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Abstract

Intelligent agents in embodied environments face the challenge of acting under
uncertainty, where every decision both responds to incomplete information and
reshapes the observations that follow. Building reliable world models is therefore
central to long-horizon decision-making. While Reinforcement Learning (RL) has
been a dominant approach, it often suffers from instability, limited interpretability,
and reliance on costly online interaction. In this work, we explore Decision Trans-
formers (DT) as a sequence modeling framework for uncertainty-aware control.
As a testbed, we consider geosteering, where drilling trajectories must be continu-
ously adjusted in real time based on indirect and noisy subsurface measurements.
Our training data is generated by a dual-network deep RL (DRL) agent coupled
with a particle filter (PF), embedding geological variability through probabilistic
boundary estimates and noisy logs. Experiments demonstrate that longer temporal
contexts allow the DT to capture delayed structural signals, leading to more con-
sistent long-horizon trajectories. These findings position sequence modeling as a
promising foundation for embodied world models in complex, uncertainty-laden
decision-making domains.

1 Introduction

Trajectory optimization under uncertainty remains a central challenge in many real-time control tasks,
ranging from autonomous navigation to robotic manipulation. In the geosteering domain, the problem
is further complicated by limited visibility into the subsurface and the criticality of decisions that
impact reservoir productivity and well integrity. The task requires continuously steering the drilling
trajectory to maximize reservoir exposure, maintain trajectory smoothness, and respect operational
constraints, all while interpreting indirect and often noisy measurements in real time. Geosteering
resembles walking at night with only a short-range torch: the driller perceives just a narrow slice of
the subsurface ahead, and each steering adjustment is irreversible. Unlike passive forecasting, this
is an active, embodied decision-making problem where actions both depend on and reshape future
observations.

∗University of Stavanger, Stavanger, Norway

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Embodied World
Models for Decision Making.



Historically, geosteering workflows have depended heavily on human expertise and manual inter-
pretation of measurements such as gamma ray (GR) logs and inclination data. While effective in
many settings, such manual processes are time-intensive and subject to inconsistency, especially
as the complexity of reservoirs and data streams grows. Early automated approaches introduced
decision-theoretic frameworks and dynamic programming tools to formalize the trade-offs involved in
well placement Kullawan et al. [13, 14]. Building on this line of work, ensemble-based methods like
Ensemble Kalman Filtering (EnKF) Evensen [6] have been integrated with decision support systems
to improve robustness under geological uncertainty Alyaev et al. [2]. Later enhancements incorpo-
rated machine learning techniques, such as Generative Adversarial Networks (GANs) Goodfellow
et al. [8], to generate diverse geological realizations for use in decision support frameworks Alyaev
et al. [1], advancing toward the notion of learned world models Ha and Schmidhuber [9], Hafner et al.
[10] for subsurface dynamics.

In parallel, RL has emerged as a powerful alternative, offering the ability to learn drilling strategies
directly from data without relying on hand-crafted rules or priors. Muhammad et al. [18] introduced
Deep Q-Networks (DQN) for geosteering, demonstrating that RL can outperform traditional model-
based methods like Decision-supportive Dynamic Programming (DSDP) . This was extended by
coupling DQN with particle filters (PF) to model boundary uncertainty more accurately Muhammad
et al. [17]. The resulting hybrid system, known as the Pluralistic Robot Muhammad et al. [16], was
benchmarked in the Geosteering World Cup (GWC) simulator and achieved expert-level performance
in idealized test cases. However, the original formulation struggled with stability and generalization,
especially when deployed on unseen geological structures.

A prior work Djecta et al. [5] has introduced a simulator-verified dual DRL agent combined with PFs,
specifically designed to enhance policy stability and uncertainty-aware steering. This architecture
outperformed traditional single-network designs in environments with noisy feedback and sparse
rewards, moving closer to a practical embodied world model Fung et al. [7] for geosteering.

