S. Mukherjee equally contributed to this work. The work was carried out while S. Mukherjee was at the
Technical University of Munich.
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While there are theoretical works addressing SSL specific question such as Wen & Li (2021) analyzing the
importance of data augmentation and Pokle et al. (2022) characterizing ‘dimension collapse’ through the
loss landscape, the main focus of the theory literature on SSL has been either on providing generalization
error bounds for downstream tasks on embeddings obtained by SSL (Arora et al., 2019b; Ge et al., 2023;
Bansal et al., 2021; Lee et al., 2021; Saunshi et al., 2021; Tosh et al., 2021; Wei et al., 2021; Bao et al., 2022;
Chen et al., 2022), or analysing the spectral and isoperimetric properties of data augmentation (Balestriero
& LeCun, 2022; Han et al., 2023; Zhuo et al., 2023). The latter approach also result in novel bounds on the
generalisation error (HaoChen et al., 2021; Zhai et al., 2023). While generalisation theory remains one of the
fundamental tools to characterise the statistical performance, it has been already established for supervised
learning that classical generalisation error bounds do not provide a complete theoretical understanding and
can become trivial in the context of neural network models (Zhang et al., 2017; Neyshabur et al., 2017).
Therefore a key focus in modern deep learning theory is to understand the learning dynamics of models,
often under gradient descent, as they provide a more tractable expression of the problem that can be an
essential tool to understand the loss landscape and convergence (Fukumizu, 1998; Saxe et al., 2014; Pretorius
et al., 2018), early stopping (Li et al., 2021), linearised (kernel) approximations (Jacot et al., 2018; Du et al.,
2019) and, mostly importantly, generalisation and inductive biases (Soudry et al., 2018; Luo et al., 2019;
Heckel & Yilmaz, 2021).

In this paper, we analyze the learning dynamics of SSL models under contrastive and non-contrastive losses
(Arora et al., 2019b; Chen et al., 2020), which we show to be significantly different from the dynamics of
supervised models. This gives a simple and precise characterization of the dynamics that can provide the
foundation for future theoretical analysis of SSL models.

Contrastive Learning. Contrastive SSL has its roots in the work of Bromley et al. (1993). Recent deep
learning based contrastive SSL show great empirical success in computer vision (Chen et al., 2020; Caron
et al., 2021; Jing & Tian, 2019), video data (Fernando et al., 2017; Sermanet et al., 2018), natural language
tasks (Misra & Maaten, 2020; Devlin et al., 2019) and speech (Steffen et al., 2019; Mohamed et al., 2022).
In general a contrastive loss is defined by considering an anchor image, x ∈ Rd, positive samples {x+} ⊂ Rd

generated using data augmentation techniques as well as independent negative samples {x−} ⊂ Rd. The
heuristic goal is to align the anchor more with the positive samples than the negative ones, which is rooted
in the idea of maximizing mutual information between similar samples of the data. In this work, we consider
a simple contrastive loss minimisation problem along the lines of Arora et al. (2019b), assuming exactly one
positive sample x+

i and one negative sample x−
i for each anchor xi,1

min
Θ

n∑
i=1

u(xi)⊤ (u(x−
i ) − u(x+

i )
)
, (1)

where u = [u1(·,Θ) . . . uz(·,Θ)]⊤ : Rd → Rz is the embedding function, parameterized by Θ.

Contributions. The objective of this paper is to derive the evolution dynamics of the learned embedding
u = u(·, θ) under gradient flow for the contrastive (1). More specifically we show the following with proofs
provided in the supplementary material:

• We express the learning dynamics contrastive learning and show that, the evolution dynamics is
same across dimensions. This explains why SSL is naturally prone to dimension collapse.

• Assuming a 2-layer linear network, we show that dimension collapse cannot be avoided by adding
standard Frobenius norm regularisation, but by adding orthogonality or L2 norm constraints.

• We further show that at initialization, the dynamics of 2-layer network with nonlinear activation
is close to their linear, width independent counterparts (Theorem 1). We also provide empirical
evidence that the evolution of the infinite width non-linear networks are close to their linear coun-
terparts, under certain conditions on the non-linearity (that hold for tanh).

1It is straightforward to extend our analysis to multiple positive and negative samples, but the expressions become cumber-
some, without providing additional insights.
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• Going beyond the 2-layer setting, we derive the learning dynamics of SSL for deep linear networks,
under orthogonality constraints (Theorem 2). We further show the convergence of the learning
dynamics for the one dimensional embeddings (z = 1).

• We numerically show, on the MNIST dataset, that our derived SSL learning dynamics can be
solved significantly faster than training nonlinear networks, and yet provide comparable accuracy
on downstream tasks.

• Finally we show that the presented results extend to simple non-contrastive losses as well.

Related works. Our focus is on the evolution of the learned representations, and hence, considerably
different from the aforementioned literature on generalisation theory and spectral analysis of SSL. From an
optimisation perspective, Liu et al. (2023) derive the loss landscape of contrastive SSL with linear models,
u(x) = Wx, under InfoNCE loss van den Oord et al. (2018). Although the contrastive loss in (1) seems
simpler than InfoNCE, they are structurally similar under linear models (Liu et al., 2023, see Eqns. 4–6).
Similarly Zbontar et al. (2021) maximizes the variability of the embeddings by decorrelating the components
of the embeddings vectors. Training dynamics for contrastive SSL with linear shallow models (with only
one hidden layer , u(x) = Wx) have been derived in Simon et al. (2023) under a simplified Barlow twins
loss and deep linear models have been partially investigated by Tian (2022), who show an equivalence
with principal component analysis, and by Jing et al. (2022), who establish that dimension collapse occurs
for over-parametrised linear contrastive models. Theorem 2 provides a more precise characterisation and
convergence criterion of the evolution dynamics than previous works. Furthermore, none of prior works
consider non-linear models or orthogonality constraints as studied in this work.

We also distinguish our contributions (and discussions on neural tangent kernel connections) with the kernel
equivalents of SSL studied in Kiani et al. (2022); Johnson et al. (2023); Shah et al. (2022); Cabannes
et al. (2023). While Shah et al. (2022); Cabannes et al. (2023) specifically pose SSL objectives using kernel
models, Kiani et al. (2022); Johnson et al. (2023) show that contrastive SSL objectives induce specific kernels.
Importantly, these works neither study the learning dynamics nor consider the neural tangent kernel regime.

Towards analysing deep, non-linear networks. Analyzing deep, non-linear networks presents a complex
challenge and no unifying approach has been established even in the more studied supervised setting. Existing
works usually consider one (or several) of the following assumptions: (a) linear networks. This allows for
an exact characterization of the network (Saxe et al., 2014; Ziyin et al., 2022; Basu et al., 2019) however
the considered proof techniques do not extend to the non-linear setting. (b) strong data / initialization
assumptions. Tachet et al. (2018); Mei & Montanari (2022) are able to derive exact solutions in the non-
linear setting but the proof structure breaks down if the assumptions (which might not be used in practice)
are violated. (c) strong architecture assumptions. Jacot et al. (2018); Arora et al. (2019b) derive dynamics
for deep, non-linear networks, however need strong assumptions on the initialization and the (infinite) width
of the network. How exactly the behaviour of finite and infinite wide networks relate is still an open question.