In this paper, we propose a new direction that reformulates geosteering as a sequence modeling
problem and adopts the Decision Transformer architecture Chen et al. [4] as the core policy engine.
Rather than relying on traditional value functions or Q-networks, the DT treats decision-making
as conditional sequence generation, modeling the joint distribution of returns, states, and actions
using an autoregressive Transformer. This enables stable training from offline datasets, eliminating
the need for unstable online interaction with the environment, while leveraging the scalability and
expressiveness of Transformer models.

The potential of Transformer-based architectures in RL has been widely demonstrated beyond our
context. DT has shown competitive performance with offline RL algorithms across diverse domains
such as Atari, Gym, and D4RL Chen et al. [4]. The model treats trajectories as sequences of triplets
and uses causal attention to predict actions conditioned on goals. Additionally, surveys such as
Yuan et al. [20] have highlighted the taxonomy of Transformer-RL architectures and their growing
impact across hierarchical RL, meta-RL, and multi-agent systems. Specialized designs like SPformer
Han et al. [11] have also demonstrated the efficacy of Transformers in multi-agent autonomous
driving, using physical positional encoding to boost convergence and safety. Likewise, SceneRep
Transformers Liu et al. [15] leverage predictive latent distillation to improve sample efficiency in
dense urban environments.

Inspired by these developments, we adapt the DT paradigm to the geosteering domain using a dataset
derived from 20,000 episodes of our previously trained dual DRL agent. By reframing geosteering
as long-horizon planning under uncertainty, we evaluate the model under different input sequence
lengths and architectural variations, showing that it can produce geologically consistent and feasible
trajectories. This work demonstrates how sequence modeling can serve as a robust alternative to
traditional RL in subsurface decision-making, aligning with embodied world models that move
beyond passive prediction toward goal-directed interaction with uncertain environments.

The remainder of the paper is organized as follows. Section 2 presents the geosteering problem
formulation, the DT architecture, and the data generation process. Section 3 outlines the experimental
setup, hyperparameter studies, and comparative results across model configurations. Section 4
discusses the limitations of the study and avenues for improvement. Finally, Section 5 concludes the
paper with a summary of findings and directions for future research. Additional experimental details
are provided in Appendix A.1 to support reproducibility.
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2 Methodology

In this section, we present the modeling framework used to apply the DT to geosteering. Our
formulation can be seen as building an uncertainty-aware embodied world model for decision-
making, where the agent learns to predict and act over extended horizons under partial observability.
We begin by formulating geosteering as a constrained sequential decision-making problem under
uncertainty, then describe how this is operationalized through a transformer-based sequence prediction
architecture.

2.1 Problem Formulation

The geosteering task can be viewed as a sequential decision-making process under uncertainty
Bratvold and Begg [3], which can be formally expressed as a Partially Observable Markov Decision
Process (POMDP). The true state of the system at time t, denoted st ∈ Rn, represents the hidden
position of the drill bit and surrounding geological structure. Since this state cannot be observed
directly, the agent instead receives partial and noisy observations, such as GR measurements and
directional data, which provide incomplete information about the environment. Based on the observa-
tion history, the agent must choose a steering action at = (∆INCLt,∆AZIMt) that determines the
well’s future trajectory.

The primary objective is to minimize cumulative trajectory error over a finite planning horizon H . If
ŝt denotes the state predicted from the executed actions, the optimization target can be written as

min
π

E

[
H∑
t=1

∥st − ŝt∥2
]
, (1)

where π is the policy mapping observation histories to actions. In practice, this means producing
decisions that keep the trajectory close to the target reservoir structure, while remaining robust to
uncertainty.

The action space is bounded by both physical and operational constraints. Each action must satisfy
mechanical limitations:

∥at∥ ≤ δmax, at ∈ A, (2)

where δmax denotes the maximum allowed change in inclination and azimuth, and A the feasible
action set. These limits ensure safety, just as in robotics where actuators must respect torque or
velocity bounds.

At each decision point, the agent faces multiple alternatives in A. Each choice affects not only
the immediate trajectory segment but also propagates downstream, meaning that local decisions
compound into long-horizon outcomes. This dependence makes the task particularly sensitive to
sequential reasoning.

Finally, uncertainty permeates the process. Observations are noisy functions of the hidden geological
state:

st = f(xt) + ϵt, ϵt ∼ N (0, σ2), (3)

where xt is the true spatial position, f(xt) the expected measurement at that location, and ϵt Gaussian
noise. This formulation captures both aleatoric uncertainty from imperfect sensors and epistemic
uncertainty due to incomplete subsurface models.

Overall, geosteering can be cast as a POMDP-driven sequential decision-making process: the agent
must act under partial observability, respect strict constraints, and plan over long horizons to maximize
reservoir exposure and maintain safe, feasible well trajectories.

2.2 Decision Transformer for Geosteering

Having framed geosteering as a POMDP-driven sequential decision-making process, we now describe
how the DT operationalizes this formulation. Instead of directly minimizing state error over a horizon,
the DT learns a conditional sequence model that generates actions consistent with desired outcomes
(Figure 1). Each drilling episode is expressed as a sequence of triplets

(st, at, Rt), (4)
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Figure 1: Overview of the Decision Transformer architecture, which conditions on sequences of
returns, states, and actions to predict future actions [4].

where st is the observed state (including GR measurements, inclination, azimuth, and spatial coordi-
nates), at is the chosen steering action, and Rt the return-to-go from step t. The learning problem
can be expressed as aligning the DT’s autoregressive policy πθ(at | s≤t, a<t, R≤t) with expert
demonstrations. Formally, the model predicts an action âθt at each timestep, and training minimizes
the deviation from the demonstrated expert action at:

min
θ

E

[
H∑
t=1

∥at − âθt ∥2
]
, (5)

which corresponds to a supervised version of the earlier trajectory optimization, now framed directly
at the action level.

At each timestep, the model receives the triplet (st, at−1, Rt), which are projected into a shared latent
representation. This embedding can be written as

xt = Wsst +Waat−1 +WRRt + pt, (6)
where Ws, Wa, and WR are learnable projections and pt encodes temporal ordering. The sequence
{xt}SEQ_LEN

t=1 is processed by stacked transformer blocks, with multi-head self-attention enabling
the model to capture dependencies between past and future states across long horizons. The con-
textualized representation is mapped through a linear output layer to generate the predicted action
ât.

Training proceeds entirely offline on expert trajectories generated by a dual-network DRL agent with
a PF, ensuring that geological uncertainty is embedded in the data. By treating the task as supervised
sequence modeling, the DT bypasses unstable trial-and-error exploration while still capturing long-
term dependencies. The context length SEQ_LEN determines the effective planning horizon: short
contexts focus on local accuracy, while longer contexts condition decisions on broader structural
signals. This directly ties back to the problem formulation, where the trade-off between immediate
error minimization and long-horizon consistency governs trajectory quality.

2.3 Data Acquisition and Preparation

Unlike standard RL approaches that learn through online interaction, the DT framework requires
a pre-collected offline dataset of full trajectories. These trajectories must be structured to reflect
complete episodes of decision-making, with clearly defined returns-to-go and action histories. This
shift imposes specific requirements on the dataset: sequences must be complete, consistent in length,
and diverse enough to represent a meaningful return distribution. Additionally, because the DT model
is trained in a supervised fashion, the data must be split into training, validation, and test sets to
evaluate generalization.

This is in contrast to typical DRL training, where new trajectories are continuously generated online
and stored in a replay buffer for sampling without concern for strict train/test separation.
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To meet the DT’s requirements, we re-trained a previously developed dual DRL agent Djecta et al. [5]
in a synthetic geosteering environment, explicitly for the purpose of data collection. This environment
simulates horizontal drilling through geological formations and produces GR logs along with true
structural boundaries. At each timestep, the agent selects a steering action based on the current state,
receives a scalar reward, and transitions to a new state.

Because the dataset was generated by a dual-network DRL agent combined with a PF, uncertainties
from noisy logs and probabilistic boundary estimates are already incorporated. Thus, each trajectory
encodes realistic decision-making under uncertainty, rather than deterministic or noise-free drilling
paths.