In this work we aim to analyze settings that are relevant in practice but still allow for a exact theoretical
analysis. We address the challenge of analyzing non-linearities and depth by first showing that linear and
non-linear networks are close in Theorem 1 and secondly by deriving dynamics for deep linear networks in
Theorem 2. In addition our results only have mild initialisation (orthogonality) and data assumptions.

Notation. Let In be an n × n identity matrix. For a matrix A let ∥A∥F and ∥A∥2 be the standard
frobenious norm and the L2-operator norm respectively. The machine output is denoted by u(·). While u is
time dependent and should be more accurately denoted as ut we suppress the subscript where obvious. For
any time dependent function, for instance u, denote ů to be its time derivative i.e. dut

dt . ϕ is used to denote
our non-linear activation function and we abuse notation to also denote its co-ordinate-wise application on
a vector by ϕ(·). ⟨·, ·⟩ is used to denote the standard dot product.

2 Learning Dynamics of Regression and its Näive Extension to SSL

In the context of regression, Jacot et al. (2018) show that the evolution dynamics of (infinite width) neural
networks, trained using gradient descent under a squared loss, is equivalent to that of specific kernel machines,
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known as the neural tangent kernels (NTK). The analysis has been extended to a wide range of models,
including convolutional networks (Arora et al., 2019a), recurrent networks (Alemohammad et al., 2021),
overparametrised autoencoders (Nguyen et al., 2021), graph neural networks (Du et al., 2019; Sabanayagam
et al., 2022) among others. However, these works are mostly restricted to squared losses, with few results
for margin loss (Chen et al., 2021), but derivation of such kernel machines are still open for contrastive or
non-contrastive losses, or broadly, in the context of SSL. To illustrate the differences between regression and
SSL, we outline the learning dynamics of multivariate regression with squared loss, and discuss how a näive
extension to SSL is inadequate.

2.1 Learning Dynamics of Multivariate Regression

Given a training feature matrix X := [x1, · · · , xn]⊤ ∈ Rn×d and corresponding z-dimensional labels
Y := [y1, · · · , yn]⊤ ∈ Rn×z, consider the regression problem of learning a neural network function
u(x) = [u1(x,Θ) . . . uz(x,Θ)]⊤, parameterized by Θ, by minimising the squared loss function L(Θ) :=
1
2
∑n

i=1 ∥u(xi) − yi∥2. Under gradient flow, the evolution dynamics of the parameter during training is
Θ̊ = −∇ΘL and, consequently, the evolution of the l-th component of network output u(x), for any input x,
follows the differential equation

ůl(x) =
〈

∇Θul(x), Θ̊
〉

= −
n∑

i=1

z∑
j=1

⟨∇Θul(x),∇Θuj(xi)⟩ (uj(xi) − yi,j). (2)

While the above dynamics apparently involve interaction between the different dimensions of the output
u(x), through ⟨∇Θul(x),∇Θuj(xi)⟩, it is easy to observe that this interaction does not contribute to the
dynamics of linear or kernel models. We formalise this in the following lemma.
Lemma 1 (No interaction across output dimensions). Let u : Rd → Rz be either a linear model
u(x) = Θx, or a kernel machine u(x) = Θψ(x), where ψ corresponds to the implicit feature map of a kernel
k, that is, k(x, x′) = ⟨ψ(x), ψ(x′)⟩.
Then in the infinite width limit (h → ∞) the inner products between the gradients are given by

⟨∇Θul(x),∇Θuj(x′)⟩ =

 0 if l ̸= j,
x⊤x′ if l = j (linear case),
k(x, x′) if l = j (kernel case).

For infinite width neural networks, whose weights are randomly initialised with appropriate scaling, Jacot
et al. (2018) show that at, initialisation, Lemma 1 holds with k being the neural tangent kernel. Approxi-
mations for wide neural networks further imply the kernel remains same during training (Liu et al., 2020),
and so Lemma 1 continues to hold through training.
Remark 1 (Multivariate regression = independent univariate regressions). A consequence of
Lemma 1 is that the learning dynamics (2) simplifies to

ůl(x) = −
n∑

i=1
⟨∇Θul(x),∇Θul(xi)⟩ (ul(xi) − yi,l),

that is, each component of the output ul evolves independently from other uj , j ̸= l. Hence, one may solve a
z-variate squared regression problem as z independent univariate problems. We discuss below that a similar
phenomenon is true in SSL dynamics with disastrous consequences.

2.2 Dynamics of Näive SSL has a Trivial Solution

We now present the learning dynamics of SSL with contrastive losses (1). Assuming that the network
function u : Rd → Rz is parameterised by Θ, the gradient of the loss L(Θ) =

∑n
i=1 u(xi)⊤ (u(x−

i ) − u(x+
i )
)

is

∇ΘL(Θ) = −
n∑

i=1

z∑
j=1

uj(xi) · ∇Θuj(x+
i ) + uj(x+

i ) · ∇Θuj(xi) − uj(xi) · ∇Θuj(x−
i ) − uj(x−

i ) · ∇Θuj(xi)
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Hence, under gradient descent Θ̊ = −∇ΘL, the evolution of each component of u(x), given by ůl(x) =〈
∇Θul(x), Θ̊

〉
is expressed by

ůl(x) =
n∑

i=1

z∑
j=1

⟨∇Θul(x),∇Θuj(xi)⟩uj(x+
i ) +

〈
∇Θul(x),∇Θuj(x+

i )
〉
uj(xi)

− ⟨∇Θul(x),∇Θuj(xi)⟩uj(x−
i ) −

〈
∇Θul(x),∇Θuj(x−

i )
〉
uj(xi). (3)

We note Lemma 1 depends only on the model and not the loss function, and hence, it is applicable for the
SSL dynamics in (3). However, there are no multivariate training labels y ∈ Rz in SSL (i.e. y = 0) that can
drive the dynamics of the different components u1, . . . , uz in different directions, which leads to dimension
collapse.
Proposition 1 (Dimension collapse in SSL dynamcis). Under the conditions of Lemma 1, every
component of the network output u : Rd → Rz has identical dynamics. As a consequence, the output
collapses to one dimension at convergence. For linear model, u(x) = Θx, the dynamics of u(x) is given by

ůl(x) =
n∑

i=1
(x⊤xi)

(
ul(x+

i ) − ul(x−
i )
)

+ (x⊤x+
i − x⊤x−

i )ul(xi)

for a contrastive model. For kernel models, the dynamcis is similarly obtained by replacing each x⊤x′ by
k(x, x′).