During retraining, we logged all environment-agent interactions across multiple episodes. Each
episode corresponds to one full simulated well trajectory, with data recorded at every decision step in
the form:

(st, at, rt, st+1, return_to_got), (7)
where:

• st: Current environment state, including GR, inclination, azimuth, and spatial features.
• at: Agent’s action at step t, defined as changes in inclination and azimuth.
• rt: Reward based on trajectory alignment with the reservoir zone.
• st+1: Next state after applying at.
• return_to_got: Discounted sum of future rewards from step t onward.

Each record was tagged with an episode_id, allowing us to organize and split the data on a per-
trajectory basis. The complete dataset was saved as a DataFrame and serialized for training use.

Table 1: Structure of a single row in the dataset

episode_id step_t state_t action_t return_to_go_t reward_t next_state done

For model input preparation, each episode was divided into overlapping sequences of fixed length
SEQ_LEN using a sliding window. Each training example takes the form:

{(st, at, Rt)}SEQ_LEN
t=1 , (8)

which conforms to the input specification of the DT: a sequence of return-to-go, state, and action
triplets used to condition the model’s predictions autoregressively.

This pipeline enables offline supervised training of a sequence model that mimics expert-like drilling
behavior based on learned correlations between past state-action-return sequences and future deci-
sions.

3 Experimental setup and results

This section outlines the experimental environment, dataset construction, and the influence of key
hyperparameters on the performance of the Decision Transformer in a geosteering context. All
model variants were trained for 200 epochs with a batch size of 64 using the Adam optimizer
(learning rate 1× 10−4). Experiments were executed on a local workstation with a 13th Gen Intel®
Core™ i7-13800H × 20 processor, 32GB VRAM, and Ubuntu 22.04. The transformer architecture
consisted of 2 layers with hidden dimension 128, feed-forward dimension 512, and 2 attention heads,
with a maximum sequence length of 20 tokens. For reproducibility, all details are summarized in
Appendix A.1 .

3.1 Dataset Creation

As we mentioned before, to build the dataset for supervised training, we first re-trained a dual DRL
agent Djecta et al. [5] on the geosteering environment described previously. The agent was trained
using a reward function designed to maximize reservoir contact and maintain trajectory smoothness.
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After approximately 20,000 full episodes of training, the agent was used to generate a dataset of
trajectories, which were recorded by logging each step’s state, action, and estimated return-to-go.

The final dataset consists of approximately 348,000 rows, with each episode containing around 29
steps on average. This volume ensures sufficient coverage of geological variability and behavioral
diversity. Each training batch is composed of a collection of sequences that are sampled uniformly
from the dataset. The dataset was split into 80% training, 10% validation, and 10% test sets. All
splits were sampled uniformly from the full collection of overlapping sequences, ensuring consistent
distribution across geological patterns and trajectory shapes.

3.2 Model Evaluation and Hyperparameter Exploration

This section explores how model structure and key hyperparameters impact performance. Two
main directions were investigated: the influence of input sequence length and the role of multi-head
attention. Each configuration was trained using the same dataset and evaluated both in terms of
validation loss and final trajectory accuracy.

3.2.1 Attention Head Ablation

To evaluate the impact of attention heads in the multi-head self-attention (MHSA) block Vaswani
et al. [19], we conducted an ablation study by training models with different head configurations. The
baseline model used 4 attention heads, while alternative configurations used 2.

Results show that reducing the number of attention heads to 2 significantly improved both training
stability and generalization. As shown in Figure 2, the model with 4 heads exhibits signs of overfitting:
it converges quickly on the training set but fails to maintain performance on the validation set, with
validation loss high along the epochs. In contrast, the 2-head configuration maintains a better balance
between training and validation loss, converging more slowly but generalizing more effectively.

This behavior suggests that for relatively short sequences (SEQ_LEN = 20) and structured geolog-
ical environments, a smaller attention capacity is sufficient. The use of fewer heads also reduces
computational complexity and the risk of overfitting.

Based on these observations, the 2-head configuration was selected as the default for the remaining
experiments in this study.