By the extension of Lemma 1 to neural network and NTK dynamics, one can conclude that Proposition 1
and dimension collapse also happen for wide neural networks, when trained for the contrastive loss (1).
Remark 2 (SSL dynamics for other losses). One may argue that the above dimension collapse is a
consequence of loss definition in (1), and may not exist for other losses. We note that Liu et al. (2023)
analyse contrastive learning with linear model under InfoNCE, and the simplified loss closely resembles
(1), which implies decoupling of output dimensions (and hence, dimension collapse) would also happen for
InfoNCE. The same argument also holds for non-constrastive loss in Chen et al. (2020). However, for the
spectral contrastive loss of HaoChen et al. (2021), the output dimensions remain coupled in the SSL dynamics
due to existing interactions u(xi)⊤u(x−

i ) on the training data.
Remark 3 (Projections cannot overcome dimension collapse). Jing et al. (2022) propose to project
the representation learned by a SSL model into a much smaller dimension, and show that fixed (non trainable)
projectors may suffice. For a linear model, this implies u(x) = AΘx, where A ∈ Rr×z, r ≪ z is fixed. It is
straightforward to adapt the dynamics and Proposition 1 to this case, and observe that for any r > 1, all the
r components of u(x) have identical learning dynamics, and hence, collapse at convergence.

3 SSL with (Orthogonality) Constraints

For this section, we assume that the SSL model u : Rd → Rz corresponds to a 2-layer neural network of the
form

u(x) = W⊤
2 ϕ(W1x) ∈ Rz,

where h is the size of the hidden layer and Θ = (W1,W
⊤
2 ) are trainable matrices. Whenever needed, we

use uϕ for the output to emphasize the nonlinear activation ϕ, and contrast it with a 2-layer linear network
uI(x) = W⊤

2 W1x. The optimization problem can now be restated as a trace minimization problem which
has been previously observed in Balestriero et al. (2023). Assume the linear setting, we can write our loss
function (1) as

L =
n∑
i

Tr
(
W⊤

2 W1xi

(
x−

i − x+
i

)⊤
W⊤

1 W2

)
= Tr

(
W⊤

2 W1C̃W
⊤
1 W2

)
= Tr

(
W⊤

2 W1CW
⊤
1 W2

)
(4)
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with

C = C̃ + C̃⊤

2 and C̃ =
n∑
i

xi

(
x−

i − x+
i

)⊤
. (5)

Furthermore (1) can easily be extended to the p positive and q negative sample setting where we then obtain
C̃ =

∑n
i

(∑q
j xi

(
x−

j

)⊤ −
∑p

j xi

(
x+

j

)⊤
)
.

Based on the discussion in the previous section, it is natural to ask how can the SSL problem be rephrased
to avoid dimension collapse. An obvious approach is to add regularisation or constraints (Bardes et al.,
2021; Ermolov et al., 2021; Caron et al., 2020). The most obvious regularisation or constraint on W1,W2 is
entry-wise, such as on Frobenius norm. While there has been little study on various regularisations in SSL
literature, a plethora of variants for Frobenius norm regularisations can be found for autoencoders, such as
sum-regularsiation, ∥W1∥2

F + ∥W2∥2
F , or product regularisation ∥W⊤

2 W1∥2
F (Kunin et al., 2019).

It is known in the optimisation literature that regularised loss minimisation can be equivalently expressed
as constrained optimisation problems. In this paper, we use the latter formulation for convenience of the
subsequent analysis. The following result shows that Frobenius norm constraints do not prevent the output
dimensions from decoupling, and hence, it is still prone to dimension collapse.
Proposition 2 (Frobenius norm constraint does not prevent dimension collapse). Consider a
linear embedding function uϕ(x) = W⊤

2 ϕ(W1x) and let L(W1,W2) be given by (1), then the optimisation
problem

min
W1,W2

L(W1,W2) s.t. ∥W1∥F ≤ c1, ∥W2∥F ≤ c2,

with constants c1 and c2 has a global solution u(x) = [u(x)1 0 . . . 0]⊤ ∈ Rz.

The above result precisely shows dimension collapse for linear networks uI even with Frobenius norm con-
straints. Intuitively we note that the Frobenius norm is defined as the sum of the norms of each column.
Critically it therefore does not have any control over the inner products between the columns and has no
control over the rank. As such there is nothing preventing all the columns from being the same. Therefore
we consider to constrain the L2-operator norm as na alternative to Frobenius norm constraint. To this end,
the following result shows that, for linear networks, the operator norm constraint can be realised in multiple
equivalent ways.
Proposition 3 (Equivalence of loss under operator norm and orthogonality constraints). Consider
a linear embedding function uI(x) = W⊤

2 W1x, and let the loss L(W1,W2) be given by (1) whose general form
is given in (4). Let C be defined by (5) and has atleast one negative eigenvalue. Then there exists a W1,W2
that is optimal for all following optimization problems:

1. min
W1,W2

L(W1,W2)
∥W2∥2

2 ∥W1∥2
2

;

2. min
W1,W2

L(W1,W2) s.t. ∥W2∥2 ≤ 1, ∥W1∥2 ≤ 1;

3. min
W1,W2

L(W1,W2) s.t. ∥W⊤
2 W1∥2 ≤ 1;

4. min
W1,W2

L(W1,W2) s.t. W⊤
2 W2 = Iz, W

⊤
1 W1 = Id.

Avoidance of dimensional collapse is also heuristically evident in the orthogonality constraint W⊤
2 W2 =

Iz, W
⊤
1 W1 = Id, which we focus on in the subsequent sections. In particular we observe from the proof of

Prop 3 that this regularization extracts the eigenvectors of C corresponding to its "most-negative" eigenvalues
Example 1 (SSL dynamics on half moons). We numerically illustrate the importance of constraints in
SSL. We consider a contrastive setting with the loss in (1) and u(x) = W⊤

2 tanh(W1x) for the dataset shown
in Figure 1a, where x− is an independent sample from the dataset and x+ = x+ε where ε ∼ N (0, 0.1I). Let us
now compare the dynamics of L (no constraints) and Lorth, the scaling loss that corresponds to orthogonality
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(a) Dataset and loss. (left) Illustration of the dataset in R3. The considered test point is marked with the blue cross.
(right) Loss curve (mean over 100 initializations) for the network with and without orthogonal constraint.
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(b) Embedding into R2. (left) Embedding at initialization. (middle) Embedding for the network without constraints
after 30 epochs. (right) Embedding for the network with orthogonal constraints after 500 epochs.

Figure 1: Illustration of dimension collapse. We consider the Dataset in Figure 1a and plot the loss for
constraint and unconstrained models. In Figure 1b we furthermore plot the embedding at initialization and
during training for both models.

constraints, and present the results in Figure 1. We firstly observe in Figure 1a that the unconstrained loss
does not converge. Secondly considering the embeddings as plotted in Figure 1b we observe dimension collapse
for the unconstrained loss function (middle) but not for the one with orthogonal constraints (right).

3.1 Non-Linear SSL Models are Almost Linear

While the above discussion pertains to only linear models, we now show that the network, with nonlinear
activation ϕ and orthognality constraints,

uϕ
(t)(x) = W⊤

2 ϕ(W1x) s.t. W⊤
2 W2 = Iz, W

⊤
1 W1 = Id,

is almost linear. For this discussion, we explicitly mention the time dependence as a subscript uϕ
(t). We begin

by arguing theoretically that in the infinite width limit at initialization there is very little difference between
the output of the non-linear machine uϕ

(0) and that of its linear counterpart uI(0).

Theorem 1 (Comparison of Linear and Non-linear Network). Recall that u(t) provides the output of
the machine at time t and therefore consider the linear and non-linear setting at initialization as

uI(0) = W⊤
2 W1x s.t. W⊤

2 W2 = Iz, W
⊤
1 W1 = Id; (6)

uϕ
(0) = W⊤

2 ϕ (W1x) s.t. W⊤
2 W2 = Iz, W

⊤
1 W1 = Id.
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Figure 2: Difference between the non-linear output and the linear output under various conditions on the
activation function. Change of the difference while training for hidden layer size 10 to 1000.

Let ϕ(·) be an activation function, such that ϕ(0) = 0, ϕ′(0) = 1, and |ϕ′′(·)| ≤ c. 2 Then at initialization as
uniformly random orthogonal matrices

∥∥∥uϕ
(0) − uI(0)

∥∥∥ ≤ Kc ∥x∥2
d

√
log4 h

h

where K is a universal constant ϕ, d is the feature dimension and h the width of the hidden layer.

We furthermore conjecture that the same behaviour holds during evolution.
Conjecture 1 (Evolution of Non-linear Networks). Consider the setup of Theorem 1 with the linear(
uI(t)

)
and non-linear machine

(
uϕ

(t)

)
as defined in (6) and an optimization of the general

min
W2W1

Tr
(
u⊤

(t)u(t)

)
s.t. W⊤

2 W2 = Iz,W
⊤
1 W1 = Id.

Again assume ϕ is an activation function, such that ϕ(0) = 0 and ϕ′(0) = 1. Then∥∥∥uϕ
(t) − uI(t)

∥∥∥ → 0 ∀t > 0 as h → ∞.

Numerical justification of the above conjecture is presented in the following section.

3.2 Numerical Evaluation

We now illustrate the findings of of Theorem 1 and Conjecture 1 numerically. For evaluation we use the
following experimental setup: We train a network with contrastive loss as defined in (1) using gradient
descent with learning rate 0.01 for 100 epochs and hidden layer size from 10 to 1000. We consider the
following three loss functions: (1) sigmoid, (2) ReLU (ϕ(x) = max{x, 0}) and (3) tanh. The results are
shown in Figure 2 where the plot shows the average over 10 initializations. We note that tanh fulfills the
conditions on ϕ and we see that with increasing layer size the difference between linear and non-linear goes
to zero. While ReLU only fulfills ϕ(0) = 0 the overall picture still is consistent with tanh but with slower
convergence. Finally the results on sigmoid (which has a linear drift consistent with its value at 0) indicate
that the conditions on ϕ are necessary as we observe the opposite picture: with increased layer width the
difference between linear and non-linear increases.

This overall picture (with increasing width linear and non-linear models get closer to each other) is well
established in the NTK setting for supervised models. However such results are stated in terms of a squared
loss while the above findings show that the same behaviour for the SSL setting and under orthogonality
constraints.

2This last assumption can also be weakened to say that ϕ′′ is continuous at 0. See the proof of the theorem for details.
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4 Learning Dynamics of Deep Linear SSL Models

Having showed that the non-linear dynamics are close to the linear ones we now derive the learning dynamics
and discuss the evolution of the differential equation. Furthermore we numerically evaluate the theoretical
results and show that the dynamics coincide with learning the general loss function under gradient decent.
Importantly we now consider deep neural networks of depth l such that we now analyze the following trace
minimization problem.
Definition 1 (General Loss Function). Consider the following loss function for a l layer deep linear
network

min
Wi, i∈[l]

Tr
(
W⊤

l Wl−1 · · ·W1CW
⊤
1 · · ·W⊤

l−1Wl

)
s.t. W⊤

i Wi = I, ∀i ∈ [l]. (7)

where I is an appropriately sized identity matrix, W1 ∈ Rh×d, Wl ∈ Rh×z , Wi ∈ Rh×h ∀i ∈ 2, . . . l − 1 are
the trainable weight matrices. C ∈ Rd×d is a symmetric, data dependent matrix.

With the general optimization problem set up we can analyze (7) by deriving the dynamics under orthogo-
nality constraints on the weights, which constitutes gradient descent on the Grassmannian manifold. While
orthogonality constraints are easy to initialize the main mathematical complexity arises from ensuring that
the constraint is preserved over time. Following Lai et al. (2020), we do so by ensuring that the gradients
lie in the tangent bundle of orthogonal matrices.

4.1 Theoretical Analysis

In the following we present the dynamics in Theorem 2, followed by the analysis of the evolution of the
dynamics in Theorem 3.
Theorem 2 (Learning Dynamics in the Deep Linear Setting). Assume the general linear trace
minimization problem stated in (7) and assume that C ∈ Rd×d is a symmetric, data dependent matrices,
such that C = V ΛV ⊤ with V := [v1, . . . , vd]. Then with q :=

[
uI(v1), · · · , uI(vd)

]⊤, where u represents the
machine function i.e. uI(x) = W⊤

l Wl−1 · · ·W1x, the learning dynamics of q, the machine outputs are given
by

q̊ = −2
[
2Λq − Λqq⊤q − qq⊤Λq

]
. (8)

Similar differential equations to (8) have been analysed in Yan et al. (1994) and Fukumizu (1998). The
typical way to find stable solutions to such equations involve converting it to a differential equation on qq⊤.
This gives us a matrix riccati type equation. For brevity’s sake we write below a complete solution when
z = 1.

Evolution of the differential equation. While the above differential equation doesn’t seem to have a
simple closed form, a few critical observations can still be made about it - particularly about what this
differential equation converges to. As observed in Figure 3 (right), independent of initialisation we converge
to either of two points. In the following we formalise this observation.
Theorem 3 (Evolution of learning dynamics in (8) for z = 1). Let z = 1 then our update rule simplifies
to

q̊

2 = −(1 − q⊤q)Λq − (I − qq⊤)Λq. (9)

We can distinguish two cases:

• Assume all the eigenvalues of Λ are strictly positive then q converges to 0 with probability 1.

• Assume there is atleast one negative eigenvalue of Λ, then q becomes the smallest eigenvector, v1.

9
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The requirement of negative eigenvalues of C for a non-trivial convergence might be surprising however we
can observe this when considering C in expectation. Let us assume C is constructed by (5) and note that
E[C̃] = E

[∑n
i xi

(
x−

i − x+
i

)⊤ ]
. While this already gives a heuristic of what is going on, for some more precise

mathematical calculations, we can specialise to the situation where x− is given by an independent sample
and x+ is given by adding a noise value ϵ sampled from N(0, σI), i.e. x+ = x+ ϵ. Then

E[C̃] =
n∑

i=1
E[xi]E[x−

i

⊤] − E[xix
+
i

⊤] = −nE[xx⊤].

Thus E[C] is in fact negative definite. Extending Theorem 3 to a general k > 1 we conjecture the following
to hold.
Conjecture 2 (Evolution of learning dynamics in (8) for z > 1). If C has atleast k strictly negative
eigenvalues and v1, ..., vk are the eigenvectors corresponding to the most negative eigenvalues then the space
spanned by v1, ..., vk and that by q1, ..., qk are the same in limit where qi denotes the i’th column of q.