3.2.2 Effect of Sequence Length

We experimented with sequence lengths (SEQ_LEN) ranging from 1 to 20 to evaluate how temporal
context influences model performance. As shown in Figure 3, shorter sequences converged quickly
and achieved lower training loss, and this trend was mirrored in the validation loss curves (Figure 4).
However, these short contexts lacked the capacity to capture long-term dependencies essential for
geologically consistent steering.

In contrast, longer sequences such as SEQ_LEN = 20 converged more slowly and exhibited higher
per-step loss, but consistently produced trajectories that aligned better with reservoir structures. This
reveals a trade-off between local prediction accuracy and long-horizon planning quality—a point that
will become more evident in the following subsections, where we compare trajectory outcomes and
Reservoir Contact Ratio (RCR).

3.2.3 Discrepancy Between Loss and Trajectory Quality

While per-step validation loss is commonly used to evaluate predictive models, our experiments with
the DT in geosteering reveal a deeper insight: minimizing step-wise error does not always correlate
with high-quality long-term decisions.

This becomes particularly evident when considering a real geosteering scenario during the steering
phase. In practice, the expectation is that the well should remain within the reservoir boundaries to
maximize contact.

As shown in Figure 5, models trained with short context windows, specifically SEQ_LEN = 1, tend to
diverge from the intended geological boundaries (Figure 5, Black lines, Real Top and Real Bottom),
despite achieving lower validation loss. This discrepancy arises because the DT, when limited to
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Figure 2: Training loss for models with 2 vs. 4 attention heads. The 2-head variant converges more
steadily and generalizes better in structured geological settings.

Figure 3: Training loss across context lengths. Short sequences converge faster but underfit, while
longer ones converge slower yet capture richer dependencies.

7



Figure 4: Validation loss for different context lengths. Longer sequences (SEQ_LEN=20) achieve
lower error, reflecting improved long-horizon planning.

short sequences, lacks sufficient historical context to anticipate structural changes in the subsurface.
With minimal hindsight, the model behaves greedily, focusing on immediate outcomes rather than
planning across the trajectory.

In contrast, increasing the sequence length to SEQ_LEN = 20 allows the DT to attend to a richer
history of prior states, actions, and return signals. This enables the self-attention layers to capture
long-range dependencies, structural trends, and delayed geological feedback, all critical for effective
decision-making in directional drilling. Although the longer-sequence model incurs slightly higher
per-step loss (likely due to increased variance in the training signal), it produces trajectories that
better track the target formation over time.

This observation is quantitatively supported by the RCR shown in Figure 6. RCR measures the
proportion of trajectory points that remain inside the reservoir zone. As the figure indicates, models
with longer context windows consistently achieve higher RCR values. This confirms that the DT
benefits from longer sequences by planning more geologically consistent and operationally viable
trajectories.

These results highlight a core principle in sequential modeling: context length governs the planning
horizon. For geosteering, where decisions compound over time and geological feedback is delayed,
longer sequences empower the model to reason holistically about future consequences, a hallmark
capability of Transformer-based policies.

So, while validation loss reflects prediction accuracy at the token level, it may obscure deficiencies in
high-level trajectory planning. Evaluating models like the DT in geosteering requires a broader set
of metrics, including domain-specific indicators such as RCR and visual comparisons to structural
ground truth.

4 Limitations

The Decision Transformer in this study was trained on synthetic trajectories generated from the
behavior of a dual-network DRL agent, rather than expert human data. While this ensured consistency
and uncertainty-aware signals, it may not fully capture the variability and subtleties of expert-driven
decisions. The evaluation was conducted in a realistic geosteering scenario but limited in scope,
focusing only on steering phases and a single reservoir setting. Broader validation on diverse
geological environments, noisy field logs, and expert-labeled data will be necessary to confirm
generalizability and practical applicability.
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Figure 6: Reservoir Contact Ratio (RCR) across sequence lengths. Longer context windows consis-
tently achieve higher reservoir exposure.