We note that to prove the conjecture it is enough to show in limit v1, ..., vk are each contained in the space
spanned by q1, ..., qk. As the norm of vi is 1, it is enough in turn to show that the norm of the projection of
vi onto the space of q1, ..., qk converges to 1. We experimentally verify and illustrate this in Figure 4.

New Datapoint. While the above dynamics provide the setting during training we can furthermore in-
vestigate what happens if we input a new datapoint or a testpoint to the machine. Because u is a linear
function and because v1, ..., vd is a basis this is quite trivial. So if x̂ is a new point, let α = (α1, ..., αd)⊤ be
the co-ordinates of x̂, i.e. x̂ =

∑d
i αivi or α = V ⊤x̂. Then

ut(x̂) = ut

(
d∑
i

αivi

)
=

d∑
i

αiut(vi) = q⊤
t α = q⊤

t V
⊤x̂.

4.2 Numerical Evaluation

We can now further illustrate the above derived theoretical results empirically. Let us first consider the
setting of 2-layer networks.

Leaning dynamics (Theorem 2) and new Datapoint. We can now illustrate that the derived dynamics
in (8) do indeed behave similar to learning (7) using gradient decent updates. To analyze the learning
dynamics we consider the gradient decent update of (7):

W
(t+1)
1,2 = W

(t)
1,2 + η∇L

W
(t)
2 ,W

(t)
1

(10)

where W (t)
1 ,W

(t)
2 are the weights at time step t and η is the learning rate as a reference. Practically the

constraints in (7) are enforced by projecting the weights back onto W⊤
2 W2 = Iz and W⊤

1 W1 = Id after each
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gradient step. Secondly we consider a discretized version of (8)

qt+1 = qt − η
[
2Λqt − Λqtq

⊤
t qt − qtq

⊤
t Λqt

]
. (11)

where qt is the machine outputs at time step t.

We now illustrate the comparison through in Figure 3 where we consider different width of the network
(h ∈ {10, 100, 1000}) and η = 0.01. We can firstly observe on the left, that the loss function of the trained
network and the dynamics and observe while the decay is slightly slower in the dynamics setting both
converge to the same final loss value. Secondly we can compare the function outputs during training in
Figure 3 (right): We initialize the NN randomly and use this initial machine output as q0. We observe that
during the evolution using (10) & (11) for a given initialization the are stay close to each other and converge
to the same final outputs.
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Figure 6: Numerical illustration of the con-
vergence of deep linear models.

Numerical Evaluation of Theorem 3. We can again il-
lustrate that the behaviour stated in Theorem 3 can indeed be
observed empirically. This is shown in Figure 3 (right), a setting
where C has negative eigenvalues. We observe that eventually
the machine outputs converge to the smallest eigenvector.

Runtime and downstream task. Before going into the il-
lustration of the dynamics we furthermore note that an update
step using (11) is significantly faster then a SGD step using
(10). For this illustration we now consider two classes with 200
datapoints each from the MNIST dataset Deng (2012). This is
illustrated in Figure 5 (left) where we compare the runtime over
different layer width (of which (11) is independent of). Expec-
tantly (10) scales linearly with h and overall (11) has a shorter

11



Published in Transactions on Machine Learning Research (06/2024)

runtime per timestep. While throughout the paper we focus on the obtained embeddings we can furthermore
consider the performance of downstream tasks on top of the embeddings. We illustrate this in the setting
above where we apply a linear SVM on top of the embeddings. The results are shown in Figure 5 (right)
where we observe that overall the performance of the downstream task for both the SGD optimization and
the differential equation coincide.

Deep Linear Networks. Numerically we illustrate that the learning dynamics as derived in Theorem 2
for several hidden layer sizes. In Figure 6 we observe that for one, two and three hidden layers the dynamics
behave very similarly and all converge to the same final embedding, the one derived in Theorem 3.

5 Non-Contrastive Loss Functions

In the previous sections analyzed contrastive loss functions however as we show in this section the derived
results extend beyond this setting and are also applicable to con-contrastive losses. Non-contrastive losses
emerged from the observation that negative samples (or pairs) in contrastive SSL are not necessary in
practice, and it suffices to maximise only alignment between positive pairs Chen & He (2021); Chen et al.
(2020); Grill et al. (2020). Considering a simplified version of the setup in Chen et al. (2020) one learns a
representation by minimising the loss 3

min
Θ

n∑
i=1

−u(xi)⊤u(x+
i ). (12)

The embedding u = [u1(·,Θ) . . . uz(·,Θ)]⊤ : Rd → Rz, parameterised by Θ, typically comprises of a base
encoder network and a projection head in practice (Chen et al., 2020). We now shortly outline how the
previously presented results apply to this setting as well.

Dimension collapse. Analogous to the contrastive setting earlier we can now discuss dimension collapse
for the non-contrastive setting. Assuming that the network function u : Rd → Rz is parameterised by Θ,
the gradient of the loss L(Θ) =

n∑
i=1

−u(xi)⊤u(x+
i ) is ∇ΘL(Θ) = −

∑n
i=1
∑z

j=1 uj(xi) · ∇Θuj(x+
i ) + uj(x+

i ) ·

∇Θuj(xi). Hence, under gradient descent Θ̊ = −∇ΘL, the evolution of each component of u(x), given by
ůl(x) =

〈
∇Θul(x), Θ̊

〉
is ůl(x) =

∑n
i=1
∑z

j=1 ⟨∇Θul(x),∇Θuj(xi)⟩uj(x+
i ) +

〈
∇Θul(x),∇Θuj(x+

i )
〉
uj(xi).

For linear model, u(x) = Θx, the dynamics of u(x) is given by ůl(x) =
∑n

i=1(x⊤xi)ul(x+
i ) + (x⊤x+

i )ul(xi).
From there Proposition 1 extends to the non-contrastive setting. Under the conditions of Lemma 1, every
component of the network output u : Rd → Rz has identical dynamics. As a consequence, the output
collapses to one dimension at convergence.

Learning dynamics of linear non-contrastive models. In addition we can also frame4 the previously
considered non-contrastive model in (12) in the simple linear setting by considering the general loss function
with C̃ =

∑n
i xi

(
x+

i

)⊤
. Therefore the results from Theorem 2 & 3 extend to models under (12) as well.

Limitations and trivial solutions. For arbitrary functions this loss can have a trivial minimizer that is
constant function. However in the linear setting we mainly consider in this paper the only constant function
is the zero function which would not be optimal.

6 Conclusion

The study of learning dynamics of (infinite-width) neural networks has led to important results for the
supervised setting such as understanding the loss landscape and convergence, early stopping, linearised
(kernel) approximations and, mostly importantly, generalisation and inductive biases. The analysis of similar
quantities is of interest in the SSL setting as well, however, there is little understanding of SSL dynamics.

3We simplify Chen et al. (2020) by replacing the cosine similarity with the standard dot product and also by replacing an
additional positive sample x++

i by anchor xi for convenience.
4It has previously been observed that one can unify contrastive and non-contrastive losses in a more general framework

(Garrido et al., 2022).
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Our initial steps towards analysing SSL dynamics encounters a hurdle: standard SSL training has drastic
dimension collapse (Proposition 1), unless there are suitable constraints. We consider a general formulation
of linear SSL under orthogonality constraints (7), and derive its learning dynamics (Theorem 2). We also
show that the derived dynamics can approximate the SSL dynamics using wide neural networks (Theorem 1)
under some conditions on activation ϕ. We not only provide a framework for analysis of SSL dynamics, but
also shows how the analysis can critically differ from the supervised setting. As we numerically demonstrate,
our derived dynamics can be used an efficient computational tool to approximate SSL models. In particular,
the equivalence in Proposition 3 ensures that the orthogonality constraints can be equivalently imposed using
a scaled loss, which is easy to implement in practice. We conclude with a limitation and open problem. Our
analysis relies on a linear approximation of wide networks, but more precise characterisation in terms of
kernel approximation (Jacot et al., 2018; Liu et al., 2020) may be possible, which can better explain the
dynamics of deep SSL models. However, integrating orthogonality or operator norm constraints in the NTK
regime remains an open question.
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A Appendix

In the appendix we provide the following additional proofs

• Proof of Lemma1

• Proof of Proposition 2

• Proof of Proposition 3

• Proof of Theorem 1

• Proof of Theorem 2

• Proof of Theorem 3

A.1 Proof of Lemma1

Proof. Let the collumns of W2 be denoted by w1, w2, ..., wz. Then we note that each component of u, uj is
given by uj(x) = w⊤

j ϕ(W1x). Thus if l ̸= j, uj(x) has no dependence with wl i.e. ∇wl
uj(x) = 0. Thus we

get that when l ̸= j,

⟨∇Θul(x),∇Θuj(x′)⟩ = ⟨∇W1ul(x),∇W1uj(x′)⟩ .

We can now use Liu et al. (2020) (for instance its Lemma 3.1) which basically concludes that no training
happens at the penultimate or prior layers. In limit all positive gradients arise only from the final layer. As
such

⟨∇W1ul(x),∇W1uj(x′)⟩ = 0.

By the same token, for l = j,

⟨∇Θul(x),∇Θuj(x′)⟩ = ⟨∇W1ul(x),∇W1uj(x′)⟩ +
〈
∇wj

uj(x),∇wj
uj(x′)

〉
= ⟨ϕ(W1x), ϕ(W1x

′)⟩ .

Finally again using the fact that W1 does not change in training and that W1 is initialized from a normal-
ized gaussian , when ϕ is the identity map, it is well known that the above converges to x⊤x′ (as there
⟨ϕ(W1x), ϕ(W1x

′)⟩ = x⊤(W⊤
1 W1)x → x⊤x′) and otherwise to a deterministic kernel k (see e.g. (Liu et al.,

2020), (Arora et al., 2019b)).

A.2 Proof of Proposition 2

Proof. For simplicity of the proof we begin by reformulating the loss function in both contrastive and
noncontrastive setting to a more general form. In particular it is trivial to check that we can generalize by
writing

L = Tr
(
W⊤

2 f(X,W1)W2
)
,

where X denotes the collection of all the relevant data (i.e. ∀ 1 ≤ i ≤ n xi, as well as x+
i and x− where

applicable), and f(X,W1) =
∑n

i=1 ϕ(W1xi)
(
ϕ(W1x

−
i ) − ϕ(W1x

+
i )
)⊤ in the contrastive setting (equation 1)

while f(X,W1) = −
∑n

i=1 ϕ(W1xi)ϕ(W1x
+
i )⊤ in the non-contrastive setting (equation 12.)

Then decompose

W2W
⊤
2 =

k∑
i=1

σ2
i viv

⊤
i .
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Note then that ∥W2∥2
F = Tr

(
W2W

⊤
2
)

=
∑k

i=1 σ
2
i . Thus the optimization target,

L(W1,W2) = Tr
(
W⊤

2 f(X,W1)W2
)

= Tr
(
f(X,W1)W2W

⊤
2
)

= Tr
(
f(X,W1)

k∑
i=1

σ2
i viv

⊤
i

)

=
k∑

i=1
σ2

i v
⊤
i f(X,W1)vi ≥ min

i=1 to k
{v⊤

i f(X,W1)vi}
k∑

i=1
σ2

i = ∥W2∥2
F min

i=1 to k
{v⊤

i f(X,W1)vi}.

Thus when the Frobenius norm is restricted (i.e. bounded between 0 and c), if f(X,W1) has atleast one
negative eigenvalue the loss is minimized when v1 is the eigenvector corresponding to the most negative
eigenvalue of f(X,W1) with σ1 = ∥W2∥F , with no other non-zero singular value. On the other hand if
f(X,W1) has no negative eigenvalue then the loss is minimized when W2 = 0.

A.3 Proof of Proposition 3

Proof. We begin by quickly observing that (1) ⇐⇒ (2). This is simply done by defining Ŵi = Wi

∥Wi∥2
for

i = 1, 2. Then we have

argmin
W1,W2

Tr
(
W⊤

2 W1CW
⊤
1 W2

)
∥W1∥2

2 ∥W2∥2
2

= argmin
Ŵ1,Ŵ2:∥Ŵ1∥2

=∥Ŵ1∥2
=1

Tr
(
Ŵ⊤

2 Ŵ1CŴ
⊤
1 Ŵ2

)
Using the fact that atleast one eigenvalue of C is strictly negative (this rules out the case that the optimal
is achieved when Wi = 0 as that would have prevented division by norm) then we can quickly get that

argmin
Ŵ1,Ŵ2:∥Ŵ1∥2

=∥Ŵ1∥2
=1

Tr
(
Ŵ⊤

2 Ŵ1CŴ
⊤
1 Ŵ2

)
= argmin

Ŵ1,Ŵ2:∥Ŵ1∥2
≤1;∥Ŵ1∥2

≤1
Tr
(
Ŵ⊤

2 Ŵ1CŴ
⊤
1 Ŵ2

)
.

For (2) ⇐⇒ (3), we begin by observing that by submultiplicativity of norm, any W1,W2 such that
∥W1∥2 ≤ 1 and ∥W2∥2 ≤ 1 automatically falls is the optimization space given by

∥∥W⊤
1 W2

∥∥ ≤ 1 thus
giving one direction of the optimization equivalence for free. For the other side we note that given any
W1,W2 such that

∥∥W⊤
1 W2

∥∥2
2 =

∥∥W⊤
1 W2W

⊤
2 W1

∥∥
2 ≤ 1, we can construct Ŵ1, Ŵ2 such that

∥∥∥Ŵi

∥∥∥ ≤ 1 and
W⊤

1 W2W
⊤
2 W1 = Ŵ⊤

1 Ŵ2Ŵ
⊤
2 Ŵ1. This follows from considering the singular values decomposition of W⊤

1 W2,
getting W⊤

1 W2 = U⊤ΣV . As the norm of the product is smaller than 1, all the entries of the singular value
matrix Σ are less than 1. Thus depending upon which among d or z is larger we consider either the matrices
ΣU and V or the matrices U and ΣV to be our candidate Ŵ1 and Ŵ2 respectively. To complete we will
simply have to add zero rows to our choice i.e. say U and ΣV to match the dimensions (i.e. to get a n× d
matrix from a z × d one).