5 Conclusion

Geosteering exemplifies the challenge of making rapid, uncertainty-laden decisions with long-
term consequences, and this work shows how a DT can help address that challenge. Using a
dataset of trajectories generated from our dual-network DRL agent, we demonstrated that the DT
can learn horizon-aware policies in an offline, supervised setting. Our experiments highlight the
impact of sequence length: short contexts achieved lower per-step loss but produced geologically
inconsistent trajectories, whereas longer contexts (SEQ_LEN = 20) captured delayed geological
signals and achieved higher RCR. This decouples trajectory quality from local prediction accuracy
and underscores the need for sequence-level evaluation in subsurface decision-making.

Beyond drilling automation, our approach connects to embodied world models and decision-making
under uncertainty. By reframing geosteering as offline sequence modeling, the DT offers a stable,
interpretable framework for capturing long-horizon dependencies without fragile online interaction.

Future directions include extending the model with Trajectory Transformers Janner et al. [12], integrat-
ing world-model approaches for real-time uncertainty-aware planning, and adopting foundation-model
pretraining for transfer across geological settings. This research is ongoing, and the results presented
here should be viewed as an intermediate step toward more comprehensive embodied world models
for geosteering.
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A Appendix

A.1 Experimental Setup Details

Table 2: Experimental setup and training details for the Decision Transformer in geosteering.

Category Details
Dataset size ∼348k state–action–return records from ∼20k episodes
Data split 80% train, 10% val, 10% test
Input format Sequences of triplets {(st, at, Rt)}
Features GR, inclination, azimuth, spatial coordinates

Model Decision Transformer
Transformer blocks 3
Hidden size (dmodel) 128
Feedforward size (dff) 512
Attention heads 2 (ablation: 4)
Dropout 0.1
Activation ReLU
Context length (SEQ_LEN) 1, 5, 10, 20 (default = 20)
Output head Linear projection to action ât

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rate 1× 10−4

Batch size 64
Epochs 200
Loss function Mean Squared Error (MSE)

Evaluation metrics Validation MSE, Reservoir Contact Ratio (RCR), trajectory consistency
Hardware Intel i7-13800H (20 cores), NVIDIA RPL-P GPU (32GB VRAM), Ubuntu 22.04
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly state the main contributions: reframing
geosteering as a sequential decision-making problem, applying Decision Transformers for
offline embodied control, and showing how context length affects trajectory quality. These
claims are supported by the experiments (Sections 3–5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We acknowledge limitations such as training solely on synthetic trajectories
generated by a dual-network DRL agent, and evaluation constrained to steering phases
rather than full drilling operations. While a realistic geosteering scenario was considered,
broader validation on expert-labeled data and diverse geological settings is left for future
work (Section 4).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include new theorems or proofs; it is primarily empirical
and methodological.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper

Answer: [Yes]

Justification: Section 2.3 and Section 3 describe the dataset generation, model architecture,
hyperparameters, and evaluation metrics, with additional implementation details summarized
in Appendix A.1. Together, these provide sufficient information to enable reproduction of
the main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to project and licensing restrictions, the dataset and code are not yet
publicly available. However, we intend to release an anonymized dataset and training scripts
upon acceptance, following NeurIPS guidelines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3 specifies training epochs, optimizer, batch size, sequence length
variations, and compute environment. Dataset splits (train/val/test) are described in Sec-
tion 2.3, and additional implementation details, including Transformer architecture and
hyperparameters, are provided in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper reports validation loss curves and Reservoir Contact Ratio (RCR) as
primary evaluation metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 3 and appendix A.1 report the compute environment. Each model
was trained for 200 epochs, with training runs typically completing within 6 hours per
configuration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Paper discusses the broader implications: positive impacts include safer and
more consistent geosteering decisions, while potential negative impacts could arise if models
are misused for automated decision-making without human oversight.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk pretrained models or scraped datasets are released. The contribu-
tion is methodological and experimental on synthetic data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: All external datasets, simulators, and methods are cited properly. Licenses for
public assets are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new dataset or code is released as part of this submission, though we plan
future release upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work does not involve human subjects, crowdsourcing, or user studies.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable as no human subjects were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs (ChatGPT) were used only for writing assistance, editing, and restruc-
turing text. They were not used for data generation, modeling, or experimental methodology,
hence not affecting scientific rigor.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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