Finally for (3) ⇐⇒ (4) we begin by defining W = W⊤
1 W2. Then the optimization problem in (3) becomes,

min
W :∥W ∥2≤1

Tr
(
W⊤CW

)
= min

W :∥W ∥2≤1
Tr
(
CWW⊤) .

We then prove that we are done if we can prove the claim at optimal of (3) (i.e. the above optimization
problem) all the eigenvalues of WW⊤ are 1 or 0. Given this claim the singular value decomposition of W
becomes only W = U⊤V , where if k = rank(W ), U is a k× d matrix and V a k× z matrix. Additionally by
property of SVD, the collumns of U and V are orthonormal. Finally as

k = rank(W ) ≤ min{rank(W1), rank(W2)} ≤ min{d, z} ≤ n,

we can add a bunch of zero rows to U and V to get our n × d and n × z matrices which will be our
corresponding W1 and W2.

It remains to prove that Tr
(
CWW⊤) is minimized when all the eigenvalues of WW⊤ are 1 or 0. To do this

simply decompose

WW⊤ =
k∑

i=1
σ2

i viv
⊤
i ,
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where vi is the set of orthonormal eigenvectors of WW⊤ corresponding to non-zero eigenvalues of WW⊤ (or
alternatively non-zero singular values of W ) Then

Tr
(
CWW⊤) = Tr

(
C

k∑
i=1

σ2
i viv

⊤
i

)

=
k∑

i=1
σ2

i Tr
(
Cviv

⊤
i

)
=

k∑
i=1

σ2
i v

⊤
i Cvi.

Thus if C has l many strictly negative eigenvalues λ1 ≤ · · · ≤ λl with corresponding eigenvectors c1, . . . , cl

and σ2
i is positive the above quantity is minimized by choosing as many of these as possible i.e. v1 =

c1, . . . , vmin{d,z,l} = cmin{d,z,l} and setting the corresponding σi to be 1 while every setting all other eigen-
values to 0.

We then also note by consequence of the above proof that we avoid dimension collapse when possible i.e.
when C has multiple strictly negative eigenvalues (which is what one should expect if the data is not one
dimensional as E[C] = −E[xx⊤])

A.4 Proof of Theorem 1

Proof. Let us start by defining some properties for the non-linearity: Assume the non-linear function ϕ is
continuously twice differentiable near 0 and has no bias i.e. ϕ(0) = 0. Then via scaling we can assume
WLOG that ϕ′(0) = 1. As |ϕ′′(x)| ≤ c, we get that 5

|ϕ(x) − x| ≤ cx2

2 . (13)

Recall that the mapping of the first weight matrix is given by W1 : Rd → Rh, h ≫ d under the constraint
that W⊤

1 W = I. Under uniformly random initialization by Lemma 2 (see proof below) then with probability
asymptotically going to 1 we have that

max (W1)2
i,j ≤ C

log2 h

h

Thus the norm of each row of W1 we get with a.w.h.p. :

∥rowi (W1)∥2 =
d∑

j=1
(W1)2

i,j ≤ C
d log2 h

h

From there we can now write the value of each node in the layer using Cauchy-Schwarz inequality as

|rowi(W1) · x|2 ≤ ∥rowi (W1)∥2 ∥x∥2 ≤ C ∥x∥2 d log2 h

h
. (14)

We now apply the non-linearity to this quantity and denote the output of the first layer after the non-linearity
as

vi = ϕ (rowi (W1) · x)

Define the vector ϵ ∈ Rh, where
ϵj = vi − rowi (W1) · x

5We can actually also use the weaker assumption that ϕ′′(0) is continuous at 0. Thus there is some bounded (compact) set
A containing 0 and a constant c such that ∀x ∈ A, |ϕ(x) − x| ≤ cx2

2
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Then we have for h large enough6:

∥ϵ∥2 =
h∑

i=1
ϵ2i

=
h∑

i=1
(vi − rowi (W1) · x)2

≤
h∑

i=1

c2

4 (rowi (W1) · x)4 by equation 13

≤
h∑

i=1

c2

4

(
C ∥x∥2 d log2 h

h

)2

by equation 14

= K2c2 ∥x∥4 hd
2 log4 h

h2 = K2c2 ∥x∥4 d
2 log4 h

h
,

where K is the universal constant C
2 . Combining this with the second layer we get the difference of the

outputs of the two networks as∥∥∥uϕ
(0) − uI(0)

∥∥∥ =
∥∥W⊤

2 v −W⊤
2 W1x

∥∥
=
∥∥W⊤

2 (v −W1x)
∥∥

≤ ∥W2∥ ∥ϵ∥ = ∥ϵ∥ as ∥W2∥ = 1

≤ Kc ∥x∥2
d

√
log4 h

h

→ 0.

Lemma 2. Given any d ≤ p, Let Q be a uniformly random h × d semi-orthonormal matrix. I.e. Q is
the first d columns of an uniformly random h × h orthonormal matrix. Then there are constants L and a
sequence ϵp converging to 0 as h goes to infinity such that ,

P

(
max|Qi,j | ≥ L log h√

h

)
≤ ϵn

Proof. We note that it is enough to prove the claim when d = h, i.e. Q is uniformly random h×h orthonormal
matrix. Then as our distribution is uniform, the density at any particular Q is same as the density at any UQ
where U is some other fixed orthogonal matrix. Thus if q1 is the first column of Q, the marginal distribution
of q1 has the property that its density at any q1 is same as that of Uq1 for any orthogonal matrix U . In
other words the marginal distribution for any column of Q is simply that of the uniform unit sphere.

Consider then the following random variable which has the same distribution as that of a fixed column of
Q i.e. uniform unit h-sphere. Let X = (X1, ..., Xh) be iid random variables from N (0, 1). Then we know
that X ∼ N (0, Ih). From the rotational symmetry property of standard gaussian then we have that X

∥X∥ is
distributed as an uniform sample from the unit sphere in h dimensions. By union bound then, we have

P

(
max

1≤i≤h
|Xi| ≥ t log h

)
≤ 1√

2π
he− t2 log2 h

2

=⇒ P

(
max

1≤i≤h
|Xi| ≤ t log h

)
≥ 1 − 1√

2π
he− t2 log2 h

2 .

6Note that for the weaker assumption we can still use equation 13. This is because by equation 14,w.h.p. rowi(W1) · x goes
to 0 and thus rowi(W1) · x ∈ A in limit
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As each Xi is iid normal, X2
i is iid Chi-square with E[X2

i ] = 1, thus by Chernoff there exists constants C ′, c′

such that

P

(∑h
i=1 X

2
i

h
≥ 1 − s

)
≥ 1 − C ′e−c′hs2

.

Since max1≤i≤h|Xi| ≤ t log h and
∑h

i=1
X2

i

h ≤ (1 + s) implies that max1≤i≤h
|Xi|
∥X∥ ≤ t log h√

h(1−s)
, we get that

P

(
max

1≤i≤h

|Xi|
∥X∥

≤ t log h√
h(1 − s)

)
≥ 1 − 1√

2π
he− t2 log2 h

2 − C ′e−c′hs2

=⇒ P

(
max

1≤i≤h

|Xi|
∥X∥

≥ t log h√
h(1 − s)

)
≤ 1√

2π
he− t2 log2 h

2 + C ′e−c′hs2

From the argument before that any j’th column of Q is distributed as X. Using the above and another
union bound then get us

P

(
max

1≤i≤h
max

1≤i≤h
|Qi,j | ≥ t log h√

h(1 − s)

)
≤ 1√

2π
he− t2 log2 h

2 + C ′e−c′hs2

=⇒ P

(
max

1≤j≤h
max

1≤i≤h
|Qi,j | ≥ t log h√

h(1 − s)

)
≤ 1√

2π
h2e− t2 log2 h

2 + C ′he−c′hs2

We note that for any constants t, c′ that as h goes to infinity, both h2e− t2 log2 h
2 and he−c′hs2 goes to zero.

The proof is then finished by choosing some appropriate constants s, t ≥ 0.

A.5 Proof of Theorem 2

Proof. To simplify notation we are dropping the superscript I from uI(t). The u in the following proof is
already presumed to be linear. For the same reason we are also dropping the symbol of time, t, from
u,W3,W2,W1 even though all of them are indeed time dependent. Finally for any time dependent function
f , we denote ∂f

∂t by f̊ .

Using this and recalling that the loss in Eq. 7. Consider the following loss function for a l layer deep linear
network

min
Wi, i∈[l]

Tr
(
W⊤

l Wl−1 · · ·W1CW
⊤
1 · · ·W⊤

l−1Wl

)
s.t. W⊤

i Wi = I, ∀i ∈ [l].

where I is an appropriately sized identity matrix, W1 ∈ Rh×d, Wl ∈ Rh×z , Wi ∈ Rh×h ∀i ∈ 2, . . . l − 1 are
the trainable weight matrices. C ∈ Rd×d is a symmetric, data dependent matrix.

To simplify the proof we now consider a three hidden layer network and we will observe that the obtained
results extends to arbitrarily deep networks. Let the embedding function therefore be

u(x) := WT
3 W2W1x s.t. W⊤

1 W1 = I,W⊤
3 W3 = I and W⊤

2 W2 = I.

From (Edelman et al., 1998), we get that the derivative of a function γ restricted to a grassmanian is derived
by left-multiplying 1 − γγ⊤ to the "free" or unrestricted derivative of γ. We therefore can write W̊1, W̊2 and
W̊3 as

W̊3(t) = −
(
I −W3W

⊤
3
)

∇W3L = −2
(
I −W3W

⊤
3
) (
W2W1CW

⊤
1 W

⊤
2 W3

)
,

W̊2(t) = −
(
I −W2W

⊤
2
)

∇W2L = −2
(
I −W2W

⊤
2
) (
W3W

⊤
3 W2W1CW

⊤
1
)
,

W̊1(t) = −
(
I −W1W

⊤
1
)

∇W1L = −2
(
I −W1W

⊤
1
) (
W⊤

2 W3W
⊤
3 W2W1C

)
.
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Thus we obtain
∂ u(t)(x)
∂ t

=W̊2(t)⊤W2W1(t)x+W3(t)⊤W̊2W1(t)x+W3(t)⊤W2W̊1(t)x

=
((
I −W3W

⊤
3
) (

−W2W1CW
⊤
1 W

⊤
2 W3

))⊤
W2W1(t)x

+W3(t)⊤ (I −W2W
⊤
2
) (

−W3W
⊤
3 W2W1CW

⊤
1
)
W1(t)x

+W3(t)⊤W2
(
I −W1W

⊤
1
) (

−W⊤
2 W3W

⊤
3 W2W1C

)
x

= − 2
(
2W⊤

3 W2W1Cx
)

+ 2
(
W⊤

3 W2W1CW
⊤
1 W

⊤
2 W3W

⊤
3 W2W1x + W⊤

3 W2W1W
⊤
1 W

⊤
2 W3 W

⊤
3 W2W1Cx

)
= − 2

(
2W⊤

3 W2W1Cx−W⊤
3 W2W1CW

⊤
1 W

⊤
2 W3W

⊤
3 W2W1x

−
d∑
i

W⊤
3 W2W1viv

⊤
i W

⊤
1 W

⊤
2 W3 W

⊤
3 W2W1Cx

)
,

where we obtain the second equality by expanding the terms, taking advantage of W⊤
i Wi = I, i ∈ [3],

and Id =
∑d

i viv
⊤
i . Now setting x as vj and using the fact that they are eigenvectors for C and using

C =
∑d

i λiviv
⊤
i gives us:

ů(vj) = − 2
(

2λju(t)(vj) −
d∑
i

λiu(t)(vi)u(t)(vi)⊤u(t)(vj) − λj

d∑
i

u(t)(vi)u(t)(vi)⊤u(t)(vj)
)

Let’s rewrite this in matrix notation. First define q := [u(v1), . . . u(vd)]⊤ thus obtaining:

q̊ = −2
[
2Λq − Λqq⊤q − qq⊤Λq

]
.

Finally note that the presented argument would apply similarly for any additional hidden layer, through
the same formulation as W2, therefore extending the result to deeper networks as well which concludes the
proof.

A.6 Proof of Theorem 3

Proof. For instance first suppose that all the eigenvalues of Λ are strictly positive and thus q⊤Λq > 0. Then

d(q⊤q)
dt

= 2q⊤q̊ = 4
[

− (1 − q⊤q)q⊤Λq − q⊤(I − qq⊤)Λq
]

= −8(1 − q⊤q)q⊤Λq

Observing now that because of orthonormality of our weight matrices, q⊤q = ∥q∥2
< 1 (as ∥q∥ ≠ 1 at

initialization with probability 1) we get that the derivative of ∥q∥2 is always negative and thus q converges
to 0.

Now suppose on the other hand there is atleast one negative eigenvalue. WLOG let e1 denote the eigenvector
with the smallest eigenvalue (which is negative). Then

d(e⊤
1 q)
dt

= e⊤
1 q̊ = 2

[
− (1 − q⊤q)e⊤

1 Λq − e⊤
1 (I − qq⊤)Λq

]
= 2
[
(1 − q⊤q)(−λ1)e⊤

1 q + (q⊤Λq − λ1)e⊤
1 q)
]

We now note that q⊤Λq − λ1 ≥ 0 as λ1 is the smallest eigenvalue. Thus as −λ1 is positive, the derivative
of e⊤

1 q is always positive unless 1 − q⊤q = q⊤Λq − λ1 = 0, which only happens at q = e1. In other words,
eventually q becomes the smallest eigenvector e1.
